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Abstract. We discuss Laplacians on graphs in a framework of regular Dirichlet forms. We focus

on phenomena related to unboundedness of the Laplacians. This includes (failure of) essential

selfadjointness, absence of essential spectrum and stochastic incompleteness.
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Introduction

The study of Laplacians on graphs is a well established topic of research (see e.g. the monographs

[4, 6] and references therein). Such operators can be seen as discrete analogues to Schrödinger

operators. Accordingly their spectral theory has received quite some attention. Such operators

also arise as generators of symmetric Markov processes and they appear in the study of heat equa-

tions on discrete structures. Recently, certain themes related to unboundedness properties of such

operators have become a focus of attention. These themes include

• definition of the operators and essential selfadjointness,

• absence of essential spectrum,

• stochastic incompleteness.

In this paper we want to survey recent developments and provide some new results. Our principle

goal is to make these topics accessible to non-specialists by providing a somewhat gentle and

introductory discussion.

∗Corresponding author. E-mail: daniel.lenz@uni-jena.de

198

Article published by EDP Sciences and available at http://www.mmnp-journal.org or http://dx.doi.org/10.1051/mmnp/20105409

http://www.edpsciences.org/
http://www.mmnp-journal.org
http://dx.doi.org/10.1051/mmnp/20105409


M. Keller and D. Lenz Unbounded Laplacians on graphs

Let us be more precise. We consider a graph with weights on edges and vertices. The weights can

be seen to give a generalized vertex degree.

There is an obvious way to formally associate a symmetric nonnegative operator to such a graph.

If the generalized vertex degrees are uniformly bounded this operator is bounded and all formal

expressions make sense. If the generalized vertex degrees are not uniformly bounded already the

definition of a self adjoint operator is an issue. This issue can be tackled by proving essential self-

adjointness of the formal operator on the set of functions with compact support. This was done for

locally finite weighted graphs by Jorgensen in [20] and for locally finite graphs by Wojciechowski

in [33] (see [34] as well) and Weber in [32]. These results require local finiteness and do not al-

low for weights on the corresponding ℓ2 space. As discussed by Keller/Lenz in [22] it is possible

to get rid of the local finiteness requirement and to allow for weighted spaces by using Dirichlet

forms. The corresponding results give a nonnegative selfadjoint (but not necessarily essentially

selfadjoint) operator in quite some generality and provide a criterion for essential selfadjointness

covering the earlier results of [20, 32, 33]. These topics are discussed in Section 1.

Having an unbounded nonnegative operator at ones disposal one may then wonder about its basic

spectral features. These basic features include the position of the infimum of the spectrum and the

existence of essential spectrum. Both issues can be approached via isoperimetric inequalities. In

fact, lower bounds for the spectrum have been considered by Dodziuk [9] and Dodziuk/Kendall

[11]. For planar graphs explicit estimates for the isoperimetric constant and hence for the spectrum

can be found for instance in [18, 19, 23, 24, 31]. Triviality of the essential spectrum for general

graphs has been considered by Fujiwara [14]. The corresponding results deal with bounded opera-

tors only. (They allow for unbounded vertex degree but then force boundedness of the operators by

introducing weights on the corresponding ℓ2 space.) Still, the methods can be used to provide lower

bounds on the spectrum and prove emptiness of the essential spectrum for unbounded Laplacians

as well. For locally finite graphs this has been done by Keller in [21]. Here, we present a general-

ization of the results of [21] to the general setting of regular Dirichlet forms. This generalization

also extends the results of [14, 11] to our setting. This is discussed in Section 5.

Finally, we turn to a (possible) consequence of unboundedness in the study of the heat equation

viz stochastic incompleteness. Stochastic incompleteness describes the phenomenon that mass

vanishes in a diffusion process. While this may a priori not seem to be connected to unbounded-

ness, it turns out to be connected. This has already been observed by Dodziuk/Matthai [12] and

Dodziuk [10] in that they show stochastic completeness for certain bounded operators on graphs.

A somewhat more structural connection is provided by our discussion below. For locally finite

graphs stochastic completeness has recently been investigated by Weber in [32] and Wojciechowski

[33]. In fact, Weber presents sufficient conditions and Wojciechowski gives a characterization of

stochastic incompleteness. This characterization is inspired by corresponding work of Grigor’yan

on manifolds [16] (see work of Sturm [28] for related results as well). As shown in [22] this char-

acterization can be extended to regular Dirichlet forms. Details are discussed in Section 8. There,

we also provide some further background extending [22]. Let us mention that this circle of ideas

is strongly connected to questions concerning uniqueness of Markov process with given generator

as discussed by Feller in [13] and Reuter in [27]. We take this opportunity to mention the very
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recent survey [35] of Wojciechowski giving a thorough discussion of stochastic incompleteness

for manifolds and graphs (with edge weight constant to one).

While our basic aim is to study unbounded Laplacians we complement our results by characterizing

boundedness of the Laplacians in question in Section 3.

For a related study of basic spectral properties in terms of generalized solutions we refer the reader

to [17].

