Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Unbiased Learning-to-Rank with Biased Feedback*

Thorsten Joachims', Adith Swaminathan?, Tobias Schnabel'
1 Cornell University, Ithaca, NY
2 Microsoft Research, Redmond, WA
tj@cs.cornell.edu, adswamin @microsoft.com, tbs49 @cornell.edu

Abstract

Implicit feedback (e.g., clicks, dwell times, etc.)
is an abundant source of data in human-interactive
systems. While implicit feedback has many ad-
vantages (e.g., it is inexpensive to collect, user-
centric, and timely), its inherent biases are a key
obstacle to its effective use. For example, posi-
tion bias in search rankings strongly influences how
many clicks a result receives, so that directly us-
ing click data as a training signal in Learning-to-
Rank (LTR) methods yields sub-optimal results. To
overcome this bias problem, we present a coun-
terfactual inference framework that provides the
theoretical basis for unbiased LTR via Empirical
Risk Minimization despite biased data. Using this
framework, we derive a propensity-weighted rank-
ing SVM for discriminative learning from implicit
feedback, where click models take the role of the
propensity estimator. Beyond the theoretical sup-
port, we show empirically that the proposed learn-
ing method is highly effective in dealing with bi-
ases, that it is robust to noise and propensity model
mis-specification, and that it scales efficiently. We
also demonstrate the real-world applicability of our
approach on an operational search engine, where it
substantially improves retrieval performance.

1 Introduction

Batch training of retrieval systems requires annotated test col-
lections that take substantial effort and cost to amass. While
economically feasible for web search, eliciting relevance an-
notations from experts is infeasible or impossible for most
other ranking applications (e.g., personal collection search,
intranet search). For these applications, implicit feedback
from user behavior is an attractive source of data. Unfortu-
nately, existing approaches for Learning-to-Rank (LTR) from
implicit feedback — and clicks on search results in particular
— have several limitations or drawbacks.

First, the naive approach of treating a click/no-click as a
positive/negative relevance judgment is severely biased. In
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particular, the order of presentation has a strong influence on
where users click [Joachims et al., 2007]. This presentation
bias leads to an incomplete and skewed sample of relevance
judgments that is far from uniform, thus leading to biased
learning-to-rank.

Second, treating clicks as preferences between clicked and
skipped documents has been found to be accurate [Joachims,
2002; Joachims e al., 20071, but it can only infer preferences
that oppose the presented order. This again leads to severely
biased data, and learning algorithms trained with these pref-
erences tend to reverse the presented order unless additional
heuristics are used [Joachims, 2002].

Third, probabilistic click models (see Chuklin et
al. [2015]) have been used to model how users produce clicks.
By estimating latent parameters of these generative click
models, one can infer the relevance of a given document for a
given query. However, inferring reliable relevance judgments
typically requires that the same query is seen multiple times,
which is unrealistic in many retrieval settings (e.g., personal
collection search) and for tail queries.

Fourth, allowing the LTR algorithm to randomize what is
presented to the user, like in online learning algorithms [Ra-
man et al., 2013; Hofmann et al., 2013] and batch learning
from bandit feedback (BLBF) [Swaminathan and Joachims,
2015] can overcome the problem of bias in click data in a
principled manner. However, requiring that rankings be ac-
tively perturbed during system operation whenever we collect
training data decreases ranking quality and, therefore, incurs
a cost compared to observational data collection.

In this paper we present a theoretically principled and em-
pirically effective approach for learning from observational
implicit feedback that can overcome the limitations outlined
above. By drawing on counterfactual estimation techniques
from causal inference [Imbens and Rubin, 2015] and work
on correcting sampling bias at the query level [Wang er al.,
2016], we first develop a provably unbiased estimator for
evaluating ranking performance using biased feedback data.
Based on this estimator, we propose a Propensity-Weighted
Empirical Risk Minimization (ERM) approach to LTR, which
we implement efficiently in a new learning method we call
Propensity SVM-Rank. While our approach uses a click
model, the click model is merely used to assign propensities
to clicked results in hindsight, not to extract aggregate rele-
vance judgments. This means that our Propensity SVM-Rank
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does not require queries to repeat, making it applicable to a
large range of ranking scenarios. Finally, our methods can use
observational data and we do not require that the system ran-
domizes rankings during data collection, except for a small
pilot experiment to estimate the propensity model.

