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1. Introduction
Monte Carlo methods are powerful tools with which to
study systems that are too difficult to examine analyti-
cally. In particular, typical Monte Carlo simulation methods
enjoy the following pleasing properties: (1) the convergence
rate is O�c−1/2� regardless of the dimension of the prob-
lem, where c is the computational budget and (2) the cen-
tral limit theorem (CLT) provides a simple mechanism for
building error estimates. In many settings, however, there
may be no known algorithm for exactly generating the ran-
dom object for which an expectation is to be computed. In
such settings, while one typically can generate arbitrarily
close approximations to the random object, closer approx-
imation generally takes more computational resources, and
this often leads to a slower convergence rate. Also, the bias
from the approximation error is typically much harder to
estimate than the error from the variance. In this paper, we
introduce a general approach to constructing unbiased esti-
mators based on a family of such biased estimators, show
how this approach applies to the setting of computing solu-
tions of stochastic differential equations (SDEs), and illus-
trate the method’s effectiveness with extensive numerical
experiments.
We consider, in this paper, the problem of computing

an expectation of the form �= Ef �X�, where X = �X�t�:
t � 0� is the solution to the SDE

dX�t�=��X�t��dt+��X�t��dB�t�� (1)

where B = �B�t�� t � 0� is an m-dimensional stan-
dard Brownian motion, �� �d → �d, �� �d → �d×m,
f � C�0�1	 → �, and C�0�1	 is the space of continuous
functions mapping �0�1	 into �d. The functions � and �
model, respectively, the state-dependent drift and volatility
of X. SDEs are extensively used in mathematical finance to
describe the underlying processes in financial markets; spe-
cific examples include the modeling of asset prices, inter-
est rates, volatility, and default intensity. The expectations
associated with such models are of fundamental interest for
the purpose of model calibration, prediction, and pricing
financial derivatives.

In general, one cannot simulate the random variable (rv)
f �X� exactly because it is rarely possible to generate the
underlying infinite-dimensional object X exactly. However,
X typically can be approximated by a discrete-time approx-
imation Xh� · �. For example, the simplest such approxima-
tion is the Euler discretization scheme defined by

Xh��j + 1�h�=Xh�jh�+��Xh�jh��h

+��Xh�jh���B��j + 1�h�−B�jh��� (2)

at the time points 0� h�2h� 
 
 
 , and by (for example) linear
interpolation at the intermediate time points. Note that (2)
simply replaces the differentials in (1) with finite differ-
ences; the dynamics of Equation (2) is only an approxi-
mation of the dynamics represented by Equation (1), and
hence the random variable f �Xh� generated by (2) is only
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an approximation of the original random variable f �X�.
That is, f �Xh� is a biased estimator of �. Although one can
approximate f �X� with f �Xh� arbitrarily close by choosing
h small enough, small h results in a large computational
expense—proportional to 1/h—for each copy of f �Xh�.
The traditional approach to addressing this difficulty is to
carefully select the stepsize h and the number of indepen-
dent replications as a function of the computational bud-
get c, so that the errors from the bias and the variance gets
balanced, so as to maximize the rate of convergence. How-
ever, such an approach inevitably leads to slower conver-
gence rates than the canonical “square root” convergence
rate O�c−1/2� associated with typical Monte Carlo methods
in the presence of unbiased finite variance estimators; see
Duffie and Glynn (1995).
In the past decade, there have been two major break-

throughs that address such difficulties. The first idea is
that of exact sampling, suggested by Beskos and Roberts
(2005). Their key insight is to transform a given SDE
into an SDE with a unit diffusion coefficient via the Lam-
perti transformation, so that the transformed process has
a law equivalent to that of Brownian motion. Then, one
can apply acceptance rejection to sample from the exact
distribution of the transformed process. One then applies
the inverse of the Lamperti transformation to recover the
exact sample from the original SDE. Beskos and Roberts’s
idea was extended to cover a more general class of SDEs
by Chen and Huang (2013), and to jump diffusions, by
Giesecke and Smelov (2013). Although these algorithms
completely eliminate the bias from the discretization, the
implementation of the algorithms requires a great deal of
care and effort, and the acceptance-rejection sampling step
can become inefficient when one is dealing with processes
whose laws are far from that of Brownian motion. More
importantly, the application is limited to scalar SDEs and
to a special class of multidimensional SDEs because there
is no analog of the Lamperti transformation for general
multidimensional SDEs.
The second breakthrough is the multilevel Monte Carlo

(MLMC) method introduced by Giles (2008b). By intelli-
gently combining biased estimators with multiple stepsizes,
MLMC dramatically improves the rate of convergence and
can even, in many settings, achieve the canonical square
root convergence rate associated with unbiased Monte
Carlo. This approach is not restricted to scalar processes, is
much easier to implement than exact sampling algorithms,
and improves the efficiency of computation by orders of
magnitude for accuracies of practical relevance. However,
MLMC does not construct an unbiased estimator; instead,
it is designed to produce an estimator with a controlled bias
for the desired error tolerance.
By contrast, we show here how one can go one step

further and construct unbiased estimators in a similar com-
putational setting. The new algorithm is the first simulation
algorithm that is unbiased and achieves the square root con-
vergence rate for multidimensional SDEs. We also provide

a thorough discussion of the optimal choice of random-
ization distributions, suggest efficient algorithms for com-
puting the optimal distributions, and numerically establish
that the new randomized estimators are competitive with
MLMC methods for typical examples that arise in finance.
A preliminary result (without rigorous proof) for one of
the three unbiased estimators discussed in this paper was
announced in Rhee and Glynn (2012).
The remainder of this paper is organized as follows: §2

discusses the main randomization idea and introduces three
different ways of constructing unbiased estimators. Sec-
tion 3 shows how to optimize the performance of these esti-
mators, and §4 discusses what can be done when we cannot
achieve square root convergence. Section 5 concludes with
a discussion of the implementation and describes our com-
putational experience with the new approach.

2. A Simple Randomization Idea and
Square Root Convergence

This section introduces the main idea of the paper: how
one can construct unbiased estimators when only biased
samplers are available, and under which conditions the new
estimators can achieve the canonical square root conver-
gence rate with respect to the computational budget.
Let L2 be the Hilbert space of square integrable rvs, and

define �W�2 � �EW 2�1/2 for W ∈ L2. Suppose now that
we wish to compute an expectation of the form � = EY
for some rv Y ∈ L2. We are unable to generate Y in finite
(computer) time, but we assume that we have an ability
to generate a sequence �Yn� n� 0� of L2 approximations,
each of which can be generated in finite time, for which
�Yn − Y �2 → 0 as n→� (i.e., �Yn� n� 0� is a sequence
of L2 rvs converging to Y in L2). We have in mind settings
in which the computational effort required to generate Yn
increases to infinity as n→�.
Let �n = Yn − Yn−1 for n � 0 (with Y−1 � 0), and note

that the L2 convergence implies that EYn →EY as n→�.
As a consequence, we can write

EY = lim
n→�

n∑
k=0

E�k
 (3)

The summation representation (3) for EY , in conjunc-
tion with a simple randomization idea, suggests a possible
unbiased estimator for EY that can be computed in finite
time. In particular, let N be a finite-valued nonnegative
integer-valued rv, independent of �Yn� n � 0�, for which
P�N � n� > 0 for all n� 0, and set

Z̄n =
n∧N∑
k=0

�k/P�N � k��

where a∧ b�min�a� b�. Fubini’s theorem applies, so that

EZ̄n =E
n∑

k=0

�k

P�N � k�
��N � k�

=
n∑

k=0

E�k

P�N � k�
E��N � k�=

n∑
k=0

E�k =EYn�
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so Z̄n is an unbiased estimator for EYn. But Z̄n converges
a.s. to

Z̄=
N∑
k=0

�k/P�N � k�
 (4)

It therefore seems reasonable to expect that Z̄ should be an
unbiased estimator for EY , under appropriate conditions.

Theorem 1. If

�∑
n=1

�Yn−1 − Y �22
P�N � n�

<�� (5)

then Z̄ is an element of L2, is unbiased as an estimator of
EY , and

EZ̄2 =
�∑
n=0

�̄n/P�N � n�� (6)

where �̄n = �Yn−1 − Y �22 −�Yn − Y �22.

The proof of Theorem 1 can be found later in this sec-
tion; curiously, var Z̄ depends on the joint distribution of
the Yi’s only through the L2 norms of the Yi − Y ’s. Theo-
rem 1 establishes that Z̄ is an unbiased estimator for EY
(that clearly can be generated in finite time). This approach
to constructing an unbiased estimator was previously intro-
duced by McLeish (2011), and was later rediscovered inde-
pendently by the current authors (Rhee and Glynn 2012);
McLeish refers to this idea as “debiasing” the sequence
�Yn� n � 0�. The idea of introducing the random time N
to reduce an infinite sum to a finite sum with the same
expectation goes back to Glynn (1983), and perhaps even
earlier. One important feature of this unbiased estimator is
that unbiasedness is achieved in a setting where very little
needs to be known a priori regarding the exact form of the
bias. In particular, we are not assuming here a parametric
functional form for the bias of Yn as an estimator for �,
and then attempting to estimate the unknown parameters
from the sample. Therefore, this methodology is potentially
broadly applicable (to settings well beyond the SDE con-
text that is the focus of this paper).
Under the conditions of Theorem 1, asymptotically valid

confidence intervals for EY can easily be computed, along
well-known lines. Specifically, for a given sample size m
that is large, suppose that one generates m iid replicates
Z̄�1�� 
 
 
 � Z̄�m� of the rv Z̄, and computes

�̄m � 1
m

m∑
i=1

Z̄�i��

sm �
√

1
�m− 1�

m∑
i=1

�Z̄�i�− �̄m�
2


An approximate 100�1−
� percent confidence interval for
EY is given by �Lm�Rm	, where Lm = �̄m − zsmm

