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Abstract

We consider the problem of estimating a parameter θ ∈ � ⊆ Rdθ associated with a Bayesian inverse problem. Typically
one must resort to a numerical approximation of gradient of the log-likelihood and also adopt a discretization of the problem
in space and/or time. We develop a new methodology to unbiasedly estimate the gradient of the log-likelihood with respect
to the unknown parameter, i.e. the expectation of the estimate has no discretization bias. Such a property is not only useful
for estimation in terms of the original stochastic model of interest, but can be used in stochastic gradient algorithms which
benefit from unbiased estimates. Under appropriate assumptions, we prove that our estimator is not only unbiased but of
finite variance. In addition, when implemented on a single processor, we show that the cost to achieve a given level of error
is comparable to multilevel Monte Carlo methods, both practically and theoretically. However, the new algorithm is highly
amenable to parallel computation.

Keywords Parameter estimation · Inverse problems · Unbiased estimation · Stochastic gradient

1 Introduction

The problem of inferring unknown parameters associated
with the solution of (partial) differential equations (PDEs)
is referred to as an inverse problem. In such a context, when
the forward problem is well posed, the inverse problem is
often ill-posed and challenging to solve, even numerically.
The area has a long history and a large literature (see e.g. Engl
et al. (1996); Tikhonov and Glasko (1964)) yet the intersec-
tion with statistics is still comparatively small, particularly
considering the significant overlap, in terms of methods,
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algorithms as well as objectives. If one adopts a Bayesian
approach to solution of the inverse problem, then the object
of interest is a posterior distribution and, in particular, expec-
tations with respect to this distribution (Franklin 1970; Stuart
2010). While this provides an elegant solution and quantified
uncertainty via well-defined target distribution, it is more
computationally challenging to solve than its determinis-
tic counterpart. Here, we assume solution of the Bayesian
inverse problem (BIP) requires computationally intensive
Monte Carlo methods for accurate estimation. We further-
more assume that the statistical model can only be defined
up to some unknown parameters.

Consider a BIP with unknown u ∈ X and data y ∈ Y,
related through a PDE, and assume that there is an unknown
parameter θ ∈ � ⊆ Rdθ in the sense that one could consider
the posterior density

p(u, θ |y) ∝ p(y|u, θ)p(u|θ)p(θ)

where p(y|u, θ) is the conditional likelihood function of
Y |(u, θ), p(u|θ) is the prior on the unknown u, for a given θ ,
and p is some prior density for θ . Due to the strong correla-
tion of the unknown u with respect to the parameter θ , such
posterior distributions can be highly complex and very chal-
lenging to sample from, even using quite advanced Markov
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chain Monte Carlo (MCMC) algorithms. In this article, the
unknown u is treated as a nuisance parameter and the goal is
to maximize the marginal likelihood of the parameters

pθ (y) =
∫

X

pθ (y|u)pθ (u)du

where we have dropped the conditioning on θ and used sub-
scripts instead, as is classical in the literature (e.g. Cappé
et al. (2005)) and du is a sigma-finite measure on some
measurable space (X,X ). Maximum likelihood estimation
based upon the marginal likelihood appears in a wide variety
of modelling contexts (e.g. Gland and Mevel (1997)), and
the resulting estimators often have desirable mathematical
properties, e.g. Cappé et al. (2005) in the context of hidden
Markov models. In our given scenario, one is left with a finite-
dimensional optimization problem, albeit with an objective
function that is not available analytically. This intractability
arises from two sources:

– first, for a given (u, θ) only a discretization of the likeli-
hood pθ (y|u) can be evaluated;

– second, the discretized marginal likelihood is a high-
dimensional integral which itself must be approximated.

Moreover, the associated gradient of the log-likelihood is
not available, which may be of interest in optimization algo-
rithms. In the following, we will suppress the notation for
fixed observation y and present the method generally. In par-
ticular, we use the notation γθ (u) = pθ (y|u)pθ (u). We will
set Zθ = pθ (y) and ηθ (du) = [γθ (u)/Zθ ]du

In this article, we present a new scheme to provide finite
variance estimates of the gradient of the log-likelihood that
are unbiased. To be precise, let Eθ = ∇θ log(Zθ ) denote
the gradient of the log-likelihood with no discretization bias.
The proposed method provides an estimator Êθ such that
E[Êθ ] = Eθ , where E is the expectation with respect to the
randomization induced by our numerical approach. More-
over, the estimator Êθ is constructed so that one only needs
access to finite resolution (discretized) approximations of the
BIP. This scheme is of interest for several reasons:

1. Unbiased estimates of gradients help to facilitate stochas-
tic gradient algorithms;

2. The method is easy to parallelize;
3. The method helps to provide a benchmark for other com-

putations.

In terms of the first point, it is often simpler to verify the valid-
ity of stochastic gradient algorithms when the estimate of
the noisy functional is unbiased e.g. Benveniste et al. (1990).
While this is not always needed (see Tadic and Doucet (2018)
for a special case, which does not apply in our context), it at

least provides the user a peace of mind when implementing
optimization schemes. The second point relates to efficiency
of implementation relative to competing methods. Indeed
the method delivers independent and identically distributed

(i.i.d.) unbiased estimators of expectations with respect to

the posterior, which are therefore “embarrassingly paral-
lel” to simulate. Synchronization is only required to average
these in order to construct the final estimator. This is a scalar
operation, so is unlikely to impact the strong scaling with
reasonably complex models and existing (super)computer
architectures. The practical limitations in terms of mem-
ory will be investigated in a future publication. The third
point simply states that one can check the precision of biased
methodology. We now explain the approach in a little more
detail.

The method that we use is based upon a technique devel-
oped in Jasra et al. (2020). In that article, the authors consider
the filtering of a class of diffusion processes, which have to
be discretized. The authors develop a method which allows
one to approximate the filtering distribution, unbiasedly and
without any discretization error. The methodology that is
used in Jasra et al. (2020) is a double randomization scheme
based upon the approaches in McLeish (2011); Rhee and
Glynn (2015). The work in McLeish (2011); Rhee and Glynn
(2015) provides a methodology to turn a sequence of conver-
gent estimators into an unbiased estimator, using judicious
randomization across the level of discretization. It is deter-
mined for the problem of interest in Jasra et al. (2020) that
an additional randomization is required in order to derive
efficient estimators, that is, estimators that are competitive
with the existing state-of-the-art methods in the literature. In
this article, we follow the basic approach that is used in Jasra
et al. (2020), except that one cannot use the same estimation
methodology for the current problem. An approach is intro-
duced in Beskos et al. (2017b) which enables application
of the related deterministic multilevel Monte Carlo identity
(Vihola 2018) to a sequential Monte Carlo (SMC) sampler
Del Moral (2013, 2004) for inference in the present con-
text. In this article, we consider such a strategy to allow the
application of the approach in Jasra et al. (2020) to unbias-
edly estimate the gradient of the log-likelihood for BIPs. The
method of Beskos et al. (2017b) is one of the most efficient
techniques that could be used for estimation of the gradi-
ent of the log-likelihood for BIPs. However, this method is
subject to discretization bias. In other words, suppose E l

θ is
the gradient of the log-likelihood with a choice of discretiza-
tion bias level, e.g. 2−l . The original method would produce
an estimate Ê l

θ for which E[Ê l
θ ] �= E l

θ . On the other hand,
under assumptions, it is proved that the new method intro-
duced here can produce an estimate Eθ with finite variance
and without bias, i.e. E[Êθ ] = E∞

θ . We also show that the
cost to achieve a given variance is very similar to the mul-
tilevel SMC (MLSMC) approach of Beskos et al. (2017b),
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with high probability. This is confirmed in numerical sim-
ulations. We furthermore numerically investigate the utility
of our new estimator in the context of stochastic gradient
algorithms, where it is shown that a huge improvement in
efficiency is possible.

Our approach is one of the first which can in general pro-
vide unbiased and finite variance estimators of the gradient of
the log-likelihood for BIPs. A possible alternative would be
the approach of Agapiou et al. (2018); however, the method-
ology in that article is not as general as is presented here. In
more detail, the work presented in Agapiou et al. (2018) con-
siders unbiased estimation of expectations associated with
particular classes of BIP, namely ones with either uniform or
Gaussian priors. The article uses the randomization schemes
of McLeish (2011); Rhee and Glynn (2015) along with par-
ticular coupled Markov chain simulation schemes. In the case
of uniform priors, the methodology is based upon a global
minorization condition, which is not reasonable in that case,
but not if the priors (when truncated to finite dimension) lie
on a non-compact state space. In the case of Gaussian priors,
the approach is based upon a synchronous coupling of a type
of Metropolis–Hastings algorithm. Such couplings require
strong assumptions and may not always mix well. We do
not constrain our BIP to uniform or Gaussian priors, and in
principle, one does not need a particularly restrictive set of
assumptions to apply our methodology. Certain hypotheses
are made in order to ensure our proofs are reasonably con-
cise, but these can be relaxed. See Del Moral et al. (2017) for
an example.

