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ABSTRACT

Many physical properties of galaxies correlate with one another, and these correlations are often
used to constrain galaxy formation models. Such correlations include the colour–magnitude
relation, the luminosity–size relation, the fundamental plane, etc. However, the transformation
from observable (e.g. angular size, apparent brightness) to physical quantity (physical size,
luminosity) is often distance dependent. Noise in the distance estimate will lead to biased
estimates of these correlations, thus compromising the ability of photometric redshift surveys
to constrain galaxy formation models. We describe two methods which can remove this bias.
One is a generalization of the Vmax method, and the other is a maximum-likelihood approach.
We illustrate their effectiveness by studying the size–luminosity relation in a mock catalogue,
although both methods can be applied to other scaling relations as well. We show that if one
simply uses photometric redshifts one obtains a biased relation; our methods correct for this
bias and recover the true relation.

Key words: methods: analytical – methods: statistical – galaxies: formation – cosmology:
observations.

1 I N T RO D U C T I O N

The ‘configuration space’ we use to describe galaxies is large, but
galaxies do not fill it. The luminosity, colour, size, surface bright-
ness, stellar velocity dispersion, morphology, stellar mass, star for-
mation history and spectral energy distribution of a galaxy are all
correlated with one another. These correlations encode important
information about galaxy formation, and so quantifying them pro-
vides important constraints on models.

Current (e.g. SDSS, Combo-17, MUSYC, Cosmos) and planned
surveys (e.g. DES, LSST, SNAP) go considerably deeper in
multicolour photometry than in spectroscopy, or are entirely
photometric. For such surveys, reasonably accurate photometric red-
shift estimates are or will be made. The question then arises as to
which galaxy observables and correlations are affected by the noisy
distance estimate associated with a photometric rather than spec-
troscopic redshift. The most widely studied property is luminosity
– clearly, errors in the distance result in incorrect luminosity esti-
mates. If not accounted for, this leads to a biased estimate of the
luminosity function (e.g. Subbarao et al. 1996). Hence, there has
been considerable effort devoted to the question of how to correct
for this bias (e.g. Chen et al. 2003), and the problem has now been
solved (Sheth 2007).

�E-mail: grossi@sas.upenn.edu (GR); shethrk@physics.upenn.edu (RKS)

The next step is to recover an unbiased estimate of not just the
luminosity function, but the joint distribution of luminosity, colour,
size, etc., from photometric redshift data sets. The main goal of this
work is to provide an algorithm which does this for a magnitude-
limited photometric redshift survey. Because the same distance er-
ror which leads to a misestimate of the luminosity will produce a
correlated misestimate of the size, we have chosen to phrase the
discussion in terms of the size–luminosity relation – it exhibits all
the features of interest.

Section 2 illustrates the nature of the problem by showing the bias
in the size–luminosity relation which results from treating photo-
metric redshifts as though they were spectroscopic redshifts. This
is done by constructing a mock galaxy sample and then perturbing
the true redshifts to mimic photometric redshift errors. Section 3
places this problem in the more general context of inverse problems
in statistical astronomy, and argues that a deconvolution algorithm,
such as that due to Lucy (1974), is well suited to removing the bias.
It shows the result of applying this non-parametric deconvolution
technique to a mock galaxy sample. Section 4 provides a maximum-
likelihood formulation and solution of the problem. A final section
summarizes our findings and discusses possible further studies and
applications.

Where necessary, we write the Hubble constant as H0 =
100 h km s−1 Mpc−1, and we assume a spatially flat cosmological
model with (�M, ��, h) = (0.3, 0.7, 0.7), where �M and �� are the
present-day densities of matter and cosmological constant scaled to
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the critical density. We use DL(z) to denote the luminosity distance;
the angular diameter distance is DA(z) = DL(z)/(1 + z)2.

2 C O R R E L AT I O N S W I T H O B S E RVA B L E S :

E F F E C T O F D I S TA N C E E R RO R S

In what follows, we use the luminosity–size relation to illustrate
how photo-z errors lead to biases.

We begin by generating a magnitude-limited mock galaxy cata-
logue with parameters chosen to mimic those of Sloan Digital Sky
Survey (SDSS) early-type galaxies in the g band, following the
method given by Bernardi et al. (2003). The redshift range is re-
stricted to the interval 0.01 � z � 0.3. We ignored passive evolution
of the luminosities and colours, as well as K-corrections. The simu-
lated magnitude-limited catalogue has a similar dN/dz distribution
to that observed, and the distribution of apparent magnitudes, an-
gular sizes and velocity dispersions are very similar to those in the
real data.

