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Abstract

Motor impairments are the prerequisite for the diagnosis in Parkinson’s disease (PD). The cardinal symptoms (bradykinesia,
rigor, tremor, and postural instability) are used for disease staging and assessment of progression. They serve as primary
outcome measures for clinical studies aiming at symptomatic and disease modifying interventions. One major caveat of
clinical scores such as the Unified Parkinson Disease Rating Scale (UPDRS) or Hoehn&Yahr (H&Y) staging is its rater and time-
of-assessment dependency. Thus, we aimed to objectively and automatically classify specific stages and motor signs in PD
using a mobile, biosensor based Embedded Gait Analysis using Intelligent Technology (eGaIT). eGaIT consist of
accelerometers and gyroscopes attached to shoes that record motion signals during standardized gait and leg function.
From sensor signals 694 features were calculated and pattern recognition algorithms were applied to classify PD, H&Y
stages, and motor signs correlating to the UPDRS-III motor score in a training cohort of 50 PD patients and 42 age matched
controls. Classification results were confirmed in a second independent validation cohort (42 patients, 39 controls). eGaIT
was able to successfully distinguish PD patients from controls with an overall classification rate of 81%. Classification
accuracy increased with higher levels of motor impairment (91% for more severely affected patients) or more advanced
stages of PD (91% for H&Y III patients compared to controls), supporting the PD-specific type of analysis by eGaIT. In
addition, eGaIT was able to classify different H&Y stages, or different levels of motor impairment (UPDRS-III). In conclusion,
eGaIT as an unbiased, mobile, and automated assessment tool is able to identify PD patients and characterize their motor
impairment. It may serve as a complementary mean for the daily clinical workup and support therapeutic decisions
throughout the course of the disease.
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Introduction

Motor symptoms such as bradykinesia, rigidity, tremor, and

postural instability define the diagnosis of Parkinson’s disease (PD)

[1]. The presence of rigidity and/or tremor defines distinct clinical

phenotypes of PD [2]. Motor impairment leads to specific gait

characteristic in PD, such as shuffling gait, reduced step length,

impaired gait initiation, and reduced gait speed. Gait impairment

and consecutively reduced mobility with loss of independency lead

to the severe reduction of quality of life in PD patients [3]. The

MDS Unified Parkinson Disease Rating Scale (UPDRS) - Part III

is the most commonly used scale to rate motor symptoms in PD

[4], and is widely accepted test to determine the efficacy of

intervention in clinical studies. Disease progression is categorized

using the Hoehn&Yahr (H&Y) staging [5], substantially relaying

on the presence and characteristics of motor signs related to

independence and quality of life. With disease progression, gait

impairment increases and motor symptoms start to fluctuate,

mainly recorded subjectively in patient diaries. Thus, subjective

information and rating of motor signs are the basis for the daily

clinician’s diagnostic workup and guide therapeutic decisions.

Body-worn inertial measurement units comprising of biosensors

such as accelerometers and gyroscopes are able to objectively

measure changes of gait patterns. However, recent studies mostly

focused on a limited number of preselected features of sensor

derived signals without the use of pattern recognition approaches,

or characterized individual gait abnormalities in a limited number

of PD patients [6–11]. Our goal was to establish and validate a

biosensor-based mobile and objective gait analysis system that uses

pattern recognition algorithms to classify motor signs of gait

impairment in PD. Pattern recognition approaches analyze several

hundreds of computed biosensor derived gait signals. They are
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able to deliver high discriminatory power for group differentiation

[12,13]. For example, in a recent prospective study, we analyzed

2244 biomechanical movement features of 153 subjects, of which 6

developed gait impairment associated with severe patellafemoral

pain syndrome. Automatic pattern recognition revealed one single

feature (hip flexion-extension moment) that perfectly separated the

symptomatic from the asymptomatic group [14].

In the present case-control study using a training and a

validation population we combined sensor derived signals with

pattern recognition approaches to test two hypotheses: Is this

embedded gait analysis system using intelligent technology

(eGaIT) able to assess PD-related gait changes allowing to A)

separate patients from controls in order to support the clinical

diagnosis of PD; and B) correctly categorize patients in different

stages or with different degrees of gait impairment? This approach

allows a rater and time independent, objective, and mobile

assessment of gait in order to standardize staging in PD patients.

Methods

Standard Protocol Approvals, Registrations, and Patient
Consents

Patients and controls were recruited after obtaining written

informed consent. The approval from the ethical committee was

received (Re.-No. 4208, 21.04.2010, IRB, Medical Faculty,

Friedrich-Alexander-University, Erlangen-Nuremberg, Germany).

