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Unbiased Model Combinations for Adaptive Filtering

Suleyman S. Kozat, Andrew C. Singer, Alper Tunga Erdogan, and

Ali H. Sayed

Abstract—In this paper, we consider model combination methods for

adaptive filtering that perform unbiased estimation. In this widely studied
framework, two adaptive filters are run in parallel, each producing

unbiased estimates of an underlying linear model. The outputs of these
two filters are combined using another adaptive algorithm to yield the

final output of the system. Overall, we require that the final algorithm
produce an unbiased estimate of the underlying model. We later spe-
cialize this framework where we combine one filter using the least-mean

squares (LMS) update and the other filter using the least-mean fourth
(LMF) update to decrease cross correlation in between the outputs and

improve the overall performance. We study the steady-state performance
of previously introduced methods as well as novel combination algorithms

for stationary and nonstationary data. These algorithms use stochastic
gradient updates instead of the variable transformations used in previous
approaches. We explicitly provide steady-state analysis for both stationary

and nonstationary environments. We also demonstrate close agreement
with the introduced results and the simulations, and show for this specific

combination, more than 2 dB gains in terms of excess mean square error
with respect to the best constituent filter in the simulations.

Index Terms—Adaptive filtering, gradient projection, least-mean fourth,
least-mean square, mixture methods.

I. INTRODUCTION

We investigate unbiased mixture methods to combine outputs of two

adaptive filtering algorithms operating in stationary and nonstationary

environments. The objective is to achieve a steady-state mean-square

error (MSE) better than, or at least as good as, each individual adaptive

branch by exploiting the cross correlation structure between them
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through an adaptive combining scheme. We may achieve an unbiased

output through the use of the convex or affine combination constraints

on the combination weights. We focus on steady-state results for

stationary and certain nonstationary data models, however, the tran-

sient analysis of the algorithms can be derived using similar methods.

Furthermore, although we only use stochastic gradient updates to train

the combination weights, one can extend these algorithms to other

methods, such as those based on Newton or quasi-Newton updates.

The structure we consider consists of two stages [1], [2]. In the first

stage, we have two adaptive filters, working in parallel, to model a de-

sired signal. These adaptive filters have the same length, however, each

may use a different adaptation algorithm. We also require that these

constituent filters produce unbiased estimates of the underlying model.

The desired signal has a random walk formulation to represent both sta-

tionary and nonstationary environments [3]. A more precise problem

formulation is given in Section II. The second stage of the model is the

combination stage. Here, the outputs of the adaptive filters in the first

stage are linearly combined to yield the final output. We only consider

combination methods that produce unbiased final estimates of the un-

derlying model. A sufficient condition to satisfy this requirement is to

assume that the second stage coefficients sum up to one at all times, i.e.,

affine combinations. In addition to unbiasedness, the combination coef-

ficients can be further constrained to be nonnegative, which corresponds

to the case of convex combination. We consider both of these cases.

The framework where multiple adaptive algorithms are combined

using an unbiased linear combination with the goal of improving the

overall performance has recently attracted wide interest [1], [4], and

[5], following the result in [1] that the convex combinations can im-

prove the resulting MSE performance. The requirement on unbiased-

ness may be motivated from some problem-specific constraints as well

as implementation related issues. The combination weights are usually

trained using stochastic gradient updates, either after a sigmoid non-

linearity transformation to satisfy convex constraints [1], [4] or after

a variable transformation to satisfy affine constraints [5]. There are

also Bayesian inspired methods that have extensive roots in machine

learning literature [2]. The methods in [1], [2], [4], and [5] combine fil-

ters using least-mean squares (LMS) or recursive least squares (RLS)

updates (or unsupervised updates). As demonstrated in [1] and [4], mix-

tures of two filters using the LMS or RLS updates (or a combination

of the two) with the convex methods yield combination structures that

converge to the best algorithm among the two for stationary data. As

demonstrated in [1], the cross correlation between a priori errors of

the two LMS filters (or LMS and RLS filters in [4]) remains suffi-

ciently high that it limits the combination performance and the optimal

convex combination solution converges to only selecting one of the two

outputs.