We then model photometric redshifts ζ by assuming that

p[DL(ζ ) | DL(z)] dDL(ζ ) = dx
x

(γ x)γ
exp(−γ x)

�(γ )
, (1)

where x = DL(ζ )/DL(z) is the ratio of the photo-z based luminosity
distance to the true one and γ = 5. This distribution has 〈x〉 = 1 and
σ 2

x = 1/γ . With γ = 5, this error distribution is substantially worse
than typical photometric redshift errors. Fig. 1 compares ζ and z.
Note that the analysis which follows is not tied to this functional
form for the photo-z error distribution; we are simply using it to
illustrate our methods.

In what follows, we use M to denote the true absolute magnitude
and M to denote that estimated using ζ rather than z, and, with
some abuse of notation, we use R to denote log 10 of the physical
size θ DA(z), where θ is the measured angular size and DA(z) is the
angular diameter distance defined earlier. The estimated size based
on the photometric redshift ζ is

R ≡ log10[θ DA(ζ )] = R + log10[DA(ζ )/DA(z)]

= R − (M − M)/5 − 2 log10[(1 + ζ )/(1 + z)]; (2)

Figure 1. Distribution of spectroscopic and photometric redshifts in our
mock catalogue which was set-up to mimic the SDSS early-type galaxy
sample. The solid and dotted contours show levels which are 1/2n times the
height of the maximum value of the density of sources, with n running from
1 to 5. The dashed contours are the 1, 2 and 3σ levels. Photo-z accuracy, as
defined in Oyaizu et al. (2007), is specified in the panel. The photo-z error
distribution was assumed to follow equation (1).

Figure 2. Distributions of intrinsic and estimated absolute magnitudes (top
panel) and sizes (bottom panel) which result from the differences between
true and photo-z shown in the previous figure.

in principle, there are also evolution and K-correction terms which
we set to zero. Fig. 2 compares M with M and R with R.

The qualitative nature of the distributions in the two panels is easy
to understand. The distribution in M is broader than that in M, as
is the distribution of R compared to R: photometric redshift errors
have broadened both distributions. However, the changes to the esti-
mated absolute magnitude and size are not independent. Assuming
an object is closer than it really is makes one infer a fainter luminos-
ity and smaller size than it really has. These correlated changes can
have a dramatic effect on the size–luminosity relation, since photo-z
errors move each galaxy in the R–M plane left and down or right
and up. In general, these motions are not parallel to the principal
axis of the true relation, so the mean relation in the photo-z cata-
logue, 〈R |M〉, need not be the same as the true relation 〈R | M〉.
In our mock catalogue, 〈R |M〉 ∝ −0.20M, whereas 〈R | M〉 ∝
−0.27 M (see Fig. 3).

3 A N O N - PA R A M E T R I C

D E C O N VO L U T I O N - L I K E M E T H O D

Sheth (2007) shows that to extend Schmidt’s (1968) Vmax estimator
of the luminosity function φ(M) so that it produces unbiased results
in photo-z surveys, it is helpful to think of N (M), the number of
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Scaling relations from photo-zs 737

Figure 3. Effect of photo-z on the size–luminosity correlation in our mock catalogue. In the left-hand panel, contours and solid line show the R–M relation
associated with photo-zs, whereas the right-hand panel shows the intrinsic R–M relation. Note the strong bias (shallower slope in left-hand panel) which results
from the fact that the photo-z distance error moves points down and left or up and right on this plot. The squares in the left-hand panel show the binned starting
guess for the 2D deconvolution algorithm, and the triangles in the right-hand panel show the result after 20 iterations (equation 13). Convergence to the correct
solution is clearly seen.

observed objects with estimated M, as being a convolution of the
true number which have M, N(M), with the probability that an object
with magnitude M is thought to have magnitude M. The luminos-
ity function is then estimated by first deconvolving the distribution
of N (M) to obtain N(M), and then using the fact that N(M) ≡
φ(M) Vmax(M).