This article is structured as follows. In Sect. 2, we explain
the generic problem to which our approach is applicable.
In particular, a concrete example in the context of Bayesian
inverse problems is described. In Sect. 3, we present our
methodology and the proposed estimator. In Sect. 4, we
show that our proposed estimator is unbiased and of finite
variance and we consider the cost to obtain the estimate. In
Sect. 5, several numerical examples are presented to investi-
gate performance of the estimator in practice, including the
efficiency of the estimator when used in the relevant context
of a stochastic gradient algorithm for parameter estimation.
In “Appendix A”, the proofs of some of our theoretical results
can be found.

2 Problem setting

2.1 Generic problem

Let (X,X ) be a measurable space, and define a probability
measure on it as

ηθ (du) = γθ (u)du∫
X
γθ (u)du

where θ ∈ � ⊆ Rdθ , γ : � × X → R+ and recall du

is a sigma-finite measure on (X,X ). We are interested in
computing

∇θ log
( ∫

X

γθ (u)du
)

= 1∫
X
γθ (u)du

∇θ

( ∫

X

γθ (u)du
)

= 1∫
X
γθ (u)du

∫

X

∇θ {γθ (u)}
γθ (u)

γθ (u)du

=
∫

X

∇θ {γθ (u)}
γθ (u)

ηθ (du)

=
∫

X

∇θ log
(
γθ (u)

)
ηθ (du)

=
∫

X

ϕθ (u)ηθ (du) ,

where we have defined ϕθ (u) = ∇θ log
(
γθ (u)

)
and we are

assuming it is legitimate to interchange differentiation and
integration in the second line. From here on, we will use the
following shorthand notation for a measure μ on (X,X ) and
a measurable μ−integrable ϕ : X → Rd

μ(ϕ) :=
∫

X

ϕ(x)μ(dx) ,

which should be understood as a column vector of integrals.
In practice, we assume that we must work with an approx-

imation of ϕθ (u) and ηθ (du). Let l ∈ N0, and set

ηl
θ (du) =

γ l
θ (u)du∫

X
γ l
θ (u)du

where γ l : �×X → R+. We are now interested in computing

∇θ log
( ∫

X

γ l
θ (u)du

)

=
∫

X

∇θ log
(
γ l
θ (u)

)
ηl

θ (du)

=
∫

X

ϕl
θ (u)ηl

θ (du).

It is assumed explicitly that ∀θ ∈ �

lim
l→+∞

ηl
θ (ϕ

l
θ ) = ηθ (ϕθ ).

2.2 Example of problem

We will focus on the following particular problem as an
example. Let D ⊂ Rd with ∂ D ∈ C1 convex and f ∈
L2(D). Consider the following PDE on D:
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− ∇ · (ûs(u)∇v) = f , on D, (1)

v = 0, on ∂ D . (2)

Two examples of diffusion coefficients will be considered

ûs(x; u) =
{

ū +
∑K

k=1 ukσkφk(x) , s = 1 ,∑K
k=1 exp(uk)φk(x) , s = 2 .

(3)

For any s ∈ {1, 2}, we define u = {uk}K
k=1, and the state

space will be X =
∏K

k=1[−1, 1]. Let v(·; u) denote the weak
solution of (1) for parameter value u. If s = 1, the prior
is given by uk ∼ U [−1, 1] (the uniform distribution on

[−1, 1]) i.i.d. for k = 1, . . . , K . If s = 2, the prior is given
by the truncated normal u ∼ 1u∈XN (0, 
θ ), where N (0, 
θ )

denotes the normal random variable with mean 0 and covari-
ance matrix 
θ , and 1X is the indicator function on the set
X. In this case, the prior depends on some parameters θ ∈ �

through 
θ . The covariance matrix 
θ is defined element-
wise by 
θ,i j = θ1 exp(−θ2‖xi − x j‖2). The notation ‖ · ‖
is always used for the L2−norm, either the Euclidean norm
of the appropriate dimension or the L2(D) norm. The corre-
sponding inner products will be denoted 〈·, ·〉. The following
will be assumed.

(H1) If s = 1, then φk ∈ C(D), ‖φk‖∞ ≤ 1, and there is
a u∗ > 0 such that ū >

∑K
k=1 σk + u∗. If s = 2 then

φk are piecewise multilinear nodal basis functions as
described in Sect. 2.2.1, such that ûs(u) interpolates
between the coefficients exp(uk).

Note that under Assumption (H1), ûs(u) > min{u∗, exp(−1)}
uniformly in u for any s ∈ {1, 2}. Hence, there is a
well-defined (weak) solution v(·; u) which is bounded in uni-
formly in u in L∞(D) and L2(D) and its gradient is also
bounded uniformly in u in L2(D) Ciarlet (2002); Dashti and
Stuart (2011). Define the following vector-valued function

G(u) = [〈g1, v(·; u)〉, . . . , 〈gm, v(·; u)〉]⊺,

where gi ∈ L2(D) for i = 1, . . . , m. We note that pointwise
evaluation is also permissible since u ∈ L∞(D), i.e. gi can
be Dirac delta functions; however, for simplicity we restrict
the presentation to L2(D). It is assumed that the data take
the form

y = G(u) + ξ, ξ ∼ N (0, θ−1
3 · Im), ξ ⊥ u ,

where ⊥ denotes independence. The un-normalized density
of u for fixed θ is then given by the following (if s = 1 then
dθ = 1 and we use the notation θ = θ3)

γθ,s(u) =

⎧
⎨
⎩

θm/2 exp
(

− θ
2 ‖G(u) − y‖2

)
1u∈X , s = 1 ,

θ
m/2
3 exp

(
− θ3

2 ‖G(u) − y‖2
)

exp
(
− 1

2‖
−1/2
θ u‖2

)
1u∈X , s = 2 .

(4)

The normalized density is given by

ηθ,s(u) = γθ,s(u)

Zθ,s

,

where Zθ,s =
∫
X
γθ,s(u)du, and the quantity of interest is

defined for u ∈ X as

ϕθ,s(u) := ∇θ log
(
γθ,s(u)

)
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m
2θ

− 1
2‖G(u) − y‖2 , s = 1 ,⎛

⎜⎜⎝

1
2 u⊺
−1

θ
∂
θ

∂θ1

−1

θ u

1
2 u⊺
−1

θ
∂
θ

∂θ2

−1

θ u

m
2θ3

− 1
2‖G(u) − y‖2

⎞
⎟⎟⎠ , s = 2 .

(5)

Henceforth, the notation s will be suppressed except when
it is necessary to refer to the above explicit example. The
method presented is very general and applicable to essentially
any problem of the form presented in Sect. 2.1, as long as
it satisfies appropriate assumptions which will be provided
below.

2.2.1 Numerical approximation

The finite element method (FEM) is utilized for solution of
(2) with piecewise multilinear nodal basis functions. For
s = 1, we will let d = 1 and D = [0, 1], while for
s = 2 we will let d = 2 and D = [0, 1]2. For brevity,
we will completely present only the case s = 1. For the case
s = d = 2, the product of such piecewise linear functions
described below is used to generate a bilinear approximation
on [0, 1]2. The reader is referred to Section 5.3 of Beskos
et al. (2017a) for details. We note the approach is easily gen-
eralized following standard FEM literature Brenner and Scott
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(2007). As mentioned above, the notation for s is suppressed
here.

The PDE problem at resolution level l is solved using
FEM with piecewise linear shape functions on a uniform
mesh of width hl = 2−l , for l ≥ 0. Thus, on the lth level
the finite element basis functions are {ψ l

i }
2l−1
i=1 defined as (for

xi = i · 2−l ):

ψ l
i (x) =

{
(1/hl)[x − (xi − hl)] if x ∈ [xi − hl , xi ],
(1/hl)[xi + hl − x] if x ∈ [xi , xi + hl ] .

To solve the PDE, vl(x) =
∑2l−1

i=1 vl
i ψ

l
i (x) is plugged into

(1) and projected onto each basis element:

−
〈
∇ ·

(
û∇

2l−1∑

i=1

vl
i ψ

l
i

)
, ψ l

j

〉
= 〈 f , ψ l

j 〉,

resulting in the following linear system:

Al(u)vl = f l ,

where we introduce the matrix Al(u) with entries Al
i j (u) =

〈û∇ψ l
i ,∇ψ l

j 〉, and vectors vl , f l with entries vl
i = 〈v,ψ l

i 〉
and f l

i = 〈 f , ψ l
i 〉, respectively.

Define Gl(u) = [〈g1, v
l(·; u)〉, . . . , 〈gm, vl(·; u)〉]⊺.

Denote the corresponding approximated un-normalized den-
sity by

γ l
θ (u) = θm/2 exp

{
− θ

2
‖Gl(u) − y‖2

}
1u∈X , (6)

and the approximated normalized density by

ηl
θ (u) =

γ l
θ (u)

Z l
θ

,

where Z l
θ =

∫
X
γ l
θ (u)du. We further define

ϕl
θ (u) := ∇θ log

(
γ l
θ (u)

)

= m

2θ
− 1

2
‖Gl(u) − y‖2 . (7)

Recall from (5) that in the case s = 2 only ∂ log
(
γ l
θ (u)

)
/∂θ3

depends upon l, and is given as above.
It is well known that under assumption (H1) vl(u) con-

verges to v(u) as l → ∞ in L2(D) (as does its gradient),
uniformly in u (Brenner and Scott 2007; Ciarlet 2002). Fur-
thermore, continuity ensures γ l

θ (u) converges to γθ (u) and
ϕl

θ (u) converges to ϕθ (u) uniformly in u as well. See also
Beskos et al. (2017a, b) and Sect. 4 for further details.

