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Abstract: Performing numerical integration when the integrand itself can-
not be evaluated point-wise is a challenging task that arises in statistical
analysis, notably in Bayesian inference for models with intractable likeli-
hood functions. Markov chain Monte Carlo (MCMC) algorithms have been
proposed for this setting, such as the pseudo-marginal method for latent
variable models and the exchange algorithm for a class of undirected graph-
ical models. As with any MCMC algorithm, the resulting estimators are
justified asymptotically in the limit of the number of iterations, but exhibit
a bias for any fixed number of iterations due to the Markov chains start-
ing outside of stationarity. This “burn-in” bias is known to complicate the
use of parallel processors for MCMC computations. We show how to use
coupling techniques to generate unbiased estimators in finite time, building
on recent advances for generic MCMC algorithms. We establish the theo-
retical validity of some of these procedures, by extending existing results
to cover the case of polynomially ergodic Markov chains. The efficiency of
the proposed estimators is compared with that of standard MCMC estima-
tors, with theoretical arguments and numerical experiments including state
space models and Ising models.
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1. Introduction

1.1. Context

For various statistical models the likelihood function cannot be computed point-
wise, which prevents the use of standard Markov chain Monte Carlo (MCMC)
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algorithms such as Metropolis–Hastings (MH) for Bayesian inference. For ex-
ample, the likelihood of latent variable models typically involves an intractable
integral over the latent space. Classically, one can address this problem by de-
signing MCMC algorithms on the joint space of parameters and latent variables.
However, these samplers can mix poorly when latent variables and parameters
are strongly correlated under the joint posterior distribution. Furthermore these
schemes cannot be implemented if we can only simulate the latent variables and
not evaluate their probability density function (Andrieu et al., 2010, Section
2.3). Similarly, in the context of undirected graphical models, the likelihood
function might involve an intractable integral over the observation space; see
Møller et al. (2006) with examples from spatial statistics.

Pseudo-marginal methods have been proposed for these situations (Lin et al.,
2000; Beaumont, 2003; Andrieu and Roberts, 2009), whereby unbiased Monte
Carlo estimators of the likelihood are used within an MH acceptance mechanism
while still producing chains that are ergodic with respect to the exact posterior
distribution of interest, denoted by π. Pseudo-marginal algorithms and their ex-
tensions (Deligiannidis et al., 2018; Tran et al., 2016) are particularly adapted
to latent variable models, such as random effects models and state space models,
where the likelihood can be estimated without bias using importance sampling
or particle filters (Beaumont, 2003; Andrieu and Roberts, 2009; Andrieu et al.,
2010). Related schemes include the exchange algorithm (Murray et al., 2006; An-
drieu et al., 2018), which applies to scenarios where the likelihood involves an in-
tractable, parameter-dependent normalizing constant. Exchange algorithms rely
on simulation of synthetic observations to cancel out intractable terms in the MH
acceptance ratio. As with any MCMC algorithm, the computation of each itera-
tion requires the completion of the previous ones, which hinders the potential for
parallel computation. Running independent chains in parallel is always possible,
and averaging over independent chains leads to a linear decrease of the resulting
variance. However, the inherent bias that comes from starting the chains outside
of stationarity, also called the “burn-in bias”, remains (Rosenthal, 2000).

This burn-in bias has motivated various methodological developments in the
MCMC literature; among these, some rely on coupling techniques, such as the
circularly-coupled Markov chains of Neal (2017), regeneration techniques de-
scribed in Mykland et al. (1995); Brockwell and Kadane (2005), and “coupling
from the past” as proposed in Propp and Wilson (1996). Coupling methods have
also been proposed for diagnosing convergence in Johnson (1996, 1998) and as
a means to assess the approximation error for approximate MCMC kernels in
Nicholls et al. (2012). Recently, a method has been proposed to completely re-
move the bias of Markov chain ergodic averages (Glynn and Rhee, 2014). An
extension of this approach using coupling ideas was proposed by Jacob et al.
(2020b) and applied to a variety of MCMC algorithms. This methodology in-
volves the construction of a pair of Markov chains, which are simulated until an
event occurs. At this point, a certain function of the chains is returned, with the
guarantee that its expectation is exactly the integral of interest. The output is
thus an unbiased estimator of that integral. Averaging over i.i.d. copies of such
estimators we obtain consistent estimators in the limit of the number of copies,
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which can be generated independently in parallel. Relevant limit theorems have
been established in Glynn and Heidelberger (1990); Glynn and Whitt (1992),
enabling the construction of valid confidence intervals. The methodology has
already been demonstrated for various MCMC algorithms (Jacob et al., 2020b;
Heng and Jacob, 2019; Jacob et al., 2020a), which were instances of geometri-
cally ergodic Markov chain samplers under typical conditions. However, in the
case of intractable likelihoods and pseudo-marginal samplers, in realistic situa-
tions the associated Markov chains can often be sub-geometrically ergodic, see
e.g. Andrieu and Vihola (2015).

We show here that unbiased estimators of π(h), with finite variance and
finite computational cost, can also be derived from polynomially ergodic Markov
chains such as those generated by pseudo-marginal methods. We provide results
on the associated efficiency in comparison with standard MCMC estimators. We
apply the methodology to particle MCMC algorithms for inference in generic
state space models, with an application to a time series of neuron activation
counts. We also consider a variant of the pseudo-marginal approach known as
the block pseudo-marginal approach (Tran et al., 2016) as well as the exchange
algorithm (Murray et al., 2006).

Accompanying code used for simulations and to generate the figures are pro-
vided at https://github.com/particlemontecarlo/unbiased_intractable_
targets.

1.2. Unbiased estimators from coupled Markov chains

Let π be a probability measure on a topological space Z equipped with the
Borel σ-algebra B(Z). In this section we recall how two coupled chains that
are marginally converging to π can be used to produce unbiased estimators of
expectations π(h) :=

∫
h (z)π(dz) for any π-integrable test function h : Z → R.

Following Glynn and Rhee (2014); Jacob et al. (2020b), we consider the follow-
ing coupling of two Markov chains (Zn)n≥0 and (Z̃n)n≥0. First, Z0, Z̃0 are drawn
independently from an initial distribution π0. Then, Z1 is drawn from a Markov
kernel P given Z0, which is denoted Z1|Z0 ∼ P (Z0, ·). Subsequently, at step
n ≥ 1, a pair (Zn+1, Z̃n) is drawn from a Markov kernel P̄ given (Zn, Z̃n−1),
which is denoted (Zn+1, Z̃n)|(Zn, Z̃n−1) ∼ P̄ ((Zn, Z̃n−1), ·). The kernel P̄ is such
that, marginally, Zn+1|(Zn, Z̃n−1) ∼ P (Zn, ·) and Z̃n|(Zn, Z̃n−1) ∼ P (Z̃n−1, ·).
This implies that, marginally for all n ≥ 0, Zn and Z̃n have the same distri-
bution. Furthermore, the kernel P̄ is constructed so that there exists a random
variable τ termed the meeting time, such that for all n ≥ τ , Zn = Z̃n−1 al-
most surely (a.s.). Then, for any integer k, the following informal telescoping
sum argument informally suggests an unbiased estimator of π(h). We start from
π(h) = limn→∞ E[h(Zn)] and write

π (h) = E[h(Zk)] +

∞∑

n=k+1

E[h(Zn)]− E[h(Z̃n−1)] (write as telescoping sum),

= E[h(Zk) +

∞∑

n=k+1

h(Zn)− h(Z̃n−1)] (swap expectation & limit),

https://github.com/particlemontecarlo/unbiased_intractable_targets
https://github.com/particlemontecarlo/unbiased_intractable_targets
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= E[h(Zk) +
τ−1∑

n=k+1

h(Zn)− h(Z̃n−1)] (Zn = Z̃n−1 for n ≥ τ).

The sum
∑τ−1

n=k+1 is treated as zero if τ − 1 < k + 1. The suggested estimator
is thus defined as

Hk(Z, Z̃) = h(Zk) +
τ−1∑

n=k+1

{h(Zn)− h(Z̃n−1)}, (1)

with Z and Z̃ denoting the chains (Zn)n≥0 and (Z̃n)n≥0 respectively. As in

Jacob et al. (2020b), we average Hl(Z, Z̃) over a range of values of l, l ∈ {k, k+
1, . . . ,m} for an integer m ≥ k, resulting in the estimator

Hk:m(Z, Z̃) =
1

m− k + 1

m∑

l=k

h(Zl)

+

τ−1∑

n=k+1

min

(
1,

n− k

m− k + 1

)
(h(Zn)− h(Z̃n−1)). (2)

Intuitively, Hk:m can be understood as a standard Markov chain average after m
steps using a burn-in period of k−1 steps (which would be in general biased for
π(h)), plus a second term that can be shown to remove the burn-in bias. That
“bias correction” term is a weighted sum of differences of the chains between step
k and the meeting time τ = inf{n ≥ 1 : Zn = Z̃n−1}. In the following, we will
write Hk:m := Hk:m(Z, Z̃) for brevity. The construction of Hk:m is summarized
in Algorithm 1, where the initial distribution of the chains is denoted by π0,
and the Markov kernels by P and P̄ as above. Standard MCMC estimators
require the specification of π0 and P , while the proposed method requires the
additional specification of the coupled kernel P̄ . We will propose coupled kernels
for the setting of intractable likelihoods, and study the estimator Hk:m under
conditions which cover pseudo-marginal methods.

Algorithm 1 Unbiased MCMC estimator Hk:m for any choice of k and

m with 0 ≤ k ≤ m.

1. Initialization:

(a) Sample Z0, Z̃0 ∼ π0(·).

(b) Sample Z1|{Z0 = z0} ∼ P (z0, ·).

(c) Set n = 1 and τ = ∞.

2. While n < max(m, τ):

(a) Sample (Zn+1, Z̃n)|{Zn = zn, Z̃n−1 = z̃n−1} ∼ P̄ ((zn, z̃n−1) , ·).

(b) If Zn+1 = Z̃n and τ = ∞, set τ = n.

(c) Increment n by 1.

3. Return Hk:m as described in Equation (2).
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To see how coupled kernels can be constructed, we first recall a construction
for simple MH kernels. Focusing, for now, on the typical Euclidean space case
Z ⊆ R

d, we assume that π admits a density, which with a slight abuse of
notation we also denote with π. Then the standard MH algorithm relies on a
proposal distribution q(dz′|z), for instance chosen as a Gaussian distribution
centered at z. At iteration n − 1, a proposal Z ′ ∼ q(·|Zn−1) is accepted as the
new state Zn with probability

αMH(Zn−1, Z
′) := min

(
1,

π(Z ′)q(Zn−1|Z ′)

π(Zn−1)q(Z ′|Zn−1)

)
,

known as the MH acceptance probability. If Z ′ is rejected, then Zn is assigned
the value of Zn−1. This defines the kernel P . To construct P̄ , following Jacob
et al. (2020b) we can consider a maximal coupling of the proposal distributions.
This is described in Algorithm 2 for completeness; see also Johnson (1998) and
Jacob et al. (2020b) for a consideration of the cost of sampling from a maximal
coupling. Here U [a, b] refers to the uniform distribution on the interval [a, b].
The algorithm relies on draws from a maximal coupling (or γ-coupling) of the
two proposal distributions q (·|Zn) and q(·|Z̃n−1) at step n ≥ 1. Draws (Z ′, Z̃ ′)
from maximal couplings are such that the probability of the event {Z ′ = Z̃ ′} is
maximal over all couplings of Z ′ ∼ q(·|Zn) and Z̃ ′ ∼ q(·|Z̃n−1). Sampling from
maximal couplings can be done with rejection sampling techniques as described
in Jacob et al. (2020b), in Section 4.5 of Chapter 1 of Thorisson (2000) and in
Johnson (1998). On the event {Z ′ = Z̃ ′}, the two chains are given identical pro-
posals, which are then accepted or not based on αMH(Zn, Z

′) and αMH(Z̃n−1, Z̃
′)

using a common uniform random number. In the event that both proposals are
identical and accepted, then the chains meet: Zn+1 = Z̃n. One can then check
that the chains remain identical from that iteration onwards.

Algorithm 2 Sampling from the coupled MH kernel given (Zn, Z̃n−1).

1. Sample Z′ and Z̃′ from a maximal coupling of q (·|Zn) and q(·|Z̃n−1).

2. Sample u ∼ U [0, 1].

3. If u < αMH (Zn, Z
′) set Zn+1 = Z′. Otherwise set Zn+1 = Zn.

4. If u < αMH(Z̃n−1, Z̃
′) set Z̃n = Z̃′. Otherwise set Z̃n = Z̃n−1.

5. Return (Zn+1, Z̃n).

The unbiased property of Hk:m has an important consequence for paral-

lel computation. Consider R independent copies, denoted by (H
(r)
k:m) for r =

1, . . . , R, and the average H̄R
k:m = R−1

∑R
r=1 H

(r)
k:m. Then H̄R

k:m is a consistent
estimator of π(h) as R → ∞, for any fixed (k,m), and a central limit theorem
holds provided that V[Hk:m] < ∞; sufficient conditions are given in Section 1.3.
Since τ is a random variable, the cost of generating Hk:m is random. Neglecting
the cost of drawing from π0, the cost amounts to that of one draw from the
kernel P , τ − 1 draws from the kernel P̄ , and then (m − τ) draws from P if
τ < m. Overall that leads to a cost of Tm := 2(τ − 1)+max(1,m− τ +1) units,
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where each unit is the cost of drawing from P , and assuming that one sample
from P̄ costs two units. Theoretical considerations on variance and cost will be
useful to guide the choice of the parameters k and m as discussed in Section 1.5.

1.3. Theoretical validity under polynomial tails

We provide here sufficient conditions under which the estimator Hk:m is unbi-
ased, has finite expected cost and finite variance. Below, Assumptions 1 and 3
are identical to Assumptions 2.1 and 2.3 in Jacob et al. (2020b) whereas As-
sumption 2 is a polynomial tail assumption on the meeting time weaker than
the geometric tail assumption, namely, P(τ > n) ≤ Kρn for all n ≥ 1, for some
constants K < ∞ and ρ ∈ (0, 1), used in Jacob et al. (2020b). Relaxing this
assumption is useful in our context as the pseudo-marginal algorithm is polyno-
mially ergodic under realistic assumptions (Andrieu and Vihola, 2015) and, as
demonstrated in Section 1.4, this allows the verification of the polynomial tail
assumption.

Assumption 1. Each of the two chains marginally starts from a distribution
π0, evolves according to a transition kernel P and is such that E[h(Zn)] → π(h)
as n → ∞ for a real-valued function h. Furthermore, there exists constants η > 0
and D < ∞ such that E[|h(Zn)| 2+η] < D for all n ≥ 0.