For the same reason, the present problem may be thought of as a
2D deconvolution problem (or an n-dimensional deconvolution if we
were interested in the full manifold, rather than just 2D projections
of it). Specifically, let

N (M, R) = N (M) p(R | M) = Vmax(M) φ(M) p(R | M) (3)

denote the (true) number of galaxies with absolute magnitude M
and size R in a magnitude-limited catalogue. Here, p(R | M) is the
probability of having size R when the magnitude is M. Similarly, set
N (M,R) = N (M) p(R |M). Then,

N (M,R) =
∫

dM

∫
dR N (M, R) p(M,R | M, R)

=
∫

dM N [M,R + F(M,M)] p(M | M), (4)

where F = (M− M)/5+2 log[(1+ ζ )/(1+ z)]. Our problem is to
obtain a reliable estimate of the intrinsic N(M, R) given the photo-z
biased N (M,R) and the error distribution p(M | M). We do this
using the deconvolution algorithm proposed by Lucy (1974).

Before we present our algorithm and results, it is worth noting
that we could have attempted to invert equation (4) in other ways.
Classical naive ‘exact’ inversion methods include matrix-quadrature
techniques (reduction of the integral equation to a linear matrix sys-
tem), polynomial expansion methods, singular function expansion
and product integration methods. These typically run into difficulties
because the measured data function usually cannot provide sufficient
information on the high-frequency components of the solution. A
standard non-classical technique (Phillips 1962; Tikhonov 1963;
Twomey 1963) is the method of regularization. A ‘regularization’
parameter is introduced, which balances the size of the residual
against the smoothness of the solution, and the problem is turned
into one of minimization. However, there is no general strategy
for choosing the optimum regularization parameter; this led Lucy

(1974) to formulate his algorithm, and is what has led us to choose
his algorithm over these others. One might argue that we are likely
to know a fair amount about the expected form of the intrinsic distri-
bution (e.g. luminosity functions are rather smooth, and conditional
distributions tend to be bell shaped), so it may be that these other
methods are worth pursuing further. This is the subject of work in
progress.

3.1 The deconvolution algorithm

The general 2D problem is that of estimating the frequency distribu-
tion � (ξ ′, η′) of the quantities ξ ′ and η′ when the available measures
x′

1, y′
1; x′

2, y′
2; . . . , x′

N , y′
N are a finite sample drawn from an infinite

population characterized by

�(x, y) =
∫

dξ

∫
dη �(ξ, η) p(x, y | ξ, η). (5)

Here, �(x, y) is the function accessible to measurement and p(x, y |
ξ , η) is the conditional probability that x′ will fall in [x, x + dx] when
it is known that ξ ′ ≡ ξ , and that y′ will fall in [y, y + dy] when η′ ≡
η. In many cases, � and � represent probability density functions,
so they obey normalization and non-negativity constraints.

The iterative procedure for generating estimates to � presented
in Lucy (1974) is

�r+1(ξ, η) = �r (ξ, η)

∫
dx

∫
dy

�̃(x, y)

�r (x, y)
p(x, y | ξ, η), (6)

where

�r (x, y) =
∫

dξ

∫
dη �r (ξ, η) p(x, y | ξ, η). (7)

The index r indicates the rth iteration in the sequence of estimates,
and �̃ is an approximation to � obtained from the observed sample.
Convergence is achieved if �r = �̃. The starting approximation �0

(ξ , η) should be a smooth, non-negative function having the same
integrated density as the observed distribution. The extension to
n-dimensions is obvious, although, if the number of dimensions is
large, then performing the multidimensional integrations efficiently
may become challenging.
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The 2D problem simplifies if, as happens in our problem,

p(x, y | ξ, η) = p(x | ξ ) p(y | ξ, η, x)

= p(x | ξ ) δD[y = η − F(x, ξ )] (8)

because the delta function simplifies one of the integrals. The iter-
ative scheme becomes

�r+1(ξ, η) = �r (ξ, η)

∫
dx

�̃[x, η − F(x, ξ )]

�r [x, η − F(x, ξ )]
p(x | ξ ) (9)

with

�r (x, y) =
∫

dξ �r [ξ, y + F(x, ξ )] p(x | ξ ). (10)

Partial distributions can be easily computed via marginalization
from �r+1:

�r+1(ξ ) =
∫

dη �r+1(ξ, η), (11)

�r+1(η) =
∫

dξ �r+1(ξ, η) (12)

and

〈η | ξ〉r+1 =
∫

dη η
�r+1(η, ξ )

�r+1(ξ )
. (13)

The generalization to n-dimensions is a straightforward extension
of the expressions above, so we do not present explicit expressions.
Note that, just as happens in the 2D case presented here, delta func-
tions will reduce the n-dimensional problem to a simple 1D integral,
because the same distance error affects all n quantities.