3 Methodology for unbiased estimation

We now describe our methodology for computing an unbi-
ased estimate of ηθ (ϕθ ). For simplicity of exposition, we will
suppose that for i ∈ {1, . . . , dθ }, (ϕθ (u))i ∈ Bb(X), where
(x)i denotes the i th element of a vector and Bb(X) are the col-
lection of bounded, measurable and real-valued functions on
X. This constraint is not needed for the numerical implemen-
tation of the method, but shall reduce most of the technical
exposition to follow. As remarked in Introduction, the basic
approach follows that in Jasra et al. (2020) with some notable
differences. We now detail how the approach will work.

3.1 Methodology in Jasra et al. (2020)

The underlying approach of Jasra et al. (2020) is a type
of double randomization scheme. The first step is to use
the single-term estimator as developed in Rhee and Glynn
(2015). Suppose one wants to estimate ηθ (ϕθ ), but, only has
access to a methodology that can approximate ηl

θ (ϕ
l
θ ) for

each fixed l ∈ N0. Let PL(l) be a positive probability mass
function on N0 and suppose that one can construct a sequence
of random variables (l

θ )l≥0 such that

E[0
θ ] = η0

θ (ϕ
0
θ ) (8)

E[l
θ ] = ηl

θ (ϕ
l
θ ) − ηl−1

θ (ϕl−1
θ ) l ∈ N (9)

and that

∑

l∈N0

1

PL(l)
E[‖l

θ‖2] < +∞ . (10)

Now if one draws L ∼ PL(·), then L
θ /PL(L) is an unbiased

and finite variance estimator of ηθ (ϕθ ). It should be noted
that (8)-(9) are not necessary conditions, but are sufficient to
ensure the unbiasedness of the estimator.

In the context of interest, it can be challenging to obtain a
sequence of random variables which can possess the proper-
ties (8)-(10). We will detail one possible approach at a high
level and then explain in detail how one can actually construct
a simulation method to achieve this high-level description.

3.2 High-level approach

The objective of this section is to highlight the generic proce-
dure that is used in Jasra et al. (2020) for producing estimates
that satisfy (8)–(9). The basic idea is to use another applica-
tion of randomization to construct such unbiased estimators
from a consistent sequence of estimators. In particular, con-
sider a given increasing sequence (Np)p∈N0 with Np ∈ N for
each p ∈ N0, 1 ≤ N0 < N1 < · · · and lim p→∞ Np = ∞.
Then, we suppose that one can construct Np-sample Monte
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Carlo (type) estimators ξ
l,p
θ for l ∈ N0, such that almost

surely the following consistency results hold

lim
p→∞

ξ
0,p
θ = η0

θ (ϕ
0
θ ) , (11)

lim
p→∞

ξ
l,p
θ = ηl

θ (ϕ
l
θ ) − ηl−1

θ (ϕl−1
θ ) , l ∈ N . (12)

For a given (l, p, p′) ∈ N3
0, p �= p′ we do not require ξ

l,p
θ

and ξ
l,p′

θ to be independent, nor do we require unbiasedness
of the individual estimators as in

E[ξ0,p
θ ] = η0

θ (ϕ
0
θ ) ,

E[ξ l,p
θ ] = ηl

θ (ϕ
l
θ ) − ηl−1

θ (ϕl−1
θ ) , l ∈ N .

Now set


0,0
θ := ξ

0,0
θ ,


0,p
θ := ξ

0,p
θ − ξ

0,p−1
θ , p ∈ N .

For l ∈ N given, set


l,0
θ := ξ

l,0
θ ,


l,p
θ := ξ

l,p
θ − ξ

l,p−1
θ , p ∈ N .

Let PP (p), p ∈ N0, be a positive probability mass function
with PP (p) =

∑∞
q=p PP (q). Now if

∑

p∈N0

1

PP (p)
E[‖ξ l,p

θ − η0
θ (ϕ

0
θ )‖2] < +∞ , (13)

∑

p∈N0

1

PP (p)
E[‖ξ l,p

θ − {ηl
θ (ϕ

l
θ ) − ηl−1

θ (ϕl−1
θ )}‖2] < +∞ ,

l ∈ N (14)

and P ∼ PP (·), then

l
θ =

P∑

p=0

1

PP (p)


l,p
θ (15)

will allow (l
θ )l∈N0 to satisfy (8)-(9), where expectations are

understood to be with respect to PP yet P is suppressed in the
notation. Moreover, (l

θ )l∈N0 will have finite variances. This
result follows as we are simply using the coupled sum esti-
mator as in Rhee and Glynn (2015) and using (Vihola 2018,
Theorem 5), for instance, to verify the conditions required.

3.3 Details of the approach

We will now describe how to obtain the sequence (
l,p
θ )p∈N0

for l ∈ N0 fixed.

3.3.1 MLSMCmethod of Beskos et al. (2017b)

To introduce our approach, we first consider the MLSMC
method in Beskos et al. (2017b) which will form the basis
for our estimation procedure. The approach in Beskos et al.
(2017b) allows one to consistently estimate quantities such
as ηl

θ (ϕ), ϕ ∈ Bb(X) and to estimate differences ηl
θ (ϕ) −

ηl−1
θ (ϕ), l ∈ N, in a manner which will be suited to our

objectives. The algorithm is simply a type of SMC sampler
Del Moral et al. (2006) which generates a collection of sam-
ples, sequentially, to approximate η0

θ then η1
θ and so on.

The following notations will be used to accurately describe
the method in Beskos et al. (2017b). Define for l ∈ N0

Gl
θ (u) =

γ l+1
θ (u)

γ l
θ (u)

.

Note that ηl−1
θ (Gl−1

θ ) = 1
Z l−1

θ

∫
X
γ l
θ (u)du = Z l

θ/Z l−1
θ ,

where we recall that Z l
θ =

∫
X
γ l
θ (u)du. For l ∈ N, M l

θ is
a ηl

θ -invariant Markov kernel; that is, for any ϕ ∈ Bb(X)

ηl
θ (ϕ) =

∫

X

( ∫

X

ϕ(u′)M l
θ (u, du′)

)
ηl

θ (du). (16)

Define for μ ∈ P(X) (the collection of probability measures
on (X,X )), l ∈ N

�l
θ (μ)(du′) := 1

μ(Gl−1
θ )

∫

X

Gl−1
θ (u)M l

θ (u, du′)μ(du) .(17)

Noting that

ηl
θ (ϕ) =

ηl−1
θ (Gl−1

θ ϕ)

ηl−1
θ (Gl−1

θ )

=
Z l−1

θ

Z l
θ

ηl−1
θ (Gl−1

θ ϕ) = 1

Z l
θ

∫

X

(γ l
θ (u)ϕ(u))du , (18)

equations (16) and (17) lead to the recursion

ηl
θ (ϕ) =

ηl−1
θ (Gl−1

θ ϕ)

ηl−1
θ (Gl−1

θ )

= 1

ηl−1
θ (Gl−1

θ )

∫

X

Gl−1
θ (u)

( ∫

X

ϕ(u′)M l
θ (u, du′)

)
ηl−1

θ (du)

= �l
θ (η

l−1
θ )(ϕ) . (19)

The significance of this recursion is that it allows one to turn a
simulation from ηl−1

θ into one from ηl
θ . This is important in a

sequential context, where we will replace ηl−1
θ with approx-

imations, but still use this given recursion.
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Algorithm 1 A Multilevel Sequential Monte Carlo Sampler with
a fixed number of samples N ∈ N and a given level l ∈ N0.

1. Initialization: For i ∈ {1, . . . , N } sample U i
0 from η0

θ . If l = 0
stop; otherwise set s = 1 and go to step 2.
2. Resampling and Sampling: For i ∈ {1, . . . , N } sample U i

s

from �s
θ (η

s−1,N
θ ). This consists of sampling ai

s ∈ {1, . . . , N }
with probability mass function

P
N
θ (ai

s = j) = Gs−1
θ (u

j
s−1)

∑N
k=1 Gs−1

θ (uk
s−1)

,

and then sampling U i
s from Ms

θ (u
ai

s

s−1, ·). If s = l stop; otherwise
set s = s + 1 and return to the start of 2.

Consider N ∈ N, and slightly modify the MLSMC algo-
rithm used in Beskos et al. (2017b) to keep the number of
samples across levels fixed, up to some given level l ∈ N.
Details are given in Algorithm 1. This algorithm yields sam-
ples distributed according to the following joint law

P
N
θ

(
d(u1:N

0 , . . . , u1:N
l )

)

=
( N∏

i=1

η0
θ (dui

0)
)

( l∏

s=1

N∏

i=1

�s
θ (η

s−1,N
θ )(dui

s)
)

, (20)

where η
s−1,N
θ (du) = 1

N

∑N
i=1 δui

s−1
(du) for s ∈ N. The

intuition of the algorithm can be understood by considering
(19). For instance, if one observes �1

θ (η
0,N
θ )(dui

1), we know

that η0,N
θ will converge to η0

θ as N grows, so we might expect
that ui

1 might be approximately sampled according to η1
θ . If

this logic applies recursively, then one can approximate η2
θ

and so on. One can compute an estimate of η0
θ (ϕ

0
θ ) as

η
0,N
θ (ϕ0

θ )

:= 1

N

N∑

i=1

ϕ0
θ (ui

0) .