All clinical investigations have been conducted according to the

principles expressed in the Declaration of Helsinki.

Sample and definition of clinical ratings
PD patients and controls were selected during their visit in the

movement disorder outpatient center from April 2010 until

February 2012 at the University Hospital Erlangen, Germany.

All clinical assessment and correlation to motor signs was based on

standardized consensus criteria and performed by a movement

disorder specialist. PD patients were included according to the

consensus criteria of the German Society of Neurology analogue to

the National Institute of Neurological Disorders and Stroke

(NINDS) diagnostic criteria for PD [15]. A total of 92 PD patients

and 81 controls without gait impairment were enlisted in the

present study, divided into two independent age matched

populations, and analyzed by eGaIT in a case-control design

(criterion standard) with a training and a validation group. The

training population consisted of 50 patients with sporadic PD and

42 age matched controls, the validation population of 42 PD

patients and 39 controls (table 1). Predominantly male PD patients

were recruited. To exclude motor fluctuations between biometric

gait analysis and clinical evaluation the MDS-UPDRS motor score

part III [4] rating was obtained immediately (,30 min) prior to

eGaIT analysis. The subitems associated with the lower extremity

function (UPDRS-IIIlower ex) were defined ‘‘bradykinesia; rigidity

of neck and lower extremities, tremor of lower extremities; leg

agility; posture; gait; arising from chair; postural stability’’. PD was

staged according to H&Y [5]. To control for depression Zung Self-

rating Depression Scale (SDS) was obtained [16]. PD patients

reached significant higher depression scales than controls in both

populations (table 1). From 81 controls, 8 were rated mildly, 2

moderately depressed, from PD patients 26 were mildly, 13

moderately, and 4 severely depressed. Exclusion criteria consisted

of non-PD related gait impairments (e.g. spinal or orthopedic

surgery), atypical Parkinson syndromes, spasticity, stroke, neurop-

athy, myelopathy, hydrocephalus, and cognitive impairment.

Patients had to be able to walk independently (H&Y,4). L-Dopa

equivalent dosage was calculated from all dopaminergic medica-

tion taken [17]. Motion sensor derived raw data a subgroup (27

PD patients and 16 controls) has been recently analyzed in a pilot

study using different algorithms and analysis paradigms [18,19].

Patient subgroups
For subgroup analysis, PD patients were divided into three

equally sized subgroups (A) according to H&Y stages (H&Y I, II,

or III), and (B) based on their UPDRS-III motor score at ‘‘best-

on’’ state (‘‘UPDRS-low’’: range 0–12; ‘‘UPRDS-mild’’: range 13–

22; ‘‘UPDRS-high’’: range 23–50). Axial affection and postural

instability defining H&Y substages (1.5 or 2.5) were included

(either H&Y I or II) and not categorized separately, because the

major goal was to assess and classify features on gait motor

function, rather than rating postural instability. Characteristics of

subgroups are listed in table S1, S2.

Standardized gait tasks
Subjects underwent 1) 10-meter walk: Subjects passed 10 meter

distance 4 times at a subjective comfortable walking speed [20]. 2)

Heel-toe tapping: While sitting, heel and toes were tapped alternately

Table 1. Characteristics of the study population.

Population: TRAINING VALIDATION

Variable PD patients (n = 50) controls (n = 42) PD patients (n = 42) controls (n = 39)

Age (y, mean, 6SD) 63.9610.6 60.0611.2 65.169.7 60.7611.8

Sex (male:female) 36:14 17:25 28:14 16:23

Age at onset (y, mean, 6SD) 57.6610.0 / 59.7611.3 /

Disease duration (y, mean, 6SD) 6.564.7 / 5.664.7 /

H&Y (6SD) 2.160.9 / 2.260.9 /

UPDRS-III motor score (6SD) 18.3611.4 0 20.7611.8 0

Levodopa equivalent (mg/d, 6SD) 4926411 0 4186397 0

Depression score (SDS, 6SD) 49.5613.6* 37.968.4 50.9611.0* 40.268.0

Weight (kg, 6SD) 77.2613.9 75.3613.1 77.1616.3 74.6613.7

Height (cm, 6SD) 17269.6 17067.2 17168.8 16968.7

*: p,0.001 Student’s T-test.
doi:10.1371/journal.pone.0056956.t001

eGaIT-Embedded Gait Analysis in PD
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on the floor for 20 seconds requiring a flexion mainly within the

ankle, comparable to the subitem ‘‘leg agility’’ of the UPDRS [4].