The paper is organized as follows. In Section 1 we introduce our operators and discuss basic

properties. Section 2 contains a useful minimum principle and some of its consequences. Bound-

edness of the Laplacians in question is characterized in Section 3. A useful tool, the so called

co-area formulae are investigated in Section 4. They are used in Section 5 to provide an isoperi-

metric inequality which is then used to study bounds on the infimum of the (essential) spectrum.

This allows us in particular to characterize emptiness of the essential spectrum. The connection

to Markov processes is discussed in Section 7. A characterization of stochastic incompleteness is

given in Section 8.

1. Graph Laplacians and Dirichlet forms

Throughout V will be a countably infinite set.

1.1. Weighted graphs

We will deal with weighted graphs with vertex set V . A symmetric weighted graph over V is a

pair (b, c) consisting of a map b : V × V −→ [0,∞) with b(x, x) = 0 for all x ∈ V and a map

c : V −→ [0,∞) satisfying the following two properties:

(b1) b(x, y) = b(y, x) for all x, y ∈ V .

(b2)
∑

y∈V b(x, y) < ∞ for all x ∈ V .

Then b is called the edge weight and c is called killing term.

We consider (b, c) or rather the triple (V, b, c) as a weighted graph with vertex set V in the following

way: An x ∈ V with c(x) 6= 0 is thought to be connected to the point ∞ by an edge with weight

c(x). Moreover, x, y ∈ V with b(x, y) > 0 are thought to be connected by an edge with weight

b(x, y). Vertices x, y ∈ V with b(x, y) > 0 are called neighbors. More generally, x, y ∈ V are

called connected if there exist x0, x1, . . . , xn ∈ V with b(xi, xi+1) > 0, i = 0, . . . , n and x0 = x,

xn = y. This allows us to define connected components of V in the obvious way.

Two examples have attracted particular attention.

Example (Locally finite graphs): Let (V, b, c) be a weighted graph with c ≡ 0 and b(x, y) ∈
{0, 1} for all x, y ∈ V . We can then think of the (x, y) ∈ V × V with b(x, y) = 1 as connected

by an edge with weight 1. The condition (b2) then implies that any x ∈ V is connected to only
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finitely many y ∈ V . Such graphs are known as locally finite graphs. This is the class of examples

studied in [21, 14, 33, 32].

Example (Locally finite weighted graphs): Let (V, b, c) be a weighted graph with c ≡ 0 and b
satisfying

♯{y : b(x, y) 6= 0} < ∞

for all x ∈ V . Then, (V, b, c) is called a locally finite weighted graph. This is the class of examples

studied in [10, 20].

1.2. Dirichlet forms on countable sets

Let m be a measure on V with full support (i.e., m is a map m : V −→ (0,∞)). Then, (V,m) is a

measure space. A particular example is given by m ≡ 1. We will deal exclusively with real valued

functions. Thus, ℓp(V,m), 0 < p < ∞, is defined by

{u : V −→ R :
∑

x∈V

m(x)|u(x)|p < ∞}.

Obviously, ℓ2(V,m) is a Hilbert space with inner product 〈·, ·〉 = 〈·, ·〉m given by

〈u, v〉 :=
∑

x∈V

m(x)u(x)v(x) and norm ‖u‖ := 〈u, u〉
1

2 .

Moreover we denote by ℓ∞(V ) the space of bounded functions on V . Note that this space does not

depend on the choice of m. It is equipped with the supremum norm ‖ · ‖∞ defined by

‖u‖∞ := sup
x∈V

|u(x)|.

A symmetric nonnegative form on (V, m) is given by a dense subspace D of ℓ2(V,m) called the

domain of the form and a map

Q : D × D −→ R

with Q(u, v) = Q(v, u) and Q(u, u) ≥ 0 for all u, v ∈ D.

Such a map is already determined by its values on the diagonal {(u, u) : u ∈ D} ⊆ D × D. This

motivates to consider the restriction of Q to the diagonal as an object on its own right. Thus, for

u ∈ ℓ2(V, m) we then define Q(u) by

Q(u) :=

{
Q(u, u) : u ∈ D,
∞ : u 6∈ D.

If ℓ2(V, m) −→ [0,∞], u 7→ Q(u) is lower semicontinuous Q is called closed. If Q has a closed

extension it is called closable and the smallest closed extension is called the closure of Q.

A map C : R −→ R with C(0) = 0 and |C(x)−C(y)| ≤ |x− y| is called a normal contraction. If

Q is both closed and satisfies Q(Cu) ≤ Q(u) for all normal contractions C and all u ∈ ℓ2(V, m) it

is called a Dirichlet form on (V, m) (see [3, 7, 15, 25] for background on Dirichlet forms).
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Let Cc(V ) be the space of finitely supported functions on V . A Dirichlet form on (V, m) is called

regular if its domain contains Cc(V ) and the form is the closure of its restriction to the subspace

Cc(V ). (The standard definition of regularity for Dirichlet forms would require that D(Q)∩Cc(V )
is dense in both Cc(V ) and D(Q). As discussed in [22] this is equivalent to our definition.)

1.3. From weighted graphs to Dirichlet forms

There is a one-to-one correspondence between weighed graphs and regular Dirichlet forms. This

is discussed next.

