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Abstract We consider continuous time Markovian
processeswhere populations of individual agents interact sto-
chastically according to kinetic rules. Despite the increasing
prominence of such models in fields ranging from biology
to smart cities, Bayesian inference for such systems remains
challenging, as these are continuous time, discrete state sys-
tems with potentially infinite state-space. Here we propose a
novel efficient algorithm for joint state/parameter posterior
sampling in population Markov Jump processes. We intro-
duce a class of pseudo-marginal sampling algorithms based
on a random truncation method which enables a principled
treatment of infinite state spaces. Extensive evaluation on
a number of benchmark models shows that this approach
achieves considerable savings compared to state of the art
methods, retaining accuracy and fast convergence. We also
present results on a synthetic biology data set showing the
potential for practical usefulness of our work.

Keywords Markov Jump Processes · Markov Chain Monte
Carlo · Pseudo-marginal methods · Parameter estimation ·
Stochastic processes

1 Introduction

Discrete state, continuous time stochastic processes such as
Markov Jump Processes (MJP) (Gardiner 1985) are popu-
lar mathematical models used in a wide variety of scientific
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and technological domains, ranging from systems biology
to computer networks. Of particular relevance in many
applications are models where the state-space is organ-
ised according to a population structure (population Markov
Jump Processes, pMJP): each state label corresponds to
counts of individual entities in a number of populations (or
species). These models are at the root of essentially all agent-
based models, a class of models which is gaining increasing
popularity in applications ranging from smart cities, to epi-
demiology, to systems biology. Despite their importance,
solving inferential problems within the pMJP framework is
challenging: the discrete nature of the systemprevents the use
of simple parametric distributions, and the size of the state
space (which can be unbounded for open systems) effec-
tively rules out analytical computations. At the same time,
technological advances in areas as diverse as single cell biol-
ogy and remote sensing are providing increasing amounts of
data which can be naturally modelled as pMJPs, creating a
pressing need for inferential methodologies.

In response to these developments, researchers in the sta-
tistics, machine learning and systems biology communities
have been addressing inverse problems forMJPs using a vari-
ety ofmethods, fromvariational techniques (Cohnet al. 2010;
Opper and Sanguinetti 2008) to particle-based (Hajiaghayi
et al. 2014; Zechner et al. 2014) and auxiliary variable sam-
pling methods (Rao and Teh 2013). Markov-chain Monte
Carlo (MCMC) methods, in particular, offer a promising
direction: while often computationally more intensive than
variational methods, they provide asymptotically exact infer-
ence. However, standard MCMCmethods rely on likelihood
computations, which are computationally or mathematically
infeasible for pMJPs with a large or unbounded number of
states. Such systems are commonplace in many applications,
where one is often confrontedwith open systemswhere upper
bounds on the numbers of agents are difficult to come by. As
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far as we are aware, current methods address this issue by
arbitrarily truncating the state space according to pre-defined
heuristics, offering no control over the error introduced by
this procedure.

In this paper we present a novel Bayesian approach
to posterior inference in pMJPs which solves these issues
by adopting a pseudo-marginal approach based on random
truncations, yielding both asymptotic exactness and compu-
tational improvements. We build on the auxiliary variable
Gibbs sampler for finite state MJP of Rao and Teh (2013),
significantly increasing its efficiency by leveraging the more
compact representation of the kinetic parameters provided by
the pMJP framework.We then present a novel formulation of
the likelihood, which enables the deployment of a Russian
Roulette-like random truncation strategy as in Lyne et al.
(2015) and Filippone and Engler (2015). Based on this, we
develop a pseudo-marginal sampling approach for general
pMJPs, obtaining two novel algorithms: a relatively straight-
forward Metropolis–Hastings pseudo-marginal scheme, and
an auxiliary variable pseudo-marginal Gibbs sampler. We
examine the performance of these algorithms in terms of
accuracy and efficiency on non-trivial case studies. We con-
clude the paper with a discussion of our contribution in the
light of existing research and possible future directions in
systems biology.

2 Background

2.1 Population Markov jump processes

Population Markov Jump Processes are a particular type
of Markov Jump Processes (also known as Population
Continuous Time Markov Chains); they are continuous
time stochastic processes whose discrete state vector s =
(n1, n2, . . . , nM ) gives the agent counts of each ofM popula-
tions (or species) interacting through R reaction channels.We
will adopt here the language of chemical reactions to describe
such processes, but the same considerations apply in general.
Reactions between individual agents (or molecules) happen
as a result of randomcollisions, and each reaction changes the
state by a finite amount, encoded in the stoichiometry of the
system, corresponding to the creation/destruction of a certain
number of molecules. Each reaction i also has an associated
kinetic law giving its rate: this is generally of the form

fi (n) = θiρi (n), (1)

whereρi is a fixed function of the staten, while θi are (usually
unknown) kinetic parameters. Therefore, while in a general
MJP there can be a parameter associated with each possible
transition, in pMJPs the dynamics are captured more suc-
cinctly by a single parameter per reaction. A schematic of
a simple pMJP is given in Fig. 1, where it can be seen that

(2,2,0,0) (1,1,1,0)

(1,1,0,1) (0,0,1,1) (0,0,0,2)
θ1

θ2

4θ1

θ2

θ3

θ3

Fig. 1 State-space of an example system. Arrows indicate transitions
between states; the bolded transitions are “instances” of the same reac-
tion type, which updates the state by (−1,−1, 1, 0) and occurs with rate
θ1s1s2, where s1, s2 are the first and second components of the state

the same reaction can correspond to multiple transitions in
the state-space of the process, all of which follow the same
kinetic law and incur the same update to the state.