−1/2 and

Rm = �̄m+ zsmm
−1/2. As usual, z is chosen so that P�−z�

N�0�1� � z� = 1 − 
, where N�0�1� denotes a normal
rv with mean zero and unit variance. Provided that 0 <
var Z̄ < �, P�EY ∈ �Lm�Rm	� → 1− 
 as m → �. This
algorithm can also be implemented in a sequential mode,
in which one first sets an appropriate desired error toler-
ance �, and samples iid Z̄ replicates until the first time
K��� at which �LK��� − RK���� < 2�. Under our assump-
tion that 0< var Z̄ <�, a slightly modified version of this
algorithm can be shown to be asymptotically valid, in the
sense that P�EY ∈ �LK����RK���	�→ 1− 
, as � → 0; see
Glynn and Whitt (1992) for details.
In contrast to McLeish (2011), our interest in this paper

is in explaining the profound consequences of this random-
ization idea in the setting of SDEs. In the SDE context, the
most natural means of constructing an approximation Y0 to
Y is by running a time discretization algorithm with a sin-
gle time step, so that h= 1 in the notation of §1. The n’th
approximation is then obtained by doubling the number of
time steps relative to the �n− 1�st such approximation, so
that Yn is the time discretization associated with time step
increment h= 2−n. In the conventional application of such
discretization schemes, we fix a value of n and generate
independent and identically distributed (iid) copies of Yn
as a means of computing a (biased) estimator of EY . In
such an implementation, the joint distribution of the Yn’s
(and indeed even whether Yn is jointly distributed with Y )
is immaterial to the algorithmic implementation; only the
marginal distribution of Yn affects the algorithm. In con-
trast, our estimator Z̄ can be constructed only when the
sequence �Yn� 0 � n � N� can be jointly generated. (We
will discuss a relaxation of this requirement in §5). Fur-
thermore, it is critical that we construct a simulatable joint
distribution for the Yn’s for which (5) is valid. In the lan-
guage of probability, a key algorithmic element here is the
choice of “coupling” (i.e., joint probability law) between
the Yn’s that is used.
Fortunately, it is easy in the SDE context, given a spe-

cific discretization scheme, to build a good coupling. In
particular, we can conceptually take the view that there
is a single Brownian motion B that drives the SDE (1)
and all its discretizations. From this perspective, given N ,
one first generates the Brownian time increments associ-
ated with the finest time discretization, namely, h = 2−N ,
and computes YN . To generate the approximation YN−1,
one sums the 2jth and �2j − 1�st increments together,
thereby obtaining the jth increment needed by the �N−1�st
approximation, namely, B�j2−�N−1�� − B��j − 1�2−�N−1��.
By summing successive pairs of increments together and
applying the discretization scheme, one now obtains YN−1.
A similar procedure of summing pairs of Brownian incre-
ments from the approximation Yi, followed by apply-
ing the chosen discretization scheme to the newly com-
bined increments, leads to approximation Yi−1, so that YN ,
YN−1� YN−2� 
 
 
 � Y2� Y1� Y0 can be generated (in that order).
(If one wishes to build the approximations in the order
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Y0� Y1� 
 
 
 , one would use a “Brownian bridge” simulation
scheme to successively refine the discretization; see §2 of
Rhee and Glynn 2012 for details). As we shall see later,
one can then frequently argue that these approximations are
such that

�Yn − Y �2 =O�2−np� (7)

for some p > 0, as n→�, where O�an� is a sequence that
is bounded by a constant multiple of �an�. The parameter p
reflects what is known in the SDE numerical computation
literature as the strong order of the scheme. Of course, in
the presence of (7), it is easy to construct distributions for
N that satisfy (5). Further discussion of condition (7) in the
setting of SDEs can be found in §5.
In a conventional implementation of a p’th (weak) order

discretization scheme, one chooses the time step h (that
controls the bias of the estimator) and the number of iid
replicates n (controlling the variance of the estimator), and
optimally chooses n and h to minimize the resulting mean
square error (MSE) of the estimator. For a given computer
time budget c, the fastest rate of convergence that can be
achieved is of order c−p/�2p+1� (which arises when h is cho-
sen to be of order h = c−1/�2p+1�); see Duffie and Glynn
(1995) for details. Thus, conventional implementations of
SDE schemes always lead to rates of convergence that are
“subcanonical,” in the sense that the rate of convergence
is slower than the c−1/2 rate that is often exhibited in the
Monte Carlo setting. Of course, the higher order a scheme
one implements (so that p is larger), the closer one can get
to the canonical c−1/2 rate.
We shall now argue that use of the estimator Z̄ can dra-

matically change the situation. In particular, for any p >
1/2, our randomization idea easily leads to unbiased esti-
mators that can achieve the canonical convergence rate of
c−1/2. Thus, not only is the convergence rate improved (to
the canonical “square root” rate) by applying this simple
idea, but there is no compelling reason for implement-
ing (very) high-order schemes, because the canonical rate
can already be achieved once p > 1/2. This is an impor-
tant observation, as high-order schemes are complicated
to implement, and typically involve a very high computa-
tional cost per time step (because many partial derivatives
of the drift and volatility functions need to be computed at
each time step); see Kloeden and Platen (1992) for details.
It should be noted that McLeish (2011) does not explore
this connection between debiasing and its ability to mod-
ify the rate of convergence for a p’th order scheme from
c−p/�2p+1� to c−1/2, and does not construct efficient estima-
tors (with square root convergence) for SDEs, whereas this
is the focus of the current paper.
To study the rate of convergence for �̄n, we need to

take into account the computer time �̄ required to generate
each Z̄. If t̄j is the expected incremental effort required to
calculate Yj ,

E�̄ =E
N∑
j=0

t̄j =
�∑
j=0

t̄jP�N � j�
 (8)

A natural computational model in the SDE setting is to pre-
sume that the computational effort required to calculate Yj
is of order 2j , so that in the SDE context, we set tj = 2j .
For a given computational budget c, we let ��c� equal the
number of replicates Z̄�i�’s of Z̄ generated in c units of
computer time, so that ��c�=max�n� 0�

∑n
i=1 �̄�i�� c�

where �̄�i� denotes the required computer time to gener-
ate each Z̄�i�. In this computational context, it is clear
that the �Z̄�i�� �̄�i��’s are iid pairs, while within each pair,
�̄�i� is generally highly correlated with Z̄�i�. Hence, ��c�
is a renewal counting process, and the estimator avail-
able after c units of computer time have been expended is
�̄�c�� �̄��c� (with the estimator defined to be equal to 0 if
��c�= 0). Glynn and Whitt (1992) prove that if E�̄ <�
and var Z̄ <�, then

c1/2��̄�c�−EY � ⇒ �E�̄ · var Z̄�1/2N�0�1� (9)

as c → �. Thus, if we can find a distribution for N for
which (5) and (8) are finite, (9) guarantees that our ran-
domized estimator achieves the canonical square root con-
vergence rate. In the presence of (7), �̄n = O�2−2np� and
t̄n = 2n; when p > 1/2, a choice for the distribution of N
that achieves the required finiteness of (5) and (8) is to
choose N , for example, so that P�N � n� = 2−rn, where
1< r < 2p. This verifies our earlier claim that the use of
the randomized estimator Z̄ can transform a p’th order SDE
scheme from one that exhibits a subcanonical rate to one
that can achieve a canonical “square root” rate. Of course,
we can further tune the distribution of N so that the product
E�̄ · var Z̄ is minimized; we will return to this topic in §3.
In addition, there is a question of what can be achieved in
terms of the convergence rate when the order p ∈ �0�1/2	;
this will be addressed in §4.
The assumption that E�̄ <� is equally as important as

obtaining a finite variance unbiased estimator in building
a computational method that achieves the canonical rate.
However, it should be emphasized that the theoretical valid-
ity of the confidence interval and sequential methodology
described above does not require the finiteness of E�̄ ; only
the finiteness of var Z̄ is needed (for which much more
flexibility in choosing the distribution N is available). We
further note that the improved convergence rate obtained
here builds on the fact that the discretization scheme is
simultaneously implemented at various discretization levels
h= 2−k, 1� k�N , all simulated using a common Brown-
ian motion B. In view of the multiple levels of discretiza-
tion used, it will come as no surprise that our unbiased
randomized estimator is closely related to MLMC methods;
this connection is discussed further in §§4 and 5.

To complete this section, we introduce two new addi-
tional randomized estimators that offer similar advantages
to what can be achieved by Z̄; these estimators were
not discussed in McLeish (2011). The second estimator
requires choosing N so that pn � P�N = n� > 0 for n� 0,
and setting

Z=�N/pN � (10)
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in view of (7), it is easily verified that Z is unbiased as an
estimator for EY . Furthermore, the variance can easily be
computed from its second moment

EZ2 =
�∑
n=0

E�2
n/pn�

the time � required to generate Z is given by tN , where tn
is the time required to generate �n. In the SDE context,
��n�2 is of the order of 2−np when (7) is in force, and tn
is of the order of 2n. If ��c� is the estimator available after
expending c units of computer time to generate iid copies
of Z, Glynn and Whitt (1992) again applies if E� <� and
varZ <�, yielding the CLT

c1/2���c�−EY � ⇒ �E� · varZ�1/2N�0�1� (11)

as c→�; we call Z the single term estimator to differen-
tiate this estimator from Z̄, which we henceforth refer to
as the coupled sum estimator.
Our final estimator takes advantage of the fact that (3)

continues to hold for any sequence ��̃n� n� 0� for which
�̃n = Ỹn − Ỹ ′

n−1, where �Ỹn� Ỹ
′
n−1� has the same marginal

distribution as �Yn� Yn−1� for each n� 0. One such sequence
��̃n� n� 0� is that in which the �̃n’s are independent. When
we generate the �̃n’s in this way, we can now apply the
same randomization trick used for constructing Z̄, thereby
yielding a new estimator

Z̃=
N∑

n=0

�̃n/P�N � n�� (12)

we call Z̃ the independent sum estimator.

Theorem 2. If (5) holds, then Z̃ is an element of L2 and
is an unbiased estimator for EY . Furthermore,

EZ̃2 =
�∑
n=0

�̃n/P�N � n�� (13)

where �̃n = var�Yn−Yn−1�+�EY −EYn−1�
2−�EY −EYn�

2.

The proof can be found below. As for the coupled sum and
single term estimators, we can again appeal to Glynn and
Whitt (1992) to understand the behavior of the independent
sum estimator as a function of the computational budget c.
In particular, if �̃�c� is the estimator available after expend-
ing c units of computer time to generate iid copies of Z̃,

c1/2��̃�c�−EY � ⇒ �E�̃ · var Z̃�1/2N�0�1� (14)

as c→�, provided that E�̃ <� and var Z̃ <�, where �̃
is the time required to generate Z̃. As for the coupled sum
estimator, �̃ is of order 2N , and �̃n is of order 2−2np in the
SDE setting, provided that (7) is in force.

Proof of Theorem 1. Put 
k = Yk − Y , let �0 = 0, and
set �k = inf�j > �k−1� �
j�2 � �
�k−1

�2� for k� 1. By con-
struction, �k →� and �
�k

�2 � �
j�2 for j � �k. We start
by showing that �Z̄�k

� k � 0� is a Cauchy sequence in L2

whenever (5) is valid. Put Z̄′
k = Z̄�k

and note that if n>m,
then

Z̄′
n − Z̄′

m =
�n∑

i=�m+1

�i��N � i�/P�N � i�

and

�Z̄′
n − Z̄′

m�
2 =

�n∑
i=�m+1

�2
i ��N � i�/P�N � i�2

+ 2
�n∑

i=�m+1

�n∑
j=i+1

�i�j ��N � j�

P�N � i�P�N � j�



The independence of N from the �i’s implies that

�Z̄′
n − Z̄′

m�
2
2 =

�n∑
i=�m+1

E�2
i /P�N � i�

+ 2
�n∑

i=�m+1

E�i

�n∑
j=i+1

�j/P�N � i�

=
�n∑

i=�m+1

E��2
i + 2�i�Y�n − Yi�	/P�N � i�


Observe that

�2
i + 2�i�Y�n − Yi�

= ��Yi − Y�n�− �Yi−1 − Y�n��
2

− 2��Yi − Y�n�− �Yi−1 − Y�n���Yi − Y�n�

= �Yi−1 − Y�n�
2 − �Yi − Y�n�

2

� �Yi−1 − Y�n�
2 = �
i−1 − 
�n

�2 � 2
2
i−1 + 2
2

�n

 (15)

Because of the way in which �n was chosen,

�Z̄′
n − Z̄′

m�
2
2 � 2

�n∑
i=�m+1

�
i−1�22
P�N � i�

+ 2
�n∑

i=�m+1

�
�n
�22

P�N � i�

� 4
�n∑

i=�m+1

�
i−1�22
P�N � i�

� 4
�∑

i=�m+1

�
i−1�22
P�N � i�




In view of (5), we can make the last sum as small as we
wish by choosing m sufficiently large, thereby proving that
�Z̄′

n� n� 0� is Cauchy. Hence there exists Z̄′ ∈ L2 for which
Z̄′
n → Z̄′ in L2. But recall that Z̄n → Z̄ a.s. as n → �.