To the weighted graph (V, b, c) we can then associate the form Qmax = Qmax
b,c,m : ℓ2(V,m) → [0,∞]

with diagonal given by

Qmax(u) =
1

2

∑

x,y∈V

b(x, y)(u(x) − u(y))2 +
∑

x∈V

c(x)u(x)2.

Here, the value ∞ is allowed. Let Qcomp = Qcomp
b,c be the restriction of Qmax to Cc(V ). It is

not hard to see that Qmax is closed. Hence Qcomp is closable on ℓ2(V, m) and the closure will be

denoted by Q = Qb,c,m and its domain by D(Q).

As discussed in [22] (see [15] as well) the following holds.

Theorem 1. The regular Dirichlet forms on (V,m) are exactly given by the forms Qb,c,m with

weighted graphs (b, c) over V .

Remark. One may wonder whether the regularity assumption is necessary in the above theorem.

It turns out that not every Dirichlet form Qmax
b,c,m is regular. A counterexample is provided in [22].

For a given a weighted graph (V, b, c) the different choices of measure m will produce different

Dirichlet forms. Two particular choices have attracted attention. One is the choice of m ≡ 1.

Obviously, this choice does not depend on b and c. Another possibility is to use n = m = mb,c

given by

n(x) :=
∑

y∈V

b(x, y) + c(x).

The advantage of this measure is that it produces a bounded form (see below for details).

1.4. Graph Laplacians

Let m be a measure on V of full support, (b, c) a weighted graph over V and Qb,c,m the associated

regular Dirichlet form. Then, there exists a unique selfadjoint operator L = Lb,c,m on ℓ2(V,m)
such that

D(Q) := {u ∈ ℓ2(V, m) : Q(u) < ∞} = Domain of definition of L1/2

and

Q(u) = 〈L1/2u, L1/2u〉

for u ∈ D(Q) (see e.g. Theorem 1.2.1 in [7]). As Q is nonnegative so is L.
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Definition 2. Let V be a countable set and m a measure on V with full support. A graph Laplacian

on V is an operator L associated to a form Qb,c,m.

Our next aim is to describe the operator L more explicitly: Define the formal Laplacian L̃ = L̃b,c,m

on the vector space

F̃ := {u : V −→ R :
∑

y∈V

|b(x, y)u(y)| < ∞ for all x ∈ V } (1.1)

by

L̃u(x) :=
1

m(x)

∑

y∈V

b(x, y)(u(x) − u(y)) +
c(x)

m(x)
u(x),

where, for each x ∈ V , the sum exists by assumption on u. The operator L̃ describes the action of

L in the following sense.

Proposition 3. Let (V, b, c) be a weighted graph and m a measure on V of full support. Then, the

operator L is a restriction of L̃ i.e.,

D(L) ⊆ {u ∈ ℓ2(V, m) : L̃u ∈ ℓ2(V, m)} and Lu = L̃u

for all u ∈ D(L).

In order to obtain further information we need a stronger condition. We define condition (A) as

follows:

(A) For any sequence (xn) of vertices in V such that b(xn, xn+1) > 0 for all n ∈ N, the equality∑
n∈N

m(xn) = ∞ holds.

Let us emphasize that in general (A) is a condition on (V, m) and b together. However, if

inf
x∈V

mx > 0

holds, then obviously (A) is satisfied for all graphs (b, c) over V . This applies in particular to the

case that m ≡ 1.

Given (A) we can say more about the generators [22].

Theorem 4. Let (V, b, c) be a weighted graph and m a measure on V of full support such that (A)

holds. Then, the operator L is the restriction of L̃ to

D(L) = {u ∈ ℓ2(V, m) : L̃u ∈ ℓ2(V, m)}.

Remark. The theory of Jacobi matrices already provides examples showing that without (A) the

statement becomes false [22].

The condition (A) does not imply that L̃f belongs to ℓ2(V,m) for all f ∈ Cc(V ). However, if this

is the case, then (A) does imply essential selfadjointness. In this case, Q is the “maximal” form

associated to the graph (b, c). More precisely, the following holds [22].
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Theorem 5. Let V be a set, m a measure on V with full support, (b, c) a graph over V and Q the

associated regular Dirichlet form. Assume L̃Cc(V ) ⊆ ℓ2(V,m). Then, D(L) contains Cc(V ). If

furthermore (A) holds, then the restriction of L to Cc(V ) is essentially selfadjoint and the domain

of L is given by

D(L) = {u ∈ ℓ2(V, m) : L̃u ∈ ℓ2(V,m)}

and the associated form Q satisfies Q = Qmax i.e.,

Q(u) =
1

2

∑

x,y∈V

b(x, y)(u(x) − u(y))2 +
∑

x∈V

c(x)u(x)2

for all u ∈ ℓ2(V,m).

Remark. Essential selfadjointness may fail if (A) does not hold as can be seen by examples [22].

If infx∈V mx > 0 then both (A) and L̃Cc(V ) ⊆ ℓ2(V,m) hold for any graph (b, c) over V . We

therefore obtain the following corollary.

Corollary 6. Let V be a set and m a measure on V with infx∈V mx > 0. Then, D(L) contains

Cc(V ), the restriction of L to Cc(V ) is essentially selfadjoint and the domain of L is given by

D(L) = {u ∈ ℓ2(V, m) : L̃u ∈ ℓ2(V,m)}

and the associated form Q satisfies Q = Qmax.