Following from (18), for l ∈ N, one can estimate ηl
θ (ϕ

l
θ ) −

ηl−1
θ (ϕl−1

θ ) with

η
l−1,N
θ (Gl−1

θ ϕl
θ )

η
l−1,N
θ (Gl−1

θ )
− η

l−1,N
θ (ϕl−1

θ )

=
1
N

∑N
i=1 Gl−1

θ (ui
l−1)ϕ

l
θ (u

i
l−1)

1
N

∑N
i=1 Gl−1

θ (ui
l−1)

− 1

N

N∑

i=1

ϕl−1
θ (ui

l−1) .

The reason for using the samples generated at level l − 1 to
estimate ηl

θ (ϕ
l
θ ) as well as ηl−1

θ (ϕl−1
θ ) is to construct estima-

tors which satisfy conditions such as (10). Standard results
(for instance in Del Moral (2013)) allow one to prove that
almost surely

lim
N→∞

η
0,N
θ (ϕ0

θ )

= η0
θ (ϕ

0
θ )

lim
N→∞

(
η

l−1,N
θ (Gl−1

θ ϕl
θ )

η
l−1,N
θ (Gl−1

θ )

−η
l−1,N
θ (ϕl−1

θ )
)

= ηl
θ (ϕ

l
θ ) − ηl−1

θ (ϕl−1
θ ) , l ∈ N .

Note that in general one has

E
N
θ

[(η
l−1,N
θ (Gl−1

θ ϕl
θ )

η
l−1,N
θ (Gl−1

θ )
− η

l−1,N
θ (ϕl−1

θ )
)]

�= ηl
θ (ϕ

l
θ ) − ηl−1

θ (ϕl−1
θ ) , l ∈ N ,

where E
N
θ is an expectation associated with the probability

in (20).

3.3.2 Approach for constructing (4
l,p

�
)p∈N0

In order to calculate our approximation, we will consider
the following approach, which was also used in Jasra et al.
(2020). Given any (l, P) ∈ N2

0, we will run Algorithm 2 in

order to obtain (
l,p
θ )p∈{0,1,...,P}.

Algorithm 2 Approach to construct (
l,p
θ )p∈{0,1,...,P} for

(l, P) ∈ N2
0 given.

1. Sample: Run Algorithm 1 independently with Np − Np−1
samples for p ∈ {0, 1, . . . , P}, up to level (l − 1) ∨ 0, where we
define for convenience N−1 := 0.
2. Estimate: construct 

l,p
θ as in equation (23), for p ∈

{0, 1, . . . , P}.

The joint probability law of the samples simulated accord-
ing to Algorithm 2 is

Pθ

(
d(u

1:Np

0 , . . . , u
1:Np

(l−1)∨0)
)

=
P∏

p=0

P
Np−Np−1
θ

(
(u

Np−1+1:Np

0 , . . . , u
Np−1+1:Np

(l−1)∨0 )
)
, (21)

where N−1 = 0 and P
Np−Np−1
θ is as defined in (20). For

(l, P) ∈ N2
0 given, consider running Algorithm 2. Then for

any s ∈ {0, 1, . . . , (l − 1) ∨ 0} and any p ∈ {0, . . . , P}, we
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can construct the following empirical probability measure on
(X,X )

η
s,N0:p
θ (dus) :=

p∑

q=0

(Nq − Nq−1

Np

)
η

s,Nq−Nq−1
θ (dus) . (22)

Note the recursion

η
s,N0:p
θ (dus) =

(Np − Np−1

Np

)
η

s,Np−Np−1
θ (dus)

+ Np−1

Np

η
s,N0:p−1
θ (dus) .

Now define


l,p
θ :=

⎧
⎪⎨
⎪⎩

η
0,N0:p
θ (ϕ0

θ ) − η
0,N0:p−1
θ (ϕ0

θ ) if l = 0
η

l−1,N0:p
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ (ϕl−1

θ ) −
(

η
l−1,N0:p−1
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p−1
θ (Gl−1

θ )
− η

l−1,N0:p−1
θ (ϕl−1

θ )
)

otherwise ,
(23)

where η
0,N0:−1
θ (ϕ0

θ ) := 0, and

η
l−1,N0:−1
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:−1
θ (Gl−1

θ )

−η
l−1,N0:−1
θ (ϕl−1

θ ) := 0 .

For convenience in the next section, the conditions (13)-
(14) translated to the notations used in this section are

∑

p∈N0

1

PP (p)
Eθ

[‖[η0,N0:p
θ − η0

θ ](ϕ0
θ )‖2] < +∞ (24)

∑

p∈N0

1

PP (p)
Eθ

[∥∥∥
η

l−1,N0:p
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ (ϕl−1

θ )

−
(ηl−1

θ (Gl−1
θ ϕl

θ )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ (ϕl−1
θ )

)∥∥∥
2]

< +∞, l ∈ N , (25)

where Eθ is used to denote expectation associated with the
probability Pθ in (21).

3.4 Method

The new method is now presented in Algorithm 3. The esti-
mate of ηθ (ϕθ ) is given by (26). In Sect. 4, we will prove that
it is both unbiased and of finite variance, as well as investi-
gating the cost of computing the estimate. Indeed one has a
finite variance unbiased estimator even if M = 1, and in the

Algorithm 3 Method for Unbiasedly Estimating ηθ (ϕθ ).

For i = 1, . . . , M :
1. Generate L i ∼ PL and Pi ∼ PP .
2. Run Algorithm 2 with l = L i and P = Pi .
3.Compute:


L i

θ =
∑Pi

p=0
1

PP (p)


L i ,p
θ

where 
L i ,p
θ is given in (23).

Return the estimate:

η̂θ (ϕθ ) := 1
M

∑M
i=1

1
PL (L i )

L i

θ . (26)

numerical examples, it will be shown that such an estima-
tor can be useful in some contexts. However, the variance of
such estimator may be rather large. Therefore, in the interest

of accuracy one will typically want to adjust M to achieve
suitable variance.

There are several points of practical interest to be made
at this stage (the first two were noted already in Jasra et al.
(2020)). First, the loop over the number of independent sam-
ples i in Algorithm 3 can be easily parallelized. Second, one
does not need to make L and P independent; this is only
assumed for simplicity of presentation, but is not required.
Third, the current method uses only the level l − 1 marginal
of (21). All the samples for s =∈ {0, . . . , l − 2} and asso-
ciated empirical measures (22) are discarded and only the
level l − 1 empirical measure is utilized. This differs from
Beskos et al. (2017b) where all the lower-level empirical
measures are used. It is possible these samples could be uti-
lized to improve the accuracy of the method, but it is not
necessary and so is not investigated further here. The poten-
tial efficiency of the double randomization scheme, as well
as a discussion of the overall efficiency of the approach, is
given in (Jasra et al. 2020, Section 2.5).

4 Theoretical results

Our main objective is to show that (l
θ )l∈N0 as defined in

(15) with (
l,p
θ )p∈N0 as in (23) will satisfy (8)-(10). To that

end, one must first show that (
l,p
θ )p∈N0 satisfy (24)-(25)

which certainly verifies (8)-(9) and then one must establish
that (10) holds. We make the following assumptions.
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(A1) For each θ ∈ �, there exist 0 < C < C < +∞ such
that

sup
l≥0

sup
u∈X

Gl
θ (u) ≤ C

inf
l≥0

inf
u∈X

Gl
θ (u) ≥ C .

(A2) For each θ ∈ �, , there exist a ρ ∈ (0, 1) such that
for any l ≥ 1, (u, v) ∈ X

2, A ∈ X

∫

A

M l
θ (u, du′) ≥ ρ

∫

A

M l
θ (v, dv′).

(A3) For each θ ∈ �, there exists a C̃ < +∞ such that for
each i ∈ {1, . . . , dθ }

sup
l≥0

sup
u∈X

|(ϕl
θ (u))i | ≤ C̃ .

For ϕ ∈ Bb(X), we set ‖ϕ‖∞ = supu∈X |ϕ(u)|. To sim-
plify our notations, we will set for l ∈ N

‖ϕl
θ − ϕl−1

θ ‖2
∞ = max

i∈{1,...,dθ }

{
‖(ϕl

θ )i − (ϕl−1
θ )i‖2

∞
}
.

We begin with the following result, which is associated with
verifying that (24)-(25) can hold.

Proposition 4.1 Assume (A1-3). Then for any θ ∈ � there

exists a C < +∞ such that for any p ∈ N0, 1 ≤ N0 < N1 <

· · · < Np < +∞:

Eθ [‖[η
0,N0:p
θ − η0

θ ](ϕ0
θ )‖2] ≤ C

Np

(
1 + p2

Np

)
.

