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SUMJYIARY 

Confidence sets based upon the likelihood function is 

defined in the case without nuisance parameters. It is 

shown under certain assumptions on the density function 

that the confidence sets are unbiased. Various examples 

are given. 
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1. INTRODUCTION 

Let X be a random variable with probability density 

f(x, e) with respect to some cr-finite measure u. The 

parameter e is unknown and may have values in some set 0. 

The problem we shall study is to find confidence sets for 9 9 

based upon the likelihood function. 

Let 

( ) 
f(x e) 

L x, 9 = - ( -sup f x, e) 
( 1 ) 

8 

and define 

S(x) = (8 L(x, 9) > c(9)1 , (2) 

where c is some function of e. We will call the family 

of subsets S(x) a family of likelihooJ ratio confidence 

sets (LRCS) for e at confidence level 1-a if c(8) 

is chosen such that 

P
8

(8e S(X)} > 1-a for all eeo. (3) 

Clearly there always exist such a family of LRCS, we only 

need to choose c(e) less or equal to the lower a-point 

of the distribution of L(X, 8). Furthermore the family 

LRCS is uniquely determined if we for each 9 choose c(e) 

as the largest lower a-point of the distribution of L(X, 8). 

The intuitive interpretation of the confidence set (2) 

should be clear. When x is observed we take a point e 

into our confidence set if the ratio of the density at 9 

to the maximum obtainable density for the given x is 

greater than some constant. That this constant is allowed 
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to depend upon 9 might seem somewhat confusing. A technical 

reason for this is that it might be necessary if we want (3) 

to hold. But we also have a deeper reason. For some values 

of 9 the density f(x, 9) may be quite flat, while for 

others the density has a peak around the true value. (an 

example could be the Poisson distribution.) It seems that it 

is easier for the former to get large values for L(x, 9), 

and therefore such values would have an advantage over the 

latter, if we used a c(9) not depending upon e. It will, 

however, be shown that for a number of problems c(9) is 

actually a constant independent of e. 

It is easily seen that the maximum likelihood estimate 

of 9 is always in the confidence set, and that if y(9) is 
' 

a one-to-one transformation of e, then the family of LRCS 

for y is y(S(x)). 

To use the function L(x, e) to derive confidence sets 

is not a new idea. In a recent paper Kalbfleisch and Sprott 

(1970) use L(x, 9) and other forms of the likelihood func

tion as a basis for statistical inference. Box and Cox (1964) 

used an assymptotic version of the sets (2). Barnard (1965) 

advocated the use of (2) (Barnard wanted the function c(e) 

in (2) to be a function of x but that may be a misprint). 

In an unpublished paper Hudson (1968) used a version of (2) 

for the binomial distribution. For other references see 

Hudson (1968) and Kalbfleisch and Sprott (1970). 

The purpose of this paper is to show that in many cases 

the LRCS are unbiased confidence sets. 
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2. UNBIASEDNESS OF LIKELIHOOD RATIO CONFIDENCE SETS 

A family S(x) of confidence sets is unbiased if (3) 
is satisfied and 

when 9 t 8'. We will now show that under certain conditions 

the LRCS are unbiased. 

We will make the following assumptions: 

A 1. 0 is separable. 

A 2. f(x, e) is continuous in A for all x. 

A 3. The family of densities [f(x, 9) : 9e0} is in-

variant under a group G of measurable transformations, and 

u is absolutely continuous with respect to 
-I 

ug for all 

geG. Furthermore, the induced group G of transformations 

of 0 is transitive over 0. 

For the concepts used in the qssumptions see for example 

Lehmann (1959), Chapter 6. 

We have 

LelJlma If Assumptions 1-3 hold, then c(9) in (2) is a 

constant not depending upon e. 

Proof. Let G be the induced group of transformations of 0. 

When A 3 holds we have (See Lehmann (1959) 1 p. 252, Problem 7) 

f(x, 9) = a(gx) f(gx, g9) a.e.IJ.~ (4) 

where 

a(gx) = du ( gx) • 
-1 

dug 

The null set for which the equality in (4) does not hold may 

depend upon 9 and g. Under A 1-2 we find (see the above 
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rE.:ference to Lehmann, 1959) 

sup f(x, 8) = a(gx) sup f(gx, g8) a.e.iJ.. (5) 
e e 

Combining (4) and (5) we get 

L(x, e) = L(gx, g8) a.e.!J. (6) 

Using this and the fact that if X has distribution P8 

than gX has distribution Pge we get 

Since this holds for all g and c the lemma is proved. 

We have the following theorem 

Theorem If Assumptions 1-3 hold, then the family of con

fidence sets (2) is unbiased. 