Remark. The corollary includes the case that m ≡ 1 and we recover the corresponding results of

[11, 33, 32] on essential selfadjointness. (In fact, the cited works also have additional restrictions

on b but this is not relevant here.)

2. Minimum principle and consequences

An important tool in the proofs of the results of the previous section is a minimum principle. This

minimum principle shows in particular the relevance of (A) in our considerations. This is discussed

in this section.

The following result is a variant and in fact a slight generalization of the minimum principle from

[22].

Theorem 7. (Minimum principle) Let (V, b, c) be a weighted graph and m a measure on V of full

support. Let U ⊆ V be connected. Assume that the function u on V satisfies

• (L̃ + α)u ≥ 0 on U for some α > 0,

• u ≥ 0 on V \ U .

Then, the value of u is nonnegative in any local minimum of u.
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Proof. Let u attain a local minimum on U in xm. Assume u(xm) < 0. Then, u(xm) ≤ u(y) for all

y ∈ U with b(xm, y) > 0. As u(y) ≥ 0 for y ∈ V \ U , we obtain u(xm) − u(y) ≤ 0 for all y ∈ V
with b(xm, y) ≥ 0. By the super-solution assumption we find

0 ≤
∑

b(xm, y)(u(xm) − u(y)) + c(xm)u(xm) + m(xm)αu(xm) ≤ 0.

As b and c are nonnegative, m is positive and α > 0, we obtain the contradiction 0 = u(xm).

The relevance of (A) comes from the following consequence of the minimum principle first dis-

cussed in [22].

Proposition 8. (Uniqueness of solutions on ℓp) Assume (A). Let α > 0, p ∈ [1,∞) and u ∈

ℓp(V, m) with (L̃ + α)u ≥ 0 be given. Then, u ≥ 0. In particular, any u ∈ ℓp(V,m) with

(L̃ + α)u = 0 satisfies u ≡ 0.

Proof. We first show the first statement: Assume the contrary. Then, there exists an x0 ∈ V with

u(x0) < 0. By the previous minimum principle, x0 is not a local minimum of u. Thus, there exists

an x1 connected to x0 with u(x1) < u(x0) < 0. Continuing in this way we obtain a sequence (xn)
of connected points with u(xn) < u(x0) < 0. Combining this with (A) we obtain a contradiction

to u ∈ ℓp(V,m).
As for the ’In particular’ part we note that both u and −u satisfy the assumptions of the first

statement. Thus, u ≡ 0.

Remark. The situation for p = ∞ is substantially more complicated as can be seen by our

discussion of stochastic completeness in Section 8. and in particular part (ii) of Theorem 25.

Using the previous minimum principle it is not hard to prove the following result. The result is in

fact true for general Dirichlet forms as can be inferred from [29, 30]. For U ⊆ V we denote by QU

the closure of the Q restricted to Cc(U) and by LU the associated operator.

Proposition 9. (Domain monotonicity) Let (V, b, c) be a symmetric graph. Let K1 ⊆ V be finite

and K2 ⊆ V with K1 ⊆ K2 be given. Then, for any x ∈ K1

(LK1
+ α)−1f(x) ≤ (LK2

+ α)−1f(x)

for all f ∈ ℓ2(V, m) with f ≥ 0 and supp f ⊆ K1. A similar statement holds for the semigroups.

Proposition 10. (Convergence of resolvents/semigroups) Let (V, b, c) be a symmetric graph, m
a measure on V with full support and Q the associated regular Dirichlet form. Let (Kn) be an

increasing sequence of finite subsets of V with V =
⋃

Kn. Then, (LKn
+ α)−1f → (L + α)−1f ,

n → ∞ for any f ∈ ℓ2(K1,mK1
). (Here, (LKn

+ α)−1f is extended by zero to all of V .) The

corresponding statement also holds for the semigroups.
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3. Boundedness of the Laplacian

Our main topic in this paper are the consequences of unboundedness of the Laplacian. In order to

understand this unboundedness it is desirable to characterize boundedness of this operator. This is

discussed in this section. We start with a little trick on how to get rid of the c in certain situations.

Let V̇ be the union of V and a point at infinity ∞. We extend a function on V to V̇ by zero and let

b(∞, x) = b(x,∞) = c(x) for all x ∈ V . We then have

∑

y∈V̇

b(x, y) =
∑

y∈V

b(x, y) + c(x)

for all x ∈ V and

Q(u) =
1

2

∑

x,y∈V̇

b(x, y)(u(x) − u(y))2

for all functions u in D(Q).
We define an averaged vertex degree d = db,c,m by

d(x) :=
1

m(x)

(
∑

y∈V

b(x, y) + c(x)

)
.

Note that d(x) = n(x)/m(x), where n was defined at the end of Section 1.3.

Theorem 11. Let (V, b, c) be a weighted graph and m : V −→ (0,∞) a measure on V and L̃ the

associated formal operator. Then, the following assertions are equivalent:

(i) There exists a C ≥ 0 with d(x) ≤ C for all x ∈ V .

(ii) The form Q is bounded on ℓ2(V,m).

(iii) The restriction of L̃ to ℓ2(V,m) is bounded.