In addition, for any (l, p) ∈ N × N0, 1 ≤ N0 < N1 < · · · <

Np < +∞:

Eθ

[∥∥∥∥
η

l−1,N0:p
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ (ϕl−1

θ )

−
(ηl−1

θ (Gl−1
θ ϕl

θ )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ (ϕl−1
θ )

)∥∥∥∥
2]

≤ C

Np

(
1+ p2

Np

)(
‖ϕl

θ −ϕl−1
θ ‖2

∞+
∥∥∥Gl−1

θ

Z l−1
θ

Z l
θ

−1
∥∥∥

2

∞

)
.

Proof The first result follows by Lemma A.2 in appendix and
the second from Lemma A.4 also in appendix. ⊓⊔

Remark 4.1 To show that (24)-(25) can hold, one can set, for
instance Np = 2p and PP (p) ∝ 2−p(p + 1) log2(p + 2)2.
See, for example, Jasra et al. (2020) and Rhee and Glynn
(2015).

To continue our discussion, to complete our proof, we
must know something about the quantity

‖ϕl
θ − ϕl−1

θ ‖2
∞ +

∥∥∥Gl−1
θ

Z l−1
θ

Z l
θ

− 1
∥∥∥

2

∞

in terms of a possible decay as a function of l. To that end,
we shall assume that this term is O(h

β

l ) for some β > 0.
This assumption can be verified for the example in Sect. 2.2.
Recall from Sect. 2.2 that hl = 2−l .

Proposition 4.2 Assume (H1). Then there are C > 0 and

β > 0, depending on f and u∗, such that for all u ∈ X

‖vl(·; u)‖, ‖v(·; u)‖<C , ‖vl(·; u) − v(·; u)‖2 ≤Ch
β

l ,

(27)

where the norm is L2(D). Given a function F : N×X → Rn ,

suppose that there is a C ′ > 0 which does not depend on (l, u)

such that for all i = 1, . . . , n

|Fi (l, u) − Fi (∞, u)| ≤ C ′‖vl(·; u) − v(·; u)‖ , (28)

where the norm is L2(D), and F(∞, ·) := liml→∞ F(l, ·).
Then there is another C > 0 which does not depend on (l, u)

such that

max
i∈{1,...,n}

{
sup
u∈X

|Fi (l, u) − Fi (l − 1, u)|2
}

≤ Ch
β

l . (29)

Proof This is a slight generalization of the results of Beskos
et al. (2017b), Sect. 4. In particular, Eqs. 18, 21, 22 and 23
of Beskos et al. (2017b) provide (27). Plugging (27) into
(28) immediately implies that there is a C > 0 independent
of l such that supu∈X |Fi (l, u) − Fi (∞, u)|2 ≤ Ch

β

l for all
i = 1, . . . , n. The triangle inequality implies

|Fi (l, u) − Fi (l − 1, u)|2 ≤ 2(|Fi (l, u) − Fi (∞, u)|2

+|Fi (l − 1, u) − Fi (∞, u)|2) .

Since hl−1 = 2hl , combining the results at levels l and l − 1
gives the result. ⊓⊔

This proposition simply states that if a vector-valued func-
tion has the continuity property (28) with respect to the
solution of (2), then the quantity on the left-hand side of
(29) inherits the same rate of convergence.

Note that Gl−1
θ

Z l−1
θ

Z l
θ

= Gl−1
θ

ηl−1
θ (Gl−1

θ )
and G∞

θ = 1. So
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‖Gl−1
θ

Z l−1
θ

Z l
θ

− 1‖∞

=
∥∥∥∥∥

1

ηl−1
θ (Gl−1

θ )

(
(Gl−1

θ − 1) + ηl−1
θ (1 − Gl−1

θ )
)∥∥∥∥∥

∞

≤
∥∥∥∥∥

2

ηl−1
θ (Gl−1

θ )

∥∥∥∥∥
∞

‖Gl−1
θ − 1‖∞ .

A slight generalization of Prop. 4.1 of Beskos et al. (2017b)
to include β, together with Proposition 4.2 imply assumption
(A1) and that there is a C > 0 such that

∥∥∥Gl−1
θ

Z l−1
θ

Z l
θ

− 1
∥∥∥

2

∞
≤ Ch

β

l .

Now defining F(l, u) := ϕl
θ (u) and F(∞, u) = ϕθ (u), as in

(7) and (5) for s = 1, then it is easy to show that Proposi-
tion 4.2 ensures

‖ϕl
θ − ϕl−1

θ ‖2
∞ ≤ Ch

β

l .

In particular, notice that n = dθ = 1 and

ϕl
θ − ϕθ

= 1

2

(
‖G(u) − y‖2 − ‖Gl(u) − y‖2

)

= 1

2

(
‖G(u)‖2 − ‖Gl(u)‖2 + 〈y,Gl(u) − G(u)〉

)

≤ 1

2
(‖G(u)‖ + ‖Gl(u)‖ + ‖y‖)‖Gl(u) − G(u)‖ , (30)

where the scalar identity (a + b)(a − b) = a2 − b2 is used
along with Cauchy–Schwartz twice in going from the second
to the third line (the norms and inner product are all Euclidean
on Rm). Now using Cauchy–Schwartz again m times

‖Gl(u) − G(u)‖ =
(

m∑

i=1

〈gi , v
l(·; u) − v(·; u)〉2

)1/2

≤
(

m∑

i=1

‖gi‖2

)1/2

‖vl(·; u) − v(·; u)‖ .

It should not cause confusion that the norms and inner
products to the right of the first equal sign are on L2(D).
Assumption (A3) then follows straightforwardly from (27).
As mentioned in Sect. 2.2.1, (7), for the case s = 2 only
(ϕl

θ )3 depends explicitly on l, and it is given as above. For
i = 1, 2, we have (ϕl

θ )i = (ϕl−1
θ )i .

Theorem 1 Assume (A1-3). Then there exist choices of

PL , PP and (Np)p∈N0 , 1 ≤ N0 < N1 < · · · so that (l
θ )l∈N0

as defined in (15) with (
l,p
θ )p∈N0 as in (23) will satisfy (8)-

(10). That is, (26) is an unbiased and finite variance estimator

of ηθ (ϕθ ).

Proof Throughout the proof, C is a finite constant that will
not depend on l or p and whose value will change upon
each appearance. Given the commentary above, we need only
show that (10) can hold for some given choices of PL , PP

and (Np)p∈N0 . Note that in the context of (10) l
θ is as (15)

and in the case of (15) 
l,p
θ is as (23). We have that, by direct

computation and the Cauchy–Schwarz inequality

∑

l∈N0

1

PL(l)
Eθ [‖l

θ‖2]

≤
∑

(l,p)∈N
2
0

PP (p)

PL(l)

{ p∑

s=0

Eθ [‖l,s
θ ‖2]

PP (s)2

+2
∑

0≤s<q≤p

Eθ [‖l,s
θ ‖‖l,q

θ ‖]
PP (s)PP (q)

}
. (31)

The strategy is now to control the terms Eθ [‖l,s
θ ‖2] and

Eθ [‖l,s
θ ‖‖l,q

θ ‖], which can then allow one to find choices
of PL , PP and (Np)p∈N0 to ensure that the R.H.S. of (31) is
finite. Now recalling (23) and noting that for p ∈ N

η
0,N0:p
θ (ϕ0

θ ) − η
0,N0:p−1
θ (ϕ0

θ )

= η
0,N0:p
θ (ϕ0

θ ) − η0
θ (ϕ

0
θ )

−{η0,N0:p−1
θ (ϕ0

θ ) − η0
θ (ϕ

0
θ )}

and that for p ∈ N

η
l−1,N0:p
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p
θ (Gl−1

θ )

−η
l−1,N0:p
θ (ϕl−1

θ )

−
(

η
l−1,N0:p−1
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p−1
θ (Gl−1

θ )
− η

l−1,N0:p−1
θ (ϕl−1

θ )

)

=
η

l−1,N0:p
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ (ϕl−1

θ )

−
(ηl−1

θ (Gl−1
θ ϕl

θ )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ (ϕl−1
θ )

)

−
{(η

l−1,N0:p−1
θ (Gl−1

θ ϕl
θ )

η
l−1,N0:p−1
θ (Gl−1

θ )
− η

l−1,N0:p−1
θ (ϕl−1

θ )
)

−
(ηl−1

θ (Gl−1
θ ϕl

θ )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ (ϕl−1
θ )

)}
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by Proposition 4.1 that for (l, s) ∈ N2
0

Eθ [‖l,s
θ ‖2] ≤

Ch
β

l

Ns

(
1 + s2

Ns

)
. (32)

Also, by using Cauchy–Schwarz, (l, p, q) ∈ N0 × N2

Eθ [‖l,s
θ ‖‖l,q

θ ‖] ≤
Ch

β

l

N
1/2
s N

1/2
q

(
1+ s2

Ns

)1/2(
1+ q2

Nq

)1/2
.