3) Circling: While sitting, subjects performed a sequential unilateral

circling foot movement 5–10 cm above the ground floor (,30 cm

diameter) for 20 seconds to assess the movement without the

influence of the body weight.

eGaIT – Embedded Gait Analysis using Intelligent
Technology

The automated gait analysis system ‘‘eGaIT’’ consists of

biosensors attached to shoes, data capture, wireless data transfer,

feature extraction, and pattern recognition algorithms (figure 1,

table 2,3) that performs classification experiments for each group

and category (table 4) defined by the clinical rating of motor signs.

Sensor platform and setup
Inertial sensors (three axes gyroscopes and accelerometers)

integrated in the SHIMMER sensor platform (Shimmer Research

Ltd., Dublin, Ireland) were used. This sensor system provides an

extensible platform for real-time kinematical motion recording.

Sensors were attached to the lateral heel of a shoe (figure 1A). Data

was captured from both feet using an accelerometer range of 66 g

(sensitivity 300 mV/g), a gyroscope range of 6500 degree/sec

(sensitivity 2 mV/degree/sec), and a sampling rate of 50 Hz.

Sensor signals were transmitted via BluetoothH to a laptop

computer and stored for consecutive offline analysis.

Pattern recognition methods
Pattern recognition methods were used to train eGaIT based

classification using the training population (figure 1C). Best

classification algorithms were reevaluated using a second inde-

pendent validation group.

Feature extraction. Biometric gait features were extracted

from recorded gyroscope and accelerometer signals. They were

obtained from single steps and gait sequences [18]. Three different

kinds of features were calculated. 1) Step dependent features from

single steps of the 10-meter-walk task. One feature is calculated

per step and averaged over all steps of one subject, resulting in one

value per subject and feature. 2) Sequence dependent features

derived from the complete gait sequence in 10-meter-walk and

from a 15 second period out of the other tasks. 3) Frequency

features were computed from the Fourier transform of gait

sequences to incorporate a frequency based analysis. Features were

extracted from both shoes, which resulted in 286 features for the

10-meter walk, and in 204 features for both the heel-toe tapping and

the circling task, giving a total of 694 features for each subject

(table 2, table S3). Exemplary accelerometer signal and typical

feature during 10–meter walk are depicted in figure 1B.

Feature selection and classification. The number of total

features was reduced to the most relevant using Information Gain

feature selection and Sequential Forward Selection. All individual

features are ranked based on their information gain values [21].

Sequential Forward Selection algorithm starts with one gait

feature and adds one feature after another by using the

classification accuracy as an adding criterion [22]. Classifiers

define decision boundaries for the separation of subgroups based

Figure 1. Embedded gait analysis using intelligent technology (eGaIT) concept. A: Shoe equipped with biosensors. B: Exemplary raw signal
data from accelerometer with some automated computed features. C: Pattern recognition includes feature extraction from biosensor signals followed
by selection, and classification of subgroups. Different pattern recognition algorithms were created: APD distinguishes between patients and controls,
is generated in a training population and validated in an independent validation population. AH&Y and AUPDRS classify PD subgroups and include all
samples.
doi:10.1371/journal.pone.0056956.g001

eGaIT-Embedded Gait Analysis in PD
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on the computed features. As classifiers Linear Discriminant

Analysis (LDA), AdaBoost, and Support Vector Machines (SVM)

with linear and radial basis function (RBF) kernel [22] were

trained and evaluated using a 10-fold cross-validation using the

training group [23]. In detail, the complete training dataset was

divided into 10 subgroups containing a balanced amount of

patients and controls. For stratified cross-validation one subgroup

was excluded from the dataset and the classifiers were trained on

the remaining subjects. The resulting classification algorithms and

selected features where subsequently cross-validated using the

excluded subgroup. Finally, balanced classification rate, specificity,

sensitivity, and positive predictive value of optimal feature sets

were calculated [23]. This approach was repeated for all

subgroups, resulting in an overall classification accuracy for the

best classification algorithm identified. At the same time, a

minimum subset of features was isolated allowing an accurate

distinction between the tested subgroups.

Table 2. Feature characteristics.

Characteristics Sensor Axis Task Total No.

Step dependent features G z-axis Steps from 10-meter walk 10

Step dependent features G/A x-/y-/z-axis Steps from 10-meter walk 72

Sequence dependent features G/A x-/y-/z-axis Complete 10-meter walk sequence,
15 sec sequence from other tasks

288

Frequency dependent features G/A x-/y-/z-axis Complete 10-meter walk sequence,
15 sec sequence from other tasks

324

Overview of individual features extracted from eGaIT based gait analysis. Feature were extracted from both shoes during defined tasks using raw sensor data from
gyroscope (G) and/or accelerometer (A) using designated axes (for complete list of feature see table S3).
doi:10.1371/journal.pone.0056956.t002

Table 3. Single features derived from pattern recognition paradigms.