3.2 2D results

The formalism outlined above is readily applicable to the size–
luminosity correlation if we interpret (x, y) as the estimated absolute
magnitudes and sizes (M,R), and (ξ , η) as the true intrinsic ones,
(M, R).

Figs 4 and 5 show how well this method recovers the intrinsic
distribution of absolute magnitudes and sizes (solid histograms).
The broad dashed histograms show the photo-z derived M and R

Figure 4. Reconstruction of the intrinsic N(M) distribution from the dis-
tribution of estimated redshifts. The dashed histogram shows the observed
absolute magnitude distribution, used as a starting guess. The jagged lines
show the reconstructed intrinsic distribution after 20 iterations, using the
simpler 1D algorithm (blue) or a 2D iterative scheme (green).

Figure 5. Reconstruction of the intrinsic N(R) distribution from the distri-
bution of estimated redshifts. The line styles are same as in the previous
figure.

distributions. These were used as a convenient starting guess in
the 2D deconvolution algorithm, although prior knowledge about
the expected intrinsic shapes could have been used instead. The
reconstruction after 20 iterations is shown by the jagged green lines.
Note how well the deconvolved distributions match the intrinsic
ones.

A more stringent test is to check if the conditional distributions,
p(R | M), are also well recovered. Fig. 6 shows p(R | M) for three bins
of width �M = 0.355 centred at −22.046, −21.691 and −20.982.
Clearly, the method works well.

The means of these recovered distributions can be used as an
estimate of the recovered size–luminosity relation: 〈R | M〉. Recall
we had noted that this relation was rather strongly biased because
use of the photo-z distance estimate means that the error in the size
is correlated with that on the luminosity. The squares in the left-
hand panel of Fig. 3 show the starting guess for our algorithm, and
the triangles in the right-hand panel show the reconstructed relation
obtained from the deconvolution procedure – it is in an excellent
agreement with the true one.

3.3 1D results

Of course, we could have chosen to reconstruct N(M) directly from
N (M), using the 1D deconvolution algorithm outlined in Sheth
(2007). This procedure converges in about five iterations to the dis-
tribution shown by the blue crosses in Fig. 4.

Similarly, one can reconstruct the distribution of sizes with a 1D
deconvolution as follows. The true number of objects with size R is

N (R) =
∫

dM N (M, R) =
∫

dM N (M) p(R | M)

=
∫

dM φ(M) Vmax(M) p(R | M), (14)

whereas the number of observed objects with estimated size R is

N (R) =
∫

dMN (M,R)

=
∫

dM
∫

dM

∫
dR N (M, R) p(M,R | M, R)
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Scaling relations from photo-zs 739

Figure 6. Examples of reconstructed conditional distributions p(R|M) bins in magnitude of width �M = 0.355 centred on M = −22.046, −21.691 and
−20.982. The jagged lines show the distributions recovered by the 2D deconvolution algorithm after 20 iterations.

=
∫

dM
∫

dM

∫
dR N (R) p(M | R)

× p(R | R) p(M | M, R,R)

=
∫

dR N (R) p(R | R)

∫
dM

∫
dM p(M | R)

× p(M | M, R,R)

=
∫

dR N (R) p(R | R)

∫
dM p(M | R)

×
∫

dM p(M | M, R,R)

≡
∫

dR N (R) p(R | R). (15)

This algebra shows that one can think of N (R) as being a convolu-
tion of the true number of objects with size R. Hence, by measuring
the conditional probability p(R|R) directly from the catalogue, one
can reconstruct the intrinsic distribution N(R) from the observed
N (R) using a simple 1D deconvolution algorithm. The result of
doing this is shown by the blue crosses in Fig. 5. Of course, the rela-
tion between N(R) and φ(R) is more complicated than that between
N(M) and φ(M).

4 A M A X I M U M - L I K E L I H O O D M E T H O D

Sheth (2007) describes an algorithm which produces a maximum-
likelihood estimate of the luminosity function from magnitude-
limited photo-z data sets. It is straightforward to extend that analysis
to the present case, in which the quantity of interest is not just the
distribution of luminosities, but the joint distribution of luminosity
and other observed physical parameters.

Let Mi denote the vector of physical quantities for galaxy i esti-
mated using the photometric redshift ζ i when computing distances,
and let N (Mi , ζi |a) denote the number of galaxies in a magnitude-
limited catalogue that have estimated redshifts ζ i and estimated
luminosities, sizes, etc., Mi , when the model for the intrinsic joint
distribution of physical quantities is specified by the parameters a.
Then, dropping the understood i-index dependence,

N (M, ζ | a) =
∫

dz
dVc

dz
φ(M | a) p[ζ | z, m(M, ζ )], (16)

where p(ζ |z, m) is the photo-z redshift-error distribution and
φ(M|a) denotes the true joint distribution of physical quantities,
but evaluated at values which account for the fact that the same

photo-z error which affects the absolute magnitudes affects the other
observables. For example, in the size–luminosity relation we have
been considering,

M = (M,R) and M = (M, R), (17)

where

M = M − 5 log10[DL(z)/DL(ζ )], (18)

R = R + log10[DA(z)/DA(ζ )]. (19)

The factor of m is the apparent magnitude associated with photo-z
redshift ζ and absolute magnitude M; of course, m is the same for
true redshift z and absolute magnitude M.

The predicted number of objects with photometric redshift ζ when
the model has parameters a is

N (ζ | a) =
∫

dMN (M, ζ | a). (20)

If the redshift-error distribution is independent of m, then

N (ζ | a) =
∫

dz (dVc/dz) S(z, a) p(ζ | z)

≡
∫

dz N (z|a) p(ζ | z), (21)

where

S(z, a) =
∫ Mmin(z)

Mmax(z)

dM φ(M |z, a). (22)

This shows that N (ζ | a) is just the convolution of the intrinsic
redshift distribution (in a flux-limited catalogue) with the redshift-
error distribution.

The expressions above generalize those given in Sheth (2007),
where M = M and M = M, with M given by equation (18).
Hence, by analogy to when the distances are known accurately, the
likelihood to be maximized is (reintroducing the index i)

L(a) =
∏

i

pi , where pi = N (Mi , ζi | a)

N (ζi | a)
. (23)

The analysis in Sheth (2007) can now be followed to show analyti-
cally that this is indeed the appropriate expression for the likelihood,
so we do not reproduce it here.
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5 D I S C U S S I O N A N D F U T U R E WO R K

We presented two algorithms for reconstructing the intrinsic correla-
tions between distance-dependent quantities in apparent magnitude-
limited photometric redshift data sets. One was a generalization of
the non-parametric Vmax method (Section 3), and the other used a
maximum-likelihood approach (Section 4).

Both our reconstruction methods assume that the distribution of
photo-z errors is known accurately. In practice, this means that spec-
troscopic redshifts are available for a subset of the data. The question
then arises as to whether or not the number of spectra which must
be taken to specify the error distribution reliably is sufficient to also
provide a reliable (spectroscopic) estimate of these scaling relations.
If so, what is the basis for deciding that it is worth reconstructing
these relations from the photo-z data? This is the subject of work
in progress, although the methods presented in this paper assume
that such reconstructions will indeed be necessary. For example,
if the spectra are not simply a random subset of the magnitude-
limited photometric sample, then it may be difficult to quantify and
so correct for the selection effects associated with the spectroscopic
subset.

We used the size–luminosity relation in a mock catalogue which
had realistic choices for the correlation to illustrate the biases which
are present and must be corrected if photometric redshift data sets
are to provide reliable estimates of galaxy scaling relations (Figs 2
and 3). We showed that our iterative deconvolution scheme provides
a simple and reliable correction of this bias (Figs 3–6). Note that
although we have illustrated our methods using a 2D distribution,
the extension to n-correlated variables is trivial.

Because our algorithm permits the accurate measurement of
many scaling relations for which spectra were previously thought to
be necessary (e.g. the colour–magnitude relation, the size–surface
brightness relation, the photometric fundamental plane), we hope
that our work will permit photometric redshift surveys to provide
more stringent constraints on galaxy formation models at a fraction
of the cost of spectroscopic surveys.

Our results may have other applications. For example, Bernardi
(2007) has highlighted a bias associated with the correlation be-
tween stellar velocity dispersion σ and luminosity L which arises if
the distance indicator used to estimate L is correlated with σ (as may
happen in the local Universe, where peculiar velocities make spec-
troscopic redshifts unreliable distance estimators). It may be that the
methods presented here would allow an accurate reconstruction of
the true relation from the biased one. This is the subject of on-going
work.
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