In this paper, we first quantify the achievable gains using convex or

affine constrained combination weights in steady-state for stationary

and nonstationary data. We also provide the optimal combination

weights to yield these gains. We next demonstrate that the update

given in [5, Eq. (45)] (which tries to simulate the unrealizable optimal

affine combiner) is a stochastic gradient update with a single tap input

regressor and derive its steady-state MSE for both stationary and

nonstationary environments. Here, we refrain from making variable

transformations and directly adapt the combination weights using

stochastic gradient updates. However, to preserve convexity or affinity,

after each update, we project each updated mixture weight vector

back to the convex or affine space. These methods update the weights

directly instead of using variable transformations [1], [4]. As a by

product of our analysis, we demonstrate that the update in [5, Eq. (45)]

is also a stochastic gradient projection update. As a specific example,
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4422 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

Fig. 1. A mixture of two adaptive filters working in parallel to model a desired
signal.

we consider the case of a combination of two adaptive branches using

the LMS and the least-mean fourth (LMF) algorithms respectively

and derive the steady-state MSE. By this specific combination, we

achieve sufficient decorrelation of the outputs so that in both stationary

and nonstationary environments the final steady-state MSE of the

combination is better than the MSE of the best constituent filter. In [1]

and [4], it was shown that for combination of two LMS filters (or LMS

and RLS filters) such a performance improvement over the constituent

filters is not possible in stationary environments but only achievable in

certain nonstationary environments.

We first introduce the basic problem and derive the optimal affine

and convex combinations along with their corresponding MSE

performance in Section II. We then continue to introduce several

different methods to train the combination weights and provide the

corresponding steady-state MSEs in Section III. In Section IV, we

specialize our results to the case where we combine an LMS and

an LMF adaptive filters. We also derive the corresponding cross

correlation between the a priori errors of the LMS and LMF filters.

We conclude the correspondence with simulations and some remarks.

II. PROBLEM DESCRIPTION

The system we consider has two parts as shown in Fig. 1. The first

part contains two constituent adaptive filters, running in parallel to

model the desired signal . The desired signal is given by

, where is a zero mean stationary vector

process with , is an i.i.d. noise process inde-

pendent of with and is an unknown

system vector.1 We assume a widely used [3] random walk model on

such that , where

is an i.i.d. zero mean vector process with covariance ma-

trix , is the initial weight vector as well as the

mean of this process. We observe that and corresponds

to the stationary case. Usually, . Each filter updates a

weight vector and and produces estimates,

, , 2, respectively. For each filter we also de-

fine estimation, a priori and a posteriori errors as

1All vectors are column vectors, represented by boldface lowercase letters,
is the transpose operation and is the -norm. For a vector , is

the th entry. Matrices are represented with boldface capital letters. For a matrix
, is the trace. Also, the vector or matrix (or ) represents a vector or

a matrix of all ones (or zeros) where the size is understood from the context.

Hence, for each filter we have

(1)

and . We also have ,

and their limiting values (if they exist) ,

, respectively. We further have

and (if it exists) .

The second part of the system is the mixture stage. Here, the out-

puts of the two constituent filters are combined to produce the final

output as , where . We also

update with an adaptive algorithm, where possible candidates are

given in Section III. We note that for the mixture stage, the correla-

tion matrix and the cross correlation vector

are time varying. To obtain the limiting values,

we observe that

(2)

We further have

(3)

where and we use a separation

assumption such that similar to

[3] to cancel the cross terms in (3). We note that

when , and

diverges when . With an abuse of notation, we preserve the

time index as in to study both cases together. Hence, by

this derivation we obtain

(4)

and . We next present the corre-

sponding optimal affine and convex mixture weights to minimize the

steady-state MSE. These optimal convex and affine weights are tar-

geted by the adaptive algorithms applied on in Section III.

A. Affine and Convex Combinations

Under the aforementioned analysis of and , for given

, the steady-state MSE (if the limit exists) in the limit is given by

where and . If

the combination weights are constrained to be affine, then the optimal

affine weights that minimize the final MSE are given as the solution to

the following convex quadratic minimization problem:
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such that , . The optimal affine weights can be

shown to be

(5)

using (4) and . We also define

, i.e., the MMSE of the affine combination.

For the convexity constraint on the combining weights, we have a

convex quadratic minimization problem with linear constraints,

(6)

such that , where

is the unit simplex. Since is included inside the set corresponding to

the affine combination weights, we have .

After some algebra as in [6], we can rewrite the cost function in (6)

as

(7)

for any in the unit simplex, i.e., . Therefore, by

ignoring the constant term in (7), we can view the problem of finding

as that of projecting onto the unit simplex with respect to the

-weighted 2-norm. In other words, the problem of finding the best

can be posed as s.t. . For

the solution, we observe that the unit simplex is the line segment

between and , yielding two cases to consider

• Case : In this case, we simply have and .

• Case : This case occurs when one of the components of is

strictly negative and the other is positive. Without loss of generality,

we let the first component be negative. Then, for any vector in the

unit simplex, due to the constraint that , we can

write . Thus, the cost function in (7) would

be equivalent to , which

implies that the cost increases when the magnitude of increases.

Therefore, the smallest value which makes

feasible (i.e., in ) would be the optimal choice for , which is

equivalent to . This would be equivalent to the choice

, i.e., a corner point of . As a result,

and the cost increase for the convex combination relative to the

affine combination case can be written as

otherwise

where (8)

We observe that when the combinations are constrained to be unbi-

ased, i.e., affine or convex, the optimal weights depend on the relative

value of the cross correlation between a priori errors relative to a priori

error variances of each constituent filter. We point out that for a combi-

nation of two filters each using the LMS update with a different learning

rate, it was illustrated in [1] that is out of reach of the convex com-

bination and (except on the simplex boundary) in stationary

context, i.e., and . In the next section, we investigate

different methods for training the combination weights that preserve

either the convex or affine constraints.

III. METHODS TO UPDATE THE COMBINATION WEIGHTS

In this section, we study four different adaptive methods to train the

combination weights and their respective steady-state MSEs. These in-

clude previously introduced (Section III-A) [5], previously investigated

(Section III-D) [1] as well as new combination methods. We present

them all for completeness.

A. Stochastic Gradient Update on Affine Weights

To constrain the combination weights to be affine, we can use a vari-

able transformation such that we do not constrain and define

. We next use a gradient update on as

(9)

(10)

This update requires computational complexity. We note that this

update corresponds to the affine update given in (45) of [5]. We observe

from (9) and (10) that this update corresponds to the ordinary LMS up-

date on with the desired signal as and one-tap

input regressor [7]. However, using (1) and the defini-

tion of , we get and

. A simple derivation invoking the separation assump-

tions (or independence assumptions) [3] yields that this LMS update

converges to a stationary point such that when

and the steady-state MSE

of this combination is given by

(11)

since

is the power of the one tap input regressor and is the MMSE of

this one tap filter. We note that the effect of cancels out,

hence for any value of , even if such that diverges for

nonzero , (11) holds due to the affine constraint. One can also perform

transient analysis of this update through analogous means, since this

is an ordinary LMS update with time varying correlation matrix and

cross correlation vector. It can be shown that the particular algorithm

converges in MSE sense for

(12)

for small enough .

B. Stochastic Gradient Projection Update on Affine Weights

In stochastic gradient projection update, at each iteration, the com-

bination weights are updated using the ordinary stochastic gradient up-

date (which is the LMS update). However, at each iteration, since after

the gradient update, the updated weight vector can end up outside the

affine space, we project this vector back to the affine surface. The up-

date is given by

(13)

where , is the projection operator to

the affine space and is the learning rate. The last equality

in (13) is derived using the definition of the projection operation to

the affine space as:
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, where is the affine space, i.e.,

. However, if we focus on each constituent coefficient,

e.g., the first coefficient, then we observe from (13) that

, which is equivalent to (10) (ex-

cept 1/2 scaling in front of ). Hence, owing to the affine constraint,

this demonstrates that the gradient projected update is equivalent to the

stochastic gradient update with affine constraints such that

(14)

C. Stochastic Gradient Projection Update on Convex Weights

In this section, we again use a gradient update on the combination

weights . However, to preserve convexity, we use a projection onto

the constraint set following the gradient update. Therefore, the re-

sulting update equation can be written

(15)

where , is the projection operator to the

unit simplex. The projection operator to the unit simplex is defined as:

, , where

. For the combination of two branches,

this projection operator can be written more explicitly as

(16)

where is the unit vector for th coordinate. We can show by using

independence or separation assumptions [3] and using the nonexpan-

sive property of the projection [8] (Prop.2.1.3(c)), this projected update

algorithm converges in the mean to for sufficiently small when

is in the relative interior of the simplex. We observe that unlike (13),

(16) cannot be written in a simple closed form. However, if we follow

along the lines that yielded (14) and approximate the progress of the

convex weights with the progress of the affine weights (which is true

in the interior region of the simplex), then we can give the steady-state

MSE as

(17)

Note that (17) corresponds to the final MSE of a stochastic gradient up-

date algorithm converging to with MMSE and updating a weight

vector with a single tap. The computational complexity of this combi-

nation algorithm is only per output sample.

D. Stochastic Gradient Update with Convex Weights

Here, the combination weights are trained using a gradient update

after a variable transformation using a sigmoid nonlinearity [1]. The

update for the combination weights to minimize the final estimation

error is given as

(18)

, where is trained using the stochastic gra-

dient update

(19)

In [1], it has been shown under several assumptions that (18) converges

to the optimal convex combination weights and

. This argument assumed that the stochastic gradient noise does not

propagate to the final MSE due to the sigmoid nonlinearity. Hence,

the final MSE of (18) is the MMSE , without any additional terms

coming from the stochastic gradient noise. As also emphasized in [1],

this MSE equality is accurate when the convex combination converges

to one of the constituent filters, i.e., when or ,

so that (or ) becomes small enough to attenuate the prop-

agation of the stochastic gradient noise through the sigmoid in (19). As

shown in the simulations, the stochastic gradient noise may not be com-

pletely eliminated through the sigmoid nonlinearity in certain cases,

such as , such that the final MSE of (18) is not equal

to .

IV. COMBINATIONS OF TWO SPECIFIC ADAPTIVE FILTERS

In this section, we study the case where we have specific adaptive

algorithms to update each of the constituent filter weights. To simplify

the notation, only for this section, we assume that , i.e.,

. Suppose the first constituent filter updates its weight

vector using the LMS update as

(20)

(21)

where . We then have

(22)

(23)

where and . With

these definitions and using the separation assumption such that

, the converged

mean-square a priori error of this filter using the LMS update is

given by ([3, ch. 6])

(24)

where the approximation is accurate for small .

If the second constituent filter also updates its weight vector

with the same LMS update as in (20), (21), but with

, then the converged mean square a priori error is given

by . For the combina-

tion of these two filters each running the LMS update with learning

rates and , the converged cross correlation between a priori errors

is given by ,

where as given in [1]. Without loss of

generality if we assume that , then , i.e.,

the “learning rate” of the excess error is always between the learning

rates of the constituent filters. For stationary environments such that

, since , we have .

Because of this strict ordering, when used in (5), one element of

will be negative, yielding . For this case from

Section II-A, i.e., the convex combination is unable to use all the

cross-correlation information between constituent filter outputs to

reduce the final estimation error and only converges to the one best in

stationary environments.
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Fig. 2. System identification with seventh-order filter. (a) Here, , , and . For the algorithm: of Section III-B
“proj-aff”, of Section III-C “proj-cvx”, of Section III-D “grad-cvx”. (b) The x axis is the learning rate for the second stage for all algorithms,

, , , , , , 700 hundred iterations, samples, .

To be able to find a combination structure where we have better con-

trol over both in stationary and nonstationary environments, we

now introduce a combination of two filters; the first running the LMS

update and the second using the least mean-fourth (LMF) update [3]. In

this case, the second constituent filter updates its weight vector

using the LMF update as

(25)

where . We then have

(26)

(27)

where and . With these

definitions and using the separation assumption, the converged mean-

square a priori error of this filter using the LMF update is given by ([3,

ch. 6])

(28)

where the approximation is accurate for small .

As shown in the Appendix, for this combination, the converged cross

correlation is given by

(29)

Hence, even in the stationary case such that , by arranging ,

, we can obtain a cross correlation either between the ’s

or less than both of ’s and simulate both of the cases where

and . As an example, suppose is Gaussian and we

choose . Further, for , and (for

some scaling ), we can simplify such that the condition

and is satisfied when

. Hence, the combination of the LMS and LMF filters

can provide, even in the stationary case, a wide range of to fully

exploit the diversity among constituent branches.

V. SIMULATIONS AND CONCLUSION

The first set of experiments involve modeling the sev-

enth-order filter introduced in [1], where

, and

are zero mean i.i.d. vectors distributed uniformly with

and , i.e., a stationary environment. In Fig. 2(a), we

plot the excess MSE for all the methods introduced in this paper

as well as with respect to , over 150 iterations and

samples. The learning rates of the combination algorithms

are given in the caption of Fig. 2. For this case, such that

such that is less than both of

the ’s and due to (5) and Section II-A. We note that for

such a combination where is in the interior of the unit simplex,

i.e., , and according to (19), the gradient noise

actually propagates through the sigmoid nonlinearity. Therefore the

MSE of the sigmoid based algorithm, as well as MSEs of the other

studied algorithms, are larger than . To test the validity of

(11), (14) and (17), we next simulate all the algorithms with different

and values under nonstationary scenarios. We plot in Fig. 2(b),

the excess MSE corresponding to all algorithms, the theoretical

curves, i.e., “-theo”, and the minimum excess MSE of the constituent

algorithms when , and . The x

axis corresponds to different learning rates for all the algorithms.

We observe close agreement with the theory and simulations. We

note that the affine constrained algorithms provide more than 2 dB

gains for . In the final set of experiments, we simulate the

corresponding algorithms for varying . For this figure, we use

a relative figure of merit studied in [1], i.e., for any algorithm ,

, where

and are from (24) and (28), respectively, which is a relative

performance with respect to the excess MSE of the best constituent
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Fig. 3. System identification with seventh-order filter. (a) , , for the algorithm of Section III-B “proj-aff”, of Section III-C
“proj-cvx”, of Section III-D “grad-cvx”, over 200 iterations, samples, , . (b) Here, .

filter with the optimal learning parameter. We plot NSD values for

all the algorithms as well as the theoretical curves in Fig. 3(a), when

and in Fig. 3(b) when . We again observe a close

agreement under different values of between the simulations

and the theoretical results. For relatively larger values of , the

performance of the affine mixture is significantly better than the other

methods since in that region is between and . Hence,

while the convex mixtures only converge to the performance of the

best filter, the affine methods can exploit the full cross correlation

inbetween the a priori errors. The performance of the convex mixtures

are better than the best constituent filter for relatively smaller values

of where is less than both and for the specific

combination of the LMF and LMS filters.

In this paper, we investigated unbiased combination methods where

we introduce methods to directly train, i.e., without any variable trans-

formations, the constrained combination weights. We first quantified

the achievable diversity gains and then provided the corresponding

steady-state MSEs for all studied algorithms. We next specialized the

combinations to a mixture of an LMS filter and an LMF filter, where

we also derived the corresponding excess cross correlation between

the two. The LMF filter and the LMS filter combination is special

since we can adjust the excess correlation to yield the optimal affine

combination to be the same as the optimal convex combination in

stationary environments, which is not possible for any combination of

LMS or RLS filters (with the same order) under the studied data model

in [1], [4]. We observed more than 2 dB gain in terms of excess MSE

with respect to the constituent filters under different nonstationary

environments. We show a close agreement between the simulations

and the theoretical results.

APPENDIX

For the first filter using (21), (22), (23) and for the second filter using

(25), (26), (27), and following the lines of [1], we have

(30)

, 2, respectively. Multiplying the left-hand side (LHS) of (30) for

with yields

after canceling the cross terms. Assuming convergence yields

(31)

Using (23) and (27) to replace and terms in (31) results

(32)

For the LHS of (32) using , , 2, we have

(33)

where we omitted third– and higher-order terms for (or third–

and higher-order cross terms) as in ([3, ch. 6]), used that is i.i.d.

and independent of and assume that .

For the right-hand side (RHS) of (32), we have

(34)

where we again omit third– and higher-orde terms and use the i.i.d.

property of . Using (33) and (34) in (32), we get (29).
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A Quaternion Widely Linear Adaptive Filter

Clive Cheong Took and Danilo P. Mandic

Abstract—A quaternion widely linear (QWL) model for quaternion

valued mean-square-error (MSE) estimation is proposed. The augmented
statistics are first introduced into the field of quaternions, and it is demon-
strated that this allows for capturing the complete second order statistics

available. The QWL model is next incorporated into the quaternion
least mean-square (QLMS) algorithm to yield the widely linear QLMS

(WL-QLMS). This allows for a unified approach to adaptive filtering of
both -proper and -improper signals, leading to improved accuracies

compared to the QLMS class of algorithms. Simulations on both bench-
mark and real world data support the analysis.

Index Terms— -properness, quadrivariate processes, quaternion adap-
tive filtering, quaternion LMS (QLMS), quaternion second-order noncir-
cularity, widely linear model, widely linear QLMS, Wiener model.

I. INTRODUCTION

Standard techniques employed in multichannel statistical signal pro-

cessing typically do not fully cater for the “coupled” nature of the avail-

able information within the channels. Thus, most practical approaches

operate based on channelwise processing, which is not optimal for gen-

eral multivariate signals (where data channels are typically correlated).

On the other hand, the quaternion domain allows for the direct mod-

eling of three- and four-dimensional signals, and its algebra naturally

accounts for the coupling between the signal components.
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The use of quaternions is rapidly gaining in popularity, as for in-

stance, many multivariate problems based on vector sensors (motion

body sensors, seismics, wind modeling) can be cast into the quaternion

domain. The recent resurgence of quaternion valued signal processing

stems from the potential advantages that special properties of quater-

nion algebra offer over real valued vector algebra in multivariate mod-

eling. Applications of quaternions include those in vector sensing [1],

machine learning [2], and adaptive filters [3].

Recent advances in complex valued signal processing have been

based on the widely linear model proposed by Picinbono [4]. This

model, together with the corresponding augmented complex statistics,

has been successfully used to design enhanced algorithms in communi-

cations [5], [6] and adaptive filters [7]. These studies have shown that

widely linear modeling and the associated augmented statistics offer

theoretical and practical advantages over the standard complex models,

and are applicable to the generality of complex signals, both circular

and noncircular.

Models suitable for the processing of signals with rotation dependent

distribution (noncircular) are lacking in the quaternion domain, and

their development has recently attracted significant research effort [3].

Current second order algorithms operate based on only the quaternion

valued covariance [1]–[3] and thus do not fully exploit the available

statistical information. Advances in this direction include the work by

Vakhania, who defined the concept of -properness as the invariance

of the distribution of a quaternion valued variable under some specific

rotations around the angle of [8]. Amblard and Le Bihan relaxed

the conditions of -properness to an arbitrary axis and angle of rotation

, that is, [9] for any pure unit quaternion (whose real part

vanishes); where symbol denotes equality in terms of probability

density function (pdf).

Although these results provide an initial insight into the processing

of general quaternionic signals, they are not straightforward to apply in

the context of adaptive filtering applications. To this end, we first pro-

pose the quaternion widely linear model, specifically designed for the

unified modeling of the generality of quaternion signals, both -proper

and -improper. The benefits of such an approach are shown to be anal-

ogous to the benefits that the augmented statistics provides for complex

valued data [7]. Next, the QWL model is incorporated into the quater-

nion LMS [3] to yield the widely linear QLMS (WL-QLMS), and its

theoretical and practical advantages are demonstrated through analysis

and simulations.

II. PROPERTIES OF QUATERNION RANDOM VECTORS

A. Quaternion Algebra

The quaternion domain, a non-commutative extension of the com-

plex domain, provides a natural framework for the processing of three-

and four-dimensional signals. A quaternion variable comprises a

real part and a vector-part, also known as a pure quaternion ,

consisting of three imaginary components, and can be expressed as

(1)

The relationship between the orthogonal unit vectors, are given

by

(2)
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