Assumption 2. The two chains are such that there exists an almost surely
finite meeting time τ = inf{n ≥ 1 : Zn = Z̃n−1} such that P(τ > n) ≤
Kn−κ for some constants 0 < K < ∞ and κ > 2

(
2η−1 + 1

)
, where η is as in

Assumption 1.

Assumption 3. The chains stay together after meeting, i.e. Zn = Z̃n−1 for all
n ≥ τ .

Under Assumption 2, E[τp] ≤ Kp
∑

n≥0 n
−κ+p−1 for all p ≥ 1 and thus

E[τp] < ∞ if κ > p. As it is assumed that κ > 2
(
2η−1 + 1

)
, this implies that

E[τp] < ∞ for p < 2(2η−1 + 1). In particular, one has E[τ ] < ∞ and thus the
computational cost associated with Hk:m has a finite expectation. It also implies
that τ has a finite second moment.

The following result states that Hk:m has not only a finite expected cost but
also has a finite variance and that its expectation is indeed π(h) under the above
assumptions. The proof is provided in Appendix A.1.

Theorem 1. Under Assumptions 1-2-3, for all k ≥ 0 and m ≥ k, the estimator
Hk:m defined in (2) has expectation π(h), has a finite expected computing time
and admits a finite variance.

1.4. Conditions for polynomial tails

We now proceed to establishing conditions that imply Assumption 2. To state
the main result, we put assumptions on the probability of meeting at each
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iteration. We write D for the diagonal of the joint space Z × Z, that is D :=
{(z, z̃) ∈ Z × Z : z = z̃} and introduce the measure πD(dz, dz̃) := π(dz)δz(dz̃).
In this case, we identify the meeting time τ with the hitting time of the diagonal,

τ = τD := inf
{
n ≥ 1 :

(
Zn, Z̃n−1

)
∈ D
}
. The first assumption is on the ability

of the pair of chains to hit the diagonal when it enters a certain subset of Z×Z.

Assumption 4. The kernel P̄ is πD-irreducible: for any set A ⊂ D such
that πD(A) > 0 and all (z, z̃) ∈ Z × Z there exists some n ≥ 0 such that
P̄n ((z, z̃), A) > 0. The kernel P̄ is also aperiodic. Finally, there exist ǫ ∈ (0, 1),
n0 ≥ 0 and a set C ⊂ Z such that

inf
(z,z̃)∈C×C

P̄n0 ((z, z̃) ,D) ≥ ǫ. (3)

Next we will assume that the marginal kernel P admits a polynomial drift
condition and a small set C; we will later consider that small set to be the same
set C as in Assumption 4. Intuitively, the polynomial drift condition on C will
ensure regular entries of the pair of chains in the set C × C, from which the
diagonal can be hit in n0 steps under Assumption 4.

Assumption 5. There exist ǫ0 > 0, a probability measure ν on Z and a set
C ⊂ Z such that

inf
z∈C

P (z, ·) ≥ ǫ0ν(·). (4)

In addition, there exist a measurable function V : Z → [1,∞), constants
bV , cV > 0, ǫb ∈ (0, 1), and a value α ∈ (0, 1), such that, defining φ(x) := dxα

for a constant d > 0 and all x ∈ [1,∞), then for any z ∈ Z,

PV (z) ≤ V (z)− φ ◦ V (z) + bV 1C (z) , (5)

sup
z∈C

V (z) ≤ cV , (6)

inf
z/∈C

φ ◦ V (z) ≥ bV (1− ǫb)
−1. (7)

The following result states that Assumptions 4 and 5 guarantee that the
tail probabilities of the meeting time are polynomially bounded. The proof is
provided in Appendix A.2.

Theorem 2. Suppose that Assumptions 4 and 5 hold for the same set C ⊂ Z,
and that π0 admits a density with respect to π and is supported on a compact
set. Then we have that for all n ≥ 1 and some constant K > 0,

P(τ ≥ n) ≤ Kn−κ,

where κ = 1/(1− α), with α defined as in Assumption 5.

We note the direct relation between the exponent α in the polynomial drift
condition and the exponent κ in the bound on the tail probability P(τ ≥ n).
In turn this relates to the existence of finite moments for τ , as discussed after
Assumption 2. In particular, if we can take large values of η in Assumption 1,



2850 L. Middleton et al.

then we require in Assumption 2 that κ is just above 2, which is implied by
α > 1/2 according to Theorem 2. However, if we consider η = 1 in Assumption 1,
for instance, then we require in Assumption 2 that κ is just above 6, which is
implied by α > 5/6 according to Theorem 2. The condition α > 5/6 will appear
again in the next section.

1.5. Efficiency under polynomial tails

In removing the bias from MCMC estimators, we expect that Hk:m will have an
increased variance compared to an MCMC estimator with equivalent cost. In
this section we study the overall efficiency of Hk:m in comparison to standard
MCMC estimators. This mirrors Proposition 3.3 in Jacob et al. (2020b) in the
case of geometrically ergodic chains.

We can define the inefficiency of the estimator Hk:m as the product of its
variance and of its expected computational cost via IF[Hk:m] := E[Tm]V[Hk:m],
with Tm denoting the computational cost. This quantity appears in the study
of estimators with random computing costs, since seminal works such as Glynn
and Heidelberger (1990) and Glynn and Whitt (1992). The inefficiency can
be understood as the asymptotic variance of the proposed estimator as the
computing budget goes to infinity. The following provides a precise comparison
between this inefficiency and the inefficiency of the standard “serial” algorithm.
Since the cost Tm is measured in units equal to the cost of sampling from P ,
the cost of obtaining a serial MCMC estimator based on m iterations is equal
to m such units. The mean squared error associated with an MCMC estimator

based on (Zn)n≥0 is denoted by MSEb:m := E

[
(MCMCb:m − π(h))

2
]
, where

MCMCb:m := (m− b+ 1)−1
∑m

l=b h(Zl) and where b− 1 denotes the number of
discarded iterations. We are particularly interested in the comparison between
IF[Hk:m], the inefficiency of the proposed estimator with parameters k,m, and
limm→∞ m×MSEb:m, the asymptotic inefficiency of the serial MCMC algorithm.
Both correspond to asymptotic variances when the computing budget goes to
infinity.

We first express the estimator Hk:m, for m ≥ k ≥ 0 as MCMCk:m + BCk:m,
where the bias correction term is

BCk:m :=

τ−1∑

n=k+1

min

(
1,

n− k

m− k + 1

)(
h(Zn)− h(Z̃n−1)

)
. (8)

Then Cauchy-Schwarz provides a relationship between the variance of Hk:m,
the MCMC mean squared error, and the second moment of the bias-correction
term:

V[Hk:m] ≤ MSEk:m + 2
√
MSEk:mE

[
BC2

k:m

]
+ E

[
BC2

k:m

]
. (9)

This relationship motivates the study of the second moment of BCk:m. The
following result shows that if the Markov chains are mixing well enough, in the
sense of the exponent α in the polynomial drift condition of Assumption 5 being
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close enough to one, then we can obtain a bound on E
[
BC2

k:m

]
which is explicit

in k and m. The proof can be found in Appendix A.3.

Proposition 1. Suppose that the marginal chain evolving according to P is
ψ-irreducible and that the assumptions of Theorem 2 hold for 5/6 < α ≤ 1 and
some measurable function V : Z → [1,∞), such that SV := {z : V (z) < ∞} �= ∅.
In addition assume that there exists a γ ∈ (1−α, 1) such that π(V 4γ) < ∞. Then
for any measurable function h : Z → R such that supz∈Z V (z)−α−γ+1|h(z)| <
∞, and any integers m ≥ k ≥ 0 we have that, for κ := 1/(1−α), and a constant
B < ∞,

E
[
BC2

k:m

]
≤ B

[
1

mκ/2−1
+

1

(m− k + 1)2
1

kκ/2−3

]
. (10)

The fact that a restriction on the exponent α has to be specified to control the
second moment of BCk:m is to be expected: we have already seen in the previous
section that such a restriction is also necessary to apply Theorem 2 to verify
Assumption 2 with an adequate exponent κ, which, in turn, leads to a finite
variance for Hk:m through Theorem 1. The specific condition 5/6 < α ≤ 1 could
perhaps be relaxed with a more refined technical analysis, thus we interpret the
condition qualitatively: the chains are allowed to satisfy only a polynomial drift
condition but it needs to be “close” enough to a geometric drift condition.

It follows from (9) and (10) that under the assumptions of Proposition 1, we
have

V[Hk:m] ≤ MSEk:m + 2
√
BMSEk:m

√
1

mκ/2−1
+

1

(m− k + 1)2
1

kκ/2−3

+B

[
1

mκ/2−1
+

1

(m− k + 1)2
1

kκ/2−3

]
. (11)

The variance of Hk:m is thus bounded by the mean squared error of an MCMC
estimator, and additive terms that vanish polynomially when k, m − k and m
increase. To compare the efficiency ofHk:m to that of MCMC estimators, we add
simplifying assumptions as in Jacob et al. (2020b). As k increases and form ≥ k,
we expect (m−k+1)MSEk:m to converge to V[(m−k+1)−1/2

∑m
t=k h (Zt)] :=

Vk,m as m → ∞, where Zk ∼ π. We will make the simplifying assumption that
MSEk:m ≈ Vk,m/(m − k + 1) for k large enough. As the condition 5/6 < α is
equivalent to κ > 6, E

[
BC2

k:m

]
will be negligible compared to the two other

terms appearing on the right hand side of (11), so we obtain the approximate
inequality

E[2(τ − 1)+max(1,m− τ + 1)]V[Hk:m] �
m

m− k + 1
Vk,m

+ 2m
√
BVk,m

√
1

(m− k + 1)mκ/2−1
+

1

(m− k + 1)3
1

kκ/2−3
,

where the cost of Hk:m is approximated by the cost of m calls to P . For the
left-hand side to be comparable to Vk,m, we can select m as a large multiple
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of k such that m/(m − k + 1) is close to one. The second term on the right-
hand side is then negligible as k increases, and we see that the polynomial index
determining the rate of decay is monotonic in κ.

2. Unbiased pseudo-marginal MCMC

2.1. Pseudo-marginal Metropolis–Hastings

The pseudo-marginal approach (Lin et al., 2000; Beaumont, 2003; Andrieu and
Roberts, 2009) generates Markov chains that target a distribution of interest,
while using only non-negative unbiased estimators of target density evaluations.
For concreteness we focus on target distributions that are posterior distributions
in a standard Bayesian framework. The likelihood function associated to data
y ∈ Y is denoted by θ �→ p(y|θ), and a prior density θ �→ p (θ) w.r.t. the
Lebesgue measure is assigned to an unknown parameter θ ∈ Θ ⊆ R

D. We
assume that we can compute a non-negative unbiased estimator of p(y|θ), for
all θ, denoted by p̂(y|θ, U) where U ∈ U ⊂ R

M are random variables such that
U ∼ mθ(du), where for any θ ∈ Θ,mθ denotes a Borel probability measure on U .
We assume that mθ(du) admits a density with respect to the Lebesgue measure
denoted by u �→ mθ(u). The random variables U represent variables required
in the construction of the unbiased estimator of p(y|θ). The pseudo-marginal
algorithm targets a distribution with density

(θ, u) �→ π(θ, u) = p(θ | y) p̂(y | θ, u)
p(y | θ) mθ (u) . (12)

The generated Markov chain (Zn)n≥0 takes values in Z = Θ× U . Since
∫
p̂(y |

θ, u)mθ (u) du = p(y|θ) for all θ, marginally π(θ) =
∫
π(θ, u)du = p(θ | y),

corresponding to the target of interest for the θ component of (Zn)n≥0. Sampling
from π(dθ, du) is achieved with an MH scheme, with proposal q (dθ′|θ)mθ′ (du′).
This results in an acceptance probability that simplifies to

αPM {(θ, p̂(y | θ, u)) , (θ′, p̂(y | θ′, u′))} := min

{
1,

p̂(y | θ′, u′)p(θ′)q (θ|θ′)
p̂(y | θ, u)p(θ)q (θ′|θ)

}
,

(13)
which does not involve any evaluation of u �→ mθ(u). Thus the algorithm pro-
ceeds exactly as a standard MH algorithm with proposal density q(θ′|θ), with the
difference that likelihood evaluations p(y|θ) are replaced by estimators p̂(y|θ, U)
with U ∼ mθ(·). The performance of the pseudo-marginal algorithm depends on
the likelihood estimator: lower variance estimators typically yield ergodic aver-
ages with lower asymptotic variance, but the cost of producing lower variance
estimators tends to be higher which leads to a trade-off analyzed in detail in
Doucet et al. (2015); Schmon et al. (2020).

In the following we will generically denote by gθ the distribution of p̂(y | θ, U)
when U ∼ mθ(·), and for notational simplicity, we might write p̂(y | θ) instead
of p̂(y | θ, U). The above description defines a Markov kernel P and we next
proceed to defining a coupled kernel P̄ , to be used for unbiased estimation as
in Algorithm 1.
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2.2. Coupled pseudo-marginal Metropolis–Hastings

To define a kernel P̄ that is marginally identical to P but jointly allows the chains
to meet, we proceed as follows, mimicking the coupled MH kernel in Algorithm 2.
First, the proposed parameters are sampled from a maximal coupling of the two
proposal distributions. If the two proposed parameters θ′ and θ̃′ are identical,
we sample a unique likelihood estimator p̂(y | θ′) ∼ gθ′ (·) and we use it in
the acceptance step of both chains. Otherwise, we sample two estimators, p̂(y |
θ′) ∼ gθ′ (·) and p̂(y | θ̃′) ∼ gθ̃′ (·). Denoting the two states of the chains at step

n ≥ 1 by (θn, p̂(y | θn)) and (θ̃n−1, p̂(y | θ̃n−1)), Algorithm 3 describes how to
obtain (θn+1, p̂(y | θn+1)) and (θ̃n, p̂(y | θ̃n)); thereby describing a kernel P̄ .

Algorithm 3 Sampling from the coupled pseudo-marginal MH kernel

given
{
(θn, p̂(y | θn)), (θ̃n−1, p̂(y | θ̃n−1))

}
.

1. Sample θ′ and θ̃′ from a maximal coupling of q (·|θn) and q(·|θ̃n−1).

2. If θ′ = θ̃′, then sample p̂(y | θ′) ∼ gθ′ (·) and set p̂(y | θ̃′) = p̂(y | θ′).
Otherwise sample p̂(y | θ′) ∼ gθ′ (·) and p̂(y | θ̃′) ∼ g

θ̃′
(·).