2 Full-Info Learning to Rank

Before we derive our approach for LTR from biased implicit
feedback, we first review the conventional problem of LTR
from editorial judgments. In conventional LTR, we are given
a sample X of i.i.d. queries @; ~ P(x) for which we as-
sume the relevances rel(x, y) of all documents y are known.
Since all relevances are assumed to be known, we call this
the Full-Information Setting. The relevances can be used to
compute the loss A(y|x) (e.g., negative DCG) of any ranking
y for query x. Aggregating the losses of individual rankings
by taking the expectation over the query distribution, we can
define the overall risk of a ranking system S that returns rank-
ings S(x) as

R(S) = /A(S(m)|w) P (z). )

The goal of learning is to find a ranking function S € S that
minimizes R(.S) for the query distribution P(x). Since R(S)
cannot be computed directly, it is typically estimated via the
empirical risk

RS) = g 3 AS@le).

x, €X

A common learning strategy is Empirical Risk Minimization
(ERM) [Vapnik, 1998], which corresponds to picking the sys-
tem S € S that optimizes the empirical risk

argmingg g {R(S)} ,

possibly subject to some regularization in order to control
overfitting. There are several LTR algorithms that follow this
approach (see Liu [2009]), and we use SVM-Rank [Joachims,
2002] as a representative algorithm in this paper.

The relevances rel(x,y) are typically elicited via expert
judgments. Apart from being expensive and often infeasible
(e.g., in personal collection search), expert judgments come
with at least two other limitations. First, it is clearly impossi-
ble to get explicit judgments for all documents, and pooling
techniques [Sparck-Jones and van Rijsbergen, 1975] often in-
troduce bias. The second limitation is that expert judgments
rel(x, y) have to be aggregated over all intents that underlie
the same query string, and it can be challenging for a judge to
properly conjecture the distribution of query intents to assign
an appropriate rel(x, y).

S =

3 Partial-Info Learning to Rank

Learning from implicit feedback has the potential to over-
come the above-mentioned limitations of full-information
LTR. By drawing the training signal directly from the user, it
naturally reflects the user’s intent, since each user acts upon
their own relevance judgement subject to their specific con-
text and information need. It is therefore more appropriate
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to talk about query instances x; that include contextual infor-
mation about the user, instead of query strings x. For a given
query instance x;, we denote with r;(y) the user-specific rel-
evance of result y for query instance x;. One may argue that
what expert assessors try to capture with rel(, y) is the mean
of the relevances r;(y) over all query instances that share the
query string. Relying on implicit feedback instead for learn-
ing allows us to remove a lot of guesswork about what the
distribution of users meant by a query.

However, when using implicit feedback as a relevance sig-
nal, unobserved feedback is an even greater problem than
missing judgments in the pooling setting. In particular, im-
plicit feedback is distorted by presentation bias, and it is
not missing completely at random [Little and Rubin, 2002].
To nevertheless derive well-founded learning algorithms, we
adopt the following counterfactual model. It closely follows
[Schnabel et al., 2016], which unifies several prior works on
evaluating information retrieval systems.

For concreteness and simplicity, assume that relevances are
binary, r;(y) € {0, 1}, and our performance measure of inter-
est is the sum of the ranks of the relevant results

Alylz;,r;) = Zrank(y\y)mi(y). )

Y€y

Analogous to (1), we can define the risk of a system as

/A(S(a:)|a:,r) dP(z,1). 3)

In our counterfactual model, there exists a true vector of
relevances r; for each incoming query instance (x;,r;) ~
P(x,r). However, only a part of these relevances is observed
for each query instance, while typically most remain unob-
served. In particular, given a presented ranking y; we are
more likely to observe the relevance signals (e.g., clicks) for
the top-ranked results than for results ranked lower in the list.
Let o; denote the 0/1 vector indicating which relevance values
were revealed, o; ~ P(o|x;, y;,r;). For each element of o,
denote with Q(0;(y) = 1|x;, y;, r;) the marginal probability
of observing the relevance r;(y) of result y for query x;, if
the user was presented the ranking y;. We refer to this prob-
ability value as the propensity of the observation. We discuss
how o; and @ can be obtained more in Section 4.

