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UNBIASEDNESS OF TESTS FOR HOMOGENEITY OF VARIANCES

BY ARTHUR COHEN'! AND WILLIAM E. STRAWDERMAN

Rutgers University and Stanford University

0. Summary. Consider the classical homogeneity of variances model. That is,
suppose we have a one way layout, with independent random samples of equal
sizes in each column. We assume the samples are from normal populations with
unknown means and unknown variances. We wish to test the hypothesis that all the
variances are equal. R. V. Laue (1965) defined a two parameter family of statistics
to test the homogeneity hypothesis. The family is defined as a function of the ratio
of mean value functions of the sample variances. Included in the family are many
of the well-known tests for homogeneity. In this paper we investigate which of the
tests is unbiased. Although we are unable to resolve the question for every testin the
family, we can demonstrate the unbiased character for several subfamilies, which
include some of the better known tests.

1. Introduction. Consider the fixed one way layout. Thatis,letz;;, i = 1,2, -, k;
i=1,2,--,n+1, be k independent random samples from normal distributions
with unknown means and unknown variances o;. Assume k = 3. We wish to test
the hypothesis that 0, = 6, = - - = 0}, against the alternative that not all ¢’s are
equal. Let s; denote the ith sample variance. R. V. Laue (1965) defined a two
parameter family of statistics to test the homogeneity hypothesis. The family is
defined as
(1.1) T(4,n) = [(kn)/(A—n)]log R(4, n),
for all finite 1 and #, where R(4, 1) = M(4)/M(n), and M(t) = [(1/k) Y 5= s;T'".
Note that many well-known statistics for homogeneity are monotone functions of
some member of the family. For example, T(1, 0) is related to the likelihood ratio
test; 7(2, 1) is related to a test proposed by Stevens (1936); T(0, 0) is related to a
statistic suggested by Bechhofer (1960) and Bartlett and Kendall (1946). Further-
more, T(co, 1), defined as the limit, in some sense, as 4 — o, is related to Cochran’s
test (1941) and T(co, — o0) is related to Hartley’s test (1950). Laue proved that tests
in the family share the properties of the likelihood ratio test. That is, they are
consistent, similar, and asymptotically distributed as chi-squared.

In this paper we study the question of which tests in the family are unbiased. By
unbiased we mean that the power function of the test has a minimum when the
hypothesis is true. We show that the tests corresponding to 41 =0, n <0, are
unbiased. Since T(4, n) = T(n, A) it follows that unbiasedness is also established
for 1 £0, n = 0. The cases for other A, n are unresolved.

As far as the authors know, heretofore unbiasedness has been shown only for
the likelihood ratio test by Pitman (1939) and Brown (1939), and Hartley’s test by
Ramachandran (1956).
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In the next section we prove the results. We conclude with some remarks in
Section 3.

2. Unbiasedness of tests. In this section we prove that for 1 = 0, n < 0, the tests
in (1.1) are unbiased. The proof is achieved essentially as follows: The problem is
reformulated in terms of testing the homogeneity of translation parameters. This
is done by considering x; =logs;, i=1,2,---, k. Since the test statistics are
permutation invariant and translation invariant in terms of the x;, we will be able
to apply a theorem of Mudholkar (1966). The application of this theorem reduces
the proof of unbiasedness to demonstrating that the acceptance regions of the tests,
expressed in terms of the x;, are convex.

;  We start by stating a definition and the theorem proved by Mudholkar.

DErFINITION. A function f(x) on k-dimensional Euclidean space L, is said to be
unimodal if the set K, = {x|f(x) = u} is convex for each u = 0.

Now let G={g;,i=1,2,---, N} be a finite group of Lebesgue measure-
preserving linear transformations of L, onto L,. Let E be a convex set of k-space,
invariant under G, or G invariant, i.e. xe E implies g, x€E, i=1,2, -+, N. Let
f(x) = 0 be a function on k-space satisfying.

2.1 (i) the unimodality condition
(ii) G-invariance condition: f(g;x) = f(x),i=1,2,--*, N,
for each x in L,, and
(ifi) [gf(x)dx < oo in the Lebesgue sense.

Foraset o = {a, o, ", ay}, ; 20, Y 7=, o; = 1, and a vector y of k-space let us
define
(2.2) a(y) = Z;N= 10:9; ).