The time evolution of the process marginals is given by
the Chemical Master Equation (CME):

dpi (t)

dt
=

∑

j �=i

p j (t)a ji − pi (t)
∑

j �=i

ai j (2)

where pi (t) is the probability of being in state i at time t and
ai j is the rate of jumping from state i to state j , which for
pMJPs is known from the kinetic law.

For finite state-spaces, one can gather the transition rates
ai j in the generator matrix A, and the CME can be solved
analytically as:

p(t) = p(0)eAt (3)

This solution can be computationally intensive, even with
the use of specialized algorithms like Al-Mohy and Higham
(2011).

2.2 Uniformisation and inference

An alternative approach to solve the CME is given by uni-
formisation (Jensen 1953), a well-known technique for the
transient analysis ofMarkovian systems, usedwidely infields
like performance modelling. Given a MJP with generator A,
uniformisation constructs a discrete time Markov chain by
imposing a common exit rate γ for all states. For this pro-
cedure to be consistent, γ must be no less than the highest
exit rate among all states. The resulting uniformised system
is then faster than the original, in the sense that transitions
occur at a higher rate. To compensate for this and maintain
the behaviour of the original MJP, virtual jumps must be
added from each state to itself. This results in a discrete time
system with transition probability matrix B = 1

γ
A + I , in

which likelihood computations are standard. In this discrete
time system, the waiting time before a jump occurs now fol-
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lows an exponential distribution with rate γ , regardless of
the current state. The probability of jumping from state i to
another state j is

ai j
γ
, but it is now also possible to remain in

i after the jump, with probability 1 − 1
γ

∑
j �=i ai j . Jensen’s

classical result (Jensen 1953) then guarantees that all the
time-marginals of the discrete time process match those of
the continuous time chain.

Uniformisation has previously been exploited by Rao and
Teh (2013) to draw posterior samples from a MJP condi-
tioned on a set of observations. The idea is to construct a
discrete time chain using uniformisation, sample a trajectory
(including self-loops) and run a standard forward filtering-
backward sampling (FFBS) algorithm on it. This gives a new
trajectory which, when self-jumps are removed, is a sample
from the posterior process. This path-sampling algorithm can
be alternated with Gibbs updates to jointly sample transition
probabilities; in Rao and Teh (2013) this is accomplished by
choosing conjugate Dirichlet priors on each entry of the gen-
erator matrix, resulting in potentially many parameters with
consequent storage/computational issues.

3 Unbiased sampling for pMJPs

3.1 Efficient Gibbs sampling for finite state pMJPs

The special structure of pMJP systems implies considerable
inferential savings over the generic Gibbs sampler (Rao and
Teh 2013). In particular, the functional form of the kinetic
law associated with the i th reaction, fi (s) = θiρi (s), sug-
gests a different conjugate prior for the parameters θi , which
greatly simplifies the parameter sampling steps within the
Gibbs sampler.

Let (S, T ) be a full trajectory sampled from the uni-
formised conditional posterior in a Gibbs step, where S =
(s0, s1, . . . , sK ) is the sequence of states at times T =
(t0, t1, . . . , tK ). Let uk denote the reaction at time tk+1, as
inferred1 from inspection of sk and sk+1. From Sect. 2.1,
we know that the total rate of exiting state sk is rk =∑R

i=1 θiρi (sk). Since the waiting time between jumps is
exponentially distributed in a MJP, this gives

p(tk+1 | tk, sk) = rke
−�tkrk , where �tk = tk+1 − tk

The probability of the next state being sk+1 is
θuk ρuk (sk )

rk
. The

total likelihood is then

L(θ) = p(S, T | θ) = p(S | θ)p(T | S, θ)

=
K−1∏

k=0

θukρuk (sk)

rk
rke

−�tkrk =
K−1∏

k=0

θukρuk (sk)e
−�tkrk

1 We assume each reaction has a distinct update vector.

Let each parameter be Gamma-distributed a priori:

p(θi ) = baii
�(ai )

θ
ai−1
i e−bi θi

We then have:

p(θi | S, T ) ∝ p(θi )p(S, T | θ)

∝ θ
ai+Ni−1
i e−bi−∑K−1

k=0 �tkρi (sk )θi (4)

Therefore, conditioned on the trace, the parameters are
again Gamma-distributed with shape ai + Ni and rate bi +∑K−1

k=0 �tkρi (sk), where Ni is the number of times the i th
reaction type is observed in the trace. Hence, we have exact
Gibbs updates for the kinetic parameters; notice that, since
we have a single parameter for each reaction, the number
of parameters to be sampled is often orders of magnitude
lower than the number of parameters sampled in Rao and
Teh (2013) (one per possible state transition), yielding com-
putational and storage savings.