(33)

Then using the bounds (32)-(33) in (31) gives the upper
bound (noting that the case s = 0 = q the terms Eθ [‖l,s

θ ‖2]
and Eθ [‖l,s

θ ‖‖l,q
θ ‖] are O(1) so one can find a C such that

the following upper bound holds)

∑

l∈N0

1

PL(l)
Eθ [‖l

θ‖2]

≤ C
∑

(l,p)∈N
2
0

PP (p)h
β

l

PL(l)

{ p∑

s=0

(
1 + s2

Ns

)

NsPP (s)2
+

∑

0≤s<q≤p

(
1 + s2

Ns

)1/2(
1 + q2

Nq

)1/2

N
1/2
s N

1/2
q PP (p)PP (q)

}
.

Now if one chooses, for instance Np = 2p and PP (p) ∝
2−p(p +1) log2(p +2)2 and PL(l) ∝ h

αβ

l for any α ∈ (0, 1)

then (10) is satisfied, and hence, the proof is completed. ⊓⊔

In most cases of practical interest, it is not possible to
choose PL , PP and (Np)p∈N0 so that (26) is an unbiased and
finite variance estimator, as well as having finite expected
cost. Suppose, in the case of Sect. 2.2, the cost to evaluate
Gl

θ is O(h−1
l ) and β = 1. Then, just as in Jasra et al. (2020),

if we choose PL(l) ∝ 2−l(l + 1) log2(l + 2)2, Np = 2p, and
PP (p) ∝ 2−p(p+1) log2(p+2)2, then to achieve a variance
of O(ǫ2) (for ǫ > 0 arbitrary) the cost is O(ǫ−2| log(ǫ)|2+δ)

for any δ > 0, with high probability. For the MLSMC method
in Beskos et al. (2017b), the cost to obtain a mean square
error of O(ǫ2) is O(ǫ−2 log(ǫ)2), which is a mild reduction
in cost. However, we note that this discussion is constrained
to the case of a single processor. The unbiased method is
straightforwardly parallelized.

5 Numerical results

First we will consider a toy example where we can analyt-
ically calculate the marginal likelihood and investigate the
performance of the resulting estimator in comparison with
the estimator obtained using the original MLSMC method

of Beskos et al. (2017b) (not presented here). Subsequently
we will consider the examples from Sect. 2.2. Finally, for
all examples we will explore the potential applicability of
our estimators within the context of parameter optimization
using the stochastic gradient descent (SGD) method.

The forward model is the same for all problems, and the
right-hand side f ∈ L2(D) is always smooth. Hence, the
anticipated rate of convergence is the same, and is estimated
as β = 4, just as in Beskos et al. (2017b). The cost is O(h

−γ

l )

in general for the problem in Sect. 2.2, where γ will depend
upon the dimension d of the PDE (2) and the linear solver
used for the forward problem. We redefine hl = 2−3−l for
all problems, so that the coarsest resolution is h0 = 2−3. The
optimal probability distribution for levels is given by PL (l) ∝
2−l(β+γ )/2 Rhee and Glynn 2015. For the toy problem and
the d = 1 example, we have γ = 1 and PL(l) ∝ 2−2.5l .
For the more complex d = 2 example, we have γ = 2 +
ǫ, for ǫ > 0. We choose ǫ = 0.5 in simulations so we
can explicitly calculate PL(l) ∝ 2−3.25l . Both examples
are in the so-called canonical regime (β > γ , see (Rhee
and Glynn 2015, Section 4) for details), and therefore, we
allow unbounded L , i.e. Lmax = ∞ in the terminology of
Jasra et al. (2020). The reason for this is basically that the
sum (10) and the corresponding cost series both converge,
if the cost is deterministic and O(h

−γ

l ) as a function of hl .
However, in this case the cost depends upon the randomized
estimator of the series in p. Since the rate of convergence is
borderline in the p direction, βp = γp = 1, as in Jasra et al.
(2020) we impose a maximum Pmax on P . This is necessary
to prevent the possibility of the algorithm getting stuck with
an extremely expensive sample. It is discussed further in that
work. In particular, we choose Np = 2p+3 and

PP (p) ∝ I(0 ≤ p ≤ Pmax)

{
2−p+4 if p < 4,

2−p · p · log2(p)2 otherwise .

The piecewise definition of PP ensures that it has the correct
asymptotic behaviour, but is also monotonically decreasing.
Note that in this regime, i.e. strongly canonical convergence
in L , or large β > γ , the MLSMC method easily achieves the
optimal complexity O(ǫ−2). However, since the convergence
rate in P is necessarily subcanonical, our method therefore
suffers from a logarithmic penalty, i.e. O(ǫ−2 log(ǫ)2+δ), for
any δ > 0. This cannot be observed in the simulations though.
Empirically we observe that we can set Pmax rather small,
which is perhaps afforded by the very fast convergence in the
L direction. This may be why we cannot see the theoretically
predicted log penalty in the simulations.

5.1 Toy example

We first consider an example where the marginal likelihood
is analytically calculable. Let d = 1 and D = [0, 1] and
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consider the following DE on D:

∇2v = u, on D,

v = 0, on ∂ D .

The solution of this DE is v(x; u) = u
2 (x2 − x). Define the

observation operator as

G(u) = [v(x1; u), v(x2; u), . . . , v(xm; u)]⊺ � Gu .

We note that pointwise observations are indeed defined
thanks to the regularity of the right-hand side u ∈ L2(D).
Suppose the observation takes the form y = G(u) + ξ, ξ ∼
N (0, θ−1 · Im), ξ ⊥ u, and log(θ) follows a normal prior
distribution with mean 0 and variance 1. The explicit solution
of the log-likelihood and its gradient are given in “Appendix
B”.

First, the performance of the unbiased algorithm for a sin-
gle gradient estimation is verified. The data are generated
with θ∗ = 2, m = 50, and observation operator G(u) =
[p(x1; u), p(x2; u), . . . , v(xm; u)]⊺ with xi = i/(m + 1).
The true value of the derivative of the log-likelihood at θ∗ is
calculated using the analytical solution given in “Appendix
B”. For each L , the MLSMC estimator is realized 50 times
and the MSE is reported. Similarly, the MSE of unbi-
ased algorithm is calculated based on 50 realizations as M

increases. The results are presented in the left panel of Fig. 1.
The cost reported in the plot is proportional to the sum of the
cost per forward solve at level l (tridiagonal linear system),
h−1

l , multiplied by the total number of samples at level l.
The effect of the truncation at Pmax is not observed here,
even for very small MSE. We observe that the rate of con-
vergence is the same as MLSMC (the canonical 1/cost rate),
and our estimator suffers a slightly higher constant. We note
that this is for a single processor and does not account for
the (embarrassing) parrallelizability of our algorithm over the
M individual estimators – indeed, as mentioned several times
already, each estimator is i.i.d. and so each can be in princi-
ple computed on a separate processor with 0 communication
between them until the individual estimators are combined
in (26) to produce the final estimator.

5.2 Examples of Sect. 2.2

We now consider the example from Sect. 2.2, for both cases
of the potential defined in (3).

5.2.1 Case s = 1

For the case s = 1 in (3), we let d = 1, D = [0, 1], f (x) =
100x . For the prior specification of u, we set K = 2, ū =
0.15, and for k = 1, 2, we let σk = (2/5)4−k, φk(x) =
sin(kπx) if k is odd and φk(x) = cos(kπx) if k is even. The

observation operator is G(u) = [p(0.25; u), p(0.75; u)]⊺,
and the parameter in observation noise covariance is taken
to be θ = 0.3. We note again that pointwise observations
are defined thanks to the regularity of the right-hand side
f ∈ L2(D). Again, θ will follow the same log-normal
distribution, and this will be included in the definition of
γθ (u), as above, in other words, with respect to (5) the
target for s = 1 here will be replaced with γθ (u) ←
γθ (u)θ−1 exp(−(log(θ))2/2).

Here, we do not have an analytical solution, so the true
value of the target was first estimated with the MLSMC algo-
rithm with L = 12. This sampler was realized 50 times and
the average of the estimator is taken as the ground truth. Now
for each L , the MLSMC estimator is realized 50 times and the
MSE is reported. Similarly, the MSE of unbiased algorithm
is calculated based on 50 realizations as M increases. The
results are presented in the middle panel of Fig. 1. The cost
in the plot is proportional to the sum of the cost per forward
solve at level l (tridiagonal linear system), h−1

l , multiplied
by the total number of samples at level l. In this case, the bias
from truncation at Pmax is observed, but only for very small
MSE. Again, the comparison shows that our method achieves
approximately the same canonical rate, and again, we iterate
that this comparison does not leverage the parrallelizability
of our method.