Feature Single feature analysis (PD vs. control)

No Name Description Sens. Spec.

10 Minimum maximum
difference

Global maximum of one step, averaged over all steps of one
subject minus global minimum of one step, averaged over all
steps of one subject
Task A, Gyroscope z-axis

71 44

12 Entropy Uncertainty measure of the signal
Task B, Accelerometer x-axis

62 72

13 Regression line of
maxima

Regression line of all local minima and maxima in the signal
sequence
Task C, Gyroscope z-axis

67 56

16 Variance Measure for signal spreading, defined as the square of standard
deviation
Task A, Gyroscope z-axis

79 56

17 Root mean square Root Mean Square or quadratic mean is a statistical measure
Task A, Gyroscope z-axis

79 56

Task B, Gyroscope z-axis 52 69

22 Energy in frequency
band 0.5 to 3 Hz

Energy in a frequency band describes parts of distinct frequencies
in the signal, typical frequency bands for specific movements can
be defined
Task B, Gyroscope z-axis

55 67

24 Windowed Energy in
frequency band
0.5 to 3 Hz

Energy in frequency band of 5 second windows with an overlap of
2.5 seconds, windows from complete signal sequence are averaged
Task B, Gyroscope z-axis

48 79

26 Power spectral
density in frequency
band 0.5 to 3 Hz

Energy measurement, Fourier-transform of the signals
cross-correlation with itself
Task B, Gyroscope z-axis

71 51

Task B, Accelerometer x-axis 67 69

28 Regression line of
windowed energy

Regression line of energy values from window (2.5 s) moved
through signal sequence
Task C, Gyroscope z-axis

71 56

Selected features from derived from pattern recognition algorithm ‘‘APD’’ that show the highest difference (p,0.00001) if tested for differences between PD patients
and controls (Student’s T-test). Only low sensitivity and specificity is reached by single feature classification (AdaBoost). Description of feature includes the task and the
sensor type/axis.
doi:10.1371/journal.pone.0056956.t003
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Statistics
Differences in clinical characteristics of patients and controls

were calculated based one-way ANOVA, Pearsons’s Chi-Square,

or Student’s T-test as indicated using the IBM SPSS Statistics

software package (IBM Deutschland GmbH, Germany).

Results

Single feature analysis: Differences of individual gait
features

Biosensor derived raw signals from all tasks were isolated and

computed into a total of 694 distinct features (figure 1, table S3).

Analyzing all features individually for differences between patients

and controls revealed several distinct features that significantly

varied between both groups. As an example, the dominant

frequency and the root mean square (potentially correlating to the

walking speed and changes in alternating movements –table S3)

were significantly reduced in PD patients (figure 2A). Nevertheless,

a substantial overlap between PD and controls remained even if

both features were plotted against each other (figure 2B). This

became even clearer when looking in particular at features that

were selected by pattern recognition algorithms. Here, comparing

selected features individually revealed 11 feature that reached a

very high significant difference (p,0.00001; Student’s T-Test)

between PD and control (table 3). However, only low sensitivity

and specificity was achieved by AdaBoost classification using this

single feature approach (table 3).

Multi-feature analysis: Classification of PD and controls
To overcome the limits of single feature analysis, we used a

pattern recognition strategy to identify cluster of features that

provide specific information on biosensor based recorded gait

impairments (figure 1C, table 4). The first algorithm generated by

pattern recognition strategies was used to classify PD patients and

controls (algorithm ‘‘APD’’, figure 1C). This algorithm was cross-

validated using the training population. The AdaBoost classifier

revealed the best classification results using a total of 64 different

features (table 4, table S3). This resulted in an overall balanced

classification rate of 82% for the training population.

In order to exclude overfitting by pattern recognition in a

multifeature paradigm, it was important to confirm the resulting

algorithm in an independent validation population (table 4).

Intriguingly, the algorithm achieved similar classification results

(81% correct classification accuracy, 76% sensitivity, 85%

specificity, and 84% positive predictive value, table 4) supporting

the hypothesis that eGaIT detects PD related gait alterations.

Characteristics of correct and false negative classification
results

Even though a validated 82% correct classification rate for the

experiment ‘‘PD vs. control’’ already verified the applicability of

eGaIT for gait analysis in PD, we also wanted to identify and

characterize the remaining 18% of false classified patients. In a

first attempt the classification results were divided by distinct H&Y

stages (H&Y I, II, III), and different levels of motor impairment as

defined by the UPDRS-III motor score (UPDRS-low, -medium, -high;

table 4). Interestingly, more advanced H&Y stages (H&Y III) and

more affected patients (UPDRS-high, score 23-50/108) reached

very good classification results (91%), whereas classification was

weaker, both at early stages (70% for H&Y I) and for mildly

affected patients (74% for UPDRS-low). Thus, classification results

improved with increased motor impairment or H&Y stages.