3.2 Unbounded state-spaces

Many pMJPs of practical interest describe open systemswith
infinite state-spaces, which are not amenable to uniformisa-
tion. A plausible solution would be to truncate the system,
possibly using methods such as in Munsky and Khammash
(2006) to quantify the error. However, any such bound would
be dependent on the unknown parameters, and in order to
achieve acceptable performance we may need to still retain
very large state spaces. An alternative approach may be to
introduce random truncations in such a way as to obtain an
unbiased estimator of the likelihood, which can be used in
a pseudo-marginal MCMC scheme (Andrieu and Roberts
2009; Beaumont 2003). We describe here two algorithms
based on random truncations, a simple Metropolis–Hastings
(M–H) sampler directly targeting the marginal likelihood,
and a Metropolized auxiliary variable Gibbs sampler.

3.2.1 Expanding the likelihood

We start by describing a formulation of the likelihood in
the pMJP setting as an infinite series. The basic idea is to
decompose the space of process trajectories into a nested sum
over subspaces of trajectories which differ by at most N from
the observations. We can then define a generator matrix on
each of these finite state-space systems and compute transient
probabilities using (3). We now explicitly define the terms in
this expansion of the likelihood. For simplicity, we focus
on deriving the likelihood for a single, noiseless observation
(t ′, s′) in a one-dimensional process, assuming the state at
time 0 is known to be s ∈ N. Due to the Markovian nature of
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the process, the actual likelihood will be given by a product
of such terms. If we write su = max(s, s′), we have:

p(s′ | s, θ) =
∞∑

N=0

p(s′,max (s0:t ′ − su) = N | x, θ)

≡
∞∑

N=0

p(N )(s′, s) (5)

The notation s0:t indicates all values of the process in the
time interval [0, t] and is used here as follows: max (s0:t ) =
N means that the maximum value of the process in the inter-
val [0, t] is N . Similarly, max (s0:t ) ≤ N means that the
process does not exceed the value N during [0, t].

Note that the constraint on the maximum of s0:t ′ −su does
not simply define a state-space, but constrains us to consider
only those trajectories that actually achieve a “dispersal” of
N . If we define

f (N )(s′, s) = p(s′,max (s0:t − su) ≤ N | x, θ)

then each term of the series can be decomposed as:

p(N )(s′, s) = f (N )(s′, s) − f (N−1)(s′, s) (6)

These sub-terms are now the transient probability for a
finite state-space pMJP, and can be computed using Eq. 3.
Any number of them are computable but, naturally, thewhole
sum cannot be computed in finite time. It can, however, be
estimated in an unbiased way.

3.2.2 Random truncations

Assume we wish to estimate an infinite sum

f =
∞∑

N=0

fN

where each term fN is computable. One way of approx-
imating the sum is to pick a single term fk , where k is
chosen from any discrete distribution with mass p0, p1, . . ..
We can immediately see that f̂ = fk

pk
has expectation

E[ f̂ ] = ∑∞
N=0

fN
pN

pN = f and is therefore an unbiased
estimator of the infinite sum. An issue with this approach is
that, depending on the choice of distribution pi , the variance
of f̂ might be very large, even infinite.

A reduced variance estimator can be obtained by approx-
imating f with a partial sum up to order N , weighted
appropriately. The number of terms is chosen randomly: at
every term j , a random choice is made: there is a prob-
ability q j of stopping the sum, otherwise we continue to

form iteratively the partial sum f̂ = ∑ j
N=0

fN
pN

, where

pN = ∏N−1
j=1 (1 − q j ). This scheme, imaginatively termed

Russian Roulette sampling (Lyne et al. 2015), can also be
shown to yield an unbiased estimator of f .

3.2.3 Metropolis–Hastings sampling

Applying this random truncation strategy to the expansion
in (5) produces an unbiased estimator. Such estimates can be
obtained for every interval between successive observations;
since they are independent, their product will be an unbiased
estimate of the likelihood under all the observations. Note
that each summand in (5) is a probability, and is therefore
non-negative. Thus, we avoid the problems of possibly neg-
ative estimators; this positivity is important, as non-positive
estimatorsmay result in a large or infinite variance. It is worth
remarking that the term for N = 0 corresponds to a space
that includes the observations at both ends of the time inter-
val, and hence will already include a significant contribution
of probability mass towards the likelihood.

The same approach is easily extended to higher dimen-
sions, where the states are vector of integers, by adapting
the notation: max (s0:t ) ≤ N means that the value in any
dimension does not exceed N in the given interval, whereas
max (s0:t ) = N now means that a value of N is not exceeded
in any dimension during [0, t], and that it is achieved in at
least one dimension.

This procedure directly gives rise to a pseudo-marginal
M–H algorithm, where the likelihood term is approximated
by the unbiased estimate obtained as described above. We
refer to this as Algorithm 1 and examine its performance in
the next section.

For our purposes, we choose a qn sequence such that
the probability of accepting a term decreases geometrically;
specifically, we use qn = 1 − a(1 − qn−1), with q0 = 0 and
a = 0.95. We note that, since all terms in the series are non-
negative and tend to 0, we canmake use of a result from Lyne
et al. (2015) to show that the variance of the estimator is finite.
We show an empirical analysis of the variance in Sect. 4.1
that validates our choice of qn and indicates that performance
is robust with respect to the choice of the particular stopping
distribution.