3. Sample u ∼ U [0, 1].

4. If u < αPM {(θn, p̂(y | θn)) , (θ′, p̂(y | θ′))} then set (θn+1, p̂(y | θn+1)) = (θ′, p̂(y | θ′)).
Otherwise, set (θn+1, p̂(y | θn+1)) = (θn, p̂(y | θn)).

5. If u < αPM

{
(θ̃n−1, p̂(y | θ̃n−1), (θ̃′, p̂(y | θ̃′))

}
then set (θ̃n, p̂(y | θ̃n)) = (θ̃′, p̂(y | θ̃′)).

Otherwise, set (θ̃n, p̂(y | θ̃n)) = (θ̃n−1, p̂(y | θ̃n−1)).

6. Return
{
(θn+1, p̂(y | θn+1)), (θ̃n, p̂(y | θ̃n))

}
.

In step 2. of Algorithm 3 the two likelihood estimators p̂(y | θ′) and p̂(y | θ̃′)
can be generated independently, as we will do below for simplicity. They can
also be sampled together in a way that induces positive correlations, for instance
using common random numbers and other methods described in Deligiannidis
et al. (2018); Jacob et al. (2020a). We leave the exploration of possible gains in
correlating likelihood estimators in that step as a future avenue of research. An
appealing aspect of Algorithm 3, particularly when using independent estima-
tors in step 2., is that existing implementation of likelihood estimators can be
readily used. In Section 4.2 we will exploit this by demonstrating the use of con-
trolled sequential Monte Carlo (Heng et al., 2020) in the proposed framework.
Likewise, one could explore the use of other advanced particle filters such as
sequential quasi Monte Carlo (Gerber and Chopin, 2015). To summarize, given
an existing implementation of a pseudo-marginal kernel, Algorithm 3 involves
only small modifications and the extra implementation of a maximal coupling
which itself is relatively simple following, for example, Jacob et al. (2020b).

Remark 1. It is worth remarking that the proposed coupling based on maxi-
mally coupling the proposals may be sub-optimal, especially in high-dimensional
problems where the overlap of the proposals may be quite small. In such cases
one may consider more sophisticated couplings, for example reflection couplings,
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see e.g. Bou-Rabee et al. (2018) for an application to Hamiltonian Monte Carlo;
see also Heng and Jacob (2019) and references therein.

2.3. Theoretical guarantees

We provide sufficient conditions to ensure that the coupled pseudo-marginal
algorithm returns unbiased estimators with finite variance and finite expected
computation time, i.e. sufficient conditions to satisfy the requirements of The-
orem 2 are provided. By introducing the parameterization w = p̂(y|θ, u)/p(y|θ)
and using the notation w ∼ ḡθ (·) when u ∼ mθ (·), we can rewrite the pseudo-
marginal kernel

P ((θ, w) , (dθ′, dw′)) = q (θ, θ′)ḡθ′ (w′)αPM {(θ, w) , (θ′, w′)} dθ′dw′

+ ̺PM (θ, w) δ(θ,w) (dθ
′, dw′) ,

where, in this parameterization, we write

αPM {(θ, w) , (θ′, w′)} = min

{
1,

π (θ′)

π (θ)

q(θ′, θ)

q(θ, θ′)

w′

w

}
,

and ̺PM (θ, w) is the corresponding rejection probability. We first make assump-
tions about the target and proposal densities.

Assumption 6. The target posterior density θ �→ π (θ) is strictly positive every-
where and continuously differentiable. Its tails are super-exponentially decaying
and have regular contours, that is,

lim
|θ|→∞

θ

|θ| .∇ log π (θ) = −∞, lim sup
|θ|→∞

θ

|θ| .
∇π (θ)

|∇π (θ)| < 0,

where |θ| denotes the Euclidean norm of θ. Moreover, the proposal distribution
satisfies q (θ,A) =

∫
A
q (θ′ − x) dθ′ with a bounded, symmetric density q that is

bounded away from zero on all compact sets.

We then make assumptions about the moments of the noise.

Assumption 7. There exist constants a′ > 0 and b′ > 1 such that

MW := ess supθ∈Θ

∫

R+

max
(
w−a′

, wb′
)
ḡθ(dw) < ∞,

where the essential supremum is taken with respect to the Lebesgue measure.
Additionally the family of distributions defined by the densities ḡθ is continuous
with respect to θ in the topology of weak convergence.

Both assumptions are used in Andrieu and Vihola (2015) to establish a drift
condition for the pseudo-marginal algorithm. Assumption 6 can be understood
as a condition on the ‘ideal’ algorithm, i.e. if the likelihood could be evaluated
exactly, and Assumption 7 ensures the likelihood estimate has neither too much
mass around zero nor in the tails. The following proposition follows from es-
tablishing minorization conditions for both the pseudo-marginal and coupled
pseudo-marginal kernels along with Andrieu and Vihola (2015, Theorem 38).
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Proposition 2. Under Assumptions 6 and 7 then Equations (5), (6) and (7)
hold for any χ ∈(0,min (1, a′)), a ∈ (χ, a′] and b ∈ (0, b′ − χ) for the drift
function defined as

V (θ, w) :=

{
sup
θ∈R

π (θ)

}χ

π−χ (θ)max(w−a, wb),

where α = 1 − 1/b and C = {(θ, w) ∈ Θ× R
+ : |θ| ≤ M,w ∈ [w,w]} for some

constants M ≥ 1, w ∈ (0, 1] and w > w. Additionally the minorization condi-
tions (3) and (4) hold for the same C and n0 = 1. Finally if ̺PM (θ, w) < 1 for

all θ, w and if for some θ ∈ B (0,M) we have
∫ w

w
ḡθ(w)wdw > 0 then Assump-

tions 4 and 5 hold with the same C for the kernel P̄ induced by Algorithm 3.

If the assumptions of Proposition 2 are satisfied for a′, b′ such that b′ −
min (1, a′) > 6 then, by application of Theorem 2, the coupling times exhibit
the required tail bounds of Assumption 2 with α > 5/6 – provided also π0 admits
a density with respect to π and is supported on a compact set. We note that
the uniform moments bounds of Assumption 7 might not be satisfied in many
non-compact parameter spaces. A weaker assumption allowing to satisfy the
polynomial drift condition is provided in Andrieu and Vihola (2015, Condition
44) and could be alternatively used here.

3. Experiments with coupled pseudo-marginal kernel

We next present two examples where we are able to verify the conditions guar-
anteeing the validity of the estimators.

3.1. Tails of meeting times in a toy experiment

We provide numerical experiments on the tails of the meeting time τ in a toy
example, to illustrate the transition from geometric to polynomial tails. The
target π is a bivariate Normal distribution N (μ, I), with μ = (1, 2) ∈ R

2 and
identity covariance matrix; the initial distribution π0 is uniform over the unit
square. Although we can evaluate θ �→ π(θ), in order to emulate the pseudo-
marginal setting, we assume instead we have access for each θ to an unbiased
estimator π̂(θ,W ) of π(θ), of the form π̂(θ,W ) = π(θ) ×W where W is a log-
Normal variable; that is logW ∼ N (−σ2/2, σ2) with σ calibrating the precision
of π̂(θ,W ) of π(θ). We consider a pseudo-marginal Metropolis–Hastings algo-
rithm with proposal distribution q(dθ′|θ) = N (dθ′; θ, I), and a coupled version
following Algorithm 3. Indeed, in this simplified setting we are able to verify
Assumptions 6 and 7 directly. We note that in the case σ = 0, we recover the
standard MCMC setting.

We draw R = 105 independent realizations of the meeting time for σ in a grid
of values {0, 0.5, 1, 1.5, 2}. We then approximate tail probabilities P(τ > n) by
empirical counterparts, for n between 1 and the 99.9% quantile of the meeting
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Fig 1: Tails of the meeting time P(τ > n) along n, approximated with 10,000
copies of the meeting times in the pseudo-marginal toy example of Section 3.1.
Left: y-axis in log-scale and x-axis in natural scale. Right: log-scale for both axes,
and restriction to n ≥ 20, in order to focus on the tails. Each line corresponds
to a different value of σ, which calibrates the amount of noise in the estimators
of target density evaluations.

times for each σ. The resulting estimates of P(τ > n) are plotted against n in
Figure 1a, where the y-axis is in log-scale. First note that in the case σ = 0,
logP(τ > n) seems to be bounded by a linear function of n, which would
correspond to P(τ > n) ≤ Kρn for some constants K < ∞ and ρ ∈ (0, 1). This
is indeed the expected behavior in the case of geometrically ergodic Markov
chains (Jacob et al., 2020b).

As σ increases, P(τ > n) decreases less rapidly as a function of n. To verify
whether P(τ > n) might be bounded byKn−κ (as our theoretical considerations
suggest), we plot P(τ > n) against n with both axes in log-scale in Figure 1b,
with a focus on the tails, with n ≥ 20. The figure confirms that logP(τ > n)
might indeed by upper bounded by κ log n, up to a constant offset, for large
enough values of n. The figure suggests also that in this case κ decreases with σ.

3.2. Beta-Bernoulli model

3.2.1. Model description

We consider here a random effect model such that, for t = 1, . . . , T ,

Xt
i.i.d.∼ fθ(·), Yt|{Xt = x} ∼ gθ(·|x). (14)

The likelihood of data y = (y1, . . . , yT ) is of the form p(y|θ) =
∏T

t=1 p(yt|θ)
where p(yt|θ) =

∫
fθ(dx)gθ(yt|x) and the likelihood estimator is given by

p̂(y|θ) = ∏T
t=1 p̂(yt|θ), where {p̂(yt|θ)}t=1,...,T are T independent non-negative

unbiased likelihood estimators of {p(yt|θ)}t=1,...,T . These are importance sam-
pling estimators using a proposal qθ(x|y) detailed below.
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We focus on a Beta-Bernoulli model in which the likelihood is tractable; the
latent states xt ∈ X = [0, 1] and observations yt ∈ {0, 1} are such that

fθ(xt) = Beta(xt;α, β), g(yt|xt) = xyt

t (1− xt)
1−yt ,

where Beta(x;α, β) = B(α, β)−1xα−1(1 − x)β−1 and B(α, β) denotes the Beta
function.

The marginal likelihood of a single observation is given by

p(yt|θ) = αytβ1−yt/(α+ β), (15)

and therefore the full marginal likelihood is

p(y1, . . . , yT |θ) =
αT ′

βT−T ′

(α+ β)T
, T ′ =

T∑

t=1

1[yt = 1].

Since the likelihood is uniquely determined by the ratio β/α, we fix α > 0
and thus our parameter is given by θ = β. We allow β to vary in the interval
β ∈ Θ = [β, β] bounded away from 0 and ∞.

We consider likelihood estimator employing the following importance pro-
posal,

qθ(xt|yt) =
{
Beta (xt; 1 + α, β(1 + ǫ)) if yt = 1,

Beta (xt;α(1 + ǫ), 1 + β) if yt = 0.

Recall that Assumption 6 was introduced in Jarner and Hansen (2000) where
it was shown to imply geometric ergodicity of random walk Metropolis. In the
present scenario, the state space Θ of the marginal algorithm is compact, whence
we easily obtain that the marginal random walk Metropolis algorithm is even
uniformly ergodic, see for example (Douc et al., 2018, Example 15.3.2).

To establish Assumption 7, we need to bound moments of w = p̂(yt|θ)/p(yt|θ)
where

E [wc] =

T∏

t=1

E

[(
p̂(yt|θ)
p(yt|θ)

)c]
, p̂(yt|θ) =

1

N

N∑

i=1

ω(Xi
t , yt),

ω(xt, yt) =
g(yt|xt)fθ(xt)

qθ(xt|yt)

for c > 0 with Xi
t
i.i.d.∼ qθ(·|yt) for i = 1, . . . , N . We have p(yt = 1|θ) = α/(α+β)

and p(yt = 0|θ) = β/(α+ β), thus with ω̄(x, yt) := ω(x, yt)/p(yt|θ) we obtain

ω̄(x, yt = 1) ∝ (1− x)−εβ , ω̄(x, yt = 0) ∝ x−αε.

We see that supx∈X ω̄(x, y1) = ∞ suggesting that the associated pseudo-
marginal algorithm is not geometrically ergodic; see Andrieu and Vihola (2015,
Remark 34). Despite this, we have limǫ→0 ω̄(x, yt) = 1 for any α, β > 0 and
x ∈ (0, 1). The next proposition, proven in Section A.5 in the appendices, verifies
Assumption 7.
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Proposition 3. For any ǫ > 0 and y ∈ {0, 1}, there exists 1 < b′ < 1 + ǫ−1

such that

sup
θ∈Θ

Eqθ

[
ω̄(X, y)b

′
]
< ∞ and sup

θ∈Θ
Eqθ

[
ω̄(X, y)−a′

]
< ∞,

for any a′ > 0. Moreover, for any b′ > 1, there exists ǫ sufficiently small such
that

sup
θ∈Θ

Eqθ

[
ω̄(X, yt)

b′
]
< ∞.

Through inspection of Proposition 2 we see that for any χ ∈ (0, 1) we obtain
κ = (1 − α)−1 ∈ (0, b′ − χ). Essentially higher, uniformly bounded, moments
of the weights translate to higher moments for the meeting time, and therefore
tighter polynomial bounds for the tail of τ . As a result we understand the latter
part of the proposition qualitatively, in that the better the proposal the more
moments of the meeting time are bounded and as such the lighter the tail of
the meeting time.

3.2.2. Experiments

We simulated T = 100 observations with α = 1 and β = 2. We set a uniform
prior on β on the interval [0.1, 10.0].

We ran 100,000 independent coupled pseudo-marginal algorithms with a ran-
dom walk proposal with standard deviation 2, employing the maximal coupling
between proposals, as in Algorithm 3. Figure 2a shows the plot of the (unnor-
malised) posterior distribution and contrasts this to the prior. The distribution
of the meeting times was examined for N = 10 and ǫ ∈ {2−1, 2−2, 2−3, 0}, with
ǫ = 0 corresponding to the exact algorithm where the likelihood is evaluated
exactly. The variance of the log-likelihood estimator for θ = {β} at its true value
was estimated to be {1.9, 0.4, 0.1, 0} for each of these values respectively, from
1,000 independent likelihood estimators.