This implies that Z̄′
n → Z̄ in L2. As a consequence, EZ̄′

n =
EY�n → EZ̄, proving that EZ̄ = EY and establishing the
unbiasedness of Z̄ as a estimator of EY .
Furthermore, the L2 convergence of Z̄′

n to Z̄ implies that
EZ̄′2

n →EZ̄2 as n→�. The same calculation as that lead-
ing to (15) shows that

EZ̄′2
n =

�n∑
i=0

E��Yi−1 − Y�n�
2 − �Yi − Y�n�

2	/P�N � i�
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But �Yi−1 − Y�n�
2
2 = �
i−1 − 
�n

�22 � �
i−1�22 + 2�
i−1�2 ·
�
�n

�2 + �
�n
�22 � 4�
i−1�22, because of our choice of the

subsequence ��n� n� 0�. Because �Yi−1−Y�n�
2
2 →�Yi−1−

Y �22 as n→�, the dominated convergence theorem implies
that

EZ̄′2
n →

�∑
i=0

E��Yi−1 − Y �2 − �Yi − Y �2	/P�N � i��

thereby verifying our expression for EZ̄2. �
Note that Theorem 1 provides a straightforward suffi-

cient condition for the validity of the estimator Z̄, and a
clean expression for its variance (Theorem 2.1 of McLeish
2011 requires verifying that three different sequences con-
verge in L2). It should also be noted that Theorem 1’s key
hypothesis (5) involves only squared L2 norms, rather than
the (much larger) L2 norms themselves.

Proof of Theorem 2. The proof is similar to that of Theo-
rem 1. Using exactly the same subsequence as that specified
in the proof of Theorem 1, note that
∥∥∥∥

�n∑
i=0

�̃i

��N � i�

P�N � i�
−

�m∑
i=0

�̃i

��N � i�

P�N � i�

∥∥∥∥
2

2

=
�n∑

i=�m+1

E�̃2
i /P�N � i�+2

�n∑
i=�m+1

E�̃i

�n∑
j=i+1

�̃j/P�N � i�

=
�n∑

i=�m+1

E�2
i /P�N � i�+2

�n∑
i=�m+1

E�iE
�n∑

j=i+1

�j/P�N � i�

=
�n∑

i=�m+1

E��2
i +2�iE�Y�n−Yi�	/P�N � i�

�
�n∑

i=�m+1

��
i−
i−1�22+2�
i−
i−1�2�
�n
−
i�2�/P�N � i�

�
�n∑

i=�m+1

�2�
i�22+2�
i−1�22

+2��
i�2+�
i−1�2���
�n
�2+�
i�2��/P�N � i�

�
�n∑

i=�m+1

�2�
i�22+2�
i−1�22

+4��
i�2+�
i−1�2��
i�2�/P�N � i�

�
�n∑

i=�m+1

�2�
i�22+2�
i−1�22+2�
i−1�22+6�
i�22�/P�N � i�

=
�n∑

i=�m+1

�4�
i−1�22+8�
i�22�/P�N � i�


Because P�N � i� is decreasing,
∑�

i=0 �
i�22/P�N � i� is
guaranteed to be finite when (5) is in force. The above
bound therefore verifies the Cauchy property along the sub-
sequence ��n� n� 0�, establishing the unbiasedness of Z̃.
The formula for EZ̃2 follows from straightforward alge-
braic manipulations similar to those used in the proof of
Theorem 1. �

3. The Optimal Distribution for N
Our goal in this section is to discuss good choices for
the distribution of N , in settings where the “work variance
products” associated with the limiting normal distributions
in the CLT’s (9), (11), (14) are all finite (and for which
square root convergence ensues). We start with the coupled
sum estimator. Set �̄0 = �̄0 − �2, �̄n = �̄n for n � 1, and
F̄n = P�N � n�. To maximize the efficiency of the estima-
tor �̄�c�, we need to find a distribution for N that solves
the following optimization problem:

min
F̄

ḡ�F̄ ��
( �∑

n=0

�̄n/F̄n

)( �∑
n=0

t̄nF̄n

)

s.t. F̄i � F̄i+1� ∀ i� 0
F̄i > 0� ∀ i� 0
F̄0 = 1


(16)

Proposition 1. Suppose that ��̄i� i � 0� is a nonnegative
sequence. Then,

ḡ�F̄ ��
( �∑

j=0

√
�̄j t̄j

)2

= ḡ�y∗�

for any F̄ that is feasible for (16), where y∗ = �y∗i � i� 0�
is given by

y∗i =

√
�̄i/t̄i√
�̄0/t̄0




If y∗ is feasible for (16), y∗ is a minimizer of (16).

Proof. If
∑�

i=1 t̄iF̄i =�, ḡ�F̄ �=�, so obviously ḡ�F̄ ��
ḡ�y∗�. If

∑�
i=0 t̄iF̄i <�, set pi = t̄iF̄i/

∑�
j=0 t̄j F̄j for i � 0,

and observe that �pi� i� 0� is a probability mass function.
The Cauchy-Schwarz inequality implies that

�∑
j=0

pj

(√
�̄j

t̄j

1

F̄j

)2

�
( �∑

i=0

pj

√
�̄j

t̄j

1

F̄j

)2




However, this is easily seen to be equivalent to the inequal-
ity ḡ�F̄ �� ḡ�y∗�, proving the result. �
Note that the nonnegativity of ��̄n� n � 0� is equiva-

lent to requiring that ��Yn−Y �22� n� 0� is a nonincreasing
sequence, and varY � �Y − Y0�22; this seems a reasonable
condition that will naturally arise in some problem set-
tings. If the sequence ��Yn − Y �22� n � 0� is not already
decreasing, we can always (easily) select a subsequence
�nk� k � 0� for which ��Ynk − Y �22� k � 0� is decreasing,
and use this subsequence in place of the original sequence
of approximations. (In the presence of empirical data, one
can estimate the magnitude of these squared norms from
sample data, using the approximations at the finest level of
discretization in place of Y ). Of course, there is a ques-
tion as to whether one could potentially lose efficiency by
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passing to such a subsequence, in the sense of a possible
adverse impact on the work variance product E�̄ · var Z̄.

However, it turns out that one can always decrease the
work variance product by passing to such a monotone sub-
sequence. In particular, if �̄i < 0 for a feasible F̄ , with
F̄i > 0, we can reduce ḡ�F̄ � by setting F̄i to F̄i+1, and leav-
ing �F̄j � j �= i� unchanged. This moves any “mass” in F̄ at
i to i − 1, and effectively “collapses” the two differences
Yi − Yi−1 and Yi+1 − Yi to a single difference Yi+1 − Yi−1

with the newly randomized distribution. In general, ḡ�F̄ �
is reduced by collapsing all the differences associated with
i’s for which �̄i < 0, and moving the mass to smaller j’s
for which �̄j > 0, thereby modifying the objective func-
tion to a new ḡ� · � in which all the �̄k’s are positive. Thus,
there is always a “canonical” monotone sequence to which
one can pass that guarantees a reduction in the work vari-
ance product. Therefore, nonnegativity of ��̄k� k � 0� (or,
equivalently, the monotonicity of the squared norms) can
essentially be assumed, without loss of generality.
Returning to Proposition 1, we note that it provides an

optimal distribution for N when y∗ is feasible for (16).
In the applications that we have in mind, the sequence
�t̄n� n� 0� will be nondecreasing. It follows that if
��̄n� n� 0� is decreasing, then y∗ is feasible. But the
assumption that the �̄n’s are decreasing is precisely equiv-
alent to requiring that the sequence ��Yn − Y �22� n� 0� be
convex (i.e., 1

2 ��Yn−1−Y �22+�Yn+1−Y �22�� �Yn−Y �22 for
n � 1) and 1

2 �varY + �Y1 − Y �22� � �Y0 − Y �22. As in our
discussion of monotonicity, we can always choose to pass
to a decreasing convex subsequence of the �Yn − Y �22’s.
However, in this setting, there is no canonical “convexi-
fication” to which one can pass that always guarantees a
reduction in the work variance product. Therefore, convex-
ifying our sequence �Yn� n� 0� may result in a loss of
efficiency. As a consequence, we will now consider the
solution of (16) when y∗ is infeasible.

Proposition 2. Suppose that ��̄i� i � 0� is a positive
sequence and that the t̄n’s are bounded below by a positive
constant. Then, (16) achieves its minimum over the feasible
region.

Proof. If ḡ�F̄ � = � for all feasible F̄ , the result is triv-
ial. If ḡ�F̄ � <� for some feasible F̄ , let �F̄ �k�� k � 0� be
a sequence of feasible solutions for which ḡ�F̄ �k�� → g∗,
where g∗ < � is the infimum of ḡ� · � over the feasible
region. For k� k0,

ḡ�F̄ �k��� g∗ + 1�

therefore

�̄0 ·
�∑
j=0

t̄j F̄
�k�
j � g∗ + 1


It follows from Markov’s inequality that

F̄ �k�
n �

∑�
j=0 t̄j F̄

�k�
j∑n

j=0 t̄j
� g∗ + 1

�̄0 ·
∑n

j=0 t̄j

for k � k0. Since the t̄j ’s are bounded below by a pos-
itive constant,

∑n
j=0 t̄j → � as n → �, so evidently the

distributions corresponding to �F̄ �k�� k � k0� are tight.
As a consequence, Prohorov’s theorem (see, for example,
Billingsley 1999) guarantees that there exists a subsequence
�kn� n� 0� and F̄ ∗ for which

F̄
�kn�
j → F̄ ∗

j

as n→� for each j � 0. Fatou’s lemma then yields

ḡ�F̄ ∗�� lim inf
n→�

ḡ�F̄ �kn��= g∗
 (17)

Since ḡ�F̄ ∗� <�, F̄ ∗
i > 0 for i� 0, and hence F̄ ∗ is feasible

for (16). The inequality (17) therefore implies that F̄ ∗ is an
optimal solution of (16). �
Let i∗0 = 0 and i∗j = inf�k > i∗j−1� F̄k < F̄i∗j−1

� for j � 1,
so that the �i∗j − 1�’s are the integers upon which the opti-
mal distribution for N is supported. For a generic strictly
increasing integer-valued sequence J = �ij � j � 0� for
which i0 = 0, let

�̄j �J �=
ij+1−1∑
k=ij

�̄k and t̄j �J �=
ij+1−1∑
k=ij

t̄k


If J ∗ = �i∗j � j � 0�, it is evident that

ḡ�F̄ ∗�=
( �∑

k=0

�̄k�J
∗�/F̄ ∗

i∗k

)
·

�∑
k=0

t̄k�J �F̄
∗
i∗k

 (18)

Proposition 3. If ��̄n� n � 0� and �t̄n� n � 0� are pos-
itive sequences, then ��̄k�J

∗�/t̄k�J
∗�� k � 0� is a strictly

decreasing sequence.