3.2.4 Modified Gibbs sampling

An alternative approach is to incorporate the truncation in
the Gibbs sampler described in Sect. 3.1. The difficulty is
that there is no direct way to sample trajectories without
a bound on the state-space, as the uniformisation sampler
requires a finite number of states. To work around this limi-
tation, we propose to sample a truncation point, then draw a
trajectory and parameters for this state-space as in Sect. 3.1.
Since we are no longer sampling from the true conditional
posterior over trajectories, but rather are also conditioning
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on the chosen truncation, we are no longer able to accept
every trajectory and parameter sample drawn. Instead, we
must introduce an acceptance ratio that will ensure we are
sampling from an unbiased estimate of the true conditional
posterior. We refer to this as Algorithm 2; the following is a
summary of the procedure to form a new sample (θ t+1, St+1)

from the current state (θ t , St ) of the chain, given a set of
observations O:

1. Sample θ∗ | St , as detailed above.
2. Sample S∗ | O, θ∗:

(a) Choose a truncation point m∗, defining a finite state-
space.

(b) Run the FFBS algorithm to draw S∗.

3. Calculate the acceptance ratio α:

(a) Compute p(t+1)(S∗ | θ∗, O) and p(t)(S∗ | θ∗, O),
the conditional posterior probabilities of the new tra-
jectory under the new and old truncations.

(b) Compute p(t+1)(St | θ∗, O) and p(t)(St | θ∗, O),
the conditional posterior probabilities of the old tra-
jectory under the new and old truncations.

(c) Set α = p(t+1)(S∗|θ∗,O)p(t+1)(St |θ∗,O)

p(t)(St |θ∗,O)p(t)(S∗|θ∗,O)
.

4. With probability min(α, 1), accept the new sample and
set (θ t+1, St+1) = (θ∗, S∗); otherwise, set (θ t+1, St+1)

= (θ t , St )

Note that the analysis from Sect. 3.1 giving the condi-
tional posterior of the parameters (Eq. 4) still holds and is
not affected by the truncation. Step 1 is therefore performed
following (4). In Step 2a, we follow the Rusian Roulette
methodology as in Sect. 3.2.2 and take m∗ to be the num-
ber of terms before the truncation stops. In the scheme used
in our experiments, the probability of taking an additional
term follows a geometric distribution, as with the previous
algorithm. Based on this truncation point m∗, we can define
a state-space

S =
{
(x1, x2, . . . , xM ) ∈ N

M | xi ≤ y∗
i + m∗}

where y∗ = (y1, . . . , yM ) is a vector of the maximum values
observed in each dimension. The method of Sect. 3.1 can
then be used to sample a trajectory (Step 2b) in this finite
state-space.

Steps 3a and 3b involve the computation of probabilities
which can be performed via the forward-backward algorithm
on the appropriate state-spaces. So far in this paper, the algo-
rithm has been used to sample a new path from the process,
but it can easily be adapted to calculate the probability of a
given path, as shown in the algorithm outline below.

In the following, we assume we have N observations yi
at time points ti , i = 1, . . . , N . For a finite state-space S,
we denote with Sk the k-th state of the space, according to
some arbitrary order. The forward and backward messages
are vectors of size |S|, and there is one suchmessage for each
observed time point. a(i) denotes the forward message at the
i-th time point ti ; its k-th element is

a(i)
k = p(y1, . . . , yi−1,Sk)

that is, the joint probability of the observations prior to ti and
the state at ti beingSk . Similarly, the backwardmessages b(i)

has elements:

b(i)
k ∝ p(Sk | yi , . . . , yN )

and so the probability of the observed time-series can be
computed from the b(i). This is a slightly different than the
usual formulation of the forward-backward algorithm, and
necessitates the computation of the forward messages a(i)

first. The messages can be computed recursively as shown
in Rao and Teh (2013).

Forward-backward algorithm
Require: Observations Y = (y1, . . . , yN ), finite state-space S, para-

meters θ

Ensure: Probability of Y
1: Compute transition probabilities pkl between states in S based on θ

2: for i = 1..N do
3: Compute forward message a(i)

4: end for
5: Initialise p ← 1
6: for i = N ..1 do
7: Compute backward message b(i)

8: Find index k of observation yi in S
9: p = p · b(i)

k
10: end for
11: return p

These probabilities computed this way are then used in the
acceptance ratio α (Step 4). As noted above, the acceptance
step is necessary because we are not proposing trajectories
from the exact conditional posterior. Instead, the truncation
we impose gives an estimate of the correct proposal distri-
bution p(S∗ | θ∗, O), and the ratio compensates for this
estimate. Note that, if we could draw trajectories from the
whole state-space without truncating it, the terms in α would
cancel out, giving standard Gibbs sampling with acceptance
rate of 1.

It is important to observe that this auxiliary variable Gibbs
sampler actually targets the joint posterior distribution of
parameters and trajectories. As such, it provides richer infor-
mation than the M–H sampler (which directly targets the
parameter posterior), but may be less effective if one is
solely interested in parameter inference. The performance
can also be affected by computational factors, particularly
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the costs of drawing sample trajectories (which was not
needed in Algorithm 1, where we compute the likelihood by
matrix exponentiation). In general, such costs will be model-
and data-dependent, so that some initial exploration may be
advisable before deciding which algorithm to use.