Using this counterfactual modeling setup, we can get an
unbiased estimate of A(y|x;,r;) for any new ranking y (typ-
ically different from the presented ranking y;) via the inverse
propensity scoring (IPS) estimator [Horvitz and Thompson,
1952; Rosenbaum and Rubin, 1983; Imbens and Rubin, 2015]

rank(y|y) v (y)
2 Qoi(y)=1|xi, Yi,1i)

R(S) =

AIPS("JW%»?]@%‘) =

This is an unbiased estimate of A(y|x;,r;) for any y, if
Q(oi(y) = 1|z, gi,rs) > 0 for all y that are relevant
r;(y) = 1 (but not necessarily for the irrelevant y). The proof
for this is quite straightforward and can be found in the orig-
inal paper [Joachims et al., 2017].
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An interesting property of A; ps(y|xi, i, 0;) is that only
those results y with [0;(y) = 1 A 1;(y) = 1] (i.e. clicked
results, as we will see later) contribute to the estimate. We
therefore only need the propensities Q(o;(y) = 1|x;, gi,15)
for relevant results. Since we will eventually need to estimate
the propensities Q(0;(y) = 1|x;,y;,1;), an additional re-
quirement for making A; ps(ylxi, Y, 0;) computable while
remaining unbiased is that the propensities only depend on
observable information (i.e., unconfoundedness, see Imbens
and Rubin [2015]).

Having a sample of N query instances x;, recording the
partially-revealed relevances r; as indicated by o;, and the
propensities Q(o0;(y) = 1|x;, gi,1;), the empirical risk of a
system is simply the IPS estimates averaged over query in-
stances:

N
Rzps(S):%Z 3 Q(rank(ms(w")) @)

i=1 y:0,(y)=1 0i(y)=1lzi, yi, ri)
Ari(y)=1

Since A;pg (y|x;, ys, 0;) is unbiased for each query instance,
the aggregate R;pg(S) is also unbiased for R(S) from (3),

E[Rips(S)] = R(S).

Furthermore, it is easy to verify that R 1ps(S) converges to
the true R(.S) under mild additional conditions (i.e., propen-
sities bounded away from 0) as we increase the sample size
N of query instances. So, we can perform ERM using this
propensity-weighted empirical risk,

S = argmingeg {RIPS(S)} .

Finally, using standard results from statistical learning theory
[Vapnik, 1998], consistency of the empirical risk paired with
capacity control implies consistency also for ERM. In intu-
itive terms, this means that given enough training data, the
learning algorithm is guaranteed to find the best system in S.

3.1 Position-Based Propensity Model

The previous section showed that the propensities of the ob-
servations Q(o0;(y) = 1|x;, s, ;) are the key component for
unbiased LTR from biased observational feedback. To derive
propensities of observed clicks, we consider a straightforward
examination model analogous to Richardson et al. [2007],
where a click on a search result depends on the probability
that a user examines a result (i.e., e;(y)) and then decides to
click on it (i.e., ¢;(y)) in the following way:

Plei(y) = 1frank(yly)) - P(ci(y) = ri(y), ei(y) = 1).

In this model, examination depends only on the rank of y in
y. So, P(e;(y) = 1|rank(y|y;)) can be represented by a
vector of examination probabilities p,., one for each rank r,
which are precisely the propensities Q(0;(y) = 1|x;, i, ;).
These examination probabilities can model presentation bias
found in eye-tracking studies [Joachims er al., 2007], where
users are more likely to see results at the top of the ranking
than those further down.
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Under this propensity model, we can simplify the IPS esti-
mator from (4) by substituting p,- as the propensities and by

using ¢;(y) =1 < [oi(y) =1 A ri(y) = 1]

Z rank(y|5(wi))' 5)

Prank(y|g:)

R 1 &
Rips(S) = ﬁz
i1

yiei(y)=1

R;ps(S) is an unbiased estimate of R(S) under the position-
based propensity model if p,, > 0 for all ranks. While absence
of a click does not imply that the result is not relevant (i.e.,
ci(y) = 0 4 r;(y) = 0), the IPS estimator has the nice
property that such explicit negative judgments are not needed
to compute an unbiased estimate of R(S) for the loss in (2).
Similarly, while absence of a click leaves us unsure about
whether the result was examined (i.e., e;(y) = 7), the IPS
estimator only needs to know the indicators o;(y) = 1 for
results that are also relevant (i.e., clicked results).