Proof. We show that if there exists k for which �̄k�J
∗�/

t̄k�J
∗� � �̄k−1�J

∗�/t̄k−1�J
∗�, then ḡ�F̄ ∗� can be strictly

decreased while maintaining feasibility, contradicting the
optimality of F̄ ∗. For x ∈� and a� 0, let

F̄ x
j =





F̄ ∗
j � j � �i∗k−1� 
 
 
 � i

∗
k+1 − 1�

F̄ ∗
j − xa� j ∈ �i∗k−1� 
 
 
 � i

∗
k − 1�


F̄ ∗
j + x� j ∈ �i∗k� 
 
 
 � i

∗
k+1 − 1�

Observe that F̄ x = �F̄ x
j � j �� is feasible for �x� sufficiently

small. Set f �x�= ḡ�F̄ x� and note that

f �x�=
(
v+

�̄k−1�J
∗�

fk−1 − xa
+

�̄k�J
∗�

fk + x

)

· �w+ t̄k−1�J
∗��fk−1 − xa�+ t̄k�J

∗��fk + x���

where

v=
∑

j �=k−1� k

�̄j �J
∗�/F̄ ∗

i∗j
�

w=
∑

j �=k−1� k

t̄j �J
∗�F̄ ∗

i∗j
�

fj = F̄ ∗
i∗j
� j � 0
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Then,

f ′�0�=
(
a
�̄k−1�J

∗�

f 2
k−1

−
�̄k�J

∗�

f 2
k

)
w+ �t̄k�J

∗�− t̄k−1�J
∗�a�v

+ at̄k−1�J
∗�t̄k�J

∗�

(
�̄k−1�J

∗�

t̄k−1�J
∗�

fk
f 2
k−1

−
�̄k�J

∗�

t̄k�J
∗�

1
fk

)

+ t̄k−1�J
∗�t̄k�J

∗�

(
�̄k−1�J

∗�

t̄k−1�J
∗�

1
fk−1

−
�̄k�J

∗�

t̄k�J
∗�

fk−1

f 2
k

)

< �a�̄k−1�J
∗�− �̄k�J

∗��
w

f 2
k

+ �t̄k�J
∗�− t̄k−1�J

∗�a�v

+ a
t̄k−1�J

∗�t̄k�J
∗�

fk

(
�̄k−1�J

∗�

t̄k−1�J
∗�

−
�̄k�J

∗�

t̄k�J
∗�

)

+
t̄k−1�J

∗�t̄k�J
∗�

fk−1

(
�̄k−1�J

∗�

t̄k−1�J
∗�

−
�̄k�J

∗�

t̄k�J
∗�

)

� �a�̄k−1�J
∗�− �̄k�J

∗��
w

f 2
k

+ �t̄k�J
∗�− t̄k−1�J

∗�a�v


Setting a = t̄k�J
∗�/t̄k−1�J

∗�, we get f ′�0� < 0. Hence
ḡ�F̄ x� < g∗ for x small and positive, providing the neces-
sary contradiction. �

Thus �F̄ ∗
i∗k
� k � 0� is a minimizer of the following opti-

mization problem:

min
F̄

{( �∑
k=0

�̄k�J
∗�/F̄k

)
·

�∑
k=0

t̄k�J
∗�F̄k

}

s.t. F̄i � F̄i+1� ∀ i� 0
F̄i > 0� ∀ i� 0
F̄0 = 1


This problem is of the same form as (16), except that
Proposition 3 now guarantees that ��̄k�J

∗�/t̄k�J
∗�� k� 0� is

strictly decreasing. Proposition 1 then yields the following
result.

Theorem 3. Suppose that ��̄n� n� 0� is nonnegative and
�t̄n� n� 0� is nondecreasing. Then, there exists an optimizer
�F̄ ∗

j � j � 0� to (16) having an associated sequence J ∗ for
which

F̄ ∗
j =

�∑
k=0

√
�̄k�J

∗�/t̄k�J
∗�

�̄0�J
∗�/t̄0�J

∗�
��i∗k � j < i∗k+1�


Furthermore,

ḡ�F̄ ∗�=
( �∑

k=0

√
�̄k�J

∗�/t̄k�J
∗�

)2




Theorem 3 makes clear that the construction of an
optimal distribution for N is effectively a “combinatorial
problem” that requires finding an optimal sequence J ∗ min-
imizing

∑�
k=0

√
�̄k�J �/t̄k�J � over all feasible sequences J

for which the �̄i�J �/t̄i�J �’s are decreasing. In practice,
the quantities appearing in the formula for F̄ ∗ will need

to be estimated from initial “trial run” samples, or by
sequentially updating the estimates within an algorithmic
implementation in which the distribution of N is constantly
readjusted in accordance with the most recent estimators of
the �̄k�J �’s and t̄k�J �’s.
This leaves open the question of how to efficiently com-

pute the optimal J ∗. In a sample setting, only a finite num-
ber m of �̄k’s and t̄k’s will have been estimated, so we
focus exclusively on computing the optimal “m-truncated”
sequence J ∗

m = �i∗k� i
∗
k ∈ �0� 
 
 
 �m��. Algorithm 1 below has

a dynamic programming flavor, and recursively computes
J �k� l�’s and G�k� l�’s in the order of increasing k and l
values (with k � l). The quantity J �k� l� stores the best
sequence Jl (where Jl is the l-truncation of J ) found so far
with the last element equal to k, while G�k� l� corresponds
to the value of the “cost”

∑
i

√
�̄i�J �k� l��/t̄i�J �k� l�� asso-

ciated with J �k� l�. If there are no sequences Jl having last
element k for which �̄i�Jl�/t̄i�Jl� is decreasing in i over
Jl, we set J �k� l�= � (empty sequence) and G�k� l�=�.
It is easily seen that the complexity of this algorithm is of
order m3.

Algorithm 1 (Dynamic programming algorithm that finds
J ∗
m within O�m3� operations)

Lk� l ←
∑l

j=k �̄j/
∑l

j=k t̄j , ∀k� l
function OptimalJ

J �0�0�← �0�

G�0�0�←
√
�̄0 t̄0

for l= 1�m, do
J �0� l�← �0�
G�0� l�←

√∑l
j=0 �̄j

∑l
j=0 t̄j

for k= 1�l, do
J �k� l�←�
G�k� l�←�
P ←

√∑l
j=k �̄j

∑l
j=k t̄j

for i= 0��k− 1�, do
if J �i� k− 1� �=�, then
J ′ ← J �i� k− 1�∪ �k�
G′ ←G�i� k− 1�+P
if Li�k−1 >Lk� l and G′ <G�k� l�, then
J �k� l�← J ′

G�k� l�←G′

end if
end if

end for
end for

end for
k∗ ← argmin0�k�mG�k�m�
return J �k∗�m�.

end function.

The development of an optimal distribution for N for
the independent sum estimator follows a similar path for
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the coupled sum estimator, since var Z̃ and EZ̃ depend on
P�N � ·� in an exactly similar way.
We conclude this section with a discussion of the opti-

mal distribution for the single term estimator. Here, the
associated optimization problem requires finding the opti-
mal probability mass function �p∗

n� n � 0� that solves the
minimization problem:

min
p

g�p��
( �∑

i=0

E�2
i

pi

−�2

)( �∑
i=0

tipi

)

s.t. pi > 0� i� 0
�∑
i=0

pi = 1


(19)

Theorem 4. Suppose that var�i > 0 for i � 0 and that
�tn� n� 0� is a positive nondecreasing sequence such that
tn →� and

�∑
n=0

√
E�2

n · tn <�
 (20)

Then, a minimizer of (19) is the probability mass function
�p∗

n� n� 0�, where

p∗
n =

√
E�2

n

�2 + c∗tn
(21)

for n� 0. Here, c∗ is the unique root of the equation

�∑
n=0

√
E�2

n

�2 + c∗tn
= 1
 (22)

Furthermore,

g�p∗�= c∗
( �∑

n=0

tnp
∗
n

)2




Proof. In the presence of (20) and the fact that the tn’s are
bounded away from zero, h�c��∑�

n=0

√
E�2

n/��
2 + ctn� is

finite valued and strictly decreasing in c� 0. Furthermore,
the Cauchy-Schwarz inequality implies that

�∑
n=0

√
E�2

n >
�∑
n=0

�E�n�� ����

so h�0� > 1. Hence, there exists a unique c∗ > 0 solv-
ing (22). Let p̃= �p̃n� n� 0� be the probability mass func-
tion for which p̃n =

√
E�2

n/��
2 + c∗tn� for n� 0, and note

that

g�p̃�=
( �∑

n=0

√
E�2

n��
2 + c∗tn�−�2

)( �∑
n=0

√
E�2

n · t2n
�2 + c∗tn

)

Hypothesis (20) implies that g�p̃� <�, so that the infimum
of g� · � over the feasible region is therefore finite.

As in the proof of Proposition 2, there exists a sequence
�p�k�� k� 0� of probability mass functions such that g�p�k��
converges to the infimum of g over the feasible region.
Hence, it follows that there exists c <� so that g�p�k��� c
for k� k0 <�. Recall that

varZ=E�var�Z �N�	+ var�E�Z �N	�

�
�∑
n=0

var�n/pn � var�0


Therefore, for k� k0,

var�0 ·
�∑
n=0

tnp
�k�
n � c�

so that

tn

�∑
j=n

p
�k�
j � c

var�0




Since tn →�, the sequence �p�k�� k � 0� is tight, so Pro-
horov’s theorem again guarantees the existence of a sub-
sequence �p�nk�� k � 0� and a limiting probability mass
function p∗ = �p∗

j � j � 0� for which g�p�nk�� → g�p∗� as
k→�, and for which p∗ attains the infimum of g; clearly,
p∗ must be feasible.
We now prove that p∗ = p̃. For i� 1, let

fi�q�=
(

E�2
0

1− r∗ − q
+

�∑
j=1 j �=i

E�2
j

p∗
j

+
E�2

i

q
−�2

)

·
(
t0�1− r∗ − q�+

�∑
j=1 j �=i

tjp
∗
j + tiq

)
�

where r∗ =
∑�

j=1 j �=i p
∗
j . Clearly, fi�p

∗
i � = g�p∗� and p∗

i is
a local minimum of fi� · �. Hence f ′

i �p
∗
i �= 0. This implies

that

−
E�2

i

p∗
i
2

�∑
j=0

tjp
∗
j + ti

( �∑
j=0

E�2
j

p∗
j

−�2

)

+
E�2

0

p∗
0
2

�∑
j=0

tjp
∗
j − t0

( �∑
i=0

E�2
i −�2

)
= 0 (23)

for i� 1. Letting

�=
E�2

0

p∗
0
2

�∑
j=0

tjp
∗
j − t0

( �∑
i=0

E�2
i −�2

)
�

multiply the i’th equation in (23) by p∗
i and sum over i� 1.