4 Results

This section describes the experimental validation of our
approach. The experiments were performed on MATLAB
implementations of the algorithms described in the previ-
ous section.2 The M–H proposals for Algorithm 1 were
Gaussian, with variances tuned using trial runs. In the same
algorithm, matrix exponentiation was performed using the
method of Al-Mohy and Higham (2011), with the code that
the authors have made available. Unless otherwise noted,
the Russian Roulette truncation used in the experiments was
chosen so as to yield 5.6 terms on average.

4.1 Variance of the estimator

Before showing how our algorithms perform against the state
of the art, we present empirical evidence that our Russian
Roulette-style truncation approach produces estimators with
low variance, an issue that has recently received attention in
pseudo-marginal methods (Doucet et al. 2015; Sherlock et al.
2015). In order to achieve estimators of low variance, the tails
of the distribution of the number of terms taken must match
those of the sequence being approximated (Rhee and Glynn
2015) (or the estimator is likely to ignore significant terms).
To our knowledge, there are no established results on the
behaviour of transient probabilities in general pMJPs as the
state-space grows. Our approach is to use a geometric trun-
cation distribution, which is well known (Kleinrock 1975) to
arise as a steady-state distribution of simple pMJPs such as
queueing systems, and might thus be a plausible candidate
distribution. Our focus in this section is to provide an empiri-
cal evaluation of our method. Additionally, we show that the
estimator is robust to the choice of the particular stopping
distribution qn used in the truncation scheme. To verify this,
we considered three different qn sequences, applied to the
predator–prey model described in Sect. 4.2. For clarity, we
write q̄n ≡ 1 − qn , the probability of continuing at term n.
All schemes were of the form q̄n = aq̄n−1 with q̄0 = 1 and
a ∈ {0.95, 0.75, 0.2}, respectively yielding 5.6, 2.4 and 1.2
terms on average. For each scheme, we calculated 1000 esti-
mates of the transition probabilities between observations,
obtaining estimates of the log-likelihood and computing its
mean and variance. This was repeated for 10 different para-
meterizations of the model. It can be seen (Table 1) that
the variance of the estimator (measured as the coefficient of

2 Available at https://github.com/ageorgou/roulette.

Table 1 Coefficient of variation for the log-likelihood, estimated from
1000 samples for theLVmodel, under three truncation schemes (varying
α) and ten parameter configurations (Sect. 4.1)

a = 0.95 a = 0.75 a = 0.2
(5.6 terms) (2.4 terms) (1.2 terms)

0.0002 0.0008 0.0223

0.0051 0.0151 0.0344

0.0003 0.0013 0.0245

<10−4 <10−4 0.0016

<10−4 <10−4 0.0008

0.0005 0.0021 0.0109

<10−4 <10−4 <10−4

0.0003 0.0014 0.0223

0.0002 0.0011 0.0073

0.0002 0.0009 0.0077

variation of the log-likelihood, due to small values) is consis-
tently low. This validates our approach and indicates that the
stopping distribution does not critically affect performance
and therefore does not require fine-tuning.

An intuitive explanation for this comes from remember-
ing that the “base” space (corresponding to the first term
in the expansion) comprises all states between consecutive
observations. Often, this is large enough that there is a sub-
stantial probability of the process remainingwithin or around
it. Hence, even with a few terms, we are capturing a large
part of the probability mass, and obtaining good estimates.
We expect our estimator to have low variance if the process
does not change radically between the observation times. It
is possible, however, to find situations where the truncation
strategy needs many terms in order to yield good perfor-
mance. This is more likely to occur if the process is very
sparsely observed, or if it is highly volatile. In both cases, the
observations may not be very indicative about the behaviour
of the process during the interval under consideration, there-
fore only taking few terms may produce inaccurate estimates
of the true likelihood. This situation is also likelier when high
counts are involved, in which case other proposed solutions
are more appropriate (discussed in Sect. 5).

To illustrate this, we considered the example of a birth–
death process involving a single species, X , with a constant
birth rate of 150 and a death rate of X . From an initial value
of X = 10, we simulated the system and used the values at 5
time points (Fig. 2a). The three truncation schemes described
above did not yield accurate estimates, even when taking 5
terms on average. With a stopping scheme q̄n = 0.99q̄n−1

(corresponding to 12.5 terms on average), wewere able to get
good estimates of the true probabilities. The more aggressive
truncation schemes display higher variance and could cause
problemswhen their estimates are used inAlgorithm 1:when
taking 5.6 terms on average, the variance causes the sampling
chain to “stick”, as seen in Fig. 2b.
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Fig. 2 a Full trace (continuous line) and observations (dots) used in the birth–death process example; b parameter samples for the birth rate using
Algorithm 1, illustrating undesirable “sticking” behaviour when taking 5.6 terms on average

As a way of improving the behaviour of the sampler,
we examined the use of the so-called Monte Carlo within
Metropolis (MCWM) pseudomarginal variant (Beaumont
2003), in which the estimate of the likelihood of the cur-
rent state of the chain is recomputed at every step. This can
potentially alleviate the “sticking” problem and lead to better
mixing, but at the cost of making the resulting chain sample
from an approximation instead of the true posterior. Exper-
iments on the predator–prey model of Sect. 4.2 showed that
there was no noticeable improvement in either the number
of steps needed to reach convergence or the acceptance rate
when using MCWM. This, in addition to the bias introduced
and the additional computational burden from re-estimating
the likelihood, leads us to believe that in this case there is no
benefit from using MCWM.

