
Unbiased Offline Evaluation of Contextual-bandit-based
News Article Recommendation Algorithms

Lihong Li Wei Chu John Langford Xuanhui Wang
Yahoo! Labs

701 First Ave, Sunnyvale, CA, USA 94089
{lihong,chuwei,jl,xhwang}@yahoo-inc.com

ABSTRACT
Contextual bandit algorithms have become popular for on-
line recommendation systems such as Digg, Yahoo! Buzz,
and news recommendation in general. Offline evaluation of
the effectiveness of new algorithms in these applications is
critical for protecting online user experiences but very chal-
lenging due to their“partial-label”nature. Common practice
is to create a simulator which simulates the online environ-
ment for the problem at hand and then run an algorithm
against this simulator. However, creating simulator itself
is often difficult and modeling bias is usually unavoidably
introduced. In this paper, we introduce a replay method-
ology for contextual bandit algorithm evaluation. Different
from simulator-based approaches, our method is completely
data-driven and very easy to adapt to different applications.
More importantly, our method can provide provably unbi-
ased evaluations. Our empirical results on a large-scale news
article recommendation dataset collected from Yahoo! Front
Page conform well with our theoretical results. Furthermore,
comparisons between our offline replay and online bucket
evaluation of several contextual bandit algorithms show ac-
curacy and effectiveness of our offline evaluation method.

Categories and Subject Descriptors
H.3.5 [Information Systems]: On-line Information Ser-
vices; I.2.6 [Computing Methodologies]: Learning

General Terms
Algorithms, Experimentation

Keywords
Recommendation, multi-armed bandit, contextual bandit,
offline evaluation, benchmark dataset

1. INTRODUCTION
Web-based content recommendation services such as Digg,

Yahoo! Buzz and Yahoo! Today Module (Figure 1) leverage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

user activities such as clicks to identify the most attractive
contents. One inherent challenge is how to score newly gen-
erated contents such as breaking news, especially when the
news first emerges and little data are available. A person-
alized service which can tailor contents towards individual
users is more desirable and challenging.

A distinct feature of these applications is their “partial-
label” nature: we observe user feedback (click or not) for an
article only when this article is displayed. A key challenge
thus arises which is known as the exploration/exploitation
tradeoff: on one hand, we want to exploit (i.e., choose arti-
cles of higher quality estimates to promote our business of
interest), but on the other than, we have to explore (i.e.,
choose articles with lower quality estimates to collect user
feedback so as to improve our article selection strategy in
the long run). The balance between exploration and ex-
ploitation may be modeled as a “contextual bandit” [13]—a
subclass of reinforcement learning problems [20], and is also
present in many other important Web-based applications
such as online ads display and search query suggestion, etc.

An ideal way to evaluate a contextual-bandit algorithm
is to conduct a bucket test, in which we run the algorithm
to serve a fraction of live user traffic in the real recommen-
dation system. However, not only is this method expen-
sive, requiring substantial engineering efforts in deploying
the method in the real system, but it may also have negative
impacts on user experience. Furthermore, it is not easy to
guarantee replicable comparison using bucket tests as online
metrics vary significantly over time. Offline evaluation of
contextual-bandit algorighms thus becomes valuable when
we try to optimize an online recommendation system.

Although benchmark datasets for supervised learning such
as the UCI repository have proved valuable for empirical
comparison of algorithms, collecting benchmark data to-
wards reliable offline evaluation has been difficult in bandit
problems. In our application of news article recommenda-
tion on Yahoo! Front Page, for example, each user visit
results in the following information stored in the log: user
information, the displayed news article, and user feedback
(click or not). When using data of this form to evaluate a
bandit algorithm offline, we will not have user feedback if the
algorithm recommends a different news article than the one
stored in the log. In other words, data in bandit-style ap-
plications only contain user feedback for recommendations
that were actually displayed to the user, but not all candi-
dates. This “partial-label” nature raises a difficulty that is
the key difference between evaluation of bandit algorithms
and supervised learning ones.

Common practice for evaluating bandit algorithms is to
create a simulator and then run the algorithm against it.
With this approach, we can evaluate any bandit algorithm
without having to run it in a real system. Unfortunately,
there are two major drawbacks with this approach. First,
creating a simulator can be challenging and time-consuming
for practical problems. Second, evaluation results based on
artificial simulators may not reflect the actual performance
since simulators are only rough approximations of real prob-
lems and unavoidably contains modeling bias.

Our contributions are two-fold. First, we describe and
study an offline evaluation method for bandit algorithms,
which enjoys valuable theoretical guarantees including un-
biasedness and accuracy. Second, we verify the method’s
effectiveness by comparing its evaluation results to online
bucket results using a large volume of data recorded from
Yahoo! Front Page. These positive results not only encour-
age wide use of the proposed method in other Web-baesd
applications, but also suggest a promising solution to create
benchmark datasets from real-world applications for bandit
algorithms.

Related Work.
Unbiased evaluation has been studied before under dif-

ferent settings. While our unbiased evaluation method is
briefly sketched in an earlier paper [14] and may be inter-
preted as a special case of the exploration scavenging tech-
nique [12], we conduct a thorough investigation in this work,
including improved theoretical guarantees and positive em-
pirical evidence using online bucket data.

2. CONTEXTUAL BANDIT PROBLEMS
The multi-armed bandit problem [7] is a classic and popu-

lar model for studying the exploration-exploitation tradeoff.
Despite the simplicity of the model, it has found wide appli-
cations in important problems like medical treatment allo-
cation, and recently, in challenging, large-scale problems like
Web content optimization [2, 14]. Different from the classic
multi-armed bandit problems, we are particularly concerned
with a more interesting setting where for each round contex-
tual information is available for decision making.