In a second attempt, we isolated patients from the validation

group that were classified as controls by eGaIT (false negative

samples). In order to define possible confounding parameters

influencing the gait-based classification by eGaIT we compared

the clinical characteristics between correct (n = 32) with false

negative (n = 10) classified PD patients (validation sample, table 4).

Notably, among the 10 false negative classified patients, the age

was significantly younger than in the group of correctly classified

patients (58,6 y65.0, vs. 67.1610.0, p = 0.001). Also, age-at-onset

was younger (54,4 y66.9, vs. 61.3612.0, p = 0.031). Vice versa,

false positive classified samples (n = 6) in the control group were

older than correctly classified samples (mean age of false positive

results: 67.8610.8; compared to 59.4611.6), without reaching

statistical significance (p = 0.124). Thus, even though PD and

control samples were age-matched, age in particular was the most

important confounder for false classification using eGaIT.

The effect of age on false negative classification results was also

observed for early H&Y stages (H&Y I) and mildly affected patients

(UDPRS-low, table 5). In particular for the group H&Y I, age

(57.5 y63.7 vs. 66.4 y69.9) and age-at-onset (54.5 y63.7 vs.

64.5 y610.5) was significantly lower in false negative classified

patients. A trend, however, was observed for the UPDRS-low group

without reaching significance (table 5 lower panel). Beneath other

factors, in particular weight and gender did not differ between

correct and false classified patients, thus, not supporting a

confounding influence of these factors on classification quality by

eGaIT.

The total UPDRS-III motor score in all false negative classified

patients was slightly lower (8.563.6 SD, vs. 11.762.8 SD,

p = 0.06), but not significantly different in the H&Y I group only

(table 5 upper panel). Motor symptoms in early PD more

frequently begin at the upper extremity and leave the lower

extremity unaffected [24]. Thus, we tested, if false negative

classification of PD patients depends on low or even a lack of

impairment of the lower extremity in the both H&Y I, or UPDRS-

low group. However, limiting the UPDRS-III motor score

subitems of the lower extremity did not reveal differences between

Table 4. Classification of PD patients and controls.

Groups and categories n Class. rate Sens. Spec. PPV

PD vs. CONTROL

Training sample 50:42 82 82 81 84

Validation sample 42:39 81 76 85 84

H&Y STAGING

H&Y I vs. control 14:39 70 57 82 53

H&Y II vs. control 11:39 86 91 82 59

H&Y III vs. control 17:39 91 100 82 71

UPDRS MOTOR SCORE

UPDRS-low vs. control (0–12) 12:39 74 67 82 53

UPDRS-mild vs. control (13–
22)

15:39 81 80 82 63

UPDRS-high vs. control (23–
50)

15:39 91 100 82 68

The pattern recognition algorithm ‘‘APD’’ identified an optimal classifier and
feature combination to reveal balanced classification rates, sensitivity,
specificity, and positive predictive value (PPV) for the experiment PD patients
vs. controls using the AdaBoost classifier and cross-validation in the training
sample. This algorithm was validated using an independent validation sample.
Features used for this algorithm include feature no.: 2, 5, 6, 8, 10, 11, 12, 13, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 derived from the 10-meter
walk, heel-toe tapping, and circling test (for detailed description see table S3).
doi:10.1371/journal.pone.0056956.t004

eGaIT-Embedded Gait Analysis in PD
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Figure 2. Single feature changes of gait characteristics in PD. Individual feature show significant differences between PD and controls
(representative examples A, two-feature blots B), but groups overlap substantially (*: p#0.001, T-test).
doi:10.1371/journal.pone.0056956.g002

Table 5. Clinical characteristics of correct and false negative classified PD patients.

Clinical characteristics correct classified false negative sign. (p,0.05)

Hoehn&Yahr (H&Y I) n = 8 n = 6

Sex (male:female) 3:5 3:3

Phenotype (tremor-dom.:equivalent:akinetic-rigid) 2:3:3 2:1:3

Age (y, mean, 6SD) 66.4 (69.9) 57.5 (63.7) *

Age at onset (y, mean, 6SD) 64.5 (610.5) 54.0 (63.7) *

Disease duration (y, mean, 6SD) 2.0 (61.2) 3.9 (63.7)

UPDRS motor- score (6SD) 12.0 (63.3) 8.5 (63.6)

Levodopa equivalent [17] (mg/d, 6SD) 130 (6186) 162 (6233)