(iv) The restriction of L̃ to ℓ∞(V ) is bounded.

In this case the restriction of L̃ to ℓp(V, m) is a bounded operator for all p ∈ [1,∞] and a bound

is given by 2C with C from (i).

Proof. By the considerations at the beginning of the section we can assume c ≡ 0. For x ∈ V we

let δx be the function on V which is zero everywhere except in x, where it takes the value 1.

The equivalence between (ii) and (iii) is obvious as the operator associated to Q is a densely defined

restriction of L̃.

Obviously (i) implies (iv) (with the bound 2C). The implication (iv)=⇒ (i) follows by considering

the vectors δx, x ∈ V .
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(i) =⇒ (ii): As (a − b)2 ≤ 2a2 + 2b2 we obtain

Q(u, u) =
1

2

∑

x,y∈V

b(x, y)(u(x) − u(y))2

≤
∑

x,y∈V

b(x, y)u(x)2 +
∑

x,y∈V

b(x, y)u(y)2

≤ C
∑

x∈V

m(x)u(x)2 + C
∑

y∈V

m(y)u(y)2

= 2C‖u‖2.

Here, we used the symmetry of b and the bound (i) in the previous to the last step.

(ii) =⇒ (i): This follows easily as Q(δx, δx) =
∑

y∈V b(x, y) for all x ∈ V .

It remains to show the last statement: By interpolation between ℓ2 and ℓ∞, we obtain boundedness

of the operators on ℓp(V,m) for p ∈ [2,∞]. Using symmetry we obtain the boundedness for

p ∈ [1, 2). Alternatively, we can directly establish that (i) implies the boundedness of the restriction

of L̃ on ℓ1(V, m). As a bound for the operator norm on ℓ∞ and on ℓ2 is 2C, we obtain this same

bound on all ℓp.

Remark. The theorem can be seen as a generalization of the well known fact that a stochastic

matrix generates an operator which is bounded on all ℓp.

Note that the theorem gives in particular that boundedness of the operator L̃ on ℓ2(V, m) is equiva-

lent to boundedness on ℓ∞(V ). This is far from being true for all symmetric operators on ℓ2(V, m).
For example, let A be the operator on ℓ2(N, 1) with matrix given by ax,y = 1/x if y = 1 and

ax,y = 1/y if x = 1 and ax,y = 0 otherwise. Then, A is bounded on ℓ2 but not on ℓ∞. Conversely,

using e.g. the measure m(x) = x−4 on N and suitable operators with only one or two ones in each

row it is not hard to construct a bounded operator on ℓ∞(N) which is symmetric but not bounded on

ℓ2(V, m). Of course, if m is such that ℓ2(V, m) is contained in ℓ∞(V ) then any bounded operator

on ℓ∞ which is symmetric (and hence closed) on ℓ2 must be bounded as well.

4. Co-area formulae

In this section we discuss some co-area type formulae. These formulae are well known for locally

finite graphs e.g. [5] and carry over easily to our setting. They are useful in many contexts as e.g.

the estimation of eigenvalues via isoperimetric inequalities. We use them in this spirit as well.

We start with some notation. Let (V, b, c) be a weighted graph with c ≡ 0, (which can assume

without loss of generality by the trick mentioned in the beginning of Section 3.). For a subset

Ω ⊆ V we define

∂Ω := {(x, y) : {x, y} ∩ Ω 6= ∅ and {x, y} ∩ V \ Ω 6= ∅}
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and

|∂Ω| :=
1

2

∑

(x,y)∈∂Ω

b(x, y).

We can now come to the so called co-area formula.

Theorem 12. (Co-area formula) Let (V, b, c) be a weighted graph with c ≡ 0. Let f : V −→ R be

given and define for t ∈ R the set Ωt := {x ∈ V : f(x) > t}. Then,

1

2

∑

x,y∈V

b(x, y)|f(x) − f(y)| =

∫ ∞

0

|∂Ωt|dt.

Proof. For x, y ∈ V with x 6= y we define the interval Ix,y by

Ix,y := [min{f(x), f(y)}, max{f(x), f(y)})

and let |Ix,y| be the length of the interval. Let 1x,y be the characteristic function of Ix,y. Then,

(x, y) ∈ ∂Ωt if and only if t ∈ Ix,y. Thus,

|∂Ωt| =
1

2

∑

x,y∈V

b(x, y)1x,y(t).

Thus, we can calculate

∫ ∞

0

|∂Ωt|dt =
1

2

∫ ∞

0

∑

x,y∈V

b(x, y)1x,y(t)dt

=
1

2

∑

x,y∈V

b(x, y)

∫ ∞

0

1x,y(t)dt

=
1

2

∑

x,y∈V

b(x, y)|f(y) − f(x)|.

This finishes the proof.

Remark. Note that the proof is essentially a Fubini type argument.

The preceding formula can be seen as a first order co-area formula as it deals with differences of

functions. There is also a zeroth order co-area type formula dealing with functions themselves.

This is discussed next.