3.2 Propensity SVM-Rank

We now derive a concrete learning method that imple-
ments propensity-weighted LTR. It is based on SVM-Rank
[Joachims, 2002; Joachims, 2006], but we conjecture that
propensity-weighted versions of other LTR methods can be
derived as well.

Consider a dataset of n examples of the following form.
For each query-result pair (x;,y;) that is clicked, we com-
pute the propensity ¢; = Q(0;(y) = 1|x;, y;, ;) of the click
according to our click propensity model. We also record the
candidate set Y; of all results for query x;. Typically, Y;
contains a few hundred documents — selected by a stage-one
ranker [Wang er al., 2011] — that we aim to rerank. Note that
each click generates a separate training example, even if mul-
tiple clicks occur for the same query.

Given this propensity-scored click data, we define Propen-
sity SVM-Rank as a generalization of conventional SVM-
Rank. Propensity SVM-Rank learns a linear scoring function
f(x,y) = w - ¢(x,y) that can be used for ranking results,
where w is a weight vector and ¢(x,y) is a feature vector
that describes the match between query « and result y.

Propensity SVM-Rank optimizes the following objective,

1 O~ 1
W = argmin,, iw-w—i——zf Z &y
njzl qj yey;

st. VYyeYi\{yi}:w [p(z1,91) — ¢(x1,y)] > 1=y

ViVy : &y > 0.

C'is aregularization parameter that is typically selected via
cross-validation. The training objective optimizes an upper
bound on the regularized IPS estimated empirical risk of (5),
since each line of constraints corresponds to the rank of a
relevant document (minus 1).



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

In particular, for any feasible (w, &)

rank(y;[y) =1 = D T (o p) 60 )]0
Y#Yi

< Z max(1—w - [p(x;,y:) — ¢(xi,)],0)

Y#£Yi

Y#Yi

We can solve this type of Quadratic Program efficiently
via a one-slack formulation [Joachims, 2006], and we are us-
ing SVM-Rank with appropriate modifications to include IPS
weights 1/g;. The code is available online'.

In the empirical evaluation, we compare against the naive
application of SVM-Rank, which minimizes the rank of the
clicked documents while ignoring presentation bias. In par-
ticular, Naive SVM-Rank sets all the ¢; uniformly to the same
constant (e.g., 1).

4 Empirical Evaluation

The original paper [Joachims et al, 2017] takes a two-
pronged approach to evaluation. First, it uses synthetically
generated click data to explore the behavior of our methods
over the whole spectrum of presentation bias severity, click
noise, and propensity mis-specification. Due to space con-
straints, we do not include these experiments here, but focus
on a real-world experiment that evaluates our approach on
an operational search engine using real click-logs from live
traffic. In particular, we examine the performance of Propen-
sity SVM-Rank when learning a new ranking function for the
Arxiv Full-Text Search? based on real-world click logs from
this system. The search engine uses a linear scoring func-
tion f(x,y) = w - ¢(x,y). The Query-document features
¢(x,y) are represented by a 1000—dimensional vector, and
the production ranker used for collecting training clicks em-
ploys a hand-crafted weight vector w (denoted Prod). Ob-
served clicks on rankings served by this ranker over a period
of 21 days provide implicit feedback data for LTR as outlined
in Section 3.2.

To estimate the propensity model, we consider the sim-
ple position-based model of Section 3.1 and we collect new
click data via randomized interventions for 7 days as detailed
in [Joachims et al., 2017] with landmark rank &k = 1. In
short, before presenting the ranking, we take the top-ranked
document and swap it with the document at a uniformly-at-
random chosen rank j € {1,...21}. The ratio of observed
click-through rates (CTR) on the formerly top-ranked doc-
ument now at position j vs. its CTR at position 1 gives a
noisy estimate of p;/p; in the position-based click model.
We additionally smooth these estimates by interpolating with
the overall observed CTR at position j (normalized so that
CTRQ@]1 = 1). This yields p, that approximately decay with
rank r, and the smallest p,, ~ 0.12. For r > 21, we impute
pr = p21. Since the original paper appeared, another tech-
nique for propensity estimation from observational data has
been proposed that could also be used [Wang et al., 2018].