Proof. Since the densities f(x, 9) are invariant under G, 

it follows from the lemma fuat c(8) is a constant c not 

depending upon e. From (5) we find by replacing x by 

Furthermore 

Define 

f(g 
-1 

e) a(x) f(x, g 8) sup x, = sup 
e e 

= a(x) sup f(x, e) a.e.IJ 
e 

by substituting -1 g X for X in (4), we find 

f(g-
1
x, 8) = a(x) f(x, g 8) 

A(e) = [x: f(x, e)~ c sup f(x, e)). 
e 

a.e.IJ,. 

-1 
g X 

(7) 

(8) 
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A(g8) = (x: f(x, g8 )?:, c sup f(x, g9} 
e 

= [x~ a(x) f(x, ge);::, c a(x) sup f(x, g9)} 
9 

[ ( -1 ) ( -1 )} ( ) = X: f g X, 8 > C sup f g X, 9 = gA 9 , 

where the third equality follows from (7) and (8). 

Now consider the integral 

(9) 

I sup f(x, 9) d!J.(x) = I L-
1

(x, 9) f(x, 9) diJ.(x). (10) 

A(e) 
8 

A(9) 

-1( The integral exists since L x, 8)S c on A ( 9). We also 

have 

I L-
1

(x, 9) f(x, 9) du(x) = I L-
1

(g-
1
x, 8) f(x, g9) du(x) 

A(9) gA(8) 

= I 
gA ( 9) 

= I 
A(ge) 

f(x, g8) du (x) 

sup f(x, 9) d!J. (x) , 
8 

where the first equality is obtained from the fact that 

( 11 ) 

f(x, 9) is invariant under the transformation g (see 

Lehmann, 1959) p. 252, Problem 16), and the third equality is 

obtained by using (7), (8) and (9). 

By definition we have 

P8{e e S(X)} = P8(x e A(9)1 =I f(x, 8) diJ.(x), (12) 

A ( 9) 
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Pe(ge e S(X)} = Pe(X e A(ge)} = I f(x, e) d~(x). (13) 

A(ge) 

Furthermore (10) and (11) imply 

I sup f(x, e) d~ ( x) = I sup f( x, e) d~ ( x) = ~, ( 14) 

A(8) 8 A(g8) e 

where ~ is some constant. Now consider the problem to find 

a region B that will maximize 

I f(x, 8) d~ (x) ( 1 5) 

B 

subject to 

I sup f(x, 8) d~(x) = ~ . 
B e 

( 16) 

By the Neyman-Pearson fundamental lemma the maximizing region 

is A(8), A(g8) is another region satisfying (16). Hence 

I f(x, e) du.(x) < I f(x, 8) dh,t(x)9 

A(g8) A(8) 

ana therefore by (12) and (13) we have 

1 -a = P
8

(e e: S(X)} > P
8

(g8 e: S(X)} for all g e G. 

The theorem is proved. 

Remark. The conclusion of the Theorem holds if 

S(x) = [8: f(x, 8) > h(x)1 

where h(x) is any function such that 

h(g-1x) = a(x) h(x). 

Then (7) is satisfied, and that is all we need. 
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3. EXAMPLES 

Exall_D2le 1 ~ Let x
1 

, .•• , Xn be independent N(s,0
2

). 

If 0
2 

is known it is easily found that the LRCS for s is 

the standard confidence interval for s9 and if s is known 

it is found after some calculations that the LRCS for 0
2 

is the best unbiased confidence interval as given in Lehmann 

(1959), pp. 129-130. 

The joint LRCS for e and 0
2 

when both are unknown 

is found to be 

where c
1 

= n-2 log c. 

n 
-n log ( ~ 

i=1 

(20) 

Let Z and V denote chi-square distributed random 

variables with n-1 and 1 degrees of freedom, respectively. 

Let also Z and V be independent. Then the left hand side 

of the inequality sign in (20) is distributed as W= Z-n log Z+~ 

The confidence set ( 20) is a 1-a LRCS if we choose c 
1 

equal to the upper a: -point of the distribution of W. 

We will now examine the form of the confidence set (20). 

The inequality in (20) can be written 

where 

The function 
2 

g(0 ) 

and 
2 2 

lim g(a ) = -S , 

a 2 ~o 

(21) 

2 n - 2 
S = ~ ( x . -x) /n. 

. 1 l 
1.= 

"2 2 _') 
has a unique maximum at 0 =S exp(c

1
/n-0) 

lim g(0
2

) ~-co. From (21) and the 
2 
a~oo 

form of 
2 

g(a ) it follows that for each fixed a 2 
the set 
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of possible values for s within the confidence set, is the 

- ( 2)/ l ( 2)/ }l] interval [x- fg a n1 2
, x + [g a n 2 

• The largest inter-

val is obtained when Then 

"2 2 2 I 2 -1 g ( cr ) /n = S [ S exp ( c 
1 

n- S ) - n ). When cr
2 

increases 

or decreases from the lengths of the intervals decrease. 