Depression score (SDS, 6SD) 44.8 (612.6) 53.8 (612.6)

Weight (kg, 6SD) 77.8 (613.8) 72.7 (618.3)

Height (cm, 6SD) 172 (611.2) 168 (68.8)

UDPRS-III motor score (UPDRS-low) n = 7 n = 5

Sex (male:female) 4:3 2:3

Phenotype (tremor-dom.:equivalent:akinetic-rigid) 2:2:3 2:1:2

Age (y, mean, 6SD) 61.7 (611.3) 58.4 (63.4)

Age at onset (y, mean, 6SD) 57.4 (613.8) 54.8 (65.4)

Disease duration (y, mean, 6SD) 4.3 (64.1) 4.1 (64.1)

H&Y (6SD) 1.6 (60.9) 1.1 (60.2)

Levodopa equivalent [17] (mg/d, 6SD) 283 (6387) 160 (6261)

Depression score (SDS, 6SD) 43.8 (69.7) 53.8 (614.1)

Weight (kg, 6SD) 73.6 (610.7) 70.4 (619.5)

Height (cm, 6SD) 171 (611.5) 166 (68.3)

Clinical characteristics of false negative classified PD patients at early stages (H&Y I) or only mild motor impairment (UPDRS-low; ,12 UPDRS-III motor score) by the
algorithm ‘‘APD’’ compared to correctly classified patients revealed age as significantly reduced in the false negative patient groups (Student T-test, *: p,0.05).
doi:10.1371/journal.pone.0056956.t005

eGaIT-Embedded Gait Analysis in PD
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false negative and correctly classified PD patients

(UPDRS-IIIlower ex: correct classified: 4.162.0 SD, vs. false

negative: 3.362.6 SD, p = 0.49), suggesting that classification

error was rather not due to the fact that false classified patients

have ‘‘normal’’ lower extremity function.

Classification of Hoehn&Yahr stages or different levels of
motor impairment based on the UPDRS motor score

Next, we aimed to use eGaIT to distinguish patient groups at

different H&Y stages (H&Y I, II, III) or with different levels of

motor impairment defined by the UPDRS-III (UPDRS-low,

-medium, -high). Since subgroups were relatively small, all samples

from the training and validation population were included and

classification rates were calculated using cross-validation. Thus,

the aim was rather to distinguish subgroups of clinically defined

patients, than support the diagnosis of PD itself.

For automated classification of Hoehn&Yahr stages a second

pattern recognition algorithm was trained (‘‘AH&Y’’, figure 1c) and

verified using cross-validation. Subgroups of patients in different

H&Y stages were separated by AH&Y from controls with balanced

classification rates between 83% and 91% (table 6). A larger

difference between H&Y stages (e.g. H&Y I vs. H&Y III) revealed

the best classification results.

The third algorithm (‘‘AUPDRS’’; figure 1C) was introduced to

classify subgroups with different levels of UPDRS-III based motor

impairment. Whereas differentiation between UPDRS-low vs.

UPDRS-mild, or UPRDS-mild vs. UPDRS-high groups reached only

77% correct classification rates, differentiation performance of

eGaIT improved substantially for the classification of UPDRS-low

vs. UPDRS-high group with larger UPDRS-III score differences

(89% correct classification rate, table 6). Thus, the ability to

distinguish between different stages or levels of motor impairment

further supports the ability of eGaIT to assess PD related gait

alterations.

Discussion

In the present study, we developed and validated eGaIT as an

automated embedded gait analysis system using intelligent

technology that combines multiparametric analysis using pattern

recognition algorithms with unbiased biosensor derived motion

data. eGaIT based classification is able to use gait alterations in

PD patients corresponding to the commonly used disease stages

and scores for motor symptoms in PD. In particular, eGaIT was

able to A) distinguish PD patients from controls, and B) to

automatically classify different disease stages and levels of motor

impairment of PD patients. Therefore, eGaIT is an objective tool

assessing motor symptom related gait alterations in PD, and

furthermore allows automated staging and symptom monitoring in

PD patients.

The usage of accelerometer based movement detection is

increasing in PD. Specific motor symptoms have been character-

ized in PD patients by the use of biosensors. Multiple accelerom-

eters attached to the trunk, belt, limbs or the spine are used to

detect bradykinesia [25], motor-fluctuations [11], trunk stability

[26], gait changes to prevent falls [9,10], general activity [7], limb

movement [8], and walking speed [27]. However, these approach-

es compare only single or a limited number of features derived

from biosensor signals and focused primarily on specific gait

characteristics of individuals or examined a very limited number of

subjects. Even though the analysis of single feature correlated to

specific gait symptoms [7,8,26,28–30], the values of single feature

substantially overlapped between patients from controls. Likewise,

we were able to detect individual gait derived features that show

significant differences between PD and control (table 2, figure 2),

but due to high overlapping values only low sensitivity and

specificity could be achieved (table 2). Thus, the applicability of a

single feature approach is not feasible for diagnostic workup.

Nevertheless, these findings clearly support the use of biosensor

systems to assess motor function, but are limited in the diagnostic

value in classification of PD stages.

Since single feature approaches do not sufficiently distinguish

between patients and controls, we applied pattern recognition

Table 6. Classification within patient subgroups.

Groups and categories n Classifier Task Features Class. rate Sens. Spec. PPV

H&Y STAGING

H&Y I vs. H&Y II 32:24 SVM linear (C = 15) 83 75 91 86

A, C 8, 17, 22, 28

H&Y II vs. H&Y III 24:36 SVM linear (C = 20) 83 83 83 88

A, B 12, 14, 18, 26, 27

H&Y I vs. H&Y III 32:36 SVM linear (C = 30) 91 92 90 92

A, C 5, 16, 23, 24, 25

UPDRS MOTOR SCORE

UPDRS-low vs. UPDRS-mild 31:30 AdaBoost (10 iterat.) 77 70 84 81

A, B 10, 11, 12, 13, 16, 26

UPDRS-mild vs. UPDRS-high 30:31 AdaBoost (10 iterat.) 77 77 77 77

A, B, C 8, 12, 17, 22, 24

UPDRS-low vs. UPDRS-high 31:31 SVM linear (C = 30) 89 87 90 90

A, C 5, 17, 24, 25

Subgroups of PD patients defined by either H&Y I, II, III, or UPDRS-III based levels of motor impairment (UPDRS low: 0–12, mild: 13–22; high: 23–50) were classified by two
additional pattern recognition algorithms (‘‘AH&Y, AUDPRS’’) and cross-validated from all PD patients. Best classification results were obtained with classifier listed,
resulting in the algorithms using selected features from specific tasks (A:10-meter walk, B: heel-toe tapping, C: circling).
doi:10.1371/journal.pone.0056956.t006
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algorithms to assess the information on gait alterations concealed

within the combination of a high number of biosensor signal

derived features. The power of pattern recognition is increasingly

appreciated in biomedicine. Modern diagnostic techniques gener-

ate a tremendous amount of information that can hardly be

analyzed by simple statistical methods. Specifically developed

pattern recognition paradigms using a defined set of features

derived from unbiased acquired raw data are required to allow the

identification of specific combination of features from several

hundred features with redundant or no information (figure 1, table

S3). In this respect, isolating information containing data patterns

is widely used in the definition of biomarker, performing complex

population based genetic analysis, and for modern imaging

techniques. Pattern recognition requires a clear definition of

groups or characteristics for classification. In the present study, the

clinical evaluation of the examiner was used as the ‘‘gold

standard’’ to train the algorithms. Thus, the primary goal was to

recapitulate the rating by a clinician (e.g. diagnostic rating, staging,

and motor performance) by eGaIT to develop this system as an

objective, unbiased, and automated assessment tool supporting the

clinical workup.

Definition of PD with a distinct phenotype and staging is based

on the clinical rating of motor symptoms such as bradykinesia,

rigidity, tremor, and postural instability. The quantitative defini-

tion of these symptoms for the clinical workup is rather broad and

relies on the experience of a movement disorder specialist.

Quantitative assessments such as striatal dopamine transporter

imaging by single photon emission computed tomography is costly,

limited available, and not suitable for disease monitoring

approaches. Using the present approach, the automated move-

ment analysis system eGaIT consists only of two sensor packages

(left and right shoe). It is able to correctly classify patients from

controls based on their gait alterations and motor signs with

classification rates above 80%. Accuracy of the clinical diagnosis of

PD ranges between 50% and 80% [31]. Even though the accuracy

of eGaIT based gait analysis is higher, the clinical diagnosis

includes differential diagnosis of other neurological disorders with

gait impairment. Most importantly, the eGaIT based classification

algorithm was confirmed by an independent validation sample

(table 4). To our knowledge no other similar studies have been

confirmed by an independent validation sample. Here, if multi-

feature analysis has been used classification results were mostly

verified by cross-validation. This approach is suitable for

classification of clearly defined and homogenous populations

[13]. Nevertheless, even though we recruited a large patient

cohort, the individual gait difference between PD patient

subgroups and/or in comparison to control samples might be

relatively large. This is of particular importance, because the high

number of features may lead to overfitting by the classification

algorithm if only one single group of patients and controls was

classified. However, since the classification results for the training

and validation group did not differ, we conclude that eGaIT is

assessing PD related gait changes rather than individual differ-

ences of the group participants. This conclusion is further

supported by the fact that with increasing levels of motor

impairment or advanced stages the classification validity was

improving, supporting even more a clear dependency of eGaIT

analysis on PD related motor impairment.