Uhttp://www.joachims.org/svm_light/svm_proprank.html
*http://search.arxiv.org:8081/
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Propensity SVM-Rank

Interleaving Experiment wins loses ties
against Prod 87 48 83
against Naive SVM-Rank 95 60 102

Table 1: Per-query balanced interleaving results for detecting rela-
tive performance between the hand-crafted production ranker used
for click data collection (Prod), Naive SVM-Rank and Propensity
SVM-Rank.

We partition the click-logs into a train-validation split: the
first 16 days are the train set and provide 5437 click-events,
while the remaining 5 days are the validation set with 1755
click events. The hyper-parameter C is picked via cross vali-
dation. We use the IPS estimator for Propensity SVM-Rank,
and the naive estimator with Q(o(y) = 1|x,g,r) = 1 for
Naive SVM-Rank. With the best hyper-parameter settings,
we re-train on all 21 days worth of data to derive the final
weight vectors for either method.

We fielded these learnt weight vectors in two online inter-
leaving experiments [Chapelle et al., 2012], the first compar-
ing Propensity SVM-Rank against Prod and the second com-
paring Propensity SVM-Rank against Naive SVM-Rank. The
results are summarized in Table 1. We find that Propensity
SVM-Rank significantly outperforms the hand-crafted pro-
duction ranker that was used to collect the click data for train-
ing (two-tailed binomial sign test p = 0.001 with relative risk
0.71 compared to null hypothesis). Furthermore, Propensity
SVM-Rank similarly outperforms Naive SVM-Rank, demon-
strating that even a simple propensity model provides benefits
on real-world data (two-tailed binomial sign test p = 0.006
with relative risk 0.77 compared to null hypothesis). Note
that Propensity SVM-Rank not only significantly, but also
substantially outperforms both other rankers in terms of ef-
fect size — and the synthetic data experiments suggest that
additional training data will further increase its advantage.

5 Conclusions and Future

This paper introduced a principled approach for learning-to-
rank under biased feedback data. Drawing on counterfac-
tual modeling techniques from causal inference, we present a
theoretically sound Empirical Risk Minimization framework
for LTR. We instantiate this framework with a propensity-
weighted ranking SVM. Real-world experiments on a live
search engine show that the approach leads to substantial re-
trieval improvements.

Beyond the specific learning methods and propensity mod-
els we propose, this paper may have even bigger impact for
its theoretical contribution of developing the general coun-
terfactual model for LTR, thus articulating the key compo-
nents necessary for LTR under biased feedback. First, the
insight that propensity estimates are crucial for ERM learn-
ing opens a wide area of research on designing better propen-
sity models. Second, the theory demonstrates that LTR meth-
ods should optimize propensity-weighted ERM objectives,
raising the question of which other learning methods can be
adapted. Third, we conjecture that propensity-weighted ERM
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approaches can be developed also for pointwise and listwise
LTR methods using techniques from Schnabel et al. [2016].

Beyond learning from implicit feedback, propensity-
weighted ERM techniques may prove useful even for opti-
mizing offline IR metrics on manually annotated test collec-
tions. First, they can eliminate pooling bias, since the use of
sampling during judgment elicitation puts us in a controlled
setting where propensities are known (and can be optimized
[Schnabel et al., 2016]) by design. Second, propensities esti-
mated via click models can enable click-based IR metrics like
click-DCG to better correlate with test set DCG.
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Bloomberg. We thank Maarten de Rijke, Alexey Borisov,
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discussions.

References

[Chapelle et al., 2012] Oliver Chapelle, Thorsten Joachims,
Filip Radlinski, and Yisong Yue. Large-scale validation
and analysis of interleaved search evaluation. ACM Trans-
actions on Information Systems (TOIS), 30(1):6:1-6:41,
2012.

[Chuklin et al., 2015] Aleksandr Chuklin, Ilya Markov, and
Maarten de Rijke. Click Models for Web Search. Syn-
thesis Lectures on Information Concepts, Retrieval, and
Services. Morgan & Claypool Publishers, 2015.

[Hofmann et al., 2013] Katja Hofmann, Anne Schuth, Shi-
mon Whiteson, and Maarten de Rijke. Reusing historical
interaction data for faster online learning to rank for IR. In

International Conference on Web Search and Data Mining
(WSDM), pages 183-192, 2013.

[Horvitz and Thompson, 1952] Daniel Horvitz and Donovan
Thompson. A generalization of sampling without replace-
ment from a finite universe. Journal of the American Sta-
tistical Association, 47(260):663—-685, 1952.

[Imbens and Rubin, 2015] Guido Imbens and Donald Rubin.
Causal Inference for Statistics, Social, and Biomedical
Sciences. Cambridge University Press, 2015.

[Joachims et al., 2007] Thorsten Joachims, Laura Granka,
Bing Pan, Helene Hembrooke, Filip Radlinski, and Geri
Gay. Evaluating the accuracy of implicit feedback from
clicks and query reformulations in web search. ACM
Transactions on Information Systems (TOIS), 25(2), April
2007.

[Joachims et al., 2017] Thorsten Joachims, Adith Swami-
nathan, and Tobias Schnabel. Unbiased learning-to-rank
with biased feedback. In ACM Conference on Web Search
and Data Mining (WSDM), pages 781-789, 2017.

[Joachims, 2002] Thorsten Joachims. Optimizing search en-
gines using clickthrough data. In ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pages 133-142, 2002.

[Joachims, 2006] Thorsten Joachims. Training linear SVMs
in linear time. In ACM SIGKDD International Conference

5288

On Knowledge Discovery and Data Mining (KDD), pages
217-226, 2006.

[Little and Rubin, 2002] Roderick J. A. Little and Donald B.
Rubin. Statistical Analysis with Missing Data. John Wiley,
2002.

[Liu, 2009] Tie-Yan Liu. Learning to rank for information
retrieval.  Foundations and Trends in Information Re-
trieval, 3(3):225-331, March 2009.

[Raman et al., 2013] Karthik Raman, Thorsten Joachims,
P. Shivaswamy, and Tobias Schnabel. Stable coactive

learning via perturbation. In International Conference on
Machine Learning (ICML), pages 837-845, 2013.

[Richardson et al., 2007] Matthew Richardson, Ewa Domi-
nowska, and Robert Ragno. Predicting clicks: Estimat-
ing the click-through rate for new ads. In International
Conference on World Wide Web (WWW), pages 521-530.
ACM, 2007.

[Rosenbaum and Rubin, 1983] Paul R. Rosenbaum and
Donald B. Rubin. The central role of the propensity score
in observational studies for causal effects. Biometrika,
70(1):41-55, 1983.

[Schnabel et al., 2016] Tobias Schnabel, Adith Swami-
nathan, Peter Frazier, and Thorsten Joachims. Unbiased
comparative evaluation of ranking functions. In ACM

International Conference on the Theory of Information
Retrieval (ICTIR), pages 109-118, 2016.

[Sparck-Jones and van Rijsbergen, 1975] Karen Sparck-
Jones and Cornelis J. van Rijsbergen. Report on the need
for and provision of an “ideal” information retrieval test
collection. Technical report, University of Cambridge,
1975.

[Swaminathan and Joachims, 2015] Adith Swaminathan and
Thorsten Joachims. Batch learning from logged bandit
feedback through counterfactual risk minimization. Jour-
nal of Machine Learning Research (JMLR), 16:1731—
1755, Sep 2015. Special Issue in Memory of Alexey Cher-
vonenkis.

[Vapnik, 1998] Vladimir Vapnik. Staristical Learning The-
ory. Wiley, Chichester, GB, 1998.

[Wang et al., 2011] Lidan Wang, Jimmy J. Lin, and Donald
Metzler. A cascade ranking model for efficient ranked re-
trieval. In ACM Conference on Research and Development
in Information Retrieval (SIGIR), pages 105-114, 2011.

[Wang et al., 2016] Xuanhui Wang, Michael Bendersky,
Donald Metzler, and Marc Najork. Learning to rank with
selection bias in personal search. In ACM Conference on

Research and Development in Information Retrieval (SI-
GIR). ACM, 2016.

[Wang et al., 2018] Xuanhui Wang, Nadav Golbandi,
Michael Bendersky, Donald Metzler, and Marc Najork.
Position bias estimation for unbiased learning to rank in
personal search. In Conference on Web Search and Data
Mining (WSDM), 2018.