2.1 Notation
For the purpose of this paper, we consider the multi-armed

bandit problem with contextual information. Following pre-
vious work [13], we call it a contextual bandit problem.1 For-
mally, we define by A = {1, 2, . . . , K} the set of arms, and
a contextual-bandit algorithm A interacts with the world in
discrete trials t = 1, 2, 3, In trial t:

1. The world chooses a feature vector xt known as the
context. Associated with each arm a is a real-valued
payoff rt,a ∈ [0, 1] that can be related to the context
xt in an arbitrary way. We denote by X the (possibly
infinite) set of contexts, and (rt,1, . . . , rt,K) the payoff
vector. Furthermore, we assume (xt, rt,1, . . . , rt,K) is
drawn i.i.d. from some unknown distribution D.

2. Based on observed payoffs in previous trials and the
current context xt, A chooses an arm at ∈ A, and

1In the literature, contextual bandits are sometimes called
bandits with covariate [22], associative reinforcement learn-
ing [9], bandits with expert advice [6], bandits with side
information [21], and associative bandits [19].

receives payoff rt,at . It is important to emphasize here
that no feedback information (namely, the payoff rt,a)
is observed for unchosen arms a �= at.

3. The algorithm then improves its arm-selection strategy
with all information it observes, (xt,at , at, rt,at).

In this process, the total T -trial payoff of A is defined as

GA(T)
def
=ED

"
TX

t=1

rt,at

#
,

where the expectation ED[·] is defined w.r.t. the i.i.d. gener-
ation process of (xt, rt,1, . . . , rt,K) according to distribution
D (and the algorithm A as well if it is not deterministic).
Similarly, given a policy π that maps contexts to actions,
π : X �→ A, we define its total T -trial payoff by

Gπ(T)
def
=ED

"
TX

t=1

rt,π(xt)

#
= T · ED

ˆ
r1,π(x1)

˜
,

where the second equality is due to our i.i.d. assumption.
Given a reference set Π of policies, we define the optimal
expected T -trial payoff with respect to Π as

G∗(T)
def
= max

π∈Π
Gπ(T).

For convenience, we also define the per-trial payoff of an
algorithm or policy, which is defined, respectively, by

gA
def
=

GA(T)

T

gπ
def
=

Gπ(T)

T
= ED

ˆ
r1,π(x1)

˜
.

Much research in multi-armed bandit problems is devoted to
developing algorithms with large total payoff. Formally, we
may search for an algorithm minimizing regret with respect
to the optimal arm-selection strategy in Π. Here, the T -trial
regret RA(T) of algorithm A with respect to Π is defined by

RA(T)
def
=G∗(T)−GA(T). (1)

An important special case of the general contextual bandit
problem is the well-known K-armed bandit in which the con-
text xt remains constant for all t. Since both the arm set
and contexts are constant at every trial, they have no effect
on a bandit algorithm, and so we will also refer to this type
of bandit as a context-free bandit.

In the example of news article recommendation, we may
view articles in the pool as arms, and for the t-th user visit
(trial t), one article (arm) is chosen to serve the user. When
the served article is clicked on, a payoff of 1 is incurred;
otherwise, the payoff is 0. With this definition of payoff,
the expected payoff of an article is precisely its click-through
rate (CTR), and choosing an article with maximum CTR
is equivalent to maximizing the expected number of clicks
from users, which in turn is the same as maximizing the
total expected payoff in our bandit formulation.

2.2 Existing Bandit Algorithms
The fundamental challenge in bandit problems is the need

for balancing exploration and exploitation. To minimize the
regret in Equation (1), an algorithm A exploits its past ex-
perience to select the arm that appears best. On the other
hand, this seemingly optimal arm may in fact be subopti-
mal, due to imprecision in A’s knowledge. In order to avoid

this undesired situation, A has to explore the world by ac-
tually choosing seemingly suboptimal arms so as to gather
more information about them (c.f., step 3 in the bandit pro-
cess defined in the previous subsection). Exploration can in-
crease short-term regret since some suboptimal arms may be
chosen. However, obtaining information about the arms’ av-
erage payoffs (i.e., exploration) can refine A’s estimate of the
arms’ payoffs and in turn reduce long-term regret. Clearly,
neither a purely exploring nor a purely exploiting algorithm
works best in general, and a good tradeoff is needed.

There are roughly two classes of bandit algorithms. The
first class of algorithms attempt to minimize the regret as
the number of steps increases. Formally, such algorithms
A ensure the quantity RA(T)/T vanishes over time as T
grows. While low-regret algorithms have been extensively
studied for the context-free K-armed bandit problem [7],
the more general contextual bandit problem has remained
challenging. Another class of algorithms are based on Bayes
rule, such as Gittins index methods [8]. Such Bayesian ap-
proaches may have competitive performance with appropri-
ate prior distributions, but are often computationally pro-
hibitive without coupling with approximation [2].

The Appendix describes a few representative low-regret
algorithms used in our experiments, but it should be noted
that our method is algorithm independent, and so may be
applied to evaluate Bayesian algorithms as well.

3. UNBIASED OFFLINE EVALUATION
Compared to machine learning in the more standard su-

pervised learning setting, evaluation of methods in a contex-
tual bandit setting is frustratingly difficult. Our goal here
is to measure the performance of a bandit algorithm A, that
is, a rule for selecting an arm at each time step based on
the preceding interactions and current context (such as the
algorithms described above). Because of the interactive na-
ture of the problem, it would seem that the only way to do
this unbiasedly is to actually run the algorithm online on
“live” data. However, in practice, this approach is likely to
be infeasible due to the serious logistical challenges that it
presents. Rather, we may only have offline data available
that was collected at a previous time using an entirely differ-
ent logging policy. Because payoffs are only observed for the
arms chosen by the logging policy, which are likely to differ
from those chosen by the algorithm A being evaluated, it is
not at all clear how to evaluate A based only on such logged
data. This evaluation problem may be viewed as a special
case of the so-called “off-policy policy evaluation problem”
in the reinforcement learning literature [17].

One solution is to build a simulator to model the bandit
process from the logged data, and then evaluate A with the
simulator. Although this approach is straightforward, the
modeling step is often very expensive and difficult, and more
importantly, it often introduces modeling bias to the sim-
ulator, making it hard to justify reliability of the obtained
evaluation results. In contrast, we propose an approach that
is unbiased, grounded on data, and simple to implement.

In this section, we describe a sound technique for carrying
out such an evaluation, assuming that the individual events
are i.i.d., and that the logging policy chose each arm at each
time step uniformly at random. Although we omit the de-
tails, this latter assumption can be weakened considerably so
that any randomized logging policy is allowed and the algo-

Algorithm 1 Policy_Evaluator (with infinite data stream).

0: Inputs: T > 0; bandit algorithm A; stream of events S
1: h0 ← ∅ {An initially empty history}
2: ĜA ← 0 {An initially zero total payoff}
3: for t = 1, 2, 3, . . . , T do
4: repeat
5: Get next event (x, a, ra) from S
6: until A(ht−1,x) = a
7: ht ← concatenate(ht−1, (x, a, ra))

8: ĜA ← ĜA + ra

9: end for
10: Output: ĜA/T

rithm can be modified accordingly using rejection sampling,
but at the cost of decreased data efficiency.

More precisely, we suppose that there is some unknown
distribution D from which tuples are drawn i.i.d. of the form
(x, r1, . . . , rK), each consisting of observed context and un-
observed payoffs for all arms. We also posit access to a long
sequence of logged events resulting from the interaction of
the logging policy with the world. Each such event consists
of the context vector x, a selected arm a and the resulting
observed payoff ra. Crucially, only the payoff ra is observed
for the single arm a that was chosen uniformly at random.

Our goal is to use this data to evaluate a bandit algorithm
A. Formally, A is a (possibly randomized) mapping for se-
lecting the arm at at time t based on the history ht−1 of
t− 1 preceding events together with the current context.

It should be noted that this section focuses on contextual
bandit problems with constant arm sets of size K. While
this assumption leads to easier exposition and analysis, it
may not be satisfied in practice. For example, in the news
article recommendation problem studied in Section 4, the set
of arms is not fixed: new arms may become available while
old arms may be dismissed. Consequently, the events are
independent but drawn from non-identical distributions. We
do not investigate this setting formally although it is possible
to generalize our setting in Section 2 to this variable arm set
case. Empirically, we find the evaluator is very stable.

3.1 An Unbiased Offline Evaluator
In this subsection, for simplicity of exposition, we take this

sequence of logged events to be an infinitely long stream.
But we also give explicit bounds on the actual finite number
of events required by our evaluation method. A variation
for finite data streams is studied in the next subsection.

The proposed policy evaluator is shown in Algorithm 1.
The method takes as input a bandit algorithm A and a de-
sired number of “valid” events T on which to base the eval-
uation. We then step through the stream of logged events
one by one. If, given the current history ht−1, it happens
that the policy A chooses the same arm a as the one that
was selected by the logging policy, then the event is retained
(that is, added to the history), and the total payoff ĜA up-
dated. Otherwise, if the policy A selects a different arm from
the one that was taken by the logging policy, then the event
is entirely ignored, and the algorithm proceeds to the next
event without any change in its state.

Note that, because the logging policy chooses each arm
uniformly at random, each event is retained by this algo-
rithm with probability exactly 1/K, independent of every-

thing else. This means that the events which are retained
have the same distribution as if they were selected by D.
As a result, we can prove that two processes are equivalent:
the first is evaluating the policy against T real-world events
from D, and the second is evaluating the policy using the
policy evaluator on a stream of logged events. Theorem 1
formalizes this intuition.

Theorem 1. For all distributions D of contexts and pay-
offs, all algorithms A, all T , all sequences of events hT , and
all stream S containing i.i.d. events from a uniformly ran-
dom logging policy and D, we have

Pr
Policy Evaluator(A,S)

(hT) = Pr
A,D

(hT).

Furthermore, let L be the number of events obtained from
the stream to gather the length-T history hT , then

1. the expected value of L is KT , and
2. for any δ ∈ (0, 1), with probability at least 1 − δ, L ≤

2K(T + ln(1/δ)).

This theorem says that every history hT has an identical
probability in the real world as in the policy evaluator. Any
statistics of these histories, such as the estimated per-trial
payoff ĜA/T returned by Algorithm 1, are therefore unbi-
ased estimates of the respective quantities of the algorithm
A. Hence, by repeating Algorithm 1 multiple times and then
averaging the returned per-trial payoffs, we can accurately
estimate the total per-trial payoff gA of any algorithm A and
respective confidence intervals. Further, the theorem guar-
antees that O(KT) logged events are sufficient to retain a
sample of size T .

Proof. The proof is by induction on t = 1, . . . , T starting
with a base case of the empty history which has probability
1 when t = 0 under both methods of evaluation. In the
inductive case, assume that we have for all t− 1:

Pr
Policy Evaluator(A,S)

(ht−1) = Pr
A,D

(ht−1)

and want to prove the same statement for any history ht.
Since the data is i.i.d. and any randomization in the policy
is independent of randomization in the world, we need only
prove that conditioned on the history ht−1 the distribution
over the t-th event is the same for each process. In other
words, we must show:

Pr
Policy Evaluator(A,S)

((xt, a, rt,a) | ht−1)

= Pr
D

(xt, rt,a) Pr
A(ht−1)

(a | xt).

Since the arm a is chosen uniformly at random in the log-
ging policy, the probability that the policy evaluator exits
the inner loop is identical for any policy, any history, any
features, and any arm, implying this happens for the last
event with the probability of the last event, PrD(xt, rt,a).
Similarly, since the policy A’s distribution over arms is in-
dependent conditioned on the history ht−1 and features xt,
the probability of arm a is just PrA(ht−1)(a|xt).

Finally, since each event from the stream is retained with
probability exactly 1/K, the expected number required to
retain T events is exactly KT . The high-probability bound
is an application of Chernoff’s inequality.

Algorithm 2 Policy_Evaluator (with finite data stream).

0: bandit algorithm A; stream of events S of length L
1: h0 ← ∅ {An initially empty history}
2: ĜA ← 0 {An initially zero total payoff}
3: T ← 0 {An initially zero counter of valid events}
4: for t = 1, 2, 3, . . . , L do
5: Get the t-th event (x, a, ra) from S
6: if A(ht−1,x) = a then
7: ht ← concatenate(ht−1, (x, a, ra))

8: ĜA ← ĜA + ra

9: T ← T + 1
10: else
11: ht ← ht−1

12: end if
13: end for
14: Output: ĜA/T

3.2 Sample Complexity Result
Next, we consider a situation that may be more relevant to

practical evaluation of a static policy when we have a finite
data set S containing L logged events. Roughly speaking,
the algorithm steps through every event in D as in Algo-
rithm 1 and obtains an estimate of the policy’s average per-
trial payoff based on a random number of valid events. The
detailed pseudocode in Algorithm 2.

Algorithm 2 is very similar to Algorithm 1. The only
difference is that the number of valid events, denoted T in
the pseudocode, is a random number with mean L/K. For

this reason, the output of Algorithm 2 (namely, ĜA/T) may
not be an unbiased estimate of the true per-trial payoff of A.
However, the next theorem shows that the final value of T
will be arbitrarily close to L/K with high probability as long
as L is large enough. Using this fact, the theorem further
shows that the returned value of Algorithm 2 is an accurate
estimate of the true per-trial payoff with high probability
when A is a fixed policy that chooses action at independent
of the history ht−1. To emphasize that A is a fixed policy,
the following theorem and its proof use π instead of A.

Theorem 2. For all distributions D over contexts and
payoffs, all policies π, all data stream S containing L i.i.d.
events drawn from a uniformly random logging policy and
D, and all δ ∈ (0, 1), we have, with probability at least 1− δ,
that ˛̨̨

˛̨ Ĝπ

T
− gπ

˛̨̨
˛̨ = O

 r
Kgπ

L
ln

1

δ

!
.

Therefore, for any g ≥ gπ, with high probability, the the-
orem guarantees that the returned value Ĝπ/T is a close
estimate of the true value gπ with error on the order of

Õ
“p

Kg/L
”
. As L increases, the error decreases to 0 at

the rate of O(1/
√

L). This error bound improves a previ-
ous result [12, Theorem 5] for a similar offline evaluation
algorithm and similarly provides a sharpened analysis for
the T = 1 special case for policy evaluation in reinforce-
ment learning [10]. Section 4 provides empirical evidence
matching our bound.

Proof. The proof involves a couple applications of the
multiplicative Chernoff/Hoeffding bound [15, Corollary 5.2].
To simplify notation, we use Pr(·) and E[·] in the proof to

denote the probability and expectation with respect to ran-
domness generated by π and S. Let (xt, at, rt,at) be the t-th
event in the stream S, Vt be the (random) indicator that
at matches the arm chosen by policy π in the context (xt).

Then, T =
PL

t=1 Vt, Ĝπ =
PL

t=1 Vtrt,at , and the returned

value of Algorithm 2 is Ĝπ/T . We bound the denominator
and numerator, respectively.

First, since at is chosen uniformly at random, we have

E[Vt] = 1/K for all t and thus E
hPL

t=1 Vt

i
= L/K. Using

the multiplicative form of Chernoff’s bound, we have

Pr

„˛̨̨
˛T − L

K

˛̨̨
˛ ≥ γ1L

K

«
≤ 2 exp

„
−Lγ2

1

3K

«
(2)

for any γ1 > 0. Let the right-hand side above be δ/2 and
solve for γ1:

γ1 =

r
3K

L
ln

4

δ
.

Similarly, since at is uniformly chosen, we have E
h
Ĝπ

i
=

Lgπ/K. Applying the multiplicative Chernoff bound again,
we have for any γ2 > 0 that

Pr

„˛̨̨
˛Ĝπ − Lgπ

K

˛̨̨
˛ >

γ2Lgπ

K

«
≤ 2 exp

„
−Lgπγ2

2

3K

«
. (3)

Let the right-hand side above be δ/2 and solve for γ2:

γ2 =

r
3K

Lgπ
ln

4

δ
.

Now applying a union bound over the probabilistic state-
ments in Equations (2) and (3), we can see that, with prob-
ability at least 1− δ, the following holds:

1− γ1

K
≤ T

L
≤ 1 + γ1

K

gπ(1− γ2)

K
≤ Ĝπ

L
≤ gπ(1 + γ2)

K
.

These two inequalities together imply˛̨̨
˛̨ Ĝπ

T
− gπ

˛̨̨
˛̨ ≤ (γ1 + γ2)gπ

1− γ1
= O

 r
Kgπ

L
ln

1

δ

!
,

which finishes the proof.

Given Theorem 2, one might wonder if a similar result
holds for general bandit algorithms. Unfortunately, the fol-
lowing example shows that such a concentration result is
impossible in general.

Example 3. Consider a contextual bandit problem with
K = 2 and x ∈ {0, 1} in which rt,1 = 1 and rt,2 = 0 for
all t = 1, 2, Suppose x is defined by a uniform random
coin flip. Let A be an algorithm that operates as follows: if
x1 = 1 the algorithm chooses at = 1 for all t; otherwise,
it always chooses at = 2. Therefore, the expected per-trial
payoff of A is gA = 0.5. However, in any individual run of
the algorithm, its T -step total reward ĜA is either T (if A
always chooses at = 1) or 0 (if A always chooses at = 0),

and therefore,
˛̨̨
ĜA/T − gA

˛̨̨
≡ 0.5 no matter how large T is.

This counterexample shows that an exponential tail style
deviation bound does not hold for general bandit algorithms

Figure 1: A snapshot of the “Featured” tab in the
Today Module on the Yahoo! Front Page [14]. By
default, the article at F1 position is highlighted at
the story position.

that are dependent on history. Not all hope is lost though—
there are some known algorithms for which deviation bounds
are provable; for example, epoch-greedy algorithm [13],
UCB1 [5], and EXP3.P [6]. Furthermore, as commented ear-
lier, we can always repeat the evaluation process multiple
times and then average the outcomes to get accurate esti-
mate of the algorithm’s performance. In the next section,
we show empirically that Algorithm 1 returns highly stable
results for all algorithms we have tried.

4. CASE STUDY
In this section, we apply the offline evaluation method in

the previous section to a large-scale, real-world problem with
variable arm sets to validate the effectiveness of our offline
evaluation methodology. Specifically, we provide empirical
evidence for: (i) the unbiasedness guarantee in Theorem 1,
(ii) the convergence rate in Theorem 2, (iii) the low variance
of the evaluation result, and (iv) the effectiveness of the
evaluation method when the arm set may change over time.

While the proposed evaluation methodology has been ap-
plied to the same application [14], our focus here is on the
effectiveness of the offline evaluation method itself. More
importantly, we also provide empirical evidence of unbiased-
ness for not only fixed policies but also learning algorithms,
by relating offline evaluation metric to online performance
in large-scale production buckets on Yahoo! Front Page.

We will first describe the application and show how it can
be modeled as a contextual bandit problem. Second, we
compare the offline evaluation result of a policy to its on-
line evaluation to show our evaluation approach is indeed
unbiased and it gives results that are asymptotically con-
sistent when the number of valid events (the quantity T in
Algorithms 1 and 2) is large. Third, we provide empirical
evidence that our offline evaluation method gives very sta-
ble results for a few representative algorithms. Finally, we
study the relationship between offline evaluation results to
online bucket performance for three bandit algorithms.

4.1 News Article Recommendation on Yahoo!
Front Page Today Module

The Today Module is the most prominent panel on the
Yahoo! Front Page, which is also one of the most visited

pages on the Internet; see a snapshot in Figure 1. The de-
fault “Featured” tab in the Today Module highlights four
high-quality news articles, selected from an hourly-refreshed
article pool maintained by human editors. As illustrated in
Figure 1, there are four articles at footer positions, indexed
by F1–F4. Each article is represented by a small picture
and a title. One of the four articles is highlighted at the
story position, which is featured by a large picture, a title
and a short summary along with related links. By default,
the article at F1 is highlighted at the story position. A user
can click on the highlighted article at the story position to
read more details if interested in the article. The event is
recorded as a story click. To draw visitors’ attention, we
would like to rank available articles according to individual
interests, and highlight the most attractive article for each
visitor at the story position. In this paper, we focus on
selecting articles for the story position.

This problem can be naturally modeled as a contextual
bandit problem. Here, it is reasonable to assume each user
visits and their click probabilities on articles to be (approx-
imately) i.i.d. Furthermore, each user has a set of features
(such as age, gender, etc.) from which the click probability
of a specific article may be inferred; these features are the
contextual information used in the bandit process. Finally,
we may view articles in the pool as arms, and the payoff
is 1 if the user clicks on the article and 0 otherwise. With
this definition of payoff, the expected payoff of an article is
precisely its CTR, , and choosing an article with maximum
CTR is equivalent to maximizing the expected number of
clicks from users, which in turn is the same as maximizing
the per-trial payoff gπ in our bandit formulation.

We setup cookie-based buckets for evaluation. A bucket
consists of a certain amount of visitors. A cookie is a string
of 13 letters randomly generated by the web browser as
an identifier. We can specify a cookie pattern to create a
bucket. For example, we could let users with the starting
letter “a” in their cookies fall in one bucket. In a cookie-
based bucket, a user is served by the same policy, unless the
user changes the cookie and then belongs to another bucket.

For offline evaluation, millions of events were collected
from a “random bucket” from Nov. 1, 2009 to Nov. 10, 2009.
In the random bucket, articles are randomly selected from
the article pool to serve users. There are about 40 million
events in the offline evaluation data set, and about 20 articles
available in the pool at every moment.

We focused on user interactions with the story article at
the story position only. The user interactions are recorded
as two types of events, user visit event and story click event.
We chose CTR as the metric of interest, which is defined as
the ratio between the number of story click events and the
number of user visits. To protect business-sensitive infor-
mation, we only report relative CTRs which are defined as
the ratio between true CTRs and a hidden constant.

4.2 Unbiasedness Analysis
Given a policy, the unbiasedness of the offline evaluation

methodology can be empirically verified by comparing offline
metrics with online performance. We set up another cookie-
based bucket, noted as “serving bucket”, to evaluate online
performance. In the serving bucket, a spatio-temporal al-
gorithm [3] was deployed to estimate article CTRs.2 The
article with the highest CTR estimate (also known as the

2Note that the CTR estimates are updated every 5 minutes.

winner article) was then used to serve users. We extracted
the serving policy from the “serving bucket”, i.e., the best
article at every 5 minutes from Nov. 1 2009 to Nov. 10 2009.
Note that it is in the same period of time of the offline eval-
uation data set, ensuring that the sets of available arms are
the same in both the serving and random buckets. Then,
we used Algorithm 1 to evaluate the serving policy on the
events from the random bucket for the offline metric.

It should be noted that the outcome of our experiments
are not a foregone conclusion of the mathematics presented,
because the setting differs in some ways from the i.i.d. as-
sumption made in our theorems as is typical in real-world ap-
plications. In particular, events are not exchangeable since
old articles leave the system and new ones enter, there are
sometimes unlogged business rule constraints on the serv-
ing policy, and users of course do not behave independently
when they repeatedly visit the same site. We finesse away
this last issue, but the first two are still valid.

In the serving bucket, a winner article usually remains the
best for a while. During its winning time, the user repeat-
edly sees the same article. At the same time, the users in
the random bucket are very likely to see different articles
at user visit events, due to the random serving policy. It
is conceivable that the more a user views the same article,
the less likely the user clicks on the article. This conditional
effect violates the i.i.d. assumption in Theorem 1. Fortu-
nately, the discrepancy can be removed by considering CTR
on distinct views. For each user, consecutive events of view-
ing the same article are counted as one user visit only. The
CTR on distinct views in the serving bucket measures user
interactions to the winner articles across the whole session.
Regarding the offline evaluation metric as in Algorithm 2,
the subset of events sampled in the random bucket also mea-
sures user interactions with the winner articles across the
whole session.

We first compared online and offline per-article CTRs.
Only winner articles that were viewed more than 20, 000
times in the serving bucket are used in the plot so that their
online CTRs are accurate enough to be treated as ground
truth. Figure 2 shows that the CTR metric evaluated offline
are very close to the CTR estimated online.

We next compared online and offline CTRs at the policy
level. These CTRs are the overall CTR of the serving policy
aggregated over all articles. Figure 3 shows the two CTRs
are very close on each individual day.

Both sets of results corroborate the unbiasedness guar-
antee of Theorem 1, a property of particular importance in
practice that is almost impossible with simulator-based eval-
uation methods. Therefore, our evaluation method provides
a solution that is accurate (like bucket tests) without the
cost and risk of running the policy in the real system.

4.3 Convergence Rate Analysis
We now study how the difference between offline and on-

line CTRs decreases with more data (namely, the quantity T
in the evaluation methods). To show the convergence rate,
we present the estimated error versus the number of samples
used in offline evaluation. Formally, we define the estimated
error by e = |c− ĉ|, where c and ĉ are the true CTR and
estimated CTR, respectively.

Figures 4 and 5 present convergence rate of the CTR es-
timate error for various articles and the online serving pol-
icy, respectively, and the red curve is 1/

√
T—the functional

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

online bucket

of
fli

ne
 e

va
lu

at
or

article relative CTR scatter plot

Figure 2: Articles’ CTRs in the online bucket versus
offline estimates.

form of the upper confidence bound. These results suggest
that, in practice, we can observe the error decay rate pre-
dicted by Theorem 2 for reasonably stable algorithms such
as those evaluated.

4.4 Low Variance of Evaluation Results
In this subsection, we chose three representative algo-

rithms (c.f., Appendix) to illustrate the low variance of the
offline evaluation technique:
• ε-greedy, a stochastic, context-free algorithm;
• UCB, a deterministic, context-free variant of UCB1 [5];
• LinUCB [14], a deterministic, contextual bandit algo-

rithm that uses ridge regression to estimate arm pay-
offs based on contexts.

Each of the algorithms above has one parameter: ε for ε-
greedy and α for UCB and LinUCB (see [14] for details). We
fixed the parameters to reasonable values: ε = 0.4 and α =
1. We collected over 4, 000, 000 user visits from a random
bucket on May 1, 2009. To evaluate variance, we subsampled
this data so that each event is used with probability 0.5. We
ran each algorithm 100 times on independently subsampled
events and measure the returned CTR using Algorithm 2.

Table 1 summarizes statistics of CTR estimates for the
three algorithms.3 It shows that the evaluation results are
highly consistent across different random runs. Specifically,
the ratio between standard deviation and the mean CTR
is about 2.4% for ε-greedy, and below 1.5% for the UCB

and LinUCB which have known algorithm-specific deviation
bounds.

This experiment demonstrates empirically that our evalu-
ation method can give results that have small variance for a
few natural algorithms, despite the artificial counterexample
in Section 3, suggesting that with large datasets the result
obtained from only one run of our evaluation method are
already quite reliable.

3In the terminology of [14], the CTR estimates reported
in Table 1 are for the “learning bucket”. Similar standard
deviations are found for the so-called “deployment bucket”.

1 2 3 4 5 6 7 8 9 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Days in Nov−2009

m
et

ric
 −

 r
el

at
iv

e
C

T
R

daily relative CTR metric

online bucket
offline evaluator

Figure 3: Daily overall CTRs in the online bucket
versus offline estimates.

algorithm mean std max min
ε-greedy 1.2664 0.0308 1.3079 1.1671
UCB 1.3278 0.0192 1.3661 1.2812
LinUCB 1.3867 0.0157 1.4268 1.3491

Table 1: Statistics of CTR estimates for three rep-
resentative algorithms using Algorithm 2.

4.5 Consistency with Online Performance
Sections 4.2 and 4.3 give evidence for the accuracy when

the offline evaluation method is applied to a static policy
that is fixed over time. In this section, we show complimen-
tary accuracy results for learning algorithms that may be
viewed as history-dependent, non-fixed policies. In particu-
lar, we show the consistency between our offline evaluation
and online evaluation of three ε-greedy bandit models:
• Estimated Most Popular (EMP): we estimate CTR of

available articles over all users via a random explo-
ration bucket, and then serve users in the EMP bucket
by the article of the highest CTR;
• Segmented Most Popular (SEMP): we segment users into

18 clusters based on their age/gender information. We
estimate CTR of available articles within each clus-
ter, and for each user cluster serve the article with the
highest CTR. Note that users’ feedback may change
serving policy for the cluster in future trials;
• Contextual Bandit Model (CEMP): this is a fine-grained

personalized model. In this model, we define a sepa-
rate context for each user based on her age, gender,
etc. For each available article, we maintain a logis-
tic regression model to predict its CTR given the user
context. When a user comes, in the CEMP bucket, we
estimate the CTRs of all articles for the user and se-
lect the article with highest estimated CTR to display.
Users with different contexts may be served by differ-
ent articles in this bucket, while each user’s feedback
will affect other users’ click probability estimation on
this article in future trials.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sample size

er
ro

r
convergence on article

Figure 4: Decay rate of error in articles’ CTR esti-
mates with increasing data size. The red curve plots
the function 1/

√
x.

For all these three bandit models, we set up three online
bcookie-based buckets to deploy the three bandit models re-
spectively. We also set up another bucket to collect random
exploration data. This random data is used to update the
states of three online bandit models and also used for our
offline evaluation. For a given period, we obtain the per-trial
payoffs gonline

A for A ∈ {EMP, SEMP, CEMP}. Using data in the
random exploration bucket, we run our offline evaluation for
these three models in the same period and get the per-trial
payoffs goffline

A .
It is important to note that there were unlogged business-

rule constraints in all online serving buckets of Today Mod-
ule; for instance, an article may be forced to shown in a given
time window. Fortunately, our data analysis (not reported
here) suggested that such business rules have roughly the
same multiplicative impact on an algorithm’s online CTR,
although this multiplicative factor may vary across different
days. To remove effects caused by business rules, we report
the ratio of offline CTR estimate and online CTR for each
model: ρA = goffline

A /gonline
A . If our offline evaluation metric

is truthful of an algorithm’s online metric in the absence of
business rules, then it is expected that, for a given period
of time like one day, ρA should remain constant ideally and
does not depend on the algorithm A.

In Figure 6, we present a scatter plot of ρEMP vs. ρSEMP of
16 days, from May 03, 2009 to May 18, 2009. In each day,
we have about 2, 000, 000 views (i.e., user visits) in each of
the four online buckets. The scatter plot indicates a strong
linear correlation. The slope in least squares linear regres-
sion is 1.019 and the standard deviation in residue vector
is 0.0563. We observed that business rules give almost the
same impact on CTR in buckets for the two serving policies.
SEMP is a relatively simple bandit algorithm similar to EMP.

In the next experiment, we study the online/offline correla-
tion of a more complicated contextual bandit serving policy
CEMP, in which CTRs are estimated using logistic regression
on user features and a separate logistic regression model is
maintained for each article. Figure 7 shows the scatter plot

0 2 4 6 8 10 12 14

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample size

er
ro

r

covergence on policy

Figure 5: Decay rate of error in overall CTR esti-
mates with increasing data size. The red curve plots
the function 1/

√
x.

of ρEMP vs ρCEMP in 18-day data from May 22, 2010 to June
8, 2010. In each day, we have 2, 000, 000 ∼ 3, 000, 000 views
in each online bucket. The scatter plot again indicates a
strong linear correlation. In this comparison, the slope and
standard deviation in residue vector is 1.113 and 0.075 re-
spectively. It shows that the difference between our offline
and online evaluation, caused by business rules and other
systemic factors, e.g. time-out in user feature retrieval and
delays in model update, is comparable across bandit models.
Although the daily factor is unpredictable, the relative per-
formance of bandit models in offline evaluation is reserved
in online buckets. Thus, our offline evaluator can provide
reliable comparison of different models on historical data,
even in the presence of business rules.

5. CONCLUSIONS AND FUTURE WORK
This paper studies an offline evaluation method of ban-

dit algorithms that relies on log data directly rather than
on a simulator. The only requirement of this method is
that the log data is generated i.i.d. with arms chosen by an
(ideally uniformly) random policy. We show that the eval-
uation method gives unbiased estimates of quantities like
total payoffs, and also provide a sample complexity bound
for the estimated error when the algorithm is a fixed pol-
icy. The evaluation method is empirically validated using
real-world data collected from Yahoo! Front Page for the
challenging application of online news article recommenda-
tion. Empirical results verify our theoretical guarantees, and
demonstrate both accuracy and stability of our method us-
ing real online bucket results. These encouraging results
suggest the usefulness of our evaluation method, which can
be easily applied to other related applications such as online
refinement of ranking results [16] and ads display.

Our evaluation method, however, ignores (K−1)/K frac-
tion of logged data. Therefore, it does not make use of all
data, which can be a problem when K is large or when
data is expensive to obtain. Furthermore, in some risk-
sensitive applications, while we can inject some randomness

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Age−Gender SEMP

E
M

P

Figure 6: Scatter plot of ratios of offline metric and
online bucket performance of 16 days in 2009.

1 1.5 2 2.5
1

1.5

2

2.5

Personalized CEMP

E
M

P

Figure 7: Scatter plot of ratios of offline metric and
online bucket performance in 18 days in 2010.

during data collection, a uniformly random policy might be
too much to hope for due to practical constraints (such as
user satisfaction). As we mentioned earlier, our evaluation
method may be extended to work for data collected by any
random policy with rejection sampling, which enjoys similar
unbiasedness guarantees, but reduces the data efficiency at
the same time. An interesting future direction, therefore, is
exploiting problem-specific structures to avoid exploration
of the full arm space. A related question is how to make use
of non-random data for reliable offline evaluation, for which
a recent progress has been made [18].

Acknowledgements
We appreciate valuable inputs from Robert Schapire.

6. REFERENCES
[1] Naoki Abe, Alan W. Biermann, and Philip M. Long.

Reinforcement learning with immediate rewards and
linear hypotheses. Algorithmica, 37(4):263–293, 2003.

[2] Deepak Agarwal, Bee-Chung Chen, and Pradheep
Elango. Explore/exploit schemes for web content
optimization. In Proceedings of the Ninth
International Conference on Data Mining, 2009.

[3] Deepak Agarwal, Bee-Chung Chen, and Pradheep
Elango. Spatio-temporal models for estimating
click-through rate. In Proceedings of the Eighteenth
International Conference on World Wide Web, 2009.

[4] Peter Auer. Using confidence bounds for
exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3:397–422, 2002.

[5] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3):235–256, 2002.

[6] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing,
32(1):48–77, 2002.

[7] Donald A. Berry and Bert Fristedt. Bandit Problems:
Sequential Allocation of Experiments. Monographs on
Statistics and Applied Probability. Chapman and Hall,
1985.

[8] J.C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series
B (Methodological), 41:148–177, 1979.

[9] Leslie Pack Kaelbling. Associative reinforcement
learning: Functions in k-DNF. Machine Learning,
15(3):279–298, 1994.

[10] Michael J. Kearns, Yishay Mansour, and Andrew Y.
Ng. Approximate planning in large POMDPs via
reusable trajectories. In Advances in Neural
Information Processing Systems 12, 2000.

[11] Tze Leung Lai and Herbert Robbins. Asymptotically
efficient adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4–22, 1985.

[12] John Langford, Alexander L. Strehl, and Jennifer
Wortman. Exploration scavenging. In Proceedings of
the Twenty-Fifth International Conference on
Machine Learning, pages 528–535, 2008.

[13] John Langford and Tong Zhang. The epoch-greedy
algorithm for contextual multi-armed bandits. In
Advances in Neural Information Processing Systems
20, 2008.

[14] Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. A contextual-bandit approach to
personalized news article recommendation. In
Proceedings of the Nineteenth International
Conference on World Wide Web, 2010.

[15] Colin McDiarmid. On the method of bounded
differences. In J. Siemons, editor, Surveys in
Combinatorics, volume 141 of London Mathematical
Society Lecture Notes, pages 148–188. Cambridge
University Press, 1989.

[16] Taesup Moon, Lihong Li, Wei Chu, Ciya Liao,
Zhaohui Zheng, and Yi Chang. Online learning for
recency search ranking using real-time user feedback.
In Proceedings of the Nineteenth International
Conference on Knowledge Management, 2010.

[17] Doina Precup, Richard S. Sutton, and Satinder P.
Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages
759–766, 2000.

[18] Alexander L. Strehl, John Langford, Lihong Li, and
Sham M. Kakade. Learning from logged implicit
exploration data. In Advances in Neural Information
Processing Systems 23, 2011.

[19] Alexander L. Strehl, Chris Mesterharm, Michael L.
Littman, and Haym Hirsh. Experience-efficient
learning in associative bandit problems. In Proceedings
of the Twenty-Third International Conference on
Machine Learning, pages 889–896, 2006.

[20] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, March 1998.

[21] Chih-Chun Wang, Sanjeev R. Kulkarni, and
H. Vincent Poor. Bandit problems with side
observations. IEEE Transactions on Automatic
Control, 50(3):338–355, 2005.

[22] Michael Woodroofe. A one-armed bandit problem with
a concomitant variable. Journal of the American
Statistics Association, 74(368):799–806, 1979.

APPENDIX
One of the simplest and most straightforward algorithms is
ε-greedy. In each trial t, this algorithm first estimates the
average payoff μ̂t,a of each arm a. Then, with probability
1− ε, it chooses the greedy arm (e.g., the arm with highest
payoff estimate): at = arg maxa μ̂t,a; with probability ε, it
chooses a random arm. In the limit, each arm will be tried
infinitely often, and so the payoff estimate μ̂t,a converges to
the true value μa with probability 1 as t→∞. Furthermore,
by decaying ε appropriately, the per-step regret, RA(T)/T ,
converges to 0 with probability 1.

In contrast to the unguided ε-greedy strategy, another
class of algorithms generally known as upper confidence
bound algorithms [11, 5] use a smarter way to balance ex-
ploration and exploitation. Specifically, in trial t, these al-
gorithms estimate both the mean payoff μ̂t,a of each arm a
as well as a corresponding confidence interval ct,a, so that
|μ̂t,a − μa| < ct,a holds with high probability. They then se-
lect the arm that achieves a highest upper confidence bound
(UCB for short): at = arg maxa (μ̂t,a + αct,a), where α is a
tunable parameter. With appropriately defined confidence
intervals and parameter α, it can be shown that such algo-
rithms have a small total T -trial regret that is only logarith-
mic in the total number of trials T [11].

While context-free K-armed bandits are extensively stud-
ied and well understood, the more general contextual ban-
dit problem has remained challenging. The EXP4 algo-
rithm [6] uses the exponential weighting technique to achieve

an Õ(
√

T) regret in expectation, where Õ(x)
def
=O(x ln x),

even if the sequence of contexts and payoffs are chosen by an
adversarial world, but the computational complexity may be
exponential in the number of features in general. Another
general contextual bandit algorithm is the epoch-greedy

algorithm [13] that is similar to ε-greedy with adaptively
shrinking ε. Assuming the sequence of contexts, x1, . . . ,xT ,
is i.i.d., this algorithm is computationally efficient given an
oracle empirical risk minimizer but has the weaker regret
guarantee of Õ(T 2/3) in general, with stronger guarantees
in various special cases.

Algorithms with stronger regret guarantees may be de-
signed under various modeling assumptions about the con-
textual bandit. Assuming the expected payoff of an arm is
linear in its features (namely, ED[rt,a | xt,a] = w�xt,a for
some coefficient vector w), both LinRel [4] and LinUCB [14]
are essentially UCB-type approaches generalized to linear
payoff functions, and their variants have a regret of Õ(

√
T),

a significant improvement over earlier algorithms [1] as well
as the more general epoch-greedy algorithm.