The major advantage of the present gait analysis system relies

on the objective nature of eGaIT rather than its potential ability to

define the diagnosis of PD. This is in particular important for an

unbiased and comparable staging of PD. Intriguingly, eGaIT was

able to classify individual H&Y stages or distinct levels of motor

impairment. Thus, eGaIT is able to complete and confirm the

global assessment by a clinician. It is important to note that the

study did not aim to detect axial involvement or postural instability

(defined by H&Y substages 1.5, 2.5 or UPDRS-III subitem

‘‘postural instability’’). The more detailed and better defined rating

score for motor sings in PD is the MDS-UPDRS motor score [4].

It is widely used to clinically assess motor symptoms in PD, as well

as one of the most important outcome measures in clinical studies

for PD [32,33]. The subjective evaluation of UPDRS-based motor

symptoms by physicians, or by descriptive reports of patients

restricts to a significant extent the comparability of individual

assessments and validation of medical interventions. A consider-

able interrater variability has been reported for the UPDRS [34]

and video-based teaching programs aim to improve its interrater

comparability [35,36]. In the present study, we aimed to use

eGaIT as a rater-independent, objective measure of gait charac-

teristics. We were able to correctly classify three arbitrary groups

of PD patients with low, medium, and high levels of motor

impairment based on the UPDRS motor score. Classification rates

were even higher if UPDRS scores differed more between groups

(UPDRS-low vs. UPDRS-high, table 5). This complements earlier

findings, where automated movement detection of the upper limb

showed the potential to correlate to a decline in motor function

[6]. Previously, similar cluster analysis approaches detected

changes in upper limb movement in PD patients by surface

electromyography and accelerometers [30]. Furthermore, initial

data from our group support the hypothesis, that combinations of

upper and lower limb functional analysis might even allow a better

quantification of motor impairment in PD [37].

At this point, it is also important to note, that eGaIT derived

classification errors showed a strong relation to the age of the

individual tested (table 4). In particular, young PD patients were

more frequent misclassified as controls, or older controls were

falsely classified as PD by eGaIT, respectively. Age is a very

important factor for gait changes in the elderly healthy population

[38–40]. Even though we age-matched the groups to exclude age

as a confounding factor for eGaIT based analysis, the individual

results emphasize that gait assessment in movement disorders

substantially relies on gait characteristics in age matched control

groups. Thus, future studies aiming at individual specificity and

sensitivity not only have to include other diseases with gait

impairments to allow differential diagnosis including atypical PD

syndromes and symptomatic Parkinsonism. In addition, they also

have to control for age related gait changes in the elderly healthy

population in much greater detail.

In summary, our data supports the potential benefit of eGaIT as

an important complementary and objective diagnostic tool for PD.

In the future, it might be useful to monitor motor fluctuations in

advanced stages of PD, where rapid changes in motor function

occur at home during the course of a day. Similar results were

obtained from accelerometers attached to limbs and the trunk of

PD patients [41], including a web-based application to provide

information to a clinical center [42]. Our approach is able to

complement other home-based monitoring systems that currently

examine distinct motor function in movement disorders of the

upper limb [6,11,42–44]. Future studies are necessary including a

high number of features and tasks to transfer this approach from

standardized gait exercises to global gait patterns in everyday life.
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Table S1 Characteristics of the PD subgroups. Changes

between Hoehn&Yahr subgroups (HYI-III) were calculated by

one-way ANOVA (alpha-level 0.05) (*: p,0.05; **: p#0.001).

Posthoc analysis (Bonferoni) revealed significant differences for
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labeled groups (p,0.05, #: in between subgroups, 1 compared to

each other subgroup).

(DOC)

Table S2 Characteristics of the PD subgroups. Changes

between distinct groups with different levels of motor impairment

as defined by the UPDRS motor score ((UPDRS low: 0–12, mild:

13–22; high: 23–50) were calculated by one-way ANOVA (alpha-

level 0.05) (*: p,0.05; **: p#0.001). Posthoc analysis (Bonferoni)

revealed significant differences for labeled groups (p,0.05, #: in

between subgroups, 1 compared to each other subgroup).

(DOC)

Table S3 List of features. Step features extracted from

gyroscope z-axis, signal sequence and frequency features applica-

ble for all axes of accelerometer and gyroscope signals.

(DOC)
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