This yields the equality

�
�∑
i=1

p∗
i =

�∑
i=1

E�2
i

p∗
i

·
�∑
n=0

tnp
∗
n−

�∑
i=1

tip
∗
i

( �∑
n=0

E�2
n

p∗
n

−�2

)

 (24)

If we add �p∗
0 to both sides of (24), we find that

�= �2

( �∑
i=0

tip
∗
i

)



Plugging into (23), we conclude that p∗
i is given by (21),

where c∗ = �
∑�

n=0E�
2
n/p

∗
n − �2�/

∑�
n=0 tnp

∗
n. Our expres-

sion for g�p∗� then immediately follows. �
As for the summed estimators, in practice, the quantities

appearing in the formula for the optimal p∗ would need to
be estimated from either a trial run or within a sequentially
updated implementation.
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4. Subcanonical Convergence
As noted in §2, our randomized estimators can always
be implemented to achieve a square root convergence rate
when the strong order p of the approximation error satisfies
p > 1/2. In fact, when the strong error is of order p and
t̄n is of order 2n, Theorem 1 suggests that a good choice
for N is to select the distribution so that P�N � n� is of
order 2−n�p+1/2�. In particular, for a first-order scheme, one
would choose N so that P�N � n�= 2−3n/2. Although this
would not be an optimal selection in the sense of §3, it
can be easily implemented and can be expected to often
yield good results. Settings in which the error is of strong
order 1 include the Milstein scheme (see p. 345 of Kloeden
and Platen 1992) and when computing the distribution of
the integral of an SDE path for which the underlying SDE
can be simulated exactly in discrete time (as for an Asian
option based on gBM); see Lapeyre and Temam (2001).

One difficulty with strong p’th order schemes (having
p > 1/2) is that they can be expensive or impractical to
implement. For example, even though the Milstein scheme
is relatively straightforward to implement when the SDE is
driven by a one-dimensional Brownian motion (i.e., m= 1),
it is challenging to implement when the driving Brownian
motion is m-dimensional with m � 2. In this setting, the
approximate time stepping discretization involves having to
generate a collection of iterated Itô integrals of the form

∫ h

0
Bi�s�dBj�s��

where B1� 
 
 
 �Bm are m iid standard Brownian motions.
Such iterated Itô integrals can be exactly generated when
m = 2 (see Gaines and Lyons 1994), but no exact algo-
rithm exists when m > 2; see Kloeden et al. (1992)
and Wiktorsson (2001) for numerically implementable
approximations.
As a consequence, we explore in this section the impli-

cations of using schemes having a strong order p � 1/2.
This analysis is therefore particularly relevant to SDEs with
m � 2. We focus primarily on understanding the compu-
tational complexity improvements that can be obtained by
applying randomization methods in the SDE setting. For
this purpose, we exclusively analyze the single term esti-
mator, because it illustrates the main points and the result-
ing calculations are easier to carry out. However, in our
SDE context, one would expect similar complexity results
to hold for the two summed estimators.
As noted in §2, it is always straightforward in the SDE

setting to construct finite variance unbiased estimators for
�, once p is known (just choose P�N � n� = 2−nr with
r < 2p). Therefore, reliable confidence interval methodolo-
gies and sequential stopping procedures (for achieving a
given error tolerance �) can always be implemented in the
SDE setting. The key remaining question is the design of
randomized algorithms that can achieve a low complexity.
Chebyshev’s inequality implies that to achieve � error with

probability 1−
 (with 0<
< 1) (for given � and 
 fixed),
one must choose the number n of iid samples of Z of order
1/�2. The question is: How much “work” must be done to
generate n= O�1/�2� samples? Furthermore, how can we
design randomized algorithms that will minimize this work
complexity while maintaining finite variance?
We start by discussing the design of the distribution

of N for the Euler discretization scheme; see p. 340 of
Kloeden and Platen (1992). This scheme is the simplest
of all SDE schemes to implement, and perhaps the most
widely applied. This has an associated strong order p =
1/2, regardless of the value of m. We take the view here
that the work per Euler approximation equals the num-
ber of time steps, so that the time tn needed to generate
�n is 2n−1 + 2n. To be precise regarding the variance, we
now specialize to the case where the functional f of §1
is suitably Lipschitz. In this case, ��n�2 = O�2−n/2�; see
Alaya and Kebaier (2015). We need to choose the prob-
ability mass function of N , so that the total work Wn �
tN1

+ · · · + tNn
needed to generate n = O�1/�2� iid copies

of Z grows as slowly as possible as � → 0, while main-
taining finite variance for Z. We set pi in proportion to
2−ii�log2�1+ i��2, and note that varZ is then finite. It is
easy to see that P�N � i� is of order pi.

To study the rate of growth of Wn, we apply the follow-
ing result due to Feller (1946).

Result. Suppose that �an� n� 0� is a sequence for which
an/n increases as n → �. Then, Wn � an eventually a.s.
(i.e., P�Wn > an infinitely often� = 0) if

∑�
n=0 P�tN � an�

<�.

Note that the conclusion implies P�Wn > an�→ 0 as n→
�. In view of this, we declare that the complexity is O�an�
if we can find an such that the infinite sum in the Result is
finite.

Since tn = 2n + 2n−1, P�tN � x� = ��x−1 log2 x
�log2 log2 x�

2�, where f �n� = ��g�n�� means that g�n� is
bounded from above and below by constant multiples of
f �n� for sufficiently large n’s (i.e., there exist constants c1,
c2, and N0 such that c1f �n�� g�n�� c2f �n� for n� N0),
and hence, if we choose an = n�log2 n�

q with q > 2, it is
easily seen that P�tN � an� is a summable sequence, yield-
ing the following result.

Proposition 4. Fix q > 2. When ��n�2 =O�2−n/2�, a sin-
gle term estimator can be defined for which the computa-
tional complexity required to compute EY to within � with
probability 1− 
 is O��1/�2��log2�1/���

q� as �→ 0.

This result is similar to the O��1/��2/�log�1/���2) com-
plexity bound obtained by Giles (2008b) for MLMC.

We turn next to the complexity estimate for the single
term estimator that can be achieved when ��n�2 =O�2−np�
for p ∈ �0�1/2�. Such strong orders arise, for example,
when computing the value of a digital option in which the
underlying SDE is approximated via the Euler scheme; see
Giles (2008b). We further assume here that the bias of Yn
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is such that E�Yn − Y � = O�2−ns� for s � 1/2. Again, we
take the view that the work required to compute Yn is of
order 2n. In this setting, we introduce a new tactic that can
be used to shape the design of the associated single term
estimator, so as to minimize the complexity: conditional
on N = k, we can draw mk multiple iid replicates from
the population of �k, average them, and return the average
divided by pk (where the sequence �mk� k� 0� is carefully
chosen). More specifically, we apply sample size mk = 2��k�

to the k’th element of the difference sequence. As a con-
sequence, �Ȳk − Ȳk−1�22 =O�2−�2p+��k� (where Ȳk − Ȳk−1 is
a sample mean of mk iid replicates of Yk − Yk−1), provided
that �E�Ȳk − Ȳk−1��

2 is of the same order (or smaller) than
the variance; this occurs precisely when � + 2p � 2s, so
that the variance of Ȳk − Ȳk−1 is the dominant contribution
to the L2 norm of Ȳk− Ȳk−1. In contrast, when �+2p > 2s,
then �Ȳk − Ȳk−1�22 = O�2−2sk�. It is evident that increas-
ing the sample size to a point at which the variance of
Ȳk− Ȳk−1 is much smaller than its squared mean is a waste
of computational effort, so we should constrain � so that
�+ 2p� 2s.
With this choice of sample size and subsequence, the

work tN per sample mean computed is of order 2��+1�N .
Analogously to the discussion of the case in which p =
1/2, we set pi in proportion to 2−�2p+��ii�log2�1+ i��2. If
an = nv�log2 n�

w for v�w > 0, then P�tN � an� = P�N �
v/��+ 1� log2 n+ w/��+ 1� log2 log2 n+ O�1�� for O�1�
a deterministic function of n. This is asymptotically

n−v�2p+��/��+1��log2 n�
−w�2p+��/��+1�+1�log2 log2 n�

2 (25)

as n → �. The sequence P�tN > an� is summable if we
choose v= �� + 1�/�2p+ �� and w so that −w�2p+ ��/

��+1�+1<−1. The exponent v that fundamentally deter-
mines the growth rate of an can be made smallest by choos-
ing � = 2�s − p�, in which case v = 1 + �1 − 2p�/2s.
Given the above constraint on w and the fact that r can be
made arbitrarily large, w must be set greater than 2��+1�/
�2p+��= 2+�1−2p�/s. Another application of the result
above due to Feller yields our second complexity result.

Proposition 5. Fix a> 0. When ��n�2 =O�2−np� for p ∈
�0�1/2� and E�Yn − Y � = O�2−ns� for s � 1/2, a single
term estimator can be defined for which the computational
complexity required to compute EY to within � with prob-
ability 1− 
 is O��1/��2+�1−2p�/s�log2�1/���

2+�1−2p�/s+a� as
�→ 0.

The complexity results in Propositions 4 and 5 are very
close to that obtained by Giles (2008b) for MLMC in sim-
ilar settings; our complexity results contain the extra log-
arithmic factor. The discussion of this section therefore
suggests that the complexity theory for our randomization
methods looks very similar to that which has been obtained
for MLMC.

5. SDE Implementation and
Computational Results

As noted earlier, our randomization methods take advantage
of pairwise couplings between Yi and Yi−1 to obtain an
unbiased estimator. In the SDE setting, Yi is most naturally
constructed from a time discretization involving increments
of length 2−i. The Yi’s therefore involve different levels
of refinement with regard to the time discretization. This
theme, in which one runs simulations at different levels of
refinement, is also central to the construction of MLMC
algorithms.
In some sense, our methods can be viewed as random-

ized versions of MLMC algorithms, in which the number
of levels used by MLMC is randomly determined. While
MLMC constructs biased estimators with a carefully con-
trolled (and optimized) level of bias, our approach is to
construct unbiased estimators to which the full theory of
conventional Monte Carlo can be applied. For example,
in §2, we described how asymptotically valid (fully rig-
orous) confidence interval procedures can be easily devel-
oped for our estimators, based on either fixed sample size
or sequential settings (designed to achieve a given level
of either absolute or relative precision); developing analo-
gous procedures in the presence of bias (that is of the same
order as the variability) is more complex. In contrast to
MLMC, the estimators developed here are independent of
the level � of precision needed, while those associated with
MLMC are constructed relative to a given � tolerance. Such
MLMC algorithms therefore require more analysis to care-
fully assess the bias, and to control for it. (In addition, when
a practical MLMC implementation uses sample-based esti-
mates to calibrate the parameters needed to achieve a given
� error, the resulting estimator no longer is covered by
the theoretical guarantees associated with the analyses that
assume a priori knowledge of various problem parameters;
see Giles 2008a.) Furthermore, our approach leads natu-
rally to statistical formulations within which optimal design
choices (e.g., the optimal distributions for N studied in §3)
can be made.