The resulting tail probability P(τ > n) was examined for the coupling algo-
rithm and is displayed on a log-log scale in Figure 2b. In addition to plotting
the tail probabilities in Figure 2b, we also plot polynomials of the form Cn−κ′

which appear to bound each of the experiments in an attempt to estimate the
the true index of the tail P(τ > n). For the value of ǫ = 2−3, corresponding
to the green line, the meeting times appear to be bounded by C = 2 · 106 and
κ′ = 6, therefore guaranteeing that the resulting estimators have finite variance,
as per Proposition 1. The remaining polynomials for ǫ ∈ {2−1, 2−2} had values
80n−2 and 2 · 103n−3.5 respectively. In all cases, the exponent is smaller in ab-
solute value than 1 + ǫ−1, the bound predicted by Proposition 3, noting that
κ < b′ < 1 + ǫ−1.

4. Experiments in state space models

State space models are a popular class of time series models. These latent vari-
able models are defined by an unobserved Markov process (Xt)t≥0 and an ob-
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Fig 2: Beta-Bernoulli model. Left: Plots of the prior and posterior distribution
of paramter β. Right: Plots of the tail probability P(τ > n) for a range of values
of ǫ. Dotted lines show bounding polynomials of the form Cn−κ′

for each of the
values of ǫ.

servation process (Yt)t≥1 where the observations are conditionally independent
given (Xt)t≥0 with

X0 ∼ μθ(·), Xt|{Xt−1 = x} ∼ fθ(·|x), Yt|{Xt = x} ∼ gθ(·|x), (16)

where θ parameterizes the distributions μθ, fθ and gθ (termed the ‘initial’,
‘transition’ and ‘observation’ distribution respectively). Given a realization of
the observations Y1:T = y1:T , we are interested in performing Bayesian infer-
ence on the parameter θ to which we assign a prior density p(θ). The pos-
terior density of interest is thus π (θ) ∝ p(θ)p(y1:T |θ) where the likelihood

p(y1:T |θ) =
∫
μθ(dx0)

∏T
t=1 fθ(dxt|xt−1)gθ(yt|xt) is usually intractable. It is

possible to obtain a non-negative unbiased estimator p̂(y|θ, u) of p(y|θ) using
particle filtering where here u represents all the random variables simulated
during the run of a particle filter. The resulting pseudo-marginal algorithm is
known as the particle marginal MH algorithm (PMMH) (Andrieu et al., 2010).
This algorithm can also be easily modified to perform unbiased smoothing for
state inference and is an alternative to existing methods in Jacob et al. (2020a).
Guidelines on the selection of the number of particle in this context are provided
in Middleton et al. (2019). For state-space models, it is unfortunately extremely
difficult to check that Assumptions 6 and 7 are verified.

4.1. Linear Gaussian state space model

The following experiments explore the proposed unbiased estimators in a linear
Gaussian state space model where the likelihood can be evaluated exactly. This
allows a comparison between the pseudo-marginal kernels, that use bootstrap
particle filters (Gordon et al., 1993) with N particles to estimate the likelihood,
and the ideal kernels that use exact likelihood evaluations obtained with Kalman
filters. We assume X0 ∼ N (0, 1), Xt|{Xt−1 = x} ∼ N (ax, σ2

X) and Yt|{Xt =
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x} ∼ N (x, 1) where a and σX are assigned prior distributions, a ∼ U [0, 1] and
σX ∼ Γ(2, 2).

4.1.1. Effect of the number of particles

A dataset of T = 100 observations was generated from the model with param-
eters a = 0.5 and σX = 1. We study how the meeting times and the efficiency
vary as a function of N , the number of particles. We set the initial distribution
to U [0, 1] over a and U [0, 5] over σX , and the proposal covariance of the Normal
random walk proposals to 0.22I, corresponding to acceptance rate for the exact
algorithm of approximately 36.6%. In the following we consider a grid of values
for the number of particles, varying N between 50 and 250.

We estimate large quantiles of the distribution of the meeting time over 20,000
repetitions of coupled PMMH, with the results shown in Figure 3a. As expected,
increasingN generally reduces the meeting time at the cost of more computation
per iteration.

We examine IF[Hk:m], as defined in Section 1.5, for the proposed unbiased
estimators with h : x �→ x1 + x2 + x2

1 + x2
2, for each of these values of N and

consider three cases for k and m, in particular

(k,m) ∈ {(250, 500), (250, 1000), (750, 1000)}

corresponding to the following: (1) a smaller value of m− k, (2) a larger value
of m− k and (3) a smaller value of m− k with a more conservative choice of k.
Estimates of IF[Hk:m] were obtained using 20,000 repetitions of coupled PMMH
where for each value of (k,m) estimators were obtained using a single realisation
of the largest value of m = 1,000 using 30 cores of an Intel Xeon CPU E5-4657L
2.40 GHz, taking approximately 60 hours in total.

The results are plotted in Figure 3b where we plot also the inefficiency of es-
timators obtained using coupled Metropolis-Hastings (horizontal line) for (k,m)
as in case (2). We see first of all that the inefficiency is reduced by increasing
N in all cases, and that the inefficiency of estimators obtained using coupled
PMMH asymptotes over this range of N towards the inefficiency of estima-
tors obtained using coupled Metropolis-Hastings for N increasing. We also see
that for case (3) that the larger value of k can ameliorate the efficiency of the
estimators for small numbers of particles.

We also examine the inefficiency weighted by the cost of obtaining each es-
timator, i.e. N IF[Hk:m], and compare this to the inefficiency of the serial al-
gorithm using NVas, with the notation of Section 1. Here, Vas was estimated
using the spectrum0.ar function in R’s CODA package (Plummer et al., 2006),
averaging over 10 estimators obtained through running the serial algorithm for
500,000 iterations and discarding the first 10% as burn-in. Figure 4 shows the
results of this procedure, showing ±2 sample standard errors for the inefficiency
estimates. Figure 4a demonstrates that despite the lower cost of obtaining un-
biased estimators for lower values of N , the initial decline in inefficiency is
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still significant. In Figure 4b we show the same results though with a focus
around the optimum inefficiency. Here, we see that the optimum is attained at
N = 100 with value NVas = 640 for the serial algorithm and at N = 150 with
N IF[Hk:m] = 980 for case (2). Therefore, we see that the increase in inefficiency
is estimated to be under 55% relative to a well-tuned serial algorithm for the
values considered. Indeed, for this particular batch of N = 150 and m = 1,000,
the parallel execution time to obtain the estimators Hk:m on the stated ma-
chine was under 14 hours, which we compare to approximately 12 days of serial
execution time if performed all on a single core (the mean time to obtain an esti-
mator was 53 seconds) or 8 days after accounting for the increase in inefficiency
of 55%.

Fig 3: Coupled PMMH meeting times and inefficiency of estimators for a lin-
ear Gaussian state space model with T = 100 observations and over a range
of particles, N . Left: estimates of the quantiles of the meeting times. Right:
inefficiencies for serial PMMH as a function of N , compared to the inefficiency
of unbiased estimators obtained using coupled MH.

Fig 4: Inefficiencies weighted by N for a linear Gaussian state space model,
comparing directly the inefficiency of estimators obtained using the serial al-
gorithm to those obtained using coupled PMMH. Left: inefficiencies weighted
by N . Right: inefficiencies weighted by N close to their optima.
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4.1.2. Effect of the time horizon

We investigate the distribution of meeting times as a function of T , with N scal-
ing linearly with T . Such a scaling is motivated through the guarantee that the
variance of the log-likelihood estimates obtained at each iteration are asymp-
totically constant (Bérard et al., 2014; Deligiannidis et al., 2018; Schmon et al.,
2020). For the model as before, we consider a grid of T ∈ {100, . . . , 1000}, using
a single realisation of the data. Throughout the following, we fix the proposal co-

variance to be 22

T I, coinciding with the proposal covariance in 4.1.1 for T = 100,
providing an acceptable acceptance rate for the exact algorithm and where 1/T
is motivated as a result of the variance of the posterior contracting at a rate
proportional to 1/T .

We consider two cases. Firstly, we examine how the distribution of meeting
time changes for a fixed initial distribution (the distribution used previously
of U [0, 1] over a and U [0, 5] over σX); we refer to this as Scaling 1. Secondly,
for Scaling 2, we examine how the distribution of meeting times changes if
we also scale the initial distribution by setting π0 = N (μ∗, 50

T I), truncated to
ensure it is dominated by the prior and where μ∗ denotes the true parameter
values.

In both cases we compare the distribution of meeting times for N = T with
the distribution of meeting times for the exact algorithm (i.e. P̄ as in Algo-
rithm 2) with likelihood evaluations performed using the Kalman filter. Fig-
ure 5a and 5b show estimates of the 80th and 99th percentile over 1,000 repeti-
tions for Scaling 1 and Scaling 2 respectively. Firstly, it can be seen that in all
cases the meeting times for coupled PMMH are higher than the meeting times
for coupled MH. Furthermore the smaller difference between the 80th percentiles,
compared to the difference between the 99th percentiles, reflects a heavier tail
of the distribution of the meeting time in the case of PMMH. Finally, it can be
seen that out of the two scalings Scaling 2 appears to stabilise for larger values
of T whereas Scaling 1 exhibits an increase with T .

Fig 5: Scaling quantiles of meeting times with T over 1,000 repetitions. Left:
fixing the initial distribution and scaling the proposals (Scaling 1). Right: scaling
both the proposals and the initial distribution (Scaling 2).
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4.2. Neuroscience experiment

We apply the proposed methodology to a neuroscience experiment described in
Temereanca et al. (2008). The same data and model were used to illustrate the
controlled Sequential Monte Carlo (cSMC) algorithm in Heng et al. (2020).

4.2.1. Model, data and target distribution

The model aims at capturing the activation of neurons of rats as their whiskers
are being moved with a periodic stimulus. The experiment involves M = 50 re-
peated experiments, and T = 3000 measurements (one per millisecond) during
each experiment. The activation of a neuron is recorded as a binary variable
for each time and each experiment. These activation variables are then aggre-
gated by summing over the M experiments at each time step, yielding a series
of variables Yt taking values between 0 and M ; see Zhang et al. (2018) for an al-
ternative analysis that avoids aggregating over experiments. Letting Bin(·;n, p)
denote the binomial distribution for n trials with success probability p, the
model for neuron activation is given by X0 ∼ N (0, 1) and, for t ≥ 1,

Xt|{Xt−1 = x} ∼ N (·; ax, σ2
X), Yt|{Xt = x} ∼ Bin(·;M, s(x))

where s(x) := (1+exp(−s))−1. We focus on the task of estimating (a, σ2
X) from

the data using the proposed method. Following Heng et al. (2020) we specify
a uniform prior on [0, 1] for a and an inverse-Gamma prior on σ2

X with pa-
rameters (1, 0.1), where the probability density function of an inverse-Gamma
with parameters (a, b) is x �→ Γ(a)−1bax−a−1 exp(−b/x). The PMMH kernels
employed below use a Gaussian random walk proposal. The likelihood is esti-
mated with cSMC with N = 128 particles and 3 iterations, where the exact
specification is taken from the appendix of Heng et al. (2020). Such cSMC runs
take approximately one second, on a 2015 desktop computer and a simple R
implementation. Figure 6 presents the time series of observations (6a) and the
estimated log-posterior density (6b), obtained on a 500× 500 grid of parameter
values, and one cSMC likelihood estimate per parameter value. In Figure 6b,
the upper right corner presents small black circles, generated by the contour
plot function, which indicate high variance in the likelihood estimators for these
parameters. Thus we expect PMMH chains to have a lower acceptance rate in
that part of the space. On the other hand, the maximum likelihood estimate
(MLE) is indicated by a black dot on the bottom right corner. The variance
of the log-likelihood estimators is of the order of 0.2 around the MLE, so that
PMMH chains are expected to perform well there, as was observed in Heng et al.
(2020) where the chains were initialized close to the MLE.

4.2.2. Standard deviation of the proposal

Here, we initialize the chains from a uniform distribution on [0, 1]2, and we
investigate two choices of standard deviation for the random walk proposals:
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Fig 6: Left: counts of neuron activation in 50 experiments, over a duration of
three seconds. Right: estimated log-posterior density in the neuroscience exper-
iment of Section 4.2.

the one used in Heng et al. (2020), that is 0.002 for a and 0.01 for σ2
X , and

another choice equal to 0.01 for a and 0.05 for σ2
X , i.e. five times larger. For

each choice, we can run pairs of chains until they meet and record the meeting
time; we can do so on P processors in parallel (e.g. hundreds), and for a certain
duration (e.g. a few hours). Thus the number of meeting times produced by
each processor is a random variable. Following Glynn and Heidelberger (1990),
if no meeting time was produced by a processor within the time budget, the
computation continues until one meeting time is produced, otherwise on-going
calculations are interrupted when the budget is reached. This allows unbiased
estimation of functions of the meeting time on each processor via Corollary 7 of
Glynn and Heidelberger (1990), and then we can average across processors. In
particular we use this strategy to produce all histograms in the present section,
as in Figure 7.

We observe that the meeting times are significatively larger when using the
smaller standard deviation (7a), with a maximum value of 21, 570 over 1565 re-
alizations. With the larger choice of standard deviation (7b), we observe shorter
meeting times, with a maximum of 928 over 5572 realizations. This suggests
that the values of k and m should be chosen very differently in both cases.

To explain this difference we investigate the realization of the coupled chains
that led to the largest meeting time of 21, 570, in Figure 8. Figure 8a presents the
trajectories of two chains overlaid with contours of the target density function.
The chains seem to follow approximately the gradient of the density. Given the
shape of this density, it means that small starting values for component a result
in the chains going to the region of high variance of the likelihood estimator,
in the top right corner of the plot. The marginal trace plots of one of the two
chains are shown in 8b. From the trace plots we see that most of the 21, 570
iterations have been spent in that top right corner, where the chain got stuck,
approximately between iterations 2,000 and 20,000. The overall acceptance rate
is of 6% for that chain, compared to 39% for the other chain shown in 8a.
Therefore the use of a larger proposal standard deviation seems to have a very
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Fig 7: Histograms of meeting times associated with coupled PMMH chains,
obtained with a standard deviation of the random walk proposal of 0.002 for
a and 0.01 for σ2

X on the left, and with a larger standard deviation (0.01 on a
and 0.05 on σ2

X) on the right. In both cases, the likelihood was estimated with
controlled SMC, with N = 128 particles, I = 3 iterations, in the neuroscience
model of Section 4.2.

noticeable effect here on the ability of the Markov chain to escape a region of
high variance of the likelihood estimator.