Theorem 13. Let V be a countable set and m : V −→ (0,∞) a measure on V . Let f : V −→
[0,∞) be given and define for t ∈ R the set Ωt := {x ∈ V : f(x) > t}. Then,

∑

x∈V

m(x)f(x) =

∫ ∞

0

m(Ωt)dt.
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Proof. We have x ∈ Ωt if and only if 1(t,∞)(f(x)) = 1. Thus, we can calculate

∫ ∞

0

m(Ωt)dt =

∫ ∞

0

∑

x∈Ωt

m(x)dt

=

∫ ∞

0

∑

x∈V

m(x)1(t,∞)(f(x))dt

=
∑

x∈V

m(x)

∫ ∞

0

1(t,∞)(f(x))dt

=
∑

x∈V

m(x)f(x).

This finishes the proof.

5. Isoperimetric inequalities and lower bounds on the (essen-

tial) spectrum

In this section we will provide lower bound on the infimum of the (essential) spectrum using

an isoperimetric inequality. This will allow us in particular to provide criteria for emptiness of

the essential spectrum. Our considerations extend the corresponding parts of [9, 11, 14, 21] (as

discussed in more detail below).

We start with some notation used throughout this section. Let a weighted graph (V, b, c) with a

measure m : V −→ (0,∞) and the associated Dirichlet form Q be given. In this setting we define

the constant α(U) = αb,c,m(U) for a subset U ⊆ V by

α(U) = inf
W⊆U,|W |<∞

|∂W |

m(W )
,

where as introduced in the previous section

|∂W | =
∑

x∈W,y 6∈W

b(x, y) +
∑

x∈W

c(x).

Note that for a finite set W and the characteristic function 1W of W one has

|∂W |

m(W )
=

Q(1W )

‖1W‖2 . (5.1)

Recall the definition of the normalizing measure n on V

n(x) =
∑

y∈V

b(x, y) + c(x).
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Thus, we have two measures and thus two Hilbert spaces at our disposal. To avoid confusion, we

will write ‖ · ‖m and ‖ · ‖n for the corresponding norms whenever necessary.

Note that d(x) = n(x)/m(x). Define maximal and minimal averaged vertex degree by

dU = db,c,m(U) = inf
x∈U

d(x)

and

DU = Db,c,m(U) = sup
x∈U

d(x),

where d is the averaged vertex degree, which was defined in Section 3. Recall d(x) = n(x)/m(x)
for x ∈ V .

We will also need the restrictions of operators on V to subsets of V . As in the end of Section 2de-

note the closure of the restriction of a closed semibounded form Q with domain containing Cc(V )
to Cc(U) by QU and its associated operator by LU (for U ⊆ V arbitrary).

For later use we also note that for the Dirichlet form Q associated to a graph (V, b, c) with measure

m on V we have

inf σ(LU) = inf
u∈Cc(U)

Q(u)

‖u‖2
≤ α(U) ≤ inf

x∈U
d(x) = dU

for any U ⊆ V . Here, the first equality is just the variational principle for forms, the second step

follows from the definition of α and the last estimate follows by choosing W = {x} for x ∈ U .

In particular, α gives upper bound on the infimum of the spectrum. It is a remarkable (and well

known) fact that α > 0 implies also a lower bounds on the infimum of spectra. This is the core of

the present section.

5.1. An isoperimetric inequality

In this subsection we provide an isoperimetric inequality in our setting. This inequality (and its

proof) are generalizations of the corresponding considerations of [11, 14, 21] to our setting.

Proposition 14. Let (V, b, c) be a weighted graph, m : V −→ (0,∞) a measure on V and Q the

associated regular Dirichlet form. Let U ⊆ V and φ ∈ Cc(U). Then

Q(ϕ)2 − 2‖ϕ‖2
nQ(ϕ) + αb,c,m(U)2‖ϕ‖4

m ≤ 0.

Proof. By the trick introduced at the beginning of Section we can assume without loss of generality

that c ≡ 0. Define now A by

A =
1

2

∑

x,y∈V̇

b(x, y)
∣∣ϕ(x)2 − ϕ(y)2

∣∣ =
∑

x,y∈V̇

b(x, y)|ϕ(x) − ϕ(y)||ϕ(x) + ϕ(y)|.

Following ideas of [11] for locally finite graphs (see [14, 21] as well) we now proceed as follows:

By Cauchy-Schwarz inequality and a direct computation we have

A2 ≤ Q(ϕ)


1

2

∑

x,y∈V̇

b(x, y) |ϕ(x) + ϕ(y)|2


 = Q(ϕ)

(
2 ‖ϕ‖2

n − Q(ϕ)
)
.
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On the other hand we can use the first co-area formula (with f = ϕ2), the definition of α and the

second co-area formula to estimate

A =

∫ ∞

0

|∂Ωt|dt ≥ α

∫ ∞

0

m(Ωt)dt = α
∑

x∈V

m(x)ϕ2(x) = α‖ϕ‖2
m.

Combining the two estimates on A we obtain

Q(ϕ)
(
2 ‖ϕ‖2

n − Q(ϕ)
)
≥ ‖ϕ‖4

m.

This yields the desired result.

5.2. Lower bounds for the infimum of the spectrum

In this section we use the isoperimetric inequality of the previous section to derive bounds on the

form Q. This is in the spirit of [11, 14, 21]. As usual we write

a ≤ Q ≤ b

(for a, b ∈ R) whenever

a‖u‖2 ≤ Q(u) ≤ b‖u‖2

for all u ∈ D(Q).