Nevertheless, as suggested by the complexity analysis of
§4, the performance of the randomization methods stud-
ied here can be expected to share many of the theoreti-
cal and empirical properties of MLMC. In particular, the
couplings that have been successfully applied within the
MLMC setting can be expected to be equally valuable
in our context. The choice of the appropriate coupling to
be used depends crucially on the number m of indepen-
dent driving Brownian motions and the form of the path
functional f mentioned in §1. We say that f is of “final
value” form if f �x�= v�x�1�� for some smooth given real-
valued (deterministic) function v, while f is of “integral
form” if f �x� = v�

∫ 1
0 w�x�s��ds� for v, w deterministic.

In the particular case that v�y�= �y1 − k	+ for some pos-
itive constant k (where y1 is the first component of y),
we refer to such a final value functional as a European
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option. When v�y� = �y − k	+ and w�y� = y1, we call
such an integral functional an Asian option. Three addi-
tional functionals are also widely used within the compu-
tational finance community, specifically lookback options
(i.e., f �x�= x1�1�−min�x1�s�� 0� s � 1�), digital options
(i.e., f �x� = ��x�1� ∈ B� for some given subset B), and
barrier options (i.e., f �x� = �x1�1�− k	+����x� > 1� also,
��x�= inf�t � 0� x�t� ∈ B� for some given subset B).

When f is a final value functional for which v is Lip-
schitz and m � 2, one can apply the standard Milstein
scheme to obtain an appropriate sequence of Yi’s satisfy-
ing the conditions of §2. This requires a probability space
that simultaneously supports Y and all the Yi’s . While the
standard proofs that the Milstein scheme achieves strong
order 1 only consider the joint distribution of �Yi� Y �, a
perusal of the argument makes clear that one could equally
well have constructed a single probability space support-
ing B, Y , and Y1� Y2� 
 
 
 under which �Yn − Y �2 =O�2−n�

(thereby implying that ��n�2 = O�2−n��; see p. 363 of
Kloeden and Platen (1992) for an example. As noted in
§4, when m > 2, then the conventional Milstein method
becomes difficult to apply directly, because of the presence
of the iterated Itô integrals that must be generated. Fortu-
nately, in this setting, a newly proposed antithetic truncated
Milstein scheme due to Giles and Szpruch (2014) is poten-
tially applicable when v is Lipschitz and (appropriately)
smooth. It is strong first order in this context, and is essen-
tially order 3/4 when v is not smooth. However, it should
be noted that this scheme does not directly fall into the
framework of §2, because the approximating rvs are not
L2 approximations of the rv Y under consideration. Rather,
one needs to recognize that the key elements in deriving the
three estimators discussed in §2 fundamentally hinge upon
only two facts. The first is the existence of a sequence of
rvs Yn for which EYn converges to EY as n→�; the sec-
ond is the need for a sequence of rvs (�′

n� n� 0� for which
E�′

n = E�Yn − Yn−1� with ��′
n�2 → 0 sufficiently quickly.

We can then generalize upon §2’s randomization methods
by substituting the �′

n’s for the �n’s in §2’s estimators. (We
chose to not introduce the theory in §2 at this more general
level, to ease the exposition.)
We now generalize the discussion of §2 to cover this

modified setting. As in §2, we assume that N is indepen-
dent of the sequence ��′

i� i � 0�. To maximize the poten-
tial applicability of this result (to settings outside the SDE
context), we do not require here that the object � to be
computed be expressible as the expectation EY of some rv
Y . Rather, we permit � here to be a quantity that can be
expressed as a limit of the expectations EYn. (For example,
the density of an rv at a given point can be expressed as
such a limit without being expressible in the form EY .)

Theorem 5. Assume that Yn is integrable for each n and
suppose that ��′

i� i � 0� is a sequence of rvs for which
E�′

i =EYi −EYi−1 for i� 0.

(a) If ��′
i� i � 0� is a sequence of independent rvs for

which there exists � such that
�∑
i=0

���′
i�

2
2 + �EYi −��2�/P�N > i� <�� (26)

then EYi converges to � as i→�, Z̃′ �∑N
i=0�

′
i/P�N � i�

is an unbiased estimator for �, and

E�Z̃′�2 =
�∑
i=0

�̃′
i/P�N � i��

where �̃′
i = var�′

i + ��−EYi−1�
2 − ��−EYi�

2.
(b) If �

∑n
i=0�

′
i� n� 0� is a Cauchy sequence in L2 con-

verging to a limit Y ′ (say) that further satisfies
�∑
i=0

�
∑�

j=i+1�
′
j�22

P�N > i�
<�� (27)

then Z̄′ �∑N
i=0�

′
i/P�N � i� is an unbiased estimator for

�� limn→�E
∑n

i=0�
′
i and

E�Z̄′�2 =
�∑
i=0

�̄′
i/P�N � i�� (28)

where �̄′
i � �Y ′

i−1 − Y ′�22 −�Y ′
i − Y ′�22 and Y ′

i �
∑i

j=0�
′
j .

Alternatively, if a sequence �
∑n

i=0�
′
i� n� 0� satisfies

�∑
i=0

��′
i�

2
2/P�N � i�+

∑
i<j

��′
i�2��

′
j�2/P�N � i�<�� (29)

then Y ′
i �

∑i
j=0�

′
j converges to a limit Y ′ in L2, and Z̄′ �∑N

i=0�
′
i/P�N � i� is an unbiased estimator for � with sec-

ond moment (28).
(c) If

∑�
i=0E��

′
i�
2/P�N = i� <�, then there exists � ∈

� for which EYi → � as i→�, Z′ � �′
N /pN is an unbi-

ased estimator for � and

EZ′2 =
�∑
i=0

E��′
i�
2/P�N = i�


Proof. The proof of part a is similar to that of Theorem 2,
except that here the hypotheses are stated in terms of the
�′

i’s (rather than the 
i’s used there). Put bi =EYi −� and
note that (26) implies that EYi → � as i→�. Put �0 = 0
and �k = inf�j > �k−1� �bj �� �b�k−1

�� for k � 1. The proof
of Theorem 2 shows that for n>m,
∥∥∥∥

�n∑
i=0

�′
i��N � i�/P�N � i�−

�m∑
i=0

�′
i��N � i�/P�N � i�

∥∥∥∥
2

2

=
�n∑

i=�m+1

E���′
i�
2 + 2E�′

i�EY�n −EYi�	/P�N � i�

=
�n∑

i=�m+1

E���′
i�
2 + 2�bi − bi−1��b�n − bi�	/P�N � i�

�
�n∑

i=�m+1

E���′
i�
2 + �2b2

�n
+ 2b2

i−1�	/P�N � i�

�
�n∑

i=�m+1

E���′
i�
2 + 4b2

i−1	/P�N � i��
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where the first inequality follows from the fact that 2ab �
a2+b2 for a�b ∈�, and the second is a consequence of the
definition of the �n’s. In view of (26), �

∑�n
i=0�

′
i/P�N � i� �

n� 0� is Cauchy in L2. From this point onward, the proof
is identical to that of Theorem 2.

Turning now to the first statement of part b, the fact
that the Y ′

i ’s are Cauchy implies that Y ′
i converges to Y ′

as i →�, and that EY ′
i �=EYi� converges to a limit � as

i → �. We now let Y ′ and �Y ′
i � i � 0� play the role of

Y and �Yi� i � 0�, respectively, in Theorem 1, and apply
Theorem 1 to prove the statement. For the second state-
ment of part b, note that the alternative condition (29)
implies

∑�
i=0 ��′

i�2 <�, and hence that Y ′
i ’s are Cauchy.

Now, a similar (but simpler) argument as the one for The-
orem 1 finishes the proof of b. For part c, it is easy to
see that E��′

N /pN �
2 =

∑�
i=0E��

′
i�
2/P�N = i�. The hypoth-

esis therefore guarantees that E��′
N /pN �

2 < �, so that
E��′

N �/pN < �. It follows that
∑�

i=0 �E�′
i� < �, so that

EYi =
∑i

j=0E�
′
j converges to a limit �. The rest of part c

follows easily. �

The specific form of the rv �′
i that arises in the setting

of the antithetic truncated Milstein estimator is 1
2 �f �Xhi

�+
f �X̃hi

��− f �Xhi−1
�, where hi is the time step used for the

truncated Milstein scheme at level i and X̃hi
is the antithetic

version of Xhi
obtained (conditional on Xhi−1

) by using the
finer Brownian increments needed at level hi in reverse
order relative to the finer Brownian increments used by Xhi

.
When Theorem 4.10 of Giles and Szpruch (2014) applies,
it follows that when hi = 2−i, ��′

i�2 is of order 2−i. This
implies that E��′

i� is also of order 2−i, and hence all three
estimators described in Theorem 5 are then applicable, pro-
vided that the distribution of N is appropriately selected.
In particular, one can easily select N , so that all three esti-
mators then enjoy square root convergence rates. Finally,
because the expressions for the variances of the three esti-
mators of Theorem 5 are identical to those of §2, the theory
of §3 on optimally selecting the distribution of N is also
applicable in this context.
The above discussion has been focused on final value

expectations. In computing expectations of more general
path functionals, it should be noted that the quality of the
Euler and Milstein schemes do not degrade when looking
at the quality of the approximation across the entire set
of discretization points, in the sense that �max��Xh�ih�−
X�ih�� 0� ih� 1��2 =O��Xh�1�−X�1��2� as h→ 0; see
Theorem 10.6.3 of Kloeden and Platen (1992). The chal-
lenge with Asian, lookback, digital, and barrier options is
that the SDE path behavior between discretization points
introduces an error of order h1/2, which immediately leads
to a strong order p= 1/2, regardless of whether a higher-
order scheme has generated the approximating path at the
discretization points or not. Thus, one needs to generate
some additional approximating rvs within each subinter-
val �ih� �i + 1�h	 to capture the principal path fluctuation
effects for that subinterval associated with the specific path

functional under consideration. These additional approxi-
mating rvs are described in Giles (2008a) for each of these
four options that depend on SDE path behavior between
discretization epochs.
Having discussed how our theory specifically applies in

the SDE setting, we now report on our computational expe-
rience with this class of methods. We implemented each of
our three estimators and compared them with the MLMC
implemention in Giles (2008a). We have used the following
SDE models, all of which are widely used in finance.