Now we give

THEOREM 2.1. (Mudholkar (1966)). Let f(x) satisfy conditions (2.1). Let E be
convex and G-invariant. For each set o = {0y, a5, """, ay}, 0; 20, Yoy o; = 1 and
vector y of L, we have

(2.3) [ef(x+a(y)dx = [£f(x+y)dx.

We will apply Theorem 2.1 when the group G is the permutation group in L,.
(See Mudholkar, page 1330). Also we choose a special set of a;, namely a; =
1/N,i=1,2,---, N and a special set of vectors y. The y vectors we choose are

*'those which can be written as

(2.4) y =rl+y*,

where y* is such that its coordinates sum to zero, r is a scalar, and 1 is the vector,
all of whose components are 1. With such choices G, «, and y, it follows from
(2.2) that (2.3) becomes

.5) fef it dx 2 [pf (x4 F14+ y*) dx.
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Now let X be a kx 1 random vector whose density is characterized by a k x 1
translation parameter 6. That is, the density of X is f(x—6). Suppose we wish to
test the hypothesis that 8, = 0, = --- = 6,. In order to use Theorem 2.1 to yield
the unbiasedness property of a test for such a hypothesis we prove

THEOREM 2.2. Let f be a translation parameter family of densities satisfying (2.1).
Then any test, whose acceptance region E is

(2.6) (i) convex
(ii) permutation invariant
(iii) translation invariant about the equiangular line, i.e.
E+rl = E, is unbiased.

PrOOF. We show that the probability of acceptance under the null hypothesis
is a maximum. Let 6 be any alternative. Clearly 6 can be written as in (2.4) since
any vector can be partitioned in this way. Furthermore, since 0 is an alternative the
components of y* cannot all be equal. Now the probability of acceptance is

@7 [/ (x—0) dx.

Since E is translation invariant, it follows from (2.7), upon a change of variables
that the probability of acceptance under the null hypothesis can be written as
(2.8) Jef(x+r1)dx.

From (2.5), (2.8) is greater than the right-hand side of (2.5), which by similar
reasoning represents the probability of acceptance under an alternative. This
completes the proof of the theorem.

At this point we may seek the unbiasedness results for the original model. We
let x; =1logs; and 6;,=1logo;, i=1,2, -+, k. The hypothesis is equivalent to

0, =60, =--- =0, Without loss of generality we let 1 = 5. For A, n finite, 1 > 7,
n # 0, the test statistics in (1.1) yield acceptance regions
2.9) E(,n) = {x: [Tk 2] VA[ Yo ] < a},

where a is a positive constant. We now prove
THEOREM 2.3. For 2. =0, n £ 0, the tests in (1.1) are unbiased.

ProoF. Let f(x) denote the density of the x;, i=1,2, -, k. By virtue of
Theorem 2.2, the present theorem is true if we can show that fis a translation para-
meter family satisfying (2.1) and if the acceptance regions determined by the tests
satisfy (2.6).

Since the variables (ns;/0,),i = 1, 2, - - -, k, are independent chi-squared variables
with n degrees of freedom it follows that

(2.10) J1%2,00 75 %,301,0,+,6,)
=Cexp[(n/2) Y (x;—0)] -exp[—(3) ) e™~%],

where C is a positive constant.
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Clearly f is a translation parameter family satisfying conditions (ii) permutation
invariance, and (iii) of (2.1). Furthermore f satisfies (i) of (2.1). For let

(2.11) K, = {x|f(x) 2 u} = {x:logf(x) = logu}
= {x: —(n/2)25‘=1 xi+(%)2?=lex‘ < —logu}.

It is easily seen, by considering the matrix of second derivatives, that the term in
the brackets on the right-hand side of (2.11) is a convex function of the k variables
(x4, X3, ***, x;). This in turn implies that K, is convex.

Finally we must show that the regions in (2.9), and those regions corresponding
to tests in (1.1) for n = 0, or A = 0, satisfy (2.6). (Note T(4, 0) or T(0, 0) are limits
of T(4,n) obtained using L’Hospital’s rule.) Clearly conditions (ii) and (iii) of
(2.6) are satisfied. It only remains to verify (i), that the regions are convex.