5.2.2 Case s = 2

For the case s = 2 in (3), we let d = 2, D =
[0, 1]2, and f (x) =

∑4
i=1 ai exp(− 1

2‖x − mi‖2), where
mi ∈ {(0.3, 0.3), (0.3, 0.7), (0.7, 0.3), (0.7, 0.7)} and ai ∈
{2,−3,−2, 3}, respectively. In this case, φi are piecewise
bilinear finite elements of the type described in Sect. 2.2.1
between nodes xi on a mesh in [0, 1]2 with a fixed l∗ = 2,
for i = 1, . . . , K = (2l∗ − 1)2, such that û(x) is itself
piecewise bilinear. Observations of the potential function
v are collected at 25 measurement points, evenly spaced
within [0.2, 0.6]2 (boundaries included). Again pointwise
observations are defined even for d = 2 due to the regu-
larity of the right-hand side f ∈ L2(D). The observation
precision θ∗

3 = 2.64 is chosen such that a prescribed signal-
to-noise ratio (SNR) maxx∈D |v(x)|θ∗

3 = 10, where v∗ is
the truth solution at which the observations are collected.
The values of the other parameters are given by θ∗

1 = 3
and θ∗

2 = 5 Now the priors on θ1 and θ2 are taken as
Gamma distributions with mean and variance 1, and the prior
on θ3 is again log-normal as above. This will be included
in the definition of γθ (u), as above, in other words, with
respect to (5) the target for s = 2 here will be replaced with
γθ (u) ← γθ (u)θ−1

3 exp(−(log(θ3))
2/2 − θ1 − θ2).

Again we do not have an analytical solution here, so the
true value of the target was first estimated with the MLSMC
algorithm with L = 8. This sampler was again realized 50
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Fig. 1 Single estimator asymptotic complexity in terms of MSE vs cost for (i) the unbiased algorithm with different choices of Pmax and (ii)
MLSMC. Left: Toy example, single estimator. Middle: Example of Sect. 2.2 with s = d = 1 Right: Example of Sect. 2.2 with s = d = 2

times and the average of the estimator is taken as the ground
truth. Now for each L , the MLSMC estimator is realized
50 times and the MSE is reported. Similarly, the MSE of
unbiased algorithm is calculated based on 50 realizations.
The results are presented in the right panel of Fig. 1. The
forward model inversion is done by the conjugate gradient
method with the number of iteration steps proportional to
level l, and we find the cost is given by γ = 2 with a log
penalty. The cost in the plot is proportional to the sum of
the cost per forward solve at level l multiplied by the total
number of samples at level l. The MSE in the plot is the
summation of three individual MSE. (We multiply the MSEs
of the estimators of θ1 and θ2 by a constant so the scale is
consistent with the MSE of the estimator of θ3.) Here, we
observe that the curves of our unbiased algorithm are more
wiggly than the cures when s = d = 1, presumably due to
complexity of the model.

5.3 Application to stochastic gradient descent

In this section, we investigate the potential to use our unbi-
ased estimators within the SGD method. The objective here
is to find the maximum a posteriori (MAP) estimator of θ

by minimizing − log pθ (y) = − log(
∫

γθ (u)du). Our esti-
mator given in equation (26) provides an unbiased estimator
η̂θ (ϕθ ) of ∇θ log pθ (y), for any choice of M ≥ 1. In other
words Eη̂θ (ϕθ ) = ∇θ log p(y, θ). We will see that it is most
efficient to choose M = 1. To ensure the output of the SGD
algorithm satisfies θ > 0, we let θ = exp(ξ) and optimize ξ .
The details are given in Algorithm 4.

As above, it makes sense to first explore the toy model
with analytical solution, as described in Sect. 5.1. The MAP
estimate is first computed using gradient descent. The MSE
is then calculated based on 50 realizations, and the cost in the
plot is again proportional to the sum of the cost per forward

Algorithm 4 SGD using new unbiased estimator.

1. Initialize ξ1 and choose a sequence {αk}∞k=1 and a value M ∈ N.
2. For k = 1, . . . , K (or until convergence criterion is met)

- Compute ̂ηθ (ϕeξk ) using (26)

- Update ξk+1 = ξk − αk
̂ηθ (ϕeξk ) exp(ξk).

3. Return θK+1 = exp(ξK+1).

solve at level l (tridiagonal linear system), h−1
l , multiplied

by the total number of samples at level l.
There is a well-developed literature on SGD methods. The

choice of nuisance parameter αk , or “learning rate” as it is
referred to in the machine learning literature, is still an active
topic of investigation (Kushner and Yin 2003; Gower et al.
2019). It is well known that convergence to a local opti-
mum is achieved for unbiased gradients when αk ∝ k−a , for
a ∈ (1/2, 1] (Kushner and Yin 2003; Gower et al. 2019), but
beyond that we are not aware of a general rule. Furthermore,
in our case we are able to control the variance of the gra-
dient, via the number M of individual estimators which are
averaged in (26). Our experiments revealed that the method is
quite sensitive to the choice of these nuisance parameters. So,
despite that it is not the focus of the present work and a general
or theoretical treatment is outside of scope, we present the
results of several experiments for the analytical model, which
have guided our choices and can be useful for practitioners
and guide future investigation. In the left panel of Fig. 2,
we explore the performance of the unbiased estimator with
different choices of αk = α1/k, α1 ∈ {0.1, 0.025}, and dif-
ferent choices of the number of samples M used to construct
̂ηθ (ϕeξk ) using (26) in step 2 of Algorithm 4. The two take-

aways from this experiment are that (1) it is more efficient to
take fewer samples M (in particular M = 1), and (2) it is more
efficient to choose a larger constant α1 = 0.1. In particular,
the dynamics of the algorithm experiences a phase transition
as one varies the constant α1. A large enough value provides
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Fig. 2 Toy example, SGD. MSE vs cost for (left) αk = 0.025/k and αk = 0.1/k for a range of sample sizes M , (middle) αk = α1/k and a range
of α1, and (right) some examples of constant α. Pmax = 0 is fixed

Fig. 3 Toy example, SGD. Left panel: MSE vs cost for M = 1 fixed and αk = 0.1/k, and various choices of Pmax. Right panel: MSE vs cost for
αk = 0.1/k, and unbiased estimator with Pmax = 0 and M = 1 in comparison with MLSMC estimator with different choices of L

gradient descent type exponential convergence O(e−cost),
while a value which is too small yields Monte Carlo (MC)
type O(1/cost). It is notable that the exponential convergence
eventually gives way to MC type convergence, and that the
point where this occurs increases proportionally to the addi-
tional constant in cost incurred with larger sample size M ,
so that the error curves for different values of M eventually
intersect. A similar phenomenon has been documented in the
recent literature on SGD Gower et al. (2019).

Natural questions are then whether there is a limit to
how large one can choose α1 and at which value precisely
the phase transition occurs. These questions are partially
answered by the experiments presented in the middle panel
of Fig. 2, where we see that α1 should not be chosen larger
than 0.2 and the phase transition happens in between 0.025
and 0.05. The right panel of Fig. 2 illustrates the benefits

and drawbacks of using a constant α. In particular, the algo-
rithm may converge more quickly at first, but plateaus when
it reaches the induced bias.

In the left panel of Fig. 3, we explore various choices of
Pmax, for M = 1 fixed and α1 = 0.1. It is apparent that
it is preferable to choose a smaller value of Pmax. We note,
however, that there will be an induced bias, which will be
larger for smaller Pmax. However, for this particular problem
we do not even observe that bias over the range of MSE and
cost considered.

As a last experiment with the toy example, we compare
the convergence of SGD using our unbiased algorithm with
Pmax = 0, M = 1, and α1 = 0.1 to the analogous algorithm
where an MLSMC estimator with various L (single gradient
estimator MSE ∝ 2−βL ) replaces the unbiased estimator in
step 2 of Algorithm 4. Similar behaviour was observed for
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Fig. 4 Examples of Sect. 2.2, SGD. MSE vs cost for unbiased estimator with Pmax = 0 and M = 1 in comparison with MLSMC estimator with
different choices of L . Left: s = d = 1 and αk = 0.5/k. Right: s = d = 2 and αk = 0.1/k

MLSMC relative to different choices of αk as compared to
the unbiased estimator. The results are shown in the right
panel of Fig. 3. Here, it is clear that over a wide range of
MSE the unbiased estimator provides a significantly more
efficient alternative to the MLSMC estimator.

Next, we consider the same last experiment except with
the examples of Sect. 2.2. The results are presented in Fig. 4.
Again, over a wide range of MSE the unbiased estimator pro-
vides a significantly more efficient alternative to the MLSMC
estimator, although it is less conspicuous for the s = 2 case
(right) than when s = 1 (left). Here, one can already observe
the induced Pmax = 0 bias for the unbiased estimator around
2−20 (s = 1) and 2−19 (s = 2). Adjusting the various tuning
parameters resulted in similar behaviour as was observed in
the earlier experiments with the toy example. These results
are not presented.
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Appendix A Proofs

We begin with some technical results that have been proved
in previous works (e.g. Beskos et al. (2017b); Del Moral
(2004)). Before continuing, we recall the C p inequality
which is used several times in our proofs. This states that
for two real-valued random variables X and Y associated
with an expectation operator E one has for any p ∈ (0,∞)

that

E[|X + Y |p] ≤ C p(E[|X |p] + E[|Y |p])

where C p = 2p−1 if p ≥ 1 and C p = 1 if p ∈ (0, 1),
assuming all expectations are well defined. Recall that EN

θ,m

is an expectation w.r.t. the probability with finite-dimensional
law (20), associated with the simulation of Algorithm 1.