4.2.3. Comparison with PMMH using bootstrap particle filters

We use the larger choice of standard deviation (0.01 on a and 0.05 on σ2
X)

hereafter, and compare meeting times obtained with cSMC with those obtained
with bootstrap particle filters, with N = 4,096 particles. This number is chosen
so that the compute times are comparable. Over 23 hours of compute time, the
number of meeting times obtained per processor varied between 4 and 35, and
a total of 7,776 meeting times were obtained from 400 processors. The meeting
times are plotted against the duration it took to produce them in Figure 9a.
The compute time associated with meeting times is not only proportional to
the meeting times themselves, but also varies across processors. This is partly
due to hardware heterogeneity across processors, and to concurrent tasks being
executed on the cluster during our experiments. The histogram in Figure 9b
shows that meeting times are larger, and heavier tailed, than when using cSMC
(see Figure 7b). The maximum observed value is 9,371. From these plots, we see
that to produce unbiased estimators Hk:m using BPF with a similar variance as
when using cSMC, we would have to choose larger values of k and m, and thus
the cost per estimator would likely be higher.

4.2.4. Efficiency compared to the serial algorithm

Using cSMC and the larger choice of standard deviation for the proposal, we
produce unbiased estimators Hk:m with k = 1,000 and m = 10,000. We run 100
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Fig 8: Traces of the chains corresponding to the largest observed meeting time
(21,570) obtained with a small standard deviation of the random walk proposal
(0.002 for a and 0.01 for σ2

X), in form of a two-dimensional trajectory on the
left, and trace plots of one of the two chains on the right. The likelihood is
estimated with controlled SMC, with N = 128 particles, I = 3 iterations, in the
neuroscience experiment of Section 4.2.

Fig 9: Left: duration (in hours) versus meeting times, using BPF with N =
4,096 particles. Each color corresponds to a different processor. Right: estimated
histogram of the meeting times, in the neuroscience experiment of Section 4.2.

processors for a time budget of 23 hours, and each processor produced between
2 and 9 estimators, for a total of 578 estimators. The generation of samples for
each processor is represented chronologically in Figure 10a. The variation among
durations is due to the randomness of meeting times and also to external factors
such as concurrent tasks being executed on the cluster. We produce histograms
of the posterior marginals in Figure 10b, with the result from a long run of
PMMH with cSMC (250,000 iterations) overlaid in red lines.

We compute the loss of efficiency incurred by debiasing the PMMH chain
with the proposed estimators. We consider the test function h : x �→ x1 + x2 +
x2
1 + x2

2. Along the PMMH chain of length nmcmc = 250,000, after a burn-in of
nburnin = 10,000 steps, and using the spectrum0 function of the CODA package,
we find the asymptotic variance associated with h to be Vas = 7.53 · 10−3. If we
measure computing cost in terms of MCMC iterations, we obtain an inefficiency



Unbiased MCMC for intractable target distributions 2867

Fig 10: Left: start and end time for the calculation of unbiased estimators on
100 parallel processors, for a budget of 23 hours (dashed line), with cSMC,
N = 128 particles, I = 3 iterations and k = 1,000, m = 10,000. Right: estimated
histograms of both parameters a and σ2

X ; the red lines correspond to estimates
obtained with 250,000 iterations of PMMH and discarding the first 10,000 as
burn-in; this is for the neuroscience experiment of Section 4.2.

of nmcmc × Vas/(nmcmc − nburnin) ≈ 7.84 · 10−3. With the unbiased estimators
Hk:m, if the cost of an estimator is 2(τ−1)+max(1,m+1−τ), then the average
cost per processor is 59,860. The empirical variance of the unbiased estimators
obtained per processor is equal to 1.4 · 10−7, thus we obtain an inefficiency of
59860× 1.4 · 10−7 ≈ 8.4 · 10−3. This inefficiency is slightly above 7.84 · 10−3.

Next, we parameterize cost in terms of time (in seconds) instead of number of
MCMC steps. This accounts for the fact that running jobs on a cluster involve
heterogeneous hardware and concurrent tasks. The serial PMMH algorithm was
run on a desktop computer for 169, 952 seconds and thus the inefficiency might
be measured as 169, 952 × Vas/(nmcmc − nburnin) ≈ 5.3 · 10−3. Note that each
iteration took less than a second on average, because parameter values proposed
outside of the support of the prior were rejected before running a particle filter;
on the other hand the cost of a cSMC run is above one second on average. For
the proposed estimators, the budget was set to 23 hours and we obtained a
variance across processors of 1.4 · 10−7; thus we can compute the inefficiency as
1.16 ·10−2, which is approximately twice the inefficiency of the serial algorithm.

5. Methodological extensions

The following provides two further examples of coupled MCMC algorithms to
perform inference when the likelihood function is intractable. The associated
estimators are not covered by our theoretical results.

5.1. Block pseudo-marginal method

Block pseudo-marginal methods have demonstrated significant computational
savings for Bayesian inference for random effects models over standard pseudo-
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marginal methods (Tran et al., 2016). Such methods proceed through introduc-
ing strong positive correlation between the current likelihood estimate p̂(y|θ)
and the likelihood estimate of the proposed parameter p̂(y|θ′) through only
modifying a subset of the auxiliary variables used to obtain the likelihood esti-
mate at each iteration. We here demonstrate the computational benefits of such
a scheme in obtaining unbiased estimators of posterior expectations.

We focus here on random effects models, as defined in Section 3.2.1. We re-
call that the likelihood estimate is given by p̂(y|θ, U) =

∏T
t=1 p̂(yt|θ, Ut), where

{p̂(yt|θ, U t)}t=1,...,T are T independent non-negative unbiased likelihood esti-
mates of {p(yt|θ)}t=1,...,T when Ut ∼ mt(·). In the following, we provide a mi-
nor modification of the blocking strategy proposed in Tran et al. (2016), where
instead of jointly proposing a new parameter and a single block of auxiliary
random variables, a parameter update is performed, followed by sequentially it-
erating through the auxiliary random variables used to construct the likelihood
estimate of observation t. For each data t, new values are proposed according
to U ′

t ∼ mt(·) and accepted with probability

αBPM,t {p̂(yt | θ, Ut), p̂(yt|θ, U ′
t)} = min

{
1,

p̂(yt|θ, U ′
t)

p̂(yt|θ, U t)

}
. (17)

As remarked in Tran et al. (2016), such blocking strategies are generally not
applicable to particle filter inference in state space models, whereby likelihood
estimates for observation t typically depend on all auxiliary random variables
generated up to and including t. We provide pseudo-code for the proposed block-
ing strategy in Algorithm 4. We denote by Ut,n the set of auxiliary variables Ut

at iteration n.

Algorithm 4 Sampling from the block pseudo-marginal kernel given(
θn−1, (Ut,n−1)t≥1

)

1. Sample θ′ ∼ q (·|θn−1) and compute p̂(yt | θ′, Ut,n−1) for t = 1, . . . , T .

2. With probability αPM

{
(θn−1,

∏T
t=1

p̂(yt | θn−1, Ut,n−1)), (θ′,
∏T

t=1
p̂(yt | θ′, Ut,n−1))

}
,

set θn = θ′. Otherwise, set θn = θn−1.

3. For t = 1, . . . , T

(a) Sample U ′

t ∼ mt (·).

(b) With probability αBPM,t {p̂(yt | θn, Ut,n−1), p̂(yt | θn, U ′

t)}, set Ut,n = U ′

t. Other-
wise, set Ut,n = Ut,n−1.

5.1.1. Coupled block pseudo-marginal method

An algorithm to couple two block pseudo-marginal algorithms to construct un-
biased estimators Hk:m is provided in Algorithm 5. Denoting the two states of
the chains at step n ≥ 1 by (θn, (Ut,n)t≥1

) and (θ̃n−1, (Ũt,n−1)t≥1
), Algorithm 5

describes how to obtain (θn+1, (Ut,n+1)t≥1
) and (θ̃n, (Ũt,n)t≥1

); thus it describes
a kernel P̄ .
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Algorithm 5 Sampling from the coupled block pseudo-marginal kernel

given (θn, (Ut,n)t≥1
, θ̃n−1, (Ũt,n−1)t≥1

)

1. Sample (θ′, θ̃′) from the maximal coupling of q (·|θn) and q(·|θ̃n−1).

2. Compute p̂(yt | θ′, Ut,n) and p̂(yt | θ̃′, Ũt,n−1) for t = 1, . . . , T .

3. Sample u ∼ U [0, 1].

4. If u < αPM

{(
θn,
∏T

t=1
p̂(yt | θn, Ut,n)

)
, (θ′,

∏T
t=1

p̂(yt | θ′, Ut,n))
}
then set θn+1 = θ′.

Otherwise, set θn+1 = θn.

5. If u < αPM

{
(θ̃n−1,

∏T
t=1

p̂(yt | θ̃n−1, Ũt,n−1)), (θ̃′,
∏T

t=1
p̂(yt|θ̃′, Ũt,n−1))

}
then set

θ̃n = θ̃′. Otherwise, set θ̃n = θ̃n−1.

6. For t = 1, . . . , T

(a) Sample U ′

t ∼ mt(·).

(b) Sample u ∼ U [0, 1].

(c) If u < αBPM,t {p̂(yt | θn+1, Ut,n), p̂(yt | θn+1, U
′

t)} then set Ut,n+1 = U ′

t. Other-
wise, set Ut,n+1 = Ut,n.

(d) If u < αBPM,t

{
p̂(yt | θ̃n, Ũt,n−1), p̂(yt | θ̃n, U ′

t)
}

then set Ũt,n = U ′

t. Otherwise,

set Ũt,n = Ũt,n−1.

5.1.2. Bayesian multivariate probit regression

The following demonstrates the proposed algorithm for a latent variable model
applied to polling data and explores the possible gains when compared to the
unbiased estimators obtained using the coupled pseudo-marginal algorithm. The
data consists of polling data collected between February 2014 and June 2017 as
part of the British Election Study (Fieldhouse et al., 2018). We use a multivari-
ate probit model, which for i ∈ {1, . . . , T} and j ∈ {1, 2, 3} can be expressed
as Xij = β′ζij + ǫij and Yij = 1[Xij > 0] for observed binary response Yij ,
latent state Xij and where i indexes the ith participant, j indexes the jth wave
of questions, β is a vector of regression coefficients (including an intercept) and
ζij is a vector of independent variables.

We use a random sample of T = 2,000 participants over three waves (one a
year) in the run up to the United Kingdom’s European Union membership ref-
erendum on 23rd June 2016, regressing the binary outcome asking participants
how they would vote in an EU referendum against how they perceive the general
economic situation in the UK has changed over the previous 12 months (graded
1–5, with 1=‘Got a lot worse’, 5=‘Got a lot better’). A detailed description of
the data is provided in Appendix A.6.

We allow for correlations between waves through modelling the perturba-
tions (ǫi1, ǫi2, ǫi3) ∼ N (0,Σρ) with a generic correlation matrix Σρ. In total,
we have five unknown parameters θ = (β1, β2, ρ2,1, ρ3,1, ρ3,2), with β1 denot-
ing a regressor coefficient, β2 a constant offset and ρs,t element (s, t) of Σρ.

We place independent priors on each parameter with β1, β2
i.i.d.∼ N (0, 102) and
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ρs,t
i.i.d.∼ U [−1, 1], where we additionally truncate the prior on Σρ to ensure

support only on the manifold of positive definite matrices.

Inference For each observation yi := (yi1, yi2, yi3), we obtain unbiased esti-
mates of the likelihood of θ using the sequential importance sampling algorithm
of Geweke, Hajivassiliou and Keane; see, e.g., Train (2009, 5.6.3) and references
therein. We set the initial distribution π0 = N (μ̂, 0.012I), supported only on
areas of positive mass under the prior (we employ a simple rejection sampling
algorithm to sample Σρ initially) and use a Normal random walk proposal with

covariance set to 2.382

5 Σ̂, see Roberts et al. (1997), following where μ̂ and Σ̂ are
an empirical estimate of the posterior mean and covariance on a preliminary
run of 10,000 iterations of block pseudo-marginal with N = 40 discarding the
first 10% as burn-in.

We compare coupled block pseudo-marginal with coupled pseudo-marginal.
We examine values of N for the latter that are close to the optimal value of
N for the serial algorithm, estimated through ensuring the variance of the log-
likelihood estimates is between 1 and 2, as per the guidance in Doucet et al.
(2015). In this case we consider N ∈ {600, 700, 800}, providing a corresponding
variance of the log-likelihood estimates given by {1.67, 1.40, 1.25} (estimated
using 10,000 likelihood estimates at μ̂). For the block pseudo-marginal algorithm
we consider N ∈ {5, 10, 20}.

Meeting times Both algorithms were run continuously until coupling for
half an hour each on a 48 CPU Intel Xeon 2.4 GHz E5-4657L server, with
the number of estimators produced for block pseudo-marginal varying between
2,000 and 4,000 for the values of N considered and between 160 and 180 for
the pseudo-marginal. The meeting times are plotted in Figure 11a, where it can
be seen that despite the lower cost of the block pseudo-marginal algorithm the
absolute values of the meeting times are comparable across algorithms.

Accordingly, we also plot the distribution of meeting times accounting for the
cost of running each algorithm, i.e. Nτ for the pseudo-marginal algorithm and
2Nτ for the block pseudo-marginal algorithm. The additional factor of 2 for the
latter can be seen as an upper bound on the additional computational cost of
the block pseudo-marginal algorithm, assuming twice the density evaluations per
complete iteration and less than twice the number of pseudo-random numbers
generated. Figure 11b shows the results of this additional cost-weighting where
it can be seen that meeting times are between 1 and 2 orders of magnitude
larger for the pseudo-marginal over the block pseudo-marginal algorithm.

Variance of estimators We estimate the increase in inefficiency of the cou-
pled over the serial algorithm for N = 10, k = 500 and m = 5,000; the choice of
k is guided by the meeting times in Figure 11a. Running coupled block pseudo-
marginal 200 times, we estimate the variance using the test function h : x �→∑

i(xi+x2
i ) to be 1.05 ·10−5. Estimating the cost of 2(τ−1)+max(1,m+1−τ)

to be 5121, implies an inefficiency of 5.36 · 10−2. In comparison, we estimate
the inefficiency of the serial algorithm using spectrum0.ar as before on runs
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Fig 11: Meeting times for coupled block pseudo-marginal and coupled pseudo-
marginal algorithms. Left: raw meeting times for the two algorithms. Right:
meeting times weighted by cost for the two algorithms, i.e. τN for coupled
pseudo-marginal and 2τN for coupled block pseudo-marginal.

of length 125,000 (discarding 10% as burn-in and averaging over 20 estimators)
to be nmcmc × Vas/(nmcmc − nburnin) = 4.82 · 10−2 suggesting an increase in
inefficiency of 11% for the unbiased estimators.

Finally, we compare the inefficiency of unbiased estimators generated with
coupled block pseudo-marginal kernels with those produced using standard cou-
pled pseudo-marginal kernels with NPM = 700 particles. For coupled pseudo-
marginal, the variance of the unbiased estimator was estimated to be 1.53 ·10−5

and the expected cost was estimated to be 5147, implying an inefficiency of
7.86 · 10−2. As a result we estimate the improvement of inefficiency for the cou-

pled block pseudo-marginal by NPM

2N × 7.86·10−2

5.36·10−2 to be approximately 51 times.
Estimation of the asymptotic variance of the serial pseudo-marginal algorithm
was computationally infeasible for this many particles, with a single iteration
taking on average six seconds on the aforementioned server, hence the choice of
N motivated by the guidance in Doucet et al. (2015) instead.

5.2. Exchange algorithm

Problems where the likelihood function is only known only up to a constant of
proportionality occur frequently across Bayesian statistics; see, e.g., Park and
Haran (2018) for a recent account of current methodology and applications. In
this case, posterior distributions π(θ) ∝ p(y|θ)p (θ) are given by

p(y|θ) = f(y|θ)
Z(θ)

, Z(θ) :=

∫
f(y|θ)dy,

where f(y|θ) can be evaluated pointwise but its parameter-dependent normal-
izing constant Z(θ) is intractable. This is a scenario common for undirected
graphical models and spatial point processes (Møller et al., 2006; Murray et al.,
2006). The exchange method detailed in Algorithm 6 is an MCMC scheme pro-
posed by Murray et al. (2006) to sample such distributions under the assumption
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that, although Z(θ) cannot be evaluated, it is possible to simulate exactly arti-
ficial observations from p(y|θ). This is indeed possible for a large class of spatial
point processes as well as the Ising and Potts models using perfect simulation
procedures.

Algorithm 6 Sampling from the Exchange kernel given θn−1

1. Sample θ′ ∼ q (·|θn−1) and Y ′ ∼ p(·|θ′).

2. With probability

αEX

(
θn−1, θ

′, Y ′
)
:= min

{
1,

f(y|θ′)p(θ′)f(Y ′|θn−1)q (θn−1|θ′)

f(y|θn−1)p(θn−1)f(Y ′|θ′)q(θ′|θn−1)

}
, (18)

set θn = θ′. Otherwise, set θn = θn−1.

5.2.1. Coupled exchange algorithm

An algorithm to couple two block pseudo-marginal algorithms to construct un-
biased estimators Hk:m is provided in Algorithm 7. Denoting the two states of
the chains at step n ≥ 1 by θn and θ̃n−1, Algorithm 3 describes how to obtain
θn+1 and θ̃n; thus it describes a kernel P̄ .

Algorithm 7 Sampling from the coupled Exchange kernel given

(θn, θ̃n−1)

1. Sample θ′ and θ̃′ from the maximal coupling of q (·|θn) and q(·|θ̃n−1).

2. If the proposals couple, i.e. if θ′ = θ̃′, then sample Y ′ ∼ p(·|θ′) and set Ỹ ′ = Y ′.

3. If the proposals do not couple, sample Y ′ ∼ p(·|θ′) and Ỹ ′ ∼ p(·|θ̃′).

4. Sample u ∼ U [0, 1].

5. If u < αEX (θn, θ′, Y ′) then set θn+1 = θ′. Otherwise, set θn+1 = θn.

6. If u < αEX(θ̃n−1, θ̃
′, Ỹ ′) then set θ̃n = θ̃′. Otherwise, set θ̃n = θ̃n−1.

5.2.2. High temperature Ising model

We examine the proposed algorithm for inference in a planar lattice Ising model
without an external field. The model comprises observations yi ∈ {−1,+1}
on a L × L square lattice such that p(y|θ) ∝ exp

(
β
∑

i∼j yiyj

)
where i ∼ j

denotes the neighbours j of node i and θ = β denotes the inverse temperature.
We restrict interest to high temperature models specifying a prior distribution
β ∼ U [0, βc], with βc = 1

2 log(1 +
√
2) denoting the critical temperature of

the Ising model on the infinite lattice (Ullrich, 2013; Onsager, 1944). Here,
perfect simulation can be performed using coupling from the past techniques
with simple heat bath dynamics developed by Propp and Wilson (1996). We
generate observations for L = 80 and set the proposal covariance to 10−4I,
initialising the chains from the prior.
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Fig 12: Coupled exchange algorithm for unbiased Bayesian inference with an
80 × 80 Ising model. Left: distribution of meeting times (1,000 runs). Right:
clock time to obtain 1,000 unbiased estimators.

We obtain estimates of the distribution of meeting times using 1,000 rep-
etitions of coupled exchange, with the results shown in Figure 12a. Based on
this, we obtain unbiased estimates of the expectation of β under the posterior
distribution using k = 100 and m = 10k over 1,000 repetitions. It is noted that
the clock time to obtain a single estimator (on the same machine) varies signif-
icantly due to the variable computational cost of performing coupling from the
past, depending on θ. We plot a histogram of the clock times to obtain each
Hk:m in Figure 12b.

Based on the heterogeneity of times to produce a single unbiased estimator,
we compare the serial inefficiency with the inefficiency of coupled exchange based
on the clock time to obtain a certain variance, with the test function h : x �→ x.
We estimate the asymptotic variance with nmcmc = 200,000 iterations of the
original algorithm (discarding the first 10% as burn-in, and using spectrum0.ar
as before) to be Vas ≈ 4.22 · 10−4, and the algorithm taking in total 41, 095
seconds. As a result, we estimate the serial inefficiency in terms of clock-time to
be 41, 095× Vas/(nmcmc − nburnin) ≈ 9.6 · 10−5. Comparatively, the mean time
to return a single estimator Hk:m was estimated to be 546 seconds, with the
variance of a single Hk:m estimated to be 4.78 · 10−7 providing an estimated
inefficiency of 2.6 · 10−4, implying a three-fold increase in inefficiency.

6. Conclusion

Markov chain Monte Carlo algorithms designed for scenarios where the target
density function is intractable can be coupled and utilized in the framework of
Glynn and Rhee (2014); Jacob et al. (2020b). The validity of the resulting unbi-
ased estimators can be related to polynomial drift conditions on the underlying
Markov kernels. These estimators open new ways of using parallel computing
hardware to perform numerical integration in such scenarios.

In the context of state space models, in addition to parameter estimation,
the proposed coupling strategy for PMMH would additionally provide unbiased
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estimators with respect to the joint distribution over state and parameters. This
would enable unbiased smoothing under parameter uncertainty, instead of fixing
the parameters as in Jacob et al. (2020a), Lee et al. (2020) and Middleton et al.
(2019).

Acknowledgement

The authors are grateful to Jeremy Heng for very helpful discussions. The data
of Section 4.2 was kindly shared by Demba Ba. The experiments of that sec-
tion were performed on the Odyssey cluster supported by the FAS Division
of Science, Research Computing Group at Harvard University. Pierre E. Jacob
acknowledges support from the National Science Foundation through grants
DMS-1712872 and DMS-1844695. This material is based upon work supported
in part by the U.S. Army Research Laboratory and the U. S. Army Research
Office, and by the U.K. Ministry of Defence (MoD) and the U.K. Engineering
and Physical Research Council (EPSRC) under grant number EP/R013616/1.
Arnaud Doucet is also supported by the EPSRC grants EP/R018561/1 and
EP/R034710/1.

Appendix A

In the rest of the paper we will often use the symbol c to denote a generic
positive constant whose value may vary from line to line.

A.1. Proof of Theorem 1

The following provides a slight relaxation on Assumption 2.2 in Jacob et al.
(2020b), where geometric conditions were imposed on the tails of the distribution
of the meeting time. The following proof considers H0(Z, Z̃) instead of Hk:m;
one can first perform the same reasoning for Hk(Z, Z̃) for all k ≥ 0, and then
consider the finite average (m−k+1)−1

∑m
ℓ=k Hℓ(Z, Z̃) to obtain the result for

Hk:m.
By Assumption 2, it follows that E [τ ] < ∞. This implies that the estimator

H0 can be computed in expected finite time. To show that H0(Z, Z̃) admits a
finite variance, we proceed by following Jacob et al. (2020b, Proposition 3.1),
adapting the proof under the proposed weaker assumptions. We denote the
complete space of random variables with finite second moment by L2. We then
construct a Cauchy sequence of random variables Hn(Z, Z̃) in L2 converging to
H0(Z, Z̃), where Hn(Z, Z̃) :=

∑n
t=0 Δt with Δt = h(Zt)− h(Z̃t−1) if t > 0 and

Δt = h(Zt) for t = 0. As E [τ ] < ∞, we have P(τ < ∞) = 1 and Zt = Z̃t−1

for t > τ . This implies that Hn(Z, Z̃) → H0(Z, Z̃) almost surely. For positive
integers n, n′ we have

E

[(
Hn(Z, Z̃)−Hn′

(Z, Z̃)
)2]

=

n′∑

s=n+1

n′∑

t=n+1

E[ΔsΔt]
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≤
n′∑

s=n+1

n′∑

t=n+1

E[Δ2
s]

1/2
E[Δ2

t ]
1/2

=

⎛
⎝

n′∑

t=n+1

E[Δ2
t ]

1/2

⎞
⎠

2

.

We note that E[Δ2
t ] = E[Δ2

t1τ>t]. Thus by Hölder’s inequality we obtain

E[Δ2
t ] ≤ E

[
|Δt|2+η

] 1

1+
η
2 E[1τ>t]

η
2+η

≤ c
1

1+
η
2 P(τ > t)

η
2+η ,

where E[|Δt|2+η
] < c for all t as E[h(Zt)

2+η] < c by Assumption 1. Consequently
we have

E

[(
Hn(Z, Z̃)−Hn′

(Z, Z̃)
)2]

≤

⎛
⎝

n′∑

t=n+1

(
c

1

1+
η
2 P(τ > t)

η
2+η

) 1
2

⎞
⎠

2

= c
1

1+
η
2

⎛
⎝

n′∑

t=n+1

P(τ > t)
1
2

η
2+η

⎞
⎠

2

.

With γ = 1
2

η
2+η , it follows from Assumption 2 that P(τ > t) ≤ Kt−κ for κ > 1/γ

which yields

∞∑

t=n+1

P(τ > t)γ ≤ K

∞∑

t=n+1

1

tγκ
≤ K

∫ ∞

n

dt

tγκ
< ∞.

We obtain limn→∞

∑∞
t=n+1 P(τ > t)γ = 0. This proves that Hn(Z, Z̃) is a

Cauchy sequence in L2. We can thus conclude that the variance of H0(Z, Z̃) is
finite and that its expectation is limn→∞ E[Hn(Z, Z̃)] = limn→∞ E[h(Zn)] =
π(h).

A.2. Proof of Theorem 2

The following establishes a bivariate drift condition that we will later use to
bound moments of the hitting time to the diagonal set D. A similar statement
is provided in Andrieu et al. (2015, Lemma 1).

Lemma 1. Let P̄ be a coupling of the Markov kernel P with itself, and V be
as in Assumption 5. Then the function V̄ (z, z̃) := V (z) + V (z̃)− 1 satisfies

P̄ V̄ (z, z̃) ≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃) + b̄1C̄(z, z̃), (19)

for all (z, z̃) ∈ Z × Z, where b̄ := 2bV + ǫbφ(1) and C̄ = C × C.



2876 L. Middleton et al.

Proof. For (z, z̃) /∈ C̄ we have

P̄ V̄ (z, z̃) = PV (z) + PV (z̃)− 1

≤ V (z) + V (z̃)− 1− φ ◦ V (z)− φ ◦ V (z̃) + bV (1C(z) + 1C(z̃))

≤ V (z) + V (z̃)− 1− φ ◦ V (z)− φ ◦ V (z̃) + bV

= V (z) + V (z̃)− 1− ǫb [φ ◦ V (z) + φ ◦ V (z̃)]

− (1− ǫb) [φ ◦ V (z) + φ ◦ V (z̃)] + bV .

Since (z, z̃) /∈ C̄ then at least one of z, z̃ is not in C, and φ ◦ V ≥ 0, so

≤ V (z) + V (z̃)− 1− ǫb [φ ◦ V (z) + φ ◦ V (z̃)]− (1− ǫb) inf
z/∈C

φ ◦ V (z) + bV

≤ V (z) + V (z̃)− 1− ǫb [φ ◦ V (z) + φ ◦ V (z̃)]− bV + bV

= V̄ (z, z̃)− ǫb [φ ◦ V (z) + φ ◦ V (z̃)] ,

where we used (7) in Assumption 5. By two applications of the mean value
theorem, we have that for any t ≥ s ≥ 1 there exist r ∈ [t, t + s − 1] and
r∗ ∈ [1, s] such that

φ(t+ s− 1)− φ(t) = φ′(r) (s− 1) , φ(s)− φ(1) = φ′(r∗)(s− 1).

By concavity, since t ≥ s implies that r ≥ r∗, it follows that φ′(r) ≤ φ′(r∗) and
thus

φ(t+ s− 1)− φ(t) ≤ φ(s)− φ(1),

or equivalently
φ(t+ s− 1) + φ(1) ≤ φ(t) + φ(s).

Therefore, with t = max{V (z), V (z̃)} and s = min{V (z), V (z̃)} we get

φ ◦ V̄ (z, z̃) + φ(1) ≤ φ ◦ V (z) + φ ◦ V (z̃), (20)

whence

P̄ V̄ (z, z̃) ≤ V̄ (z, z̃)− ǫb [φ ◦ V (z) + φ ◦ V (z̃)]

≤ V̄ (z, z̃)− ǫb
[
φ
(
V̄ (z, z̃)

)
+ φ(1)

]

≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃). (21)

For (z, z̃) ∈ C̄ we get by Assumption 5,

P̄ V̄ (z, z̃) = PV (z) + PV (z̃)− 1

≤ V (z)− φ ◦ V (z) + bV + V (z̃)− φ ◦ V (z̃) + bV − 1

= V̄ (z, z̃)− φ ◦ V (z)− φ ◦ V (z̃) + 2bV . (22)

Combining (21) and (22), (20) and the fact that φ ≥ 0, we have for any (z, z̃)

P̄ V̄ (z, z̃) ≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃)1C̄C(z, z̃)
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− [φ ◦ V (z) + φ ◦ V (z̃)− 2bV ]1C̄(z, z̃)

≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃)1C̄C(z, z̃)

−
[
φ ◦ V̄ (z, z̃) + φ(1)− 2bV

]
1C̄(z, z̃)

= V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃)1C̄C(z, z̃)

−
[
ǫbφ ◦ V̄ (z, z̃) + (1− ǫb)φ ◦ V̄ (z, z̃) + φ(1)− 2bV

]
1C̄(z, z̃)

≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃) + [2bV − φ(1)]1C̄(z, z̃)

≤ V̄ (z, z̃)− ǫbφ ◦ V̄ (z, z̃) + [2bV + φ(1)]1C̄(z, z̃).

The proof of Theorem 2 then follows through making use of Douc et al. (2004,
Proposition 2.1), which we provide below for the reader’s convenience, noting
that the exact statement is taken from Andrieu et al. (2015, Proposition 4).
We borrow the following definitions from Andrieu et al. (2015). For any non-
decreasing concave function ψ : [1,∞) → (0,∞), let

Hψ(v) :=

∫ v

1

dx

ψ(x)
. (23)

Let H−1
ψ : [0,∞) → [1,∞) be its inverse. For k ∈ N, n ≥ 0, υ ≥ 1, let

rψ(n) :=
ψ ◦H−1

ψ (n)

ψ(1)

Hk(υ) := H−1
ψ (Hψ (υ) + k)−H−1

ψ (k) .

(24)

Proposition 4 (Proposition 2.1 from Douc et al. (2004)). Assume that P is a
Markov kernel such that for some function V ≥ 1 we have

PV (z) ≤ V (z)− ψ ◦ V (z) + b1C (z) ,

where ψ : [1,∞) �→ (0,∞) is a nondecreasing concave function. Let rψ and Hψ

be defined as in (24). Then we have for Vk := Hk ◦ V

PVk+1(z) ≤ Vk(z)− ψ(1)rψ(k) + brψ(k + 1)1C(z), k ≥ 0.

Equipped with the above results we proceed to the proof of Theorem 2.
Applying Proposition 4 with P̄ , V̄ , ψ = ǫbφ and and b = b̄, then letting

r(n) :=
φ ◦H−1

φ (ǫbn)

φ(1)

we have the sequence of drift conditions

P̄ V̄k+1(z, z̃) ≤ V̄k(z, z̃)− ǫbφ(1)r(k) + b̄r(k + 1)1C̄(z, z̃), k ≥ 0,

where V̄k := Hk ◦ V̄ . Letting Ṽk = V̄k + 1 ≥ 1 we obtain

P̄ Ṽk+1(z, z̃) ≤ Ṽk(z, z̃)− ǫbφ(1)r(k) + b̄r(k + 1)1C̄(z, z̃), k ≥ 0. (25)
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To proceed we follow the proof of Douc et al. (2004, Proposition 2.5), specifi-
cally the steps leading up to Douc et al. (2004, Equation (2.6)). Notice that by
Assumption 4 the diagonal D is an accessible set, since clearly πD(D) = 1 > 0.
Therefore by Dynkin’s formula we have

ǫbφ(1)Ez,z̃

[
τD−1∑

k=0

r(k)

]
≤ Ṽ0(z, z̃) + b̄Ez,z̃

[
τD−1∑

k=0

r(k + 1)1C̄(Ξk)

]
,

where in the above, Ez,z̃ denotes expectation with respect to the probability

measure under which the joint chain Ξn :=
(
Zn, Z̃n−1

)
is initialized at (z, z′)

and evolves according to the transition kernel P̄ , τD := inf {n ≥ 1 : Ξn ∈ D},
c1, c2 are positive constants depending on the set B and the various constants
in the drift condition, but not on (z, z̃). Notice that by Assumption 4 we have
that for all (z, z̃) ∈ C̄, and ρ ∈ (0, 1)

Kρ ((z, z̃),D) :=
∞∑

i=0

ρiP̄ i ((z, z̃),D) ≥ ρn0ǫ.

In particular it easily follows that

1C̄ ((z, z̃)) ≤ (ρn0ǫ)−1Kρ ((z, z̃),D) ,

and therefore continuing from above

ǫbφ(1)Ez,z̃

[
τD−1∑

k=0

r(k)

]

≤ Ṽ0(z, z̃) +
b̄

ρn0ǫ
Ez,z̃

[
τD−1∑

k=0

r(k + 1)Kρ(Ξk,D)

]

= Ṽ0(z, z̃) +
b̄

ρn0ǫ

∞∑

i=0

ρiEz,z̃

[
τD−1∑

k=0

r(k + 1)P̄ i(Ξk,D)

]

= Ṽ0(z, z̃) +
b̄

ρn0ǫ

∞∑

i=0

ρi
∞∑

k=0

Ez,z̃

[
1{k ≤ τD − 1}r(k + 1)1D(Ξk+i)

]
.

A careful look above reveals that the integrand will be non-zero only for k such
that τD ≤ k+ i and k ≤ τD − 1. There are at most i such values of k, and since
r(·) is non-decreasing for each one of these values we will have r(k+1) ≤ r(τD).
Therefore

ǫbφ(1)Ez,z̃

[
τD−1∑

k=0

r(k)

]
≤ Ṽ0(z, z̃) +

b̄

ρn0ǫ

∞∑

i=0

ρii× Ez,z̃

[
r(τD)

]
.

Similarly to the proof of Douc et al. (2004, Proposition 2.5), using the fact that
r(·) grows sub-geometrically we can find for any δ > 0 a constant c(δ) > 0 such
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that

r(k) ≤ δ

k−1∑

j=0

r(j) + c(δ),

and therefore conclude that for some constants c1, c2, independent of (z, z̃), we
have

Ez,z̃

[
τD−1∑

k=0

r(k)

]
≤ Ṽ 0(z, z̃) + c1

c2
.

From the definition of φ(y) we have that

r(n) = [d(1− α)ǫbn+ 1]
α/(1−α) ≥ cnα/(1−α),

where recall that c denotes a generic constant whose value may change from
line to line. Thus for any N

N∑

k=0

r(k) ≥ c

N∑

k=0

kα/(1−α) ≥ c

∫ N

x=0

xα/(1−α)dx = cN1/(1−α),

hence we obtain

Ez,z̃

[
τ
1/(1−α)
D

]
≤ cEz,z̃

[
τD−1∑

k=0

r(k)

]
≤ c

Ṽ 0(z, z̃) + c1
c2

.

We have that the chain
(
Zn, Z̃n−1

)
is initialised at n = 1 under π0P ⊗ π0.

Recalling the definition of Ṽ0 we have that Ṽ0(z, z̃) ≤ V (z) + V (z̃) and as
π0 is compactly supported, π0 (V ) < ∞. Similarly by Assumption 5 we have

that π0P (V ) < ∞, in which case it follows that Eπ0P⊗π0

[
τ
1/(1−α)
D

]
< ∞. An

application of Markov’s inequality completes the proof

Pπ0P⊗π0
[τD ≥ t] ≤ Eπ0P⊗π0

[τ
1/(1−α)
D ]

t1/(1−α)
≤ c

t1/(1−α)
.

A.3. Proof of Proposition 1

To fix notation, we have that for any measurable functions W : Z → [1,∞),
g : Z → R, and a finite signed measure μ on X , we write

|g|W := sup
z∈Z

|g(z)|
W (z)

, ‖μ‖W := sup
f :‖f‖W≤1

|μ(f)|.

Our starting point is Assumption 5 which we restate here

PV (z) ≤ V (z)− dV α(z) + bV 1C (z) , (26)

for some function V : Z → [1,∞), some α ∈ (0, 1), constants bV , d > 0 and a
small set C. As before we assume that (Zn, Z̃n−1) evolves according to P̄ , and



2880 L. Middleton et al.

that marginally the components Zn and Z̃n evolve according to P . Notice that
we write E for the measure with the chains started from π0 and Eπ for the
measure with the chains initialized at π.

By Jarner and Roberts (2002, Lemma 3.5) for any η ∈ (0, 1) there exist
b′, d′ > 0 such that

PV γ(z) ≤ V γ(z)− d′V α+γ−1(z) + b′1C (z) . (27)

With γ ∈ (1 − α, 1) as in the statement of Proposition 1, we have that α +
γ − 1 ∈ (0, 1). Under this assumption, from (27), Meyn and Tweedie (2009,
Theorem 14.0.1) applied with f = V α+γ−1 and the fact that π is a maximal
irreducibility measure (see Meyn and Tweedie (2009, Proposition 10.1.2)), it
follows that π(SV ) = 1, with SV as defined in the statement of Proposition 1.
From this we conclude that V is π-a.e. finite. Also from Meyn and Tweedie
(2009, Theorem 14.0.1), since π(V γ) ≤ π(V 4γ)1/4 < ∞ by assumption, we have
that for all π-a.e. z ∈ Z there exists a finite constant c such that

∞∑

n=0

‖Pn(z, ·)− π‖V α+γ−1 ≤ c(1 + V γ(z)). (28)

Since by assumption |h|V α+γ−1 < ∞, we have

∞∑

n=0

|Pn[h− π(h)](z)| ≤ ‖h‖V α+γ−1

∞∑

n=0

‖Pn(z, ·)− π‖V α+γ−1

≤ c‖h‖V α+γ−1(1 + V γ(z)) < ∞,

for π-almost all z. Therefore the function

g(z) :=

∞∑

j=0

P j [h− π(h)] (z)

is well-defined and satisfies |g|V γ < ∞, π(g2) < ∞, where the second property
follows from π(V 4γ) < ∞. In particular it follows that g − Pg = h− π(h), and
therefore g is the solution to the Poisson equation with respect to P and h.
We continue with the calculation in the proof of Jacob et al. (2020b, Proposi-
tion 3.3). Let

S
(N)
j := 1{τD > j}

N∧τD−1∑

t=j

bt

[
h(Zt)− h(Z̃t−1)

]
,

where (bt)t≥0 is an arbitrary bounded sequence. Writing Zt := (Zt, Z̃t−1),
ḡ(x, y) = g(x)− g(y) and P̄ for the transition kernel of Zt we then have

h(Zt)− h(Z̃t−1) = [h(Zt)− π(h)]−
[
h(Z̃t−1)− π(h)

]

= [g(Zt)− Pg(Zt)]−
[
g(Z̃t−1)− Pg(Z̃t−1)

]
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=
[
g(Zt)− g(Z̃t−1)

]
−
[
Pg(Zt)− Pg(Z̃t−1)

]

= ḡ(Zt)− P̄ ḡ(Zt),

where we used the fact that, by construction of P̄ , we have P̄ ḡ(z, z̃) = Pg(z)−
Pg(z̃).

Then from Jacob et al. (2020b, Equation (A.3)) we have

E

{[
S
(N)
j

]2}
≤ 4

N−1∑

t=j

b2tE
{[

ḡ(Zt+1)− P̄ ḡ(Zt)
]2

1{τD > t}
}

+ 4b2jE
[
ḡ2(Zj)1{τD > j}

]
+ 4b2NE

[
ḡ2(ZN )1{τD > N}

]

+ 4

⎧
⎨
⎩

N−1∑

t=j

|bt+1 − bt|E1/2
[
ḡ2(Zt+1)1{τD > t+ 1}

]
⎫
⎬
⎭

2

,

and we proceed to bound these terms. Letting Ft := σ (Zs; 0 ≤ s ≤ t), notice
that

E

{[
ḡ(Zt+1)− P̄ ḡ(Zt)

]2
1{τD > t}

}

E

{
E

[(
ḡ(Zt+1)− P̄ ḡ(Zt)

)2
1{τD > t}

∣∣∣Ft

]}

= E
{
ḡ(Zt+1)

2
1{τD > t}

}
− E

{
P̄ ḡ(Zt)

2
1{τD > t}

}

≤ E
{
ḡ(Zt+1)

2
1{τD > t}

}
≤ |g|2V γE

{[
V γ(Zt) + V γ(Z̃t−1)

]2
1{τD > t}

}
.

We next bound the last quantity using the fact that (a + b)2 ≤ 2a2 + 2b2 and
the Cauchy-Schwarz inequality

E

{[
V γ(Zt) + V γ(Z̃t−1)

]2
1{τD > t}

}

≤ 2E
{[

V 2γ(Zt) + V 2γ(Z̃t−1)
]
1{τD > t}

}

≤ c
[
E
{
V 4γ(Zt)

}
+ E

{
V 4γ(Z̃t−1)

}]1/2
P (τD > t)

1/2
.

Finally notice that since V is non-negative

E
{
V 4γ(Zt)

}
≤
∥∥∥∥
dπ0

dπ

∥∥∥∥
∞

Eπ

{
V 4γ(Zt)

}

≤
∥∥∥∥
dπ0

dπ

∥∥∥∥
∞

Eπ

{
V 4γ(Z0)

}
= cπ(V 4γ) < ∞,

where we used the fact that when started from π and evolved through P̄ , the
Markov chain {Zt}t≥0 is stationary. From the above and Theorem 2 we conclude
that there exists a positive constant c < ∞ such that

E

{[
ḡ(Zt+1)− P̄ ḡ(Zt)

]2
1{τD > t}

}
≤ c

tκ/2
.
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On the other hand for terms of the form E[ḡ2(Zt)1{τD > t}], using the same
techniques we have

E
[
ḡ2(Zt)1{τD > t}

]
≤ |g|2V γE

{[
V γ(Zt) + V γ(Z̃t−1)

]2
1{τD > t}

}
≤ c

tκ/2
.

Overall we thus have that

E

{[
S
(N)
j

]2}
≤ c

⎡
⎢⎣

b2j
jκ/2

+
b2N

Nκ/2
+

N−1∑

t=j

b2t
tκ/2

+

⎛
⎝

N−1∑

t=j

|bt+1 − bt|
tκ/2

⎞
⎠

2
⎤
⎥⎦ ,

E
{
S2
j

}
≤ c

⎡
⎢⎣

b2j
jκ/2

+
∑

t≥j

b2t
tκ/2

+

⎛
⎝

∞∑

t=j

|bt+1 − bt|
tκ/2

⎞
⎠

2
⎤
⎥⎦ ,

where Sj := limN→∞ S
(N)
j is the limit in the L2 sense as in Jacob et al. (2020b,

Proposition 3.1). Setting bj = 0, bt := (t− j)/(m− j+1) for j < t < m+1 and
bt := 1 for t > m+ 1 we then obtain

E
[
S2
j

]

≤c

⎡
⎢⎣

m∑

t=j+1

(t− j)2

(m− j + 1)2tκ/2
+

∞∑

t=m+1

1

tκ/2
+

⎛
⎝

m+1∑

t=j

1

(m− j + 1)tκ/2

⎞
⎠

2
⎤
⎥⎦ .

For the first term notice that, after changing variables r = t − j and writing
M = m− j + 1 we have

m+1∑

t=j+1

(t− j)2

(m− j + 1)2tκ/2
=

1

M2

M∑

r=1

r2

(r + j)κ/2

≤ c

M2

∫ M

x=1

x2

(x+ j)κ/2
dx

=
c

M2jκ/2

∫ M

x=1

x2

(x/j + 1)
κ/2

dx (changing z = x/j)

≤ c

M2jκ/2

∫ M/j

z=1/j

j3z2

(z + 1)κ/2
dz

=
c

M2jκ/2−3

∫ M/j

z=1/j

z2

(z + 1)κ/2
dz ≤ c

M2jκ/2−3
,

since by assumption κ = 1/(1− α) > 6. Finally we get

E
[
S2
j

]
≤ c

[
1

(m− j + 1)
2
jκ/2−3

+
1

mκ/2−1
+

1

(m− j + 1)2jκ−2

]
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= c

[
1

mκ/2−1
+

1

(m− j + 1)2

(
1

jκ/2−3
+

1

jκ−2

)]
.

≤ c

[
1

mκ/2−1
+

1

(m− j + 1)2
1

jκ/2−3

]

as κ/2−3 ≤ κ−2. With our choice of sequence (bt)t≥0, Sj coincides with BCj:m

in the notation of the statement of the proposition which thus follows from the
above.

A.4. Proof of Proposition 2

First we want to prove the minorization condition (4) for the set C = B (0,M)×
[w,w], where M,w,w > 0 are given and fixed. That is, we want to establish that
there exist ǫ0 > 0 and a probability measure ν such that

P ((θ, w) , dθ′, dw′) ≥ ǫ0ν (dθ
′, dw′)

for all (θ, w) ∈ C. We have

P ((θ, w) , dθ′, dw′) ≥gθ′ (w′)min

{
q (θ, θ′) ,

π (θ′)

π (θ)
q(θ′, θ)

}
min

{
1,

w′

w

}
dθ′dw′

≥ επI (θ
′ ∈ B(0,M))min {q (θ, θ′) , q(θ′, θ)}

min

{
gθ′ (w′) , gθ′ (w′)

w′

w

}
dθ′dw′,

where

επ :=
infθ:|θ|≤M π (θ′)

supθ:|θ|≤M π (θ)
> 0,

by the assumption that π is bounded from above, and bounded away from
zero on all compact sets. Since the proposal q is bounded away from zero on
compact sets we also have that min {q (θ, θ′) , q(θ′, θ)} ≥ εq for |θ′ − θ| < 2M
which ensures that

P ((θ, w) , dθ′, dw′) ≥ εqεπ min

{
gθ′ (w′) , gθ′ (w′)

w′

w

}
dθ′dw′.

This can be rewritten as

P ((θ, w) , dθ′, dw′) ≥ εqεπI (θ
′ ∈ B(0,M))Z (θ′) g̃θ′ (w) dθ′dw′

with

Z (θ) :=

∫
gθ (w)min

{
1,

w

w

}
dw ≤ 1,

and

g̃θ (w) = Z−1 (θ) gθ (w)min
{
1,

w

w

}
.
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Suppose now that for fixed M,w we have

inf
θ:|θ|≤M

Z (θ) = 0,

which implies that there is a sequence θn ∈ B (0,M) such that limn→∞ Z(θn) =
0. Since B(0,M) is compact we can extract a convergent subsequence θnk

→
θ̄ ∈ B(0,M) such that limk→∞ Z(θnk

) = 0. By weak convergence, since w �→
min {1, w/w} is bounded and continuous, we also have that

0 = lim
k→∞

Z(θnk
) = lim

k→∞

∫
gθnk

(w)min
{
1,

w

w

}
dw =

∫
gθ (w)min

{
1,

w

w

}
dw.

Since w �→ min {1, w/w} is strictly positive for w > 0, this implies that the
support of gθ is {0} which is a contradiction, since in that case necessarily∫
gθ (w)w dw = 0 �= 1. Therefore we conclude that for all finite M,w > 0, there

exists εZ(M,w) > 0 such that Z (θ) > εZ (M,w), for all θ ∈ B (0,M).
Therefore we obtain

P ((θ, w) , dθ′, dw′) ≥ εZεqεπI (θ
′ ∈ B(0,M)) g̃θ′ (w) dθ′dw′,

which proves the result for ǫ0 = εZεqεπvol{B(0,M)} and with minorising mea-
sure ν(dθ′, dw′) = U (θ′ ∈ B(0,M)) g̃θ′ (w).

Next we establish that the minorization condition (3) holds for P̄ , the coupled
transition kernel defined by Algorithm 3, and C as defined above. Let the current
states be z := (θ, w) , z̃ := (θ̃, w̃) ∈ C respectively. According to Algorithm 3
the next parameter states θ′, θ̃′ will be sampled from Q((θ, θ̃), dθ′, dθ̃′), the γ-
coupling of q (· |θ ) and q(·|θ̃). This is the maximal coupling generated by the
rejection sampler described in Jacob et al. (2020b). If the coupling is successful,
that is θ′ = θ̃′, then the algorithm samples w′ ∼ ḡθ′ (·), sets w̃′ = w′ in which

case we know by definition that ((θ′, w′), (θ̃′, w̃′)) ∈ D if the proposal (θ′, w′)
is accepted since the same uniform is used in both acceptance steps. Therefore

under the coupled transition kernel P̄ , writing z := (θ, w) , z̃ :=
(
θ̃, w̃
)

and

letting Dθ :=
{(

θ, θ̃
)
: θ = θ̃

}
be the diagonal of Θ × Θ, we have for (z, z′) ∈

C × C that

P̄ ((z, z′) ,D)

≥ P̄
(
(z, z′) ,D ∩

(
B(0,M)×R

+
)2)

=

∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)∫

R+

ḡθ′ (w′)

∫ 1

u=0

I

[
u ≤ min

{
1,

π (θ′)

π (θ)

w′

w

}]
I

⎡
⎣u ≤ min

⎧
⎨
⎩1,

π (θ′)

π
(
θ̃
) w

′

w̃

⎫
⎬
⎭

⎤
⎦ dudw′

=

∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)



Unbiased MCMC for intractable target distributions 2885

∫

R+

ḡθ′ (w′)

∫ 1

u=0

I

⎡
⎣u ≤ min

⎧
⎨
⎩1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π
(
θ̃
) w

′

w̃

⎫
⎬
⎭

⎤
⎦ dudw′

=

∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)

∫

R+

ḡθ′ (w′)min

⎧
⎨
⎩1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π
(
θ̃
) w

′

w̃

⎫
⎬
⎭ dw′,

where we also used the fact that the proposal is symmetric by assumption.
Continuing from the above inequality, letting επ, εq and εZ be as above, we
have that

P̄ ((z, z′) ,D)

≥
∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)

∫

R+

ḡθ′ (w′)min

{
1, επ

w′

w
, επ

w′

w

}
dw′

≥
∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)

∫

R+

ḡθ′ (w′)min {1, επ}min

{
1,

w′

w

}
dw′

= min {1, επ}
∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)
Z (θ′)

∫

R+

g̃θ′ (w′) dw′

≥ εZεπ

∫∫

Dθ∩B(0,M)2
Q

((
θ, θ̃
)
, dθ′, dθ̃′

)

≥ εZεπ

∫

B(0,M)

min
{
q (θ′ |θ ) , q

(
θ′
∣∣∣θ̃
)}

dθ′

≥ εZεπ

∫

B(0,M)

εqdθ
′

= εZεπεqvol (B (0,M)) > 0,

where we used the fact that in the γ-coupling, conditionally on the coupling
succeeding, the variables are sampled from a density proportional to the mini-
mum of their respective densities. This establishes that condition (3) holds with
C = B (0,M)× [w,w] for any M,w,w.

Next we establish that P̄ is πD-irreducible. Let A ⊂ D such that πD (A) > 0.
For sets A ⊂ D we will write A(1) for the projection onto its first coordinate,
that is if A ⊂ D then A = A(1) × A(1). We need to show that for any z, z̃ ∈ Z
there exists n ≥ 1 such that P̄n ((z, z̃) , A) > 0. Notice that by construction if
(z, z̃) ∈ D then P̄ ((z, z̃) , dz′, dz̃′) = P (z, dz′) δz′ (dz̃′), that is the chain couples
automatically from the diagonal and proceeds as the pseudo-marginal kernel P .
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Letting z, z̃ ∈ Z and n ≥ 1 we have

P̄n+1 ((z, z̃) , A) ≥
∫∫

D

P̄ ((z, z̃) , dz′, dz̃′) P̄n ((z′, z̃′) , A)

=

∫∫

Dθ

Q

((
θ, θ̃
)
, dθ′, dθ̃′

)

∫

R+

ḡθ′ (w′)min

{
1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π (θ)

w′

w̃

}
dw′

∫
Pn ((θ′, w′) , A) ,

where we have provided a lower bound by considering the event where the joint
chain couples in the first step and then moves to the set A in n steps. Continuing
we have

P̄n+1 ((z, z̃) , A)

≥
∫

Θ

min
{
q (θ, θ′) , q

(
θ̃, θ′
)}

dθ′
∫

Θ

min
{
q (θ, θ′) , q

(
θ̃, θ′
)}

∫
Θ
min

{
q (θ, θ′) , q

(
θ̃, θ′
)}

dθ′

∫

R+

ḡθ′ (w′)min

{
1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π (θ)

w′

w̃

}
dw′

∫
Pn
(
(θ′, w′) , A(1)

)
dθ′

=

∫

Θ

min
{
q (θ, θ′) , q

(
θ̃, θ′
)}

∫

R+

ḡθ′ (w′)min

{
1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π (θ)

w′

w̃

}
dw′

∫
Pn
(
(θ′, w′) , A(1)

)
dθ′.

Therefore we have that

∞∑

n=0

2−(n+1)P̄n+1 ((z, z̃) , A) ≥
∫

Θ

min
{
q (θ, θ′) , q

(
θ̃, θ′
)}

∫

R+

ḡθ′ (w′)min

{
1,

π (θ′)

π (θ)

w′

w
,
π (θ′)

π (θ)

w′

w̃

}
dw′

∞∑

n=0

2−(n+1)

∫
Pn
(
(θ′, w′) , A(1)

)
dθ′.

By Assumption 6 and Roberts and Tweedie (Theorem 2.2 1996) it easily follows
that the exact algorithm is π-irreducible and aperiodic. Since by assumption we
have ̺PM (θ, w) < 1, we deduce from Andrieu and Roberts (Theorem 1 2009)
that the kernel P is irreducible, hence π-irreducible. This further implies that

∞∑

n=0

2−(n+1)

∫
Pn ((θ′, w′) , B) > 0,

for all (θ′, w′) and sets B such that π(B) > 0 by Meyn and Tweedie (Proposition
4.2.1 2009). Since by assumption π

(
A(1)

)
= πD(A) > 0 the integrand above will

be strictly positive on a set of non-vanishing Lebesgue measure whence P̄ is πD-
irreducible. Finally to establish aperiodicity first notice that by assumption and
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continuity of the measures defined by the densities ḡθ(·), we have that π(C) > 0.
Letting DC := {(z, z̃) ∈ D : z ∈ C} and following the steps proving Equation (4)
we can establish that for some ǫ′ > 0

inf
z∈DC

P̄ (z,D) ≥ ǫ′,

and since π(DC) > 0 this proves the aperiodicity of P̄ .

A.5. Proof of Proposition 3

We proceed to bound the moments of the likelihood estimate. For y = 1, letting

Z̄ :=
B(α, β(1 + ǫ))

B(α, β)

α+ β

α+ β(1 + ǫ)

then we have for c′ ∈ R,

Eqθ

[
ω̄(X, 1)c

′
]
=

∫

[0,1]

ω̄(x, 1)c
′

Beta(x; 1 + α, β(1 + ǫ))dx

= Z̄c′
∫

[0,1]

(1− x)−ǫβc′Beta(x; 1 + α, β(1 + ǫ))dx

= Z̄c′
∫

[0,1]

x−ǫβc′Beta(x;β(1 + ǫ), 1 + α)dx

≤ Z̄c′

B(β(1 + ǫ), 1 + α)

∫

[0,1]

xβ(1+ǫ(1−c′))−1dx,

where the third equality exploits symmetry properties of the Beta distribution.
We wish to show that there exists c′ such that

sup
β

Eqθ

[
ω̄(X, 1)c

′
]
< ∞.

Firstly, we note that supβ∈Θ Z̄ < ∞ and supβ∈Θ B(β(1 + ǫ), 1 + α) < ∞ as Θ
is compact. Secondly, we see that if c′ < 0 then the integral is finite, thereby
proving the second part of the Proposition.

For the first part of the proposition consider c′ such that

0 < c′ − 1 ≤ 1

ǫ

(
1− δ

β

)
,

for some 0 < δ < β. This implies that β(1 − ǫ(c′ − 1)) ≥ δ and as a result we
have

Z̄c′

B(β(1 + ǫ), 1 + α)

∫

[0,1]

xβ(1+ǫ(1−c′))−1dx

≤ Z̄c′

B(β(1 + ǫ), 1 + α)

∫

[0,1]

xδ−1dx < ∞.
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Furthermore, for fixed c′ > 1 we see that β(1−ǫ(c′−1)) ≥ δ is also equivalent

to requiring that ǫ ≤ 1− δ
β

c′−1 which can be satisfied for ǫ sufficiently small enough
thereby proving the final part of the proposition.

Repeating the above argument for y = 0 then letting

Z̄ ′ :=
B(α(1 + ǫ), β)

B(α, β)

α+ β

α(1 + ǫ) + β
,

we have that

Eqθ

[
ω̄(X, 0)c

′
]
= Z̄ ′ c′

∫

[0,1]

x−ǫαc′Beta(x;α(1 + ǫ), 1 + β)dx

≤ Z̄ ′ c′

B(α(1 + ǫ), 1 + β)

∫

[0,1]

xδ′−1dx < ∞,

for 0 < δ′ < α.

A.6. Description of referendum survey data

We use data from the 13 wave internet survey study (as of June 2018) (Field-
house et al., 2018) comprising 68,625 respondents in total, with the number of
respondents varying between waves. We first subset the data into those in the
four annual waves 1, 4, 7 and 11 occurring between February and May of 2014–
2017. Of these 7,729 answered either ‘Stay/remain in the EU’ or ‘Leave the EU’
to the question ‘If you do vote in the referendum on Britain’s membership of the
European Union, how do you think you will vote?’ in each wave. We filter out
those that answered ‘Don’t know’ to the question ‘How do you think the gen-
eral economic situation in this country has changed over the last 12 months?’
reducing the sample by 5 respondents. Finally, we perform inference only on
waves 1, 4, and 7, the waves prior to the EU referendum on 23rd June 2016. For
simplicity, we do not take into account respondent weighting.
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