To further study of the impact of the choice of trunca-
tion distribution, we examined how it affects convergence.
We tried ten different stopping distributions qn of the form
described above, chosen so that they produce 1, 2, . . . c, 10
terms on average. For each of them, we measured the steps
required for convergence, as described in the next section.
Overall, we found that taking more terms generally leads to
faster convergence (Fig. 3). This indicates that the variance
of the estimates decreases when taking more terms.

4.2 Benchmark data sets

Wenow assess the performance the two algorithms described
in the previous section as well as the Gibbs sampler based
on uniformisation (Sect. 3.1). We could not run the original
Gibbs sampler of Rao and Teh (2013) as the high number of
parameters (one per state) swiftly led to storage problems.
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Fig. 3 Steps until convergence for different stopping distributions
(results shown for one parameter of the LV model)

We first compared the performance of the three methods on
two widely used pMJP models:

4.2.1 Lotka–Volterra (LV) model

This predator–prey system involves four types of reactions,
representing the birth and death of each species, and is a
classic model in ecology and biochemistry. Truncated LV
processes have been studied in previous work (Opper and
Sanguinetti 2008; Boys et al. 2008), making it an attractive
candidate for evaluating our approach.

X + Y → 2X + Y at rate θ1XY

X → ∅ at rate θ2X
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Y → 2Y at rate θ3Y

X + Y → X at rate θ4XY

We start from an initial state of 7 predators and 20 prey.When
a finite state-space is required, we impose a maximum count
of 100 for each species, as in previous work.

4.2.2 SIR epidemic model

A commonly-used model of disease spreading (see e.g.
Anderson and May 1991), where the state comprises three
kinds of individuals: S(usceptible), I(nfected) andR(ecovered).
We examine two variants of the model, a finite version where
the total population is constant:

S + I → 2I at rate θ1SI
I → R at rate θ2 I

and an infinite state variant where new individuals can join
the S population with unknown arrival rate:

∅ → S at rate θ3

The initial state in both cases is (S, I, R) = (10, 5, 0). For
the finite-state version, this gives a state-space of 121 states.
For the infinite case, we chose a truncation with upper limit
(28, 33, 33), corresponding to 18 new arrivals in the system.
To see this, note that the number of arrivals in a time interval
of duration T is Poisson-distributed, with mean θ3T . We
used the final observation time and the prior mean of θ3,
and chose the 95-percentile of the distribution governing the
new arrivals. In broad terms, this means our truncation will
accommodate new arrivals with 95 % probability.

Table 2 summarises our evaluation results across themod-
els considered; the metrics we use are total computational
time for 5000 samples, mean relative error in parameter esti-
mates (using the posteriormean as a point estimate), Effective
SampleSize (ESS) perminute of computation, andnumber of
iterations to convergence, defined as Potential Scale Reduc-
tion Factor (PSRF) < 1.1 (Gelman et al. 2014).

Results on the LVmodel show that methods based on ran-
dom truncations achieve very considerable improvements in
performance compared to the Gibbs sampler (where the state
space was truncated at a maximum number of 100 individ-
uals per species). In particular, Algorithm 2 shows excellent
behaviour in most aspects, with a high ESS suggesting it
is a more efficient sampler. The running time of Algorithm
2 is comparable to that reported for a variational mean field
approximation in Opper and Sanguinetti (2008), and its rapid
convergence time suggests that this is a very competitive
algorithm in practice. Sample results from Algorithm 2 are
presented in Fig. 4a for the reaction parameters, and in Fig. 4b
for the state of the process itself. Algorithm 1, while still

Table 2 Performance of the various algorithms tested

Gibbs Algorithm 1 Algorithm 2

LV

Time (min) 1011 55 29

Error (%) 14 10.66 12.75

ESS/min 0.63 0.67 4.5

Iter. 24 1314 180

SIR finite

Time (min) 1 10 4

Error (%) 2.24 13.17 2.13

ESS/min 1752.13 63.01 422.72

Iter. 13 33 27

SIR infinite

Time (min) 1585 291 666

Error (%) 31.6 25 24.3

ESS/min 0.45 2.6 0.23

Iter. 5 65 136

Metrics are averaged over all parameters. Experiments were performed
on a 24-core Xeon E5-2680 2.5GHz, to accommodate the increased
memory requirements of some cases

computationally feasible, requires a long time to converge,
reflecting potential difficulties in choosing effective proposal
distributions (a problem naturally bypassed by Algorithm 2).
The simple Gibbs algorithm is much slower than the other
two, undoubtedly owing to its large state-space of 10,000
states and very high memory requirements during the FFBS
algorithm. Note that the impact of the (necessarily) large
truncation is twofold. Firstly, the large state-space directly
affects the running time of the FFBS algorithm, whose com-
plexity is quadratic in the number of states. Secondly, since
the rates in this model are increasing functions, having states
with high counts means the generator matrix has high diago-
nal entries (exit rates). This, in turn, requires choosing a high
exit rate for uniformisation, leading to long paths with many
self-jumps, and ultimately further slowing down the FFBS
step. The results for this model clearly show the usefulness of
the random truncation approach compared to using a static,
conservative truncation.

Results on the SIR model show that, in the finite state
space case, the Gibbs sampler of Sect. 3.1 is highly efficient
and by some way the best algorithm. This is unsurprising, as
truncations incur additional computational overheads which
are not needed for such a small state space. The picture
is completely different for the infinite SIR model. In this
case, the M–H sampler clearly seems to be the best algo-
rithm, achieving very fast convergence and outperforming
the other two. For parameter values within the prior range,
the infinite SIR model exhibits fast dynamics which lead
to very long uniformised trajectories, considerably increas-
ing the computational costs of sampling trajectories via the
FFBS algorithm. The problem is further compounded for the

123



Stat Comput (2017) 27:991–1002 999

(b)

0 2 4

x 10
−4

0

500

0 1 2

x 10
−3

0

200

400

0 1 2

x 10
−3

0

200

400

0 0.5 1

x 10
−3

0

500

1000

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

(a)

Fig. 4 a Posterior marginals and pairwise correlations for the parameters of the LV model, from 5000 samples using Algorithm 2 (true values
marked by red line, prior shown in dashed line); b samples of the posterior process: prey (top), predators (bottom). Dots indicate the observations.
(Color figure online)

simple Gibbs sampler algorithm of Sect. 3.1. Even with the
truncation described above, there are 32,594 states, resulting
in very severe computational and storage costs.

4.3 Genetic toggle switch

As a real application of our approach, we consider a model
of a synthetic biological circuit describing the interaction
between two genes (G1 and G2) and the proteins they encode
(P1 and P2). Each protein acts as a repressor for the other
gene, inhibiting its expression. This leads to a bistable behav-
iour, switching between a state with high P1 and low P2, and
one with low P1 and high P2 (hence the name toggle-switch).
The interactions are encoded as eight chemical reactions:

G1,on → G1,on + P1 at rate θ1
G2,on → G2,on + P2 at rate θ2
P1 → ∅ at rate θ3P1
P2 → ∅ at rate θ4P1
G1,off → G1,on at rate θ5
G2,off → G2,on at rate θ6
G1,on → G1,off at rate θ7er P2

G2,on → G2,off at rate θ8er P1

where r is a constant assumed known.

This system was engineered in vivo in one of the pioneer-
ing studies in synthetic biology (Gardner et al. 2000) and
has been further studied in Tian and Burrage (2006). Statis-
tical inference is increasingly being recognised as a crucial
bottleneck in synthetic biology: while genome engineering
technologies enable researchers to reliably synthesise circuits
with a desired structure, predicting the dynamic behaviour
of a circuit requires knowledge of the kinetic parameters of
the system once it is implanted in the cell, which cannot be
directly measured. As synthetic biology is intrinsically at the
single cell level, inference techniques for stochastic models
have the potential to be of great aid in the rational design of
synthetic biology circuits.

Following Tian and Burrage (2006), we model the system
using a binary state for each gene and discrete levels for the
proteins. The genes can be active or inactive, with protein
being produced only in the former case. Each gene can be
modelled with a telegraph process: an inactive gene becomes
active at a constant rate, and an active one becomes inactive at
a rate depending on the level of its repressor. When a gene is
active, the level of its product follows a birth–death process;
that is, proteins are produced at a constant rate and degrade
at mass-action rates. We use a single production reaction
for each protein to abstract various underlying mechanisms,
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Fig. 5 a Posterior marginals and pairwise correlations for four parameters (θ1, θ2, θ3 and θ4) of the toggle switch model, from 5000 samples using
Algorithm 2 (priors shown in dashed line); b PSRF for all eight parameters

including transcription and translation. Themodel comprises
eight types of reaction; note that the requirements of our
method on the form of the kinetic laws (Sect. 3.1) are flexi-
ble enough to accommodate the deactivation dynamics used
here, even though they are not mass-action.We simulated the
system to produce behaviour similar to the simulated traces
in Tian and Burrage (2006). We kept 20 time points of mea-
surements, which varied between 0 and 24 for each observed
protein.

We used Algorithm 2 to infer the joint posterior distri-
bution of the eight parameters and state trajectories in this
system. Our results indicate that the likelihood is relatively
insensitive to the parameters governing the activation and
deactivation of the two genes. This is a reasonable result,
since we do not observe the state of the genes but only the
levels of the two protein products. Therefore, the effect of
the switching parameters is seen only indirectly through the
switching events, which are rare in the data. In contrast, the
protein expression and degradation rates have sharp pos-
teriors which capture interesting correlations between the
parameters—for instance, we observe a strong correlation
between the production and degradation rate of each pro-
tein, as perhaps expected given the similarity to a birth–death
process. Figure 5 shows parameter posteriors and conver-
gence statistics for one such experiment, showcasing the
good behaviour of the algorithm.

5 Related work

Parameter inference in pMJPs has been the subject of pre-
vious work, with a significant body of literature focusing

on continuous approximations to the process, in order to
work around the complexities entailed by the stochastic
dynamics. In general, such approximations aremore accurate
when the populations involved are high, and their accuracy
degrades for lower populations as the impact of discrete
stochastic behaviour becomes more pronounced. Two gen-
eral classes of methods have been proposed to this end.
The first involves approximating a pMJP with a diffusion
process, as in Golightly and Wilkinson (2005), and using
the resulting stochastic differential equations to calculate the
likelihood. The second approach uses van Kampen’s Linear
Noise Approximation (Van Kampen 1992), which assumes
that themarginal distribution of the approximating process at
any time is Gaussian. Under this assumption, ordinary differ-
ential equations for the mean and covariance can be derived
as in Ruttor and Opper (2009), Fearnhead et al. (2014), and
Komorowski et al. (2009) and used to compute the likelihood
as part of an inference scheme. In contrast to these methods,
our suggested approach is expected to be more accurate for
smaller populations, as it maintains the stochastic dynam-
ics. This makes it particularly useful for a range of systems
which are large enough that a direct solution is inefficient, but
not as large as to be accurately represented with continuous
dynamics.

In addition to MCMC-based approaches, like ours, par-
ticle methods have also been proposed for use with pMJPs,
either with the exact dynamics (Hajiaghayi et al. 2014; Zech-
ner et al. 2014) or with continuous approximations such as
the ones mentioned above. However, they do require more
user choices (e.g. number of particles) and can also incur
heavy computational overheads for large models or state
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spaces. For infiniteMJPs, in particular, the transition kernel is
not available explicitly, making particle methods non-trivial
and intrinsically expensive. Variational methods have been
developed in Opper and Sanguinetti (2008), and can offer
computational savings; however, the work in Opper and San-
guinetti (2008) only performed state inference, providing
point estimates for parameters. Furthermore, the error intro-
duced by the variational approximation is often difficult to
quantify.

Recent work has made use of random truncations in
different contexts: Strathmann et al. (2015) propose using
a Russian Roulette-style approach in large data scenarios
where computing the likelihood from all data points is
impractical, while Filippone and Engler (2015) exploit the
methodology to perform efficient inference for Gaussian
processes. More generally, the construction of unbiased esti-
mators has been the subject of theoretical and practical
analysis. McLeish (2011) and Rhee and Glynn (2015) exam-
ine the use of a method similar to Russian Roulette for
obtainingunbiased estimates frombiasedones.Agapiou et al.
(2014) consider ways of debiasing the estimates obtained by
MCMC methods, particularly focusing on infinite spaces.
Jacob and Thiery (2015) examine the theoretical existence
of estimators that are both unbiased and guaranteed to be
non-negative under different generation schemes.

6 Conclusions

MJPs are common models in many branches of science,
yet they still present fundamental statistical challenges. In
this paper, we have proposed a novel MCMC framework
for asymptotically exact inference for pMJPs, an important
class of MJPs widely used in chemistry and systems biology.
We remark that, while our focus is on biological applica-
tions, models with exactly the same structure are employed
inmany other fields, from epidemiology to ecology to perfor-
mance modelling. Our random truncations pseudo-marginal
approach enables a principled treatment of systems with
potentially unbounded state-spaces. Interestingly, our results
show that random truncations can also bring computational
benefits over the naive alternative of bounding the state-space
ab initio, as done in Rao and Teh (2013). Intuitively, this
is because choosing a truncation which guarantees a certain
error bound usually requires still retaining a large state-space,
while our random truncation method generally samples from
much smaller systems. The two truncation-based algorithms
we consider here appear to perform best in different kinds of
systems, and so neither can be said to be clearly superior in
the general case.

The performance of our proposed methods may vary with
the system in question. As the number of species grows, the

state-space grows exponentially larger, leading to increased
computational overheads for our method (as for many other
methods). While this may be a serious limitation for large
models, it is worth pointing out that many practical appli-
cations of pMJPs describe systems with a small number
of species, where our method’s performance should not be
affected. High counts of the species involved also result in
larger state-spaces, leading to heavier computations, par-
ticularly for Algorithm 1. For Algorithm 2, the rates of
the reactions can also have an impact: very fast reactions
lead to a fine time-discretization and slower computations
in the forward-backward step. Our methods perform best
when particle numbers are not exceedingly large (other-
wise, a continuous approximation would be both accurate
and more efficient) and when observations are relatively
dense or, equivalently, the process is not too volatile (or a
truncation with many terms would be required for a good
result).

Pseudo-marginal methods based on random truncations
are relatively new to statistics and machine learning (Rhee
and Glynn 2012; Lyne et al. 2015; Filippone and Engler
2015): to our knowledge, this is the first time that they
are employed as a way of truncating an unbounded state
space, and we think this idea may be appealing in other
scenarios where unbounded state spaces are normal, such
as non-parametric Bayesian methods. Compared to pseudo-
marginal methods based on importance sampling (Filippone
and Girolami 2014; Hajiaghayi et al. 2014), random trunca-
tions offer several advantages: there is no need to choose a
proposal distribution, a notoriously difficult problem in high
dimensions. The choice of the truncating distribution, which
controls the variance of the estimator, can in general be aided
by some initial exploratory runs with different truncation dis-
tributions with different expected numbers of retained terms.
Recent work on improving the behaviour of pseudo-marginal
MCMC methods (Murray and Graham 2016) may also
be relevant to enhancing the performance of our proposed
method.
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