Proposition 15. Let (V, b, c) be a weighted graph, m : V −→ (0,∞) a measure on V and Q the

associated regular Dirichlet form. Let U ⊆ V be given and QU the restriction of Q to U . Then,

dU

(
1 −

√
1 − αb,c,n(U)2

)
≤ QU ≤ DU

(
1 +

√
1 − αb,c,n(U)2

)
.

If DU < ∞ then furthermore

DU −
√

D2
U − αb,c,m(U)2 ≤ QU ≤ DU +

√
D2

U − αb,c,m(U)2.

Proof. We start by proving the first statement. Consider an arbitrary ϕ ∈ Cc(U) with ‖ϕ‖n = 1.

Then, Proposition 14 (applied with m = n) gives

Q(ϕ)2 − 2Q(ϕ) + αb,c,n(U)2 ≤ 0

and hence

1 −
√

1 − αb,c,n(U)2 ≤ Q(ϕ) ≤ 1 +
√

1 − αb,c,n(U)2.

As this holds for all ϕ ∈ Cc(U) with ‖ϕ‖n = 1 and

dU‖ϕ‖m ≤ ‖ϕ‖n ≤ DU‖ϕ‖m

by definition of dU and DU , we obtain the first statement.
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We now turn to the last statement. By definition of DU we have ‖ϕ‖n ≤ DU‖ϕ‖m. Thus, Proposi-

tion 14 gives

Q(ϕ)2 − 2DU‖ϕ‖
2
mQ(ϕ) + αb,c,m(U)2‖ϕ‖4

m ≤ 0.

Considering now ϕ ∈ Cc(U) with ‖ϕ‖m = 1 we find that

DU −
√

D2
U − αb,c,m(U) ≤ Q(ϕ) ≤ DU +

√
D2

U − αb,c,m(U)

for all such ϕ. This finishes the proof.

As a first consequence of the previous proposition we obtain the following corollary first proven

for m = n, and locally finite graphs in [14].

Corollary 16. For a weighted graph (V, b, c) and m = n we obtain

1 −
√

1 − α2
b,c,n ≤ Q ≤ 1 +

√
1 − α2

b,c,n.

A second consequence of the above proposition is that the bottom of the spectrum being zero can

be characterized by the constant α in the case of bounded operators. This is our version of the well

known result that a graph with finite vertex degree is amenable if and only if zero belongs to the

spectrum of the corresponding Laplacian.

Corollary 17. Let (V, b, c) be a weighted graph and DU < ∞ for U ⊆ V . Then inf σ(LU) = 0 if

and only if αb,c,m(U) = 0.

Proof. The direction ’=⇒’ follows from Proposition 15 and the other direction ’⇐=’ follows

directly from equation 5.1.

Remark. The direction ’⇐=’ in the previous corollary does not depend on the assumption DU <
∞ for U ⊆ V and is true in general.

5.3. Absence of essential spectrum

In this subsection we use the results of the previous subsection to study absence of essential spec-

trum. The key idea is that the essential spectrum of an operator is a suitable limit of the spectra of

restrictions ’going to infinity’. This reduces the problem of proving absence of essential spectrum

to proving lower bounds on the spectrum ’at infinity’. For locally finite graphs this has been done

in [14, 21].

Let (V, b, c) be a weighted graph. Let K be the set of finite sets in V . This set is directed with

respect to inclusion and hence a net. Limits along this net will be denoted by limK∈K and we will

say that K tends to V . We then define

αb,c,m(∂V ) = lim
K∈K

αb,c,m(V \ K).
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Likewise let

d∂V = db,c,m(∂V ) = lim
K∈K

db,c,m(V \ K),

D∂V = Db,c,m(∂V ) = lim
K∈K

Db,c,m(V \ K).

The following proposition is certainly well known and has in fact already been used in the past

(see e.g. [21]). We include a proof as we could not find one in the literature. Note also that our

result is more general than the result mentioned e.g. in [21] as we deal with forms.

Proposition 18. Let Q be a closed form on ℓ2(V, m), whose domain of definition contains Cc(V ).
If Q is bounded below then

inf σess(B) = lim
K∈K

inf σ(BV \K).

and if Q is bounded above then

sup σess(B) = lim
K∈K

sup σ(BV \K)

holds, where B is the operator associated to Q and BV \K the operator associated to QV \K for

finite K ⊆ V .

Proof. It suffices to show the statement for Q which are bounded below (as the other statement

then follows after replacing Q by −Q).

Without loss of generality we can assume Q ≥ 0. Let λ0 := inf σess(B).
As the essential spectrum does not change by finite rank perturbations we have σess(B) = σess(BV \K) ⊆
σ(BV \K) and hence

λ0 ∈ σ(BV \K)

for any finite K ⊆ V . This gives

inf σess(B) ≥ lim
K∈K

inf σ(BV \K).

To show the opposite inequality it suffices to prove that for arbitrary λ < λ0 we have inf σ(BV \K) >
λ for all sufficiently large finite K. Fix λ1 with

λ < λ1 < λ0

and choose δ > 0 such that λ + δ < λ1. Moreover let

ε =
λ1 − (λ + δ)

λ1 + 1
.