Example 1 (Geometric Brownian Motion (gBM)).
Here, the SDE for X is

dX�t�=�X�t�dt+�X�t�dB�t��

with the parameters selected as � = 0
05, � = 0
2, and
X�0�= 1. Our focus here is on computations for the final
value “European option” f �x�= exp�−���x�1�−1	+, hav-
ing computed value Ef �X� = 0
104505836. Though Xh

in this setting can be exactly simulated, we have instead
applied the standard Milstein scheme.

Example 2 (Cox-Ingersoll-Ross (CIR) Process). The
SDE for X is in this case given by

dX�t�= ���−X�t��dt+�X�t�1/2dB�t��

with parameters given by �= 0
05, �= 5, � = 0
04, � =
0
25, and X�0�= 0
04. We provide here numerical results
for the European option f �x� = exp�−���x�1� − 0
03	+;
the standard Milstein scheme underlies our discretiza-
tion Xh. The quantity Ef �X� = 0
0120124 was computed
using the coupled sum estimator with a target root mean
square error (RMSE) 1
0× 10−7.

Example 3 (Heston Model). This is a two-dimensional
model for which

dS�t�=�S�t�+V �t�1/2S�t�dB1�t�

dV �t�= ���−V �t��dt+�V �t�1/2dB2�t��

where B1 and B2 are correlated Brownian motions with
correlation � = −0
5. The specific parameter values used
here are � = 0
05, � = 5, � = 0
04, � = 0
25, S�0� = 1,
V �0� = 0
04, and we apply this to the specific functional
f �s� v�= exp�−���s�1�− 1	+. For this example, we used
the antithetic truncated Milstein scheme mentioned earlier
to generate the �′

i’s. The value of Ef �S�V � is 0
10459672;
see Kahl and Jäckel (2006).

To make the computational comparison with MLMC as
transparent as possible, we adopt the approach commonly
followed within the MLMC literature, in which the param-
eters of MLMC algorithm are set so that the resulting esti-
mator will possess a specific RMSE �; see Giles (2008b)
for details. Of course, mentioned earlier, the way in which
the parameters are set depends on unknown model-specific
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quantities that are estimated online and used to adaptively
modify the parameters within the algorithm. Consequently,
the final RMSE for MLMC may differ (significantly) from
the intended RMSE. Turning to our three randomization
algorithms, we noted in §2 that these methods are well
suited to sequential implementations in which the algo-
rithms are run until the 100�1 − 
�% confidence interval
half-width is less than or equal to �. The resulting estima-
tor, denoted (for example) �̄K��� when applied to the cou-
pled sum algorithm, is not intended to produce an estimator
with a given level of RMSE. However, when � is cho-
sen as z� (with z satisfying P�−z�N�0�1�� z�= 1− 
),
this corresponds to sampling until the estimated standard
deviation is less than or equal to �. In our numerical com-
parisons, we set � in this way for our sequential implemen-
tations of our three estimators, to simplify the comparison
with MLMC. The confidence level for all the confidence
interval methodologies discussed in this section is set at
90%. In addition, to prevent our sequential stopping proce-
dure from terminating early because of an unreliable small
sample estimate of the standard deviation, we modify K���
so that at least 1,000 iid samples are generated before we
begin testing to see if the half-widths are less than � or not.

To determine the optimal distribution of N for the cou-
pled sum estimator, we have estimated the �̄i’s for the first
few i’s with 10,000 samples and extrapolated using asymp-
totic rates. Specifically, since Y cannot be sampled exactly,
we have used �̄†

i = �Y13 − Yi−1�2 − �Y13 − Yi�2 as a surro-
gate for �̄i = �Y − Yi−1�2 − �Y − Yi�2 for i = 0�1� 
 
 
 �8.
For i > 8, we have extrapolated the �̄ sequence using the
approximation �̄8+j ≈ �̄8 × 2−2jp, where p is the strong
order. To determine N for the independent sum estima-
tor, we have computed the �̃i’s by estimating var �̃i and
E�̃i from 10,000 samples for i= 0� 
 
 
 �10. Then, we have
extrapolated again using the approximations var �̃10+j ≈
var �̃10 × 2−2jp and E�10+j ≈E�10 × 2−js for j � 1, where
p is the strong order and s is the weak order. Once the
parameters were estimated, we have used Algorithm 1 (with
m = 10) with these parameters as input to find the opti-
mal distribution of N for summed estimators. For the sin-
gle term estimator, the first 10 E�2

i ’s were estimated with
10,000 samples in an obvious way, and extrapolated using
the approximation E�2

10+j ≈E�2
10 × 2−2jp for j � 1, where

p is the strong order. After the parameters were estimated,
we used Newton’s method to find c∗ in (21).
The computational results are reported in Tables 1–4 for

gBM, Tables 5–8 for CIR, and Tables 9–12 for Heston.
For each of our problems, the discretization used at level i
(to generate Yi) involved time step 2−i. In each table, the
first column represents the quantity q, in which the corre-
sponding row relates to calculations intended to generate a
RMSE of approximately magnitude q���; we use IRE for
this column as an abbreviation for “intended RMSE.” Thus
our sequential algorithms are run with � = zq���, while
MLMC is designed to achieve RMSE � = q���. Specifi-
cally, we have implemented MLMC based on the MATLAB

implementation available at http://people.maths.ox.ac.uk/
gilesm/files/mcqmc06_code.zip. For each of the four algo-
rithms, the second column represents a confidence inter-
val for the expectation of the computed solution, estimated
from 1,000 iid replications of the algorithm based on the
IRE level specified. The third column is the sample RMSE,
divided by ���, estimated from the 1,000 replications (with
deviations measured relative to the true solution), and the
fourth column is the sample standard deviation, divided
by ���, as computed from the 1,000 replications. Column
5 is relevant only to the MLMC tables, and provides the
estimated bias divided by ���, as determined by the aver-
age of the 1,000 replications and the exact solution. The
sixth column is a confidence interval for the expected work
expended, based on the 1,000 replications, at a given IRE
level; we took, as a measure of the work expended in a
given replication, the total number of time steps simulated
for that replication. The final column, denoted Work ×
MSE, is the product of the estimated expected work per
replication and the estimated mean square error (MSE). For
an algorithm exhibiting a square root convergence rate, this
product should be asymptotically constant, as the level q
shrinks to 0.
Further computational results can be found in the elec-

tronic companion to this paper (available as supplemen-
tal material at http://dx.doi.org/10.1287/opre.2015.1404).
Our e-companion provides additional computational results
for one more model (the Vasicek model), and for addi-
tional path functionals beyond the final value functionals
described in this paper (specifically, results related to Asian,
lookback, digital, and barrier options). The computational
experiments confirm that our algorithms do indeed produce
unbiased estimators and achieve square root convergence.
Moreover, the experiments suggest that our estimators are
competitive with the MLMC algorithm presented in Giles
(2008a), at least for the examples studied, in terms of the
work-MSE achieved. To be precise, the work-MSE factors
are roughly identical, except for the gBM example in which
the work-MSE factor for all three randomization methods
is about 60%−70% of MLMC, while the coupled sum esti-
mator is about 10 times more efficient than MLMC for
the CIR example (the other two randomization methods
are roughly equivalent to MLMC). It is also worth noting
that MLMC often “overshoots” the desired IRE, while the
sample-based sequential stopping criterion used for our ran-
domization algorithms more nearly matches the IRE. Thus,
for a given desired accuracy, our unbiased estimators lend
themselves to implementations that meet the desired error
tolerance, without doing additional computation that will
refine the accuracy beyond that needed. It should be noted
that these comparisons were made with the original version
of MLMC presented in Giles (2008a, b). There is a recent
development (Collier et al. 2015) in the MLMC literature
that improves the performance of the original version by
using the optimal bias-variance decomposition (determined
by examining all the reasonable candidates based on the
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Table 1. gBM, coupled sum unbiased estimator Z̄, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.0500 0.10433 ± 2
4× 10−4 4
5× 10−2 4
5× 10−2 — 1
5× 103 ± 4
2× 101 0.032
0.0200 0.10427 ± 1
0× 10−4 1
9× 10−2 1
9× 10−2 — 9
5× 103 ± 1
6× 102 0.038
0.0100 0.104488 ± 5
1× 10−5 9
3× 10−3 9
4× 10−3 — 3
6× 104 ± 4
2× 102 0.034
0.0050 0.104496 ± 2
3× 10−5 4
3× 10−3 4
3× 10−3 — 1
6× 105 ± 1
2× 103 0.033
0.0020 0.104505 ± 1
1× 10−5 2
0× 10−3 2
0× 10−3 — 8
6× 105 ± 6
3× 103 0.036
0.0010 0.1045083± 4
6× 10−6 8
5× 10−4 8
5× 10−4 — 4
2× 106 ± 5
7× 103 0.033
0.0005 0.1045082± 2
7× 10−6 5
0× 10−4 5
0× 10−4 — 1
3× 107 ± 3
6× 104 0.035

Table 2. gBM, independent sum unbiased estimator Z̃, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.0500 0.10462 ± 2
3× 10−4 4
3× 10−2 4
3× 10−2 — 1
4× 103 ± 2
0× 101 0.029
0.0200 0.10437 ± 1
0× 10−4 1
9× 10−2 1
9× 10−2 — 8
5× 103 ± 1
1× 102 0.032
0.0100 0.104478 ± 4
9× 10−5 9
1× 10−3 9
1× 10−3 — 3
5× 104 ± 2
0× 102 0.032
0.0050 0.104485 ± 2
6× 10−5 4
8× 10−3 4
8× 10−3 — 1
2× 105 ± 1
4× 103 0.031
0.0020 0.1045056± 9
7× 10−6 1
8× 10−3 1
8× 10−3 — 9
0× 105 ± 2
9× 103 0.031
0.0010 0.1045041± 5
4× 10−6 9
9× 10−4 9
9× 10−4 — 3
0× 106 ± 1
0× 104 0.033
0.0005 0.1045073± 2
6× 10−6 4
9× 10−4 4
9× 10−4 — 1
2× 107 ± 1
1× 104 0.031

Table 3. gBM, single term unbiased estimator Z, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.0500 0.10450 ± 2
3× 10−4 4
3× 10−2 4
3× 10−2 — 1
3× 103 ± 1
4× 101 0.026
0.0200 0.104373 ± 9
9× 10−5 1
8× 10−2 1
8× 10−2 — 8
2× 103 ± 1
1× 102 0.030
0.0100 0.104470 ± 5
0× 10−5 9
2× 10−3 9
2× 10−3 — 3
2× 104 ± 2
0× 102 0.029
0.0050 0.104493 ± 2
7× 10−5 4
9× 10−3 4
9× 10−3 — 1
1× 105 ± 1
1× 103 0.029
0.0020 0.1044989± 
6× 10−6 1
8× 10−3 1
8× 10−3 — 8
1× 105 ± 1
4× 103 0.028
0.0010 0.1045129± 5
4× 10−6 9
9× 10−4 9
9× 10−4 — 2
7× 106 ± 6
1× 103 0.029
0.0005 0.1045065± 2
6× 10−6 4
8× 10−4 4
8× 10−4 — 1
1× 107 ± 5
0× 103 0.028

Table 4. gBM, multilevel Monte Carlo, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.0500 0.10390 ± 1
8× 10−4 3
4× 10−2 3
4× 10−2 5
8× 10−3 6
1× 103 ± 9
4× 100 0.078
0.0200 0.104122 ± 7
4× 10−5 1
4× 10−2 1
4× 10−2 3
7× 10−3 1
5× 104 ± 5
1× 101 0.032
0.0100 0.104175 ± 3
8× 10−5 7
7× 10−3 7
0× 10−3 3
2× 10−3 4
9× 104 ± 2
0× 102 0.032
0.0050 0.104202 ± 1
8× 10−5 4
4× 10−3 3
4× 10−3 2
9× 10−3 1
9× 105 ± 7
8× 102 0.041
0.0020 0.1043864± 7
9× 10−6 1
8× 10−3 1
5× 10−3 1
1× 10−3 1
2× 106 ± 4
1× 103 0.046
0.0010 0.1044495± 4
0× 10−6 9
1× 10−4 7
3× 10−4 5
4× 10−4 5
0× 106 ± 2
1× 104 0.046
0.0005 0.1044775± 2
0× 10−6 4
5× 10−4 3
6× 10−4 2
7× 10−4 2
0× 107 ± 6
7× 104 0.045

Table 5. CIR, coupled sum unbiased estimator Z̄, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.500 0.012038 ± 3
0× 10−5 4
8× 10−2 4
8× 10−2 — 3
2× 104 ± 3
5× 102 0.011
0.200 0.012032 ± 3
0× 10−5 4
8× 10−2 4
8× 10−2 — 3
2× 104 ± 2
3× 102 0.011
0.100 0.012022 ± 3
0× 10−5 4
8× 10−2 4
8× 10−2 — 3
2× 104 ± 4
4× 102 0.011
0.050 0.012050 ± 2
8× 10−5 4
6× 10−2 4
5× 10−2 — 3
6× 104 ± 7
4× 102 0.011
0.020 0.012008 ± 1
1× 10−5 1
8× 10−2 1
8× 10−2 — 2
4× 105 ± 3
4× 103 0.011
0.010 0.0120137± 5
9× 10−6 9
5× 10−3 9
5× 10−3 — 9
0× 105 ± 5
0× 104 0.012
0.005 0.0120121± 2
6× 10−6 4
3× 10−3 4
2× 10−3 — 4
2× 106 ± 2
5× 104 0.011
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Table 6. CIR, independent sum unbiased estimator Z̃, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.500 0.01209 ± 2
3× 10−4 3
8× 10−1 3
8× 10−1 — 5
3× 103 ± 9
5× 101 0.109
0.200 0.01219 ± 1
1× 10−4 1
8× 10−1 1
8× 10−1 — 2
0× 104 ± 2
9× 102 0.095
0.100 0.012023 ± 5
4× 10−5 8
7× 10−2 8
7× 10−2 — 9
1× 104 ± 7
5× 102 0.099
0.050 0.012041 ± 2
9× 10−5 4
7× 10−2 4
7× 10−2 — 3
1× 105 ± 2
1× 103 0.097
0.020 0.012016 ± 1
1× 10−5 1
7× 10−2 1
7× 10−2 — 2
3× 106 ± 4
3× 103 0.095
0.010 0.0120146± 5
8× 10−6 9
4× 10−3 9
4× 10−3 — 7
9× 106 ± 1
8× 104 0.100
0.005 0.0120122± 3
1× 10−6 4
9× 10−3 4
9× 10−3 — 2
9× 107 ± 4
7× 104 0.103

Table 7. CIR, single term unbiased estimator Z, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.500 0.01214 ± 2
8× 10−4 4
4× 10−1 4
4× 10−1 — 3
5× 103 ± 5
8× 101 0.098
0.200 0.01206 ± 1
1× 10−4 1
8× 10−1 1
8× 10−1 — 2
2× 104 ± 2
9× 102 0.101
0.100 0.012026 ± 5
6× 10−5 8
9× 10−2 8
9× 10−2 — 8
5× 104 ± 3
3× 102 0.098
0.050 0.012033 ± 3
0× 10−5 4
8× 10−2 4
8× 10−2 — 3
1× 105 ± 3
1× 103 0.102
0.020 0.012019 ± 1
1× 10−5 1
8× 10−2 1
8× 10−2 — 2
2× 106 ± 1
5× 103 0.105
0.010 0.0120088± 6
1× 10−6 9
7× 10−3 9
7× 10−3 — 7
4× 106 ± 2
0× 104 0.101
0.005 0.0120119± 3
0× 10−6 4
8× 10−3 4
8× 10−3 — 2
9× 107 ± 3
4× 104 0.096

Table 8. CIR, multilevel Monte Carlo, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.500 0.01245 ± 2
2× 10−4 3
5× 10−1 3
5× 10−1 3
6× 10−2 6
7× 103 ± 1
0× 101 0.118
0.200 0.012351 ± 8
3× 10−5 1
4× 10−1 1
3× 10−1 2
8× 10−2 2
6× 104 ± 1
2× 102 0.070
0.100 0.012174 ± 4
5× 10−5 7
4× 10−2 7
2× 10−2 1
3× 10−2 1
1× 105 ± 8
8× 101 0.083
0.050 0.012166 ± 2
1× 10−5 3
7× 10−2 3
4× 10−2 1
2× 10−2 4
3× 105 ± 2
9× 102 0.082
0.020 0.0120920± 8
9× 10−6 1
6× 10−2 1
4× 10−2 6
3× 10−3 2
8× 106 ± 1
1× 103 0.098
0.010 0.0120447± 4
5× 10−6 7
7× 10−3 7
3× 10−3 2
4× 10−3 1
2× 107 ± 6
1× 103 0.098
0.005 0.0120409± 2
3× 10−6 4
3× 10−3 3
8× 10−3 2
1× 10−3 4
7× 107 ± 3
1× 104 0.124

Table 9. Heston, coupled sum unbiased estimator Z̄, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.100 0.10441 ± 4
2× 10−4 7
7× 10−2 7
7× 10−2 — 5
9× 103 ± 2
6× 102 0.384
0.050 0.10435 ± 2
4× 10−4 4
5× 10−2 4
5× 10−2 — 1
9× 104 ± 5
3× 102 0.414
0.020 0.104573 ± 9
7× 10−5 1
8× 10−2 1
8× 10−2 — 1
2× 105 ± 2
0× 103 0.433
0.010 0.104612 ± 4
9× 10−5 9
1× 10−3 9
1× 10−3 — 5
0× 105 ± 9
6× 103 0.455
0.005 0.104592 ± 2
5× 10−5 4
5× 10−3 4
5× 10−3 — 2
2× 106 ± 2
1× 104 0.495
0.002 0.104596 ± 1
0× 10−5 1
9× 10−3 1
9× 10−3 — 1
2× 107 ± 9
2× 104 0.454
0.001 0.1045954± 5
3× 10−6 9
7× 10−4 9
7× 10−4 — 4
6× 107 ± 1
6× 105 0.479

Table 10. Heston, independent sum unbiased estimator Z̃, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.100 0.10464 ± 4
3× 10−4 7
8× 10−2 7
8× 10−2 — 8
2× 103 ± 1
3× 102 0.549
0.050 0.10448 ± 2
6× 10−4 4
8× 10−2 4
8× 10−2 — 2
6× 104 ± 5
0× 102 0.654
0.020 0.10468 ± 1
0× 10−4 1
9× 10−2 1
9× 10−2 — 1
6× 105 ± 2
4× 103 0.609
0.010 0.104557 ± 4
7× 10−5 8
6× 10−3 8
6× 10−3 — 7
1× 105 ± 4
6× 103 0.572
0.005 0.104584 ± 2
6× 10−5 4
8× 10−3 4
8× 10−3 — 2
4× 106 ± 1
6× 104 0.607
0.002 0.1045922± 9
4× 10−6 1
7× 10−3 1
7× 10−3 — 1
8× 107 ± 1
3× 105 0.589
0.001 0.1046015± 5
2× 10−6 9
6× 10−4 9
6× 10−4 — 6
2× 107 ± 2
4× 105 0.621
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Table 11. Heston, single term unbiased estimator Z, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.100 0.10493 ± 4
7× 10−4 8
7× 10−2 8
7× 10−2 — 6
4× 103 ± 1
9× 102 0.531
0.050 0.10459 ± 2
4× 10−4 4
5× 10−2 4
5× 10−2 — 2
6× 104 ± 3
3× 102 0.568
0.020 0.104636 ± 9
8× 10−5 1
8× 10−2 1
8× 10−2 — 1
5× 105 ± 1
2× 103 0.542
0.010 0.104589 ± 4
6× 10−5 8
5× 10−3 8
5× 10−3 — 7
3× 105 ± 6
8× 103 0.584
0.005 0.104591 ± 2
5× 10−5 4
6× 10−3 4
6× 10−3 — 2
5× 106 ± 9
8× 103 0.595
0.002 0.1045911± 9
2× 10−6 1
7× 10−3 1
7× 10−3 — 1
9× 107 ± 3
2× 104 0.603
0.001 0.1045957± 5
2× 10−6 9
6× 10−4 9
6× 10−4 — 5
8× 107 ± 1
0× 105 0.585

Table 12. Heston, multilevel Monte Carlo, 1,000 samples.

IRE 90% confidence interval RMSE/� Std/� Bias/� Work Work×MSE

0.100 0.10451 ± 3
6× 10−4 6
7× 10−2 6
7× 10−2 8
2× 10−4 9
9× 103 ± 3
0× 101 0.482
0.050 0.10472 ± 1
9× 10−4 3
5× 10−2 3
5× 10−2 1
2× 10−3 2
7× 104 ± 1
0× 102 0.366
0.020 0.104641 ± 7
9× 10−5 1
5× 10−2 1
5× 10−2 4
2× 10−4 1
7× 105 ± 4
9× 102 0.391
0.010 0.104714 ± 4
0× 10−5 7
5× 10−3 7
4× 10−3 1
1× 10−3 6
8× 105 ± 1
7× 103 0.419
0.005 0.104660 ± 1
9× 10−5 3
5× 10−3 3
5× 10−3 6
0× 10−4 2
7× 106 ± 6
7× 103 0.368
0.002 0.1046499± 7
9× 10−6 1
5× 10−3 1
5× 10−3 5
1× 10−4 1
7× 107 ± 5
8× 104 0.451
0.001 0.1046278± 4
1× 10−6 8
1× 10−4 7
5× 10−4 3
0× 10−4 7
8× 107 ± 1
4× 105 0.555

parameters carefully estimated online), instead of the equal
decomposition; with this new MLMC implementation, it
may be that MLMCs performance is improved significantly
relative to the above numerical study, thereby creating a
more favorable comparison for MLMC. However, given
that our unbiased randomization methods lend themselves
readily to the incorporation of the full spectrum of output
analysis and variance reduction techniques that are stan-
dard tools in the setting of conventional iid Monte Carlo
algorithms, the use of randomization in the SDE setting as
introduced in this paper seems a promising direction for
future research.
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