For the time being let A = — vy, where v is a positive rational number. That is,
v = p/q, where p and ¢ are integers. Then for A > 0, <0, from (2.9) we get

E(An) = {x:[Y ™Y ] < a}

(2.12) = {x:[Y. Y ™ < a?*}
= {XZ [Zﬁ,iz. cevigyigt1,tctigtp= 1exp(lzlll'= 1 xi;+'72‘11'+=51’+ 1 xij)] s aql}
where, of course each variable x;, i = 1,2, -+, k, is treated symmetrically in the

sum on the right-hand side of (2.12) and ) * means all possible combinations of the
x;;. Clearly the function in brackets in the term following the last equal sign in

(2.12) is a convex function of the k variables x,, x,, * - -, x,. This is so since it is the
sum of convex functions. This implies that E(4, ) is convex for the designated A
and 7.

To establish convexity of the sets E(4, ) for the cases where v is not rational, or
n =0, or =5 =0, we use the following limiting argument. For v not rational, let
v, be a sequence of rational numbers such that lim,_, ,, v, = v. Define , = —41/v,.
Then by continuity of T(4, #) it follows that for every fixed x, lim,.,, T(4, n,) =
T(4, ). For the case n = 0, define , = —1/n and 4,, a sequence of rationals such
that lim,_ 4, = A. For the case A=#n=0, let 4, =1/n and 5, = —1/n. By the
definition of 7(4,0) and T/(0, 0), it follows lim,., T(4,, —1/n) = T(4,0), and
lim,, , T(1/n, —1/n) = T(0, 0).

Now let ¢(4, ) denote the critical function corresponding to E(4, n). That
is (A, n) =0 if xeE, and ¢(4,n) =1 otherwise. It is easy to verify that if
lim,, ,, T(4,, n,) = T(4, 1), then lim,_, ,@(4,, n,) = ¢(4, n) pointwise (that is, for
every x). At this point we may apply a theorem of Matthes and Truax (1967),
Theorem 2.1, page 684. That theorem says essentially that if ¢, is a sequence of
critical functions converging weakly to a critical function ¢, then if the acceptance
regions corresponding to ¢, are closed and convex then the acceptance region
corresponding to ¢ is closed and convex. Since we have already established
convexity of the acceptance regions for the case v rational, it is clear that the
sequences of tests defined above have acceptance regions which are convex and
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closed. Furthermore the corresponding sequences of critical functions converge
pointwise, which implies they converge weakly to a critical function. Hence it follows
that the acceptance regions corresponding to 7(4, n) for v not rational, 7(4, 0) or
T(0, 0) are convex. This completes the proof of Theorem 2.3.

3. Remarks.

REMARK 1. Note that Hartley’s test is equivalent to maxs;/mins;, which from
(1.1) is a monotone function of (1—#n) T(co, —0). Wecouldlet A =n,andn = —n
and consider the sequence 2nT(n, —n), whose corresponding acceptance regions
(in the x variables) are closed and convex. This would prove unbiasedness of
Hartley’s test by the same argument given to prove Theorem 2.3.

ReEMARK 2. Cochran’s test is equivalent to max s,/s, where § is the mean of the
s;, which is a monotone function of (1—#n) T(co, 1). We show that the acceptance
region (in the x variables) for this test is not convex. For consider the acceptance
region

3.1) E(co, 1) = {x:[e™**/Y ¢] < a).
Choose vectors x(*) and x{® such that their maximum coordinates are equal, their
other coordinates are unequal but Y e’ =Y e¥”. Also let a = e™**"[3 ™"

Note then that for 0 < o < 1,

(32  Yexplax/V+(l—x] <ad) e +(I—)) &P =Y "
From (3.1) and (3.2) we get

(3.3) [exp [max (ax; "+ (1 —a)x ) ]/Y exp [ax " + (1 —a)xP]]

(1) (1)
> emaxx. //Z ex. = q.

Whereas x'!) and x(¥eE, (3.3) implies that ax" 4+ (1 —a)x® ¢ E. This verifies
that E(oo, 1) is not convex.

ReMARK 3. By reasoning as in Remark 2 it follows that E(co0, ) for n > 0 is not
convex. This, along with the argument of Theorem 2.3 proves that E(4,n),
A>n >0, cannot be convex for all finite A.

REMARK 4. The application of Theorem 2.1 given to prove Theorem 2.2 gives a
bit more than unbiasedness. The proof indicates that the power function is monotone
non-decreasing along rays orthogonal to the equiangular line.

REMARK 5. It would be a simple mafter to generate more unbiased tests. This
would merely involve defining acceptance regions (in the x;) variables which are
convex, translation invariant, and permutation invariant.
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