The spectral projection E(−∞,λ1] of B to the interval (−∞, λ1] is a finite rank operator since B ≥ 0.

This easily implies

lim
K∈K

‖E(−∞,λ1]PK‖ = 0,

213



M. Keller and D. Lenz Unbounded Laplacians on graphs

where PK is the projection onto ℓ2(V \ K, m). Thus, there is Kε finite with

‖E(−∞,λ1]PK‖2 ≤ ε

for all K ⊇ Kε finite. In particular, we have

‖E(−∞,λ1]ψ‖
2 ≤ ε (5.2)

for all ψ ∈ ℓ2(V \ Kε,m) with ‖ψ‖ = 1 (as for such ψ we have ψ = PKε
ψ).

Consider now a finite K with K ⊇ Kε and let ψ ∈ ℓ2(V \ K, m) be given with ‖ψ‖ = 1 such that

Q(ψ) = QV \K(ψ) ≤ (inf σ(BV \K) + ε).

Let ρψ(·) be the spectral measure associated to B and ψ. Then

Q(ψ) =

∫ ∞

0

tdρψ(t)

≥

∫ ∞

λ1

t dρψ(t)

≥ λ1

∫ ∞

λ1

dρψ(t)

= λ1(〈ψ, ψ〉 − 〈E(−∞,λ1]ψ, E(−∞,λ1]ψ〉)

≥ λ1(1 − ε).

In the first step we used that B is positive and in the last step we used (5.2). By our choice of ψ
and ε we get

inf σ(BV \K) ≥ Q(ψ) − ε ≥ λ1(1 − ε) − ε = λ + δ > λ.

This finishes the proof.

Combining this proposition with Proposition 15 one gets estimates for the essential spectrum of

the operator L.

The following provides a generalization of a main result of Fujiwara’s theorem [14] to our setting.

Fujiwara’s result deals with locally finite graphs and m = n.

Theorem 19. Let (V, b, c) be a weighted graph, m : V −→ (0,∞) a measure on V and Q the

associated regular Dirichlet form. Assume D∂V = Db,c,m(∂V ) < ∞. Then, σess(L) = {D∂V } if

and only if αb,c,m(∂V ) = D∂V .

Proof. One direction ’⇐=’ follows directly from Proposition 15 and Proposition 18. The other

direction ’=⇒’ follows from

inf σ(LU) ≤ αb,c,m(U) ≤ Db,c,m(U)

for U ⊆ V and Proposition 18 by taking U = V \ K for K finite and considering the limit for K
tending to V .
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Remark. The assumption Db,c,m(∂V ) < ∞ implies boundedness of the operator (see Sec-

tion 3.). Thus, σess(L) must be non-empty in this case. Proposition 18 shows that inf σ(LV \K)
and sup σ(LV \K) converge necessarily to points in the essential spectrum of L (for K tending

to V ). The only way how the essential spectrum can consist of only one point is then that both

limits agree. As inf σ(LV \K) ≤ α(V \ K) and sup σ(LV \K) ≥ Db,c,m this is only possible for

αb,c,m(∂V ) = D∂V . In this way the theorem characterizes the only way how essential spectrum

can consist of only one point.

The next theorem is a generalization to our setting of Theorem 2 in [21], which deals with locally

finite graphs and m ≡ 1.

Theorem 20. Let (V, b, c) be a weighted graph, m : V −→ (0,∞) a measure on V and Q the

associated regular Dirichlet form. Assume αb,c,n > 0. Then σess(L) = ∅ if and only if d∂V = ∞.

Proof. One direction ’⇐=’ follows directly from Proposition 15 and 18. The other direction ’=⇒’

follows from the fact that for all U ⊆ V we have inf σ(LU) ≤ db,c,m(U) and Proposition 18.

6. An application

In this section we consider a locally finite graph i.e., (V, b, 0) with b taking values in {0, 1} with the

measure m ≡ 1. Let Q0 be the associated form and ∆ the associated operator. Let c : V −→ [0,∞)
be given and define L to be the operator associated to Qb,c,m. Thus,

L = ∆ + c

(at least on the formal level). This decomposition of L leads to a similar decomposition of the

parameters α. In this way, both the geometry (encoded by b) and the potential (encoded by c) can

lead to absence of essential spectrum according to the preceding considerations. This is discussed

in further details next.

The Cheeger constant βU of a subset U ⊆ V is the smallest number such that for all finite W ⊆ U

|∂W | ≥ βUvol(W ),

where |∂W | = 〈∆1W , 1W 〉 =
∑

x∈W,y/∈W b(x, y) is defined as above and vol(W ) = ‖1W‖2
n =∑

x∈W n(x). If βV > 0 one says that the graph is hyperbolic. Furthermore, let γU be given as the

smallest number such that for all finite W ⊆ U

c(W ) ≥ γUvol(W ),

where c(W ) = 〈c1W , 1W 〉 =
∑

x∈W c(x).
For example γV > 0, if there is C > 0 such that c(x) ≥ Cd(x), where d(x) is the vertex degree.

Finally let

β∂V = lim
K∈K

βV \K and γ∂V = lim
V ