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Abstract

Motivation: Precision and recall have become very popular classification accuracy
metrics in the statistical learning literature. These metrics are ordinarily defined under
the assumption that the data are sampled randomly from the mixture of the populations.
However, observational case-control studies for biomarker discovery often collect data
that are sampled separately from the case and control populations, particularly in the
case of rare diseases. This discrepancy may introduce severe bias in classifier accuracy
estimation.
Results: We demonstrate, using both analytical and numerical methods, that classifier
precision estimates can display strong bias under separating sampling, with the bias
magnitude depending on the difference between the case prevalences in the data and in
the actual population. We show that this bias is systematic in the sense that it cannot
be reduced by increasing sample size. If information about the true case prevalence is
available from public health records, then a modified precision estimator is proposed that
displays smaller bias, which can in fact be reduced to zero as sample size increases under
regularity conditions on the classification algorithm. The accuracy of the theoretical
analysis and the performance of the proposed precision estimator under separate sampling
are investigated using synthetic and real data from observational case-control studies.
The results confirmed that the proposed precision estimator indeed becomes unbiased
as sample size increases, while the ordinary precision estimator may display large bias,
particularly in the case of rare diseases.
Availability: Extra plots are available as Supplementary Materials.

Author summary

Biomedical data are often sampled separately from the case and control populations,
particularly in the case of rare diseases. Precision is a popular classification accuracy
metric in the statistical learning literature, which implicitly assumes that the data are
sampled randomly from the mixture of the populations. In this paper we study the bias
of precision under separate sampling using theoretical and numerical methods. We also
propose a precision estimator for separate sampling in the case when the prevalence is
known from public health records. The results confirmed that the proposed precision
estimator becomes unbiased as sample size increases, while the ordinary precision
estimator may display large bias, particularly in the case of rare diseases. In the absence
of any knowledge about disease prevalence, precision estimates should be avoided under
separate sampling.
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1 Introduction

Biomarker discovery is typically attempted by means of observational case-control
studies where classification techniques are applied to high-throughput measurement
technologies, such as DNA microarrays [1], next-generation RNA sequencing (RNA-
seq) [2], or “shotgun” mass spectrometry [3]. The validity and reproducibility of the
results depend critically on the availability of accurate and unbiased assessment of
classification accuracy [4, 5].

The vast majority of published methods in the statistical learning literature make the
assumption, explicitly or implicitly, that the data for training and accuracy assessment
are sampled randomly, or unrestrictedly, from the mixture of the populations. However,
observational case-control studies in biomedicine typically proceed by collecting data
that are sampled with restrictions. The most common restriction, and the one that
is studied in this paper, is that the data are sampled separately from the case and
control populations. This is always true in studies involving rare diseases, since sampling
randomly from the population at large would not yield enough cases. That creates
an important issue in the application of traditional statistical learning techniques to
biomedical data, because there is no meaningful estimator of case prevalences under
separate sampling. Therefore, any methodology that directly or indirectly uses estimates
of case prevalence will be severely biased.

Precision and Recall have become very popular classification accuracy metrics in the
statistical learning literature [6–8]. In this paper, we investigate the bias of precision and
recall sample estimates when the typical separate sampling design used in case-control
studies is not properly taken into account. Synthetic and real-world biomedical data
are used to quantify the magnitude of the bias, which is systematic in the sense that it
cannot be reduced by increasing sample size. If information about the true prevalence
of cases is available, then a modified estimator is proposed that displays smaller bias,
which can be decreased to zero asymptotically as sample size increases under certain
regularity conditions on the classification algorithm, in a sense to be made precise.

In [9], a similar study was conducted into the accuracy of cross-validation under
separate sampling. It was shown that the usual “unbiasedness” property of k-fold
cross-validation does not hold under separate sampling. In fact, the bias can in fact
be substantial and systematic, i.e., not reducible under increasing sample size. In [9],
modified k-fold cross-validation estimators were proposed for the class-specific error rates.
In the case where the true case prevalence is known, those estimators can be combined
into an estimator of the overall error rate, which satisfies the usual “unbiasedness”
property of cross-validation.

The present paper employs analytical and numerical methods to show that the
ordinary precision estimator can display large bias under separate sampling. More
specifically, while the recall estimator is asymptotically unbiased as sample size increases,
under regularity conditions on the classification rule to be specified, the precision
estimator may display a systematic bias, which cannot be reduced by increasing sample
size if the observed prevalence of cases in the data is different from the true prevalence in
the population of interest. This is a consequence of the fact that precision is a function
of the prevalence, whereas recall is not. Case-control studies involving rare diseases are
specially affected, since in those studies the true prevalence is small and will almost
always differs substantially from the observed prevalence in the data. To address this
problem, we propose a new estimator for precision, which can be applied in case the
true prevalence is known. This estimator has small bias that vanishes as sample size
increases under certain regularity conditions. In the absence of any knowledge about the
prevalence, precision estimates should be avoided under separate sampling.
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2 Materials and Methods

In this section we define and investigate the various error rates of interest in this study,
including precision and recall.

2.1 Population Performance Metrics

The feature vector X ∈ Rd summarizes numerical characteristics of a patient (e.g, blood
concentrations of given proteins). The label Y ∈ {0, 1} is defined as Y = 0 if the patient
is from the control population, and Y = 1 if the patient is from the case population.
The prevalence is defined by

prev = P (Y = 1) , (1)

i.e., the probability that a randomly selected individual is a case subject. The prevalence
plays a fundamental role in the sequel.

A classifier ψ : Rd → {0, 1} assigns X to the control or case population, according to
whether ψ(X) = 0 or ψ(X) = 1, respectively. The classification sensitivity and specificity
are defined as:

sens = P (ψ(X) = 1 | Y = 1) , (2)

spec = P (ψ(X) = 0 | Y = 0) . (3)

The closer both are to 1, the more accurate the classifier is. A noteworthy property of
the sensitivity and specificity is that they do not depend on the prevalence.

Other common performance metrics for a classifier are the false-positive (FP), false-
negative (FN), true-positive (FP), and true-negative (FN) rates, given by

FP = P (ψ(X) = 1, Y = 0) = (1− spec)× (1− prev) , (4)

FN = P (ψ(X) = 0, Y = 1) = (1− sens)× prev , (5)

TP = P (ψ(X) = 1, Y = 1) = sens× prev , (6)

TN = P (ψ(X) = 0, Y = 0) = spec× prev . (7)

Unlike sensitivity and specificity, the previous performance metrics do depend on the
prevalence. See Fig. 1 for an illustration.

Fig 1. Diagram of error (red) and accuracy (green) rates.

Notice that

prev = FN + TP, 1− prev = FP + TN, (8)

sens =
TP

TP + FN
, spec =

TN

TN+ FP
. (9)

Finally, we define the precision and recall accuracy metrics. Precision measures the
likelihood that one has a true case given that the classifier outputs a case:

prec = P (Y = 1 | ψ(X) = 1) . (10)
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Applying Bayes’ Theorem and using previously-derived relationships reveal that:

prec =
TP

TP + FP
=

sens× prev

sens× prev + (1−spec)× (1−prev)
. (11)

On the other hand, recall is simply the sensitivity:

rec = sens =
TP

TP + FN
. (12)

It follows that precision depends on the prevalence, but recall does not.

2.2 Estimated Performance Metrics

In practice, the performance metrics defined in the previous section need to be estimated
from sample data Sn = {(X1, Y1), . . . ,Xn, Yn)}. Let P̂ denote the empirical probability
measure defined by Sn. The estimator of prevalence is:

p̂rev = P̂ (Y = 1) =
1

n

n∑

i=1

IYi=1 , (13)

where IA = 1 if A is true and IA = 0 if A is false. Similarly,

F̂P = P̂ (ψ(X) = 1, Y = 0) =
1

n

n∑

i=1

I{ψ(Xi)=1,Yi=0} , (14)

F̂N = P̂ (ψ(X) = 0, Y = 1) =
1

n

n∑

i=1

I{ψ(Xi)=0,Yi=1} , (15)

T̂P = P̂ (ψ(X) = 1, Y = 1) =
1

n

n∑

i=1

I{ψ(Xi)=1,Yi=1} , (16)

T̂N = P̂ (ψ(X) = 0, Y = 0) =
1

n

n∑

i=1

I{ψ(Xi)=0,Yi=0} . (17)

The remaining performance metrics estimators are defined analogously, using (9), (11),
and (12):

ŝpec =
T̂N

T̂N + F̂P
=

∑n

i=1 I{ψ(Xi)=0,Yi=0}∑n

i=1 IYi=0
,

p̂rec =
T̂P

T̂P + F̂P
=

∑n

i=1 I{ψ(Xi)=1,Yi=1}∑n

i=1 Iψ(Xi)=1

,

r̂ec = ŝens =
T̂P

T̂P + F̂N
=

∑n

i=1 I{ψ(Xi)=1,Yi=1}∑n

i=1 IYi=1
.

(18)

2.3 Mixture and Separate Sampling

The usual scenario in Statistical Learning is to assume that Sn = {(X1, Y1), . . . , (Xn, Yn)}
is an independent and identically distributed (i.i.d.) sample from the true distribution
of the pair (X, Y ).That makes Sn a sample from the mixture of populations, where each
label Yi is distributed as:

P (Yi = 0) = 1− prev and P (Yi = 1) = prev , (19)

for i = 1, . . . , n. Under mixture sampling, N0 =
∑n

i=1 IYi=0 and N1 =
∑n

i=1 IYi=1 =
n − N0 are binomial random variables, with parameters (n, 1 − prev) and (n, prev),
respectively.
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By contrast, observational case-control studies in biomedicine typically proceed by
collecting data from the populations separately, where the separate sample sizes n0 and
n1, with n0 + n1 = n, are pre-determined and nonrandom; i.e., sampling occurs with the
restriction N0 =

∑n

i=1 IYi=0 = n0 (or, equivalently, N1 =
∑n

i=1 IYi=1 = n1). Therefore,
all probabilities and expectations over the sample are conditional on N0 = n0. The
restriction means that the labels Y1, . . . , Yn are no longer independent, even though the
feature vectors X1, . . . ,Xn are still independent given the labels. It is not difficult to
verify that

P (Yi = 0 | N0 = n0) =
n0
n

and P (Yi = 1 | N0 = n0) =
n1
n
, (20)

for i = 1, . . . , n. Comparing (19) and (20) reveals the main difference between mixture
and separate sampling.

2.4 Bias of Precision and Recall Estimators

In this subsection, we present an approximate large-sample analysis of the bias of
the estimators discussed previously, focusing on the precision and recall estimators.
Estimation bias is defined as the expectation over the sample data Sn of the difference
between the estimated and true quantities.

The situation is clear with the estimator of the prevalence itself, given by (13). Under
mixture sampling, we have

E[p̂rev] =
1

n

n∑

i=1

E[IYi=1] = P (Y1 = 1) = prev , (21)

so the estimator is unbiased (in addition, as n increases, Var(p̂rev) → 0 and p̂rev → prev
in probability, by the law of large numbers). However, under separate sampling,

E[p̂rev | N0 = n0] =
1

n

n∑

i=1

E[IYi=1 | N0 = n0] = P (Y1 = 1 | N0 = n0) =
n1
n
, (22)

according to (20). This also follows directly from the fact that p̂rev becomes a constant
estimator, p̂rev ≡ n1/n, according to (13). Thus,

Biassep(p̂rev) = E[p̂rev − prev | N0 = n0] =
n1
n

− prev . (23)

Assuming that the ratio n1/n is held constant as n increases (e.g., the common balanced
design case, n0 = n1 = n/2), then this bias cannot be reduced with increased sample
size. Furthermore, the bias is larger the further away the true prevalence is from n1

n0

. In
particular, the bias will be large when prev is small, as in case-control studies involving
rare diseases.

The situation for F̂P, F̂N, F̂P, and T̂N is more complicated. First, we are inter-
ested in a classifier ψn derived by a classification rule from from the sample data
Sn = {(X1, Y1), . . . ,Xn, Yn)}. Therefore, all expectations and probabilities in the
previous sections are conditional on Sn. Under mixture sampling, the powerful Vapnik-
Chervonenkis Theorem can be applied to show that all of these estimators are asymptot-
ically unbiased, provided that classification rule has a finite VC Dimension [10]. This
includes many useful classification algorithms such as LDA, linear SVMs, perceptrons,
polynomial-kernel classifiers, certain decision trees and neural networks, but it excludes
nearest-neighbor classifiers, for example. Classification rules with finite VC dimension
do not cut the feature space in complex ways and are thus generally robust against
overfitting.
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Assuming mixture sampling and a classification algorithm with finite VC dimension
VC , it can be shown that (details omitted; see [5, p. 47] for a similar argument)

Biasmix(F̂P) ≤ 8

√
VC log(n+ 1) + 4

2n
, (24)

so that the bias vanishes as n → ∞. Similar inequalities apply to F̂N, F̂P, and T̂N.
These are distribution-free results, hence vanishingly small bias is guaranteed if n≫ VC ,
regardless of the feature-label distribution. For linear classification rules, VC = d+ 1,
where d is the dimensionality of the feature vector. In this case, the F̂P, F̂N, F̂P, and
T̂N estimators are essentially unbiased if n≫ d.

Next we consider the bias of the precision and recall estimators under mixture
sampling (the analysis for the sensitivity and specificity estimators is similar; in fact,
the latter is just the recall estimator). We will make use of the following relation for the
expectation of a ratio of two random variables W and Z:

E

[
W

Z

]
=

E[W ]

E[Z]
+ second and higher order terms. (25)

This equation can be proved by expanding W/Z around the point (E[W ], E[Z]) using
a bivariate Taylor series and taking expectation (details are omitted for space). The
approximation obtained by dropping the higher order terms is quite accurate if W and
Z are around E[W ] and E[Z], respectively (it is asymptotically exact as W → E[W ]
and Z → E[Z]). For the precision estimator,

E[p̂rec] = E

[
T̂P

T̂P + F̂P

]
≈

E[T̂P]

E[T̂P + F̂P]
≈

E[TP]

E[TP + FP]
≈ E

[
TP

TP + FP

]
= E[prec],

(26)
for a sufficiently large sample, where we used the previously-established asymptotic unbi-
asedness of T̂P, T̂P, and F̂N. An entirely similar derivation shows that E[r̂ec] = E[rec].
Hence, for “well-behaved” classification algorithms (those with finite VC dimension),
both the precision and recall estimators are asymptotically unbiased under mixture
sampling.

Unfortunately, there is not at this time a version of VC theory for separate sampling.
In order to obtain approximate results for the separate sampling case, we will assume
instead that, at large enough sample sizes, the classifier ψ is nearly constant, and
invariant to the sample. This assumption is not unrelated to the finite VC dimension
assumption made in the case of mixture sampling. Many of the same classification
algorithms that have finite VC dimension, such as LDA and linear SVMs, will also
become nearly constant as sample size increases. In this case, we have

E[T̂P | N0 = n0] =
1

n

n∑

i=1

E[I{ψ(Xi)=1,Yi=1} | N0 = n0]

= P (ψ(X1) = 1, Y1 = 1 | N0 = n0)

= P (ψ(X1) = 1 | Y1 = 1)P (Y1 = 1 | N0 = n0) = sens×
n1
n
,

(27)

where we used the fact that the event {ψ(X1) = 1} is independent of N0 given Y1
and (20). Notice that the equality P (ψ(X1) = 1 | Y1 = 1) = sens depends on the fact
that ψ is assumed to be constant, so that (X1, Y1) behaves as an independent test point

(also because of a constant ψ, there is no expectation around sens). Hence, T̂P is biased
under separate sampling, with

Biassep(T̂P) = sens×
n1
n

− TP = sens×
(n1
n

− prev
)
. (28)
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As in the case with the bias of p̂rev under separate sampling, the bias of T̂P cannot be
reduced with increasing sample size. The bias is in fact larger the more sensitive the
classifier is. One can derive similar results for F̂P, F̂N, and T̂N.

Perhaps surprisingly, the recall estimator is approximately unbiased under separate
sampling:

E[r̂ec | N0 = n0] = E

[
T̂N

T̂N + F̂P

∣∣∣∣∣N0 = n0

]
= E

[
T̂P

p̂rev

∣∣∣∣∣N0 = n0

]

=
E[T̂P | N0 = n0]

n1

n

=
sens× n1

n
n1

n

= sens = rec .

(29)

This is a consequence of recall’s not being a function of the prevalence. However, for the
precision estimator,

E[p̂rec | N0 = n0] = E

[
T̂P

T̂P + F̂P

∣∣∣∣∣N0 = n0

]

≈
E[T̂P | N0 = n0]

E[T̂P + F̂P | N0 = n0]
=

sens× n1

n

sens× n1

n
+ (1− spec)× n0

n

6=
sens× prev

sens× prev + (1−spec)× (1−prev)
= prec .

(30)

The precision estimator is thus biased under separate sampling, and the bias is larger
the further away the true prevalence is from n1

n0

. In particular, the bias will be large
when prev is small, which is the case in case-control studies involving rare diseases.

2.5 Proposed Precision Estimator

In case the true prevalence is known, e.g., from public health records and government
databases, then we propose the following estimator of the precision, based on (11):

p̂rec
new

=
ŝens× prev

ŝens× prev + (1−ŝpec)× (1−prev)
. (31)

This estimator is still asymptotically unbiased under mixture sampling (which can be
seen by repeating the steps in the analysis of the ordinary precision estimator). Under
separate sampling, we have

E[p̂rec
new

| N0 = n0]

≈
E[ŝens | N0 = n0]× prev

E[ŝens | N0 = n0]× prev + (1−E[ŝpec | N0 = n0])× (1−prev)

=
sens× prev

sens× prev + (1−spec)× (1−prev)
= prec .

(32)

since E[ŝens | N0 = n0] = sens and E[ŝpec | N0 = n0] = spec, as can be easily shown.
Hence, p̂rec

new
is an asymptotically unbiased estimator of the precision under either

mixture or separate sampling. The ordinary precision estimator p̂rec should never be
used under separate sampling, or large and irreducible bias may occur. On the other
hand, in the impossibility of obtaining information on the true prevalence value, then no
meaningful estimator of the precision is possible.
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3 RESULTS AND DISCUSSION

In this section, we employ synthetic and real-world data to investigate the performance of
the proposed precision estimator and the accuracy of the theoretical analysis in Section 2.4.
We present results for the bias of the usual and proposed precision estimators under
separate sampling. Corresponding results for mixture sampling and the recall estimator
can be found in the Supplementary Material.

3.1 Experiments with Synthetic Data

We performed a set of experiments employing synthetic models with class-conditional
3-dimensional Gaussian distributions N(µi,Σi), for i = 0, 1, with µ0 = (0, 0, 0), µ1 =
(0, 0, θ), where θ > 0 is a parameter governing the separation between the classes, and
Σ0 = Σ1 = diag(σ2

1 , σ
2
2 , σ

2
3) (i.e., a matrix with σ2

1 , σ
2
2 , σ

2
3 on the diagonal and zeros off

diagonal). We consider two sample sizes, n = 30 and n = 200, so that we can compare
the results for small and large sample sizes. All experiments with separate sampling are
performed with sample prevalence r = n1

n
∈ [0.1, 0.9], where the value of n1 is set to

n1 = ⌈nr⌉. The synthetic data parameters are summarized in Table 1.

Parameter Value
Dimensionality/ feature size D = 3
Mean difference θ = 2
Covariance matrix σ2

1 = 0.5, σ2
2 = 0.5, σ2

3 = 1
Sample size n = 30, 200
Sample prevalence n1/n r = 0.1, 0.3, 0.5, 0.7, 0.9
Actual prevalence prev = 0.1, 0.3, 0.5, 0.7, 0.9

Table 1. Synthetic data parameters.

For each value of r and prev, we repeat the following process 1,000 times, and average
the results to estimate expected error values:

1. Generate sample data Sn of size n according to r (separate sampling) or prev
(mixture sampling);

2. Train a classifier using one of three classification rules [11]: Linear Discriminant
Analysis (LDA), 3-Nearest Neighbors (3NN), and a nonlinear Radial-Basis Function
Support Vector Machine (RBF-SVM).

3. Obtain recall and precision estimates. Compute both the usual precision estimate
p̂rec and the proposed p̂rec

new
.

4. Obtain (good approximations of) the true precision values, by using a test set of
size 10,000.

Fig. 2 displays the results of the experiment. Notice that there is only one curve for
the traditional precision estimator p̂rec because it does not employ the actual value of
prev. The results show that at n = 30, all estimators display bias, which is however
much larger for the traditional precision estimator. At n = 200, the bias of the proposed
precision estimator nearly disappears for LDA and is reduced for the other classification
rules. Among these classification rules, LDA is the only one with a finite VC dimension,
and so the bias in this case is predicted to shrink to zero as sample size increases,
according to the theoretical analysis in Section 2.4. Notice also that the bias of the
traditional precision estimator is largest when r = n1/n is far from prev, and it cannot
be reduced by increasing sample size. All these observations are in agreement with
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3.1 Experiments with Synthetic Data 9

Fig 2. Average true precision values (solid curves) and average precision estimates p̂rec
(dash-diamond curve) and p̂rec

new
(dashed curves), for LDA, 3NN and RBF-SVM,

sample sizes n = 30 (top row) and n = 200 (bottom row) and different prevalence values
as a function of the sample prevalence r = n1/n.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342626doi: bioRxiv preprint 

https://doi.org/10.1101/342626
http://creativecommons.org/licenses/by/4.0/


the theoretical analysis in Section 2.4 (the results in the Supplementary Material also
confirm the theoretical analysis).

3.2 Two Case Studies with Real Data

To further investigate the bias of precision estimation under separate bias, we use
real data from two published studies. The first [12] uses a tumor microarray dataset
containing two types of human acute leukemia: acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). Gene expression measurements were taken from 15, 154
genes for 72 tissue specimens, 47 ALL type (class 0) and 25 AML type (class 1), so that
the sample prevalence is r = 0.347. We computed the traditional the precision estimator
p̂rec, and the proposed estimator p̂rec

new
by using the value prev = 0.222, which is

the incidence rate of ALL over AML in the U.S. population [13], for four classification
rules: Naive Bayes (NB) [14], C4.5 decision tree [15], 3NN and SVM. Fig. 3 displays the
results. We can observe that all p̂rec estimates are larger than the more precise p̂rec

new

estimates, pointing to an optimistic bias of the usual precision estimator.

Fig 3. The white bars are the usual estimated precision on the separately-sampled
ALL-AML dataset in [12] for four classification rules; the shaded bars are the precision
estimates using the prevalence of ALL over AML in the U.S. population.

In the second case study, we employ the liver disease dataset in [16], taken from
University of California-Irvine (UCI) Machine Learning Repository [17]. This data set
contains 5 blood tests attributes and 345 records in which 145 belong to individuals with
liver disease (class 0) and 200 measurements are taken from healthy individuals (class
1), so that r = 0.42. The authors in [16] constructed classifiers for diagnosis of liver
disease based on the blood tests variables in this data set, and reported the estimated
accuracy, precision, sensitivity and specificity for five classification rules: Naive Bayes
(NB), C4.5, 3NN, Back-Propagated Neural Network [11] and a Linear SVM. This dataset
was donated to UCI in 1990, and according to [18] , the prevalence rate for chronic
liver diseases in the US was prev = 0.1178 between 1988 and 1994, which we use as the
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approximated prevalence in the computation of the p̂rec
new

estimator. Fig. 4 displays
the results. As in the previous study, we observe that all p̂rec are larger than the more
precise p̂rec

new
estimates, but this time the difference is much larger, indicating possible

strong optimistic bias of the traditional precision estimator.

Fig 4. The white bars are the usual estimated precision on the separately-sampled liver
disease dataset in [16] for four classification rules; the shaded bars are the precision
estimates using the prevalence of liver disease in the U.S. population.

4 Concluding Remarks

Accuracy and reproducibility in observational studies is critical to the progress of
biomedicine, in particular, in the discovery of reliable biomarkers for disease diagnosis
and prognosis. In this study, we showed, using analytical and numerical methods,
that the usual estimator of precision can be severely biased under the typical separate
sampling scenario in observational case-control studies. This will be true especially
in the case of rare diseases, when the true disease prevalence will be small and differ
significantly from the apparent prevalence in the data. If knowledge of the true disease
prevalence is available, or can even be approximately ascertained, then it can be used to
define a new precision estimator proposed here, which is nearly unbiased at moderate
sample sizes. Absence of knowledge about the true prevalence means simply that the
precision cannot be reliably estimated in observational case-control studies.
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