Similarily the set of possible values for cr
2 

for a 

fixed s is an interval with endpoints equal to the smallest 

and largest solution of n(x-s)
2 = g(a

2
), respectively. The 

largest interval is obtained when ~ = x, and when s in

creases or decreases from x, the lengths of the intervals 

decrease. 

The assumption A 1-3 are easily seen to be satisfied in 

this example. For the confidence sets for s we use a group 

of translation, for 
2 

of scale change while a we use a group 

for the joint confidence sets for both s and 
2 

a we use 

both groups. 

As other examples we could use other non-discrete ex-

ponential families. In turns out that we get the usual con-

fidence sets. Instead we will now consider some more compli-

cated examples .. 

Exa~Qle 2. Let x
1

, ••• Xn be independent with the 

double exponential density, so that 

f(x, e) 
n n 

= n) exp (- l: I X. -9 I ) . 
. 1 l 
l= 

. . . be the ordered observations, and let 

if n = 2m+ 1 

sup f(x, e) 
9 

and if n = 2m. Then 
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and hence 

The likelihood ratio confidence set for 8 is given by 

where c
1 

= exp(-,c). The probability that the region (22) 

covers 8 is 

(22) 

(23) 

This does not depend upon e. When evaluating the probability 

(23) we may assume 8 = 0. Then we have to find P(T.::;. c 1 ), 

where T = ~i~ 1 lxil - ~i~ 1 lxi-Yl • 

It is seen that 

T = 
-2(y + 

2 (v + 

• • • 

• • 0 

+ u) + Y 

+ y) - y 

if 

if 

y < 0 

y > 0 

where u is the largest negative x and v the smallest 

positive x 9 and where the summation is over all observation 

between y and u 9 and v and y, respectively. It is 9 

of course 9 not easy to evaluate the distribution of T. 

~-xam~le 3. Let X1 , ••• , Xn be independent with a Cauchy 

distribution, so that 

Then the LTCS for 9 is 

( e : (24) 
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" where e is the maximum likelihood estimate of e. 

The confidence coefficient of (24) is difficult to ob-

tain when n is large. The case n=1 is trivial. We will 

consider the case n=2 in some detail, since that was used 

as an example of how to find a structural confidence set for 

9 in Fraser, 1968. This gives us an opportunity to compare 

the two in a nontrivial case. 

The density f(x, 9) has a stationary point as a function 

e2 =i[x1+x2 - J[(x1-x2 )
2

- 4)] and 

4}]. The root e1 is the only 

of 8 for e 1 =~-(x 1 +x 2 ), 

93 = i[x1+x2 + Jccx1-x2)2 

real root if (x1-x2 )
2 

< 4. 

maximum at e2 and e
3 

The function f(x, 9) has a 

if these are real, and a local mini-

mum at e1 • If 91 is the only real root, f(x, e) has a 

maximum at e1 . It follows that 

P
9

[L(X, e) ~ c} = P
0

[(X1-x2 )
2 ~ 4 and 

[(1+X~)(1+X~)} > c] + P
0

[(X1-X2 )
2 ~ 4 

[(1+X~)(1+X~)} ~c). 

and 

The confidence set (24) can be written in the form 

where d = I x 1 - x2 1 /2. If d 5. 1 this reduces to the 

interval 

we get the interval 
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where A~ ~ d
2-1 + 2d(c-

1-1)!. 

we get a union of two intervals 

In the case 

[(x
1
+x2)/2- A2 ~ e < (x

1
+x2 )/2 - A

3
) U [(x

1
+x2 )/2 + A

3 
< e 

~ (x
1
+x2 )/2 + A2}, 

where A~= d
2-1 - 2d(c-

1-1)!. 

This is not the same as the structural confidence interval 

given in Fraser (1968), p. 16. 

Exa!!l~:P1~ 4 . Consider again Example 2. We will construct 

a confidence set by using the Remark in Section 2e In this 

example G is a group of translations, hence a(x) = 1 • 

We choose h(x) = c~ then we get 

or 

where 
n 

c
1 

= -2 log 2 c. has a chi-

square distribution with 2n degrees of freedom, we get a 

1-o: confidence set for e by choosing c
1 

equal to the 

upper a-point of that distribution. The confidence set is 

unbiased, and for a given set of data it is easily found. 

This confidence set has a peculiar behaviour, since with 

positive probability 2~i~ 1 !xi- yj > c
1

, where y is the 

median, and for such values of x
1 

, ••• , xn the confidence 

set will be empty. 
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