Lemma A.1 Assume (A1-2). Then for any θ ∈ � there exists

a C < +∞ such that for any (l, N , ϕ) ∈ N0 × N × Bb(X):

E
N
θ,m[[ηl,N

θ − ηl
θ ](ϕ)2]

≤ C‖ϕ‖2
∞

N

|EN
θ,m[[ηl,N

θ − ηl
θ ](ϕ)]|

≤ C‖ϕ‖∞
N

.
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Proof The first statement is (Del Moral 2004, Theorem
7.4.4.) and the second follows easily from (e.g.) (Beskos et al.
2017b, eq. (A.2.), Lemma A.1.(iii)). ⊓⊔

Recall that we use Eθ to denote expectation associated
with the probability Pθ in (21) of which is associated with
the generation of Algorithm 2.

Lemma A.2 Assume (A1-2). Then for any θ ∈ � there exists

a C < +∞ such that for any (l, p, ϕ) ∈ N0 × N0 × Bb(X),

1 ≤ N0 < N1 < · · · < Np < +∞:

Eθ [[η
l,N0:p
θ − ηl

θ ](ϕ)2]

≤ C‖ϕ‖2
∞

Np

(
1 + p2

Np

)
.

Proof Follows by a similar approach to the proof of (Jasra
et al. 2020, Proposition A.1.), which needs the results in
Lemma A.1. ⊓⊔
Lemma A.3 Assume (A1-2). Then for any θ ∈ � there exists a

C < +∞ such that for any (l, p, i) ∈ N0×N0×{1, . . . , dθ },
1 ≤ N0 < N1 < · · · < Np < +∞:

Eθ

[(η
l,N0:p
θ (Gl

θ {(ϕ
l+1
θ )i −(ϕl

θ )i })
η

l,N0:p
θ (Gl

θ )
−

ηl
θ (G

l
θ {(ϕ

l+1
θ )i −(ϕl

θ )i })
ηl

θ (G
l
θ )

)2]

≤
C‖(ϕl+1

θ )i − (ϕl
θ )i‖2

∞
Np

(
1 + p2

Np

)
.

Proof As

η
l,N0:p
θ (Gl

θ {(ϕ
l+1
θ )i − (ϕl

θ )i })
η

l,N0:p
θ (Gl

θ )
−

ηl
θ (G

l
θ {(ϕ

l+1
θ )i − (ϕl

θ )i })
ηl

θ (G
l
θ )

= 1

η
l,N0:p
θ (Gl

θ )

(
[ηl,N0:p

θ − ηl
θ ](Gl

θ {(ϕl+1
θ )i − (ϕl

θ )i })
)

+
ηl

θ (G
l
θ {(ϕ

l+1
θ )i − (ϕl

θ )i })
η

l,N0:p
θ (Gl

θ )η
l
θ (G

l
θ )

[ηl
θ − η

l,N0:p
θ ](Gl

θ )

one can simply use the C2 inequality, (A2) and Lemma A.2
to complete the proof. ⊓⊔
Lemma A.4 Assume (A1-3). Then for any θ ∈ � there exists

a C < +∞ such that for any (l, p, i) ∈ N×N0×{1, . . . , dθ },
1 ≤ N0 < N1 < · · · < Np < +∞:

Eθ

[(
η

l−1,N0:p
θ (Gl−1

θ (ϕl
θ )i )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ ((ϕl−1

θ )i )

−
(

ηl−1
θ (Gl−1

θ (ϕl
θ )i )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ ((ϕl−1
θ )i )

))2
⎤
⎦

≤ C

Np

(
1+ p2

Np

)(
‖(ϕl

θ )i −(ϕl−1
θ )i‖2

∞+
∥∥∥Gl−1

θ

Z l−1
θ

Z l
θ

−1
∥∥∥

2

∞

)
.

Proof We have the decomposition

η
l−1,N0:p
θ (Gl−1

θ (ϕl
θ )i )

η
l−1,N0:p
θ (Gl−1

θ )
− η

l−1,N0:p
θ ((ϕl−1

θ )i ) −

(ηl−1
θ (Gl−1

θ (ϕl
θ )i )

ηl−1
θ (Gl−1

θ )
− ηl−1

θ ((ϕl−1
θ )i )

)
=

3∑

j=1

T j

where

T1 =
η

l−1,N0:p
θ (Gl−1

θ {(ϕl
θ )i − (ϕl−1

θ )i })
η

l−1,N0:p
θ (Gl−1

θ )

−
ηl−1

θ (Gl−1
θ {(ϕl

θ )i − (ϕl−1
θ )i })

ηl−1
θ (Gl−1

θ )

T2 = −
η

l−1,N0:p
θ (Gl−1

θ (ϕl−1
θ )i )

η
l−1,N0:p
θ (Gl−1

θ )
η

l−1,N0:p
θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
)

+
ηl−1

θ (Gl−1
θ (ϕl−1

θ )i )

ηl−1
θ (Gl−1

θ )
ηl−1

θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
)

T3 = η
l−1,N0:p
θ

(
(ϕl−1

θ )i

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
))

−ηl−1
θ

(
(ϕl−1

θ )i

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
))

.

Thus, one can apply the C2 inequality twice and deal indi-
vidually with the terms

∑3
j=1 Eθ [T 2

j ]. For Eθ [T 2
1 ], one can

use Lemma A.3. For Eθ [T 2
3 ], one can use Lemma A.2. So to

conclude, we consider Eθ [T 2
2 ]. We have

T2 = T4 + T5

where

T4 = −
(η

l−1,N0:p
θ (Gl−1

θ (ϕl−1
θ )i )

η
l−1,N0:p
θ (Gl−1

θ )
−

ηl−1
θ (Gl−1

θ (ϕl−1
θ )i )

ηl−1
θ (Gl−1

θ )

)

×η
l−1,N0:p
θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
)

T5 =
ηl−1

θ (Gl−1
θ (ϕl−1

θ )i )

ηl−1
θ (Gl−1

θ )

(
ηl−1

θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
)

−η
l−1,N0:p
θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
))

.

Applying the C2 inequality once again allows one to consider
just Eθ [T 2

4 ] and Eθ [T 2
5 ] individually. For Eθ [T 2

5 ], one can use
(A3) and Lemma A.2. As

T4 = −
( [ηl−1,N0:p

θ − ηl−1
θ ](Gl−1

θ (ϕl−1
θ )i )

η
l−1,N0:p
θ (Gl−1

θ )
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−
ηl−1

θ (Gl−1
θ (ϕl−1

θ )i )

ηl−1
θ (Gl−1

θ )η
l−1,N0:p
θ (Gl−1

θ )
[ηl−1

θ −η
l−1,N0:p
θ ](Gl−1

θ )
)

×η
l−1,N0:p
θ

(
Gl−1

θ

Z l−1
θ

Z l
θ

− 1
)
.

One can then conclude the result by applying the C2 inequal-
ity and using (A2) and Lemma A.2. ⊓⊔

Appendix B Explicit solution of the toymodel
in Sect. 5.1

The un-normalized target is given by

γθ (u)=θ
M
2 · exp

{
−θ

2
‖Gu−y‖2

}
· 1

θ
exp

{
− (log(θ))2

2

}
,

and the marginal is

Zθ =
∫ 1

−1
γ (u, θ)du

= θ
m−2

2 exp
{

− (log(θ))2

2

} ∫ 1

−1
exp

{
−θ

2
‖Gu−y‖2

}
du

= θ
m−2

2 exp

{
−θ

2

(
‖y‖2 − (G⊺y)2

‖G‖2

)
− (log(θ))2

2

}

×
∫ 1

−1
exp

{
−θ‖G‖2

2

(
u − G⊺y

‖G‖2

)2
}

du

= θ
m−3

2

√
π/2

‖G‖ exp

{
−θ

2

(
‖y‖2− (G⊺y)2

‖G‖2

)
− (log(θ))2

2

}

(
erf

(√θ

2
‖G‖(1 − G⊺y

‖G‖2 )
)
−

erf
(√θ

2
‖G‖(−1 − G⊺y

‖G‖2 )
))

.

The logarithm is given by

log
(
Zθ

)
= m − 3

2
log(θ) − θ

2

(
‖y‖2 − (G⊺y)2

‖G‖2

)

− (log(θ))2

2
+ log

(
erf

(√θ

2
‖G‖(1 − G⊺y

‖G‖2 )
)
−

erf
(√θ

2
‖G‖(−1 − G⊺y

‖G‖2 )
))

+ C,

and the derivative of the logarithm is

∂ log
(
Zθ

)

∂θ

= m − 3

2θ
−

(
‖y‖2 − (G⊺ y)2

‖G‖2

)

2
− log(θ)

θ

+ 1

erf
(√

θ
2 ‖G‖(1 − G⊺ y

‖G‖2 )
)

− erf
(√

θ
2 ‖G‖(−1 − G⊺ y

‖G‖2 )
) ·

2√
π

(
exp

{
− θ‖G‖2

2
(1 − G⊺y

‖G‖2 )2
}‖G‖(1 − G⊺ y

‖G‖2 )

2
√

2θ
−

exp
{

− θ‖G‖2

2
(−1 − G⊺y

‖G‖2 )2
}‖G‖(−1 − G⊺ y

‖G‖2 )

2
√

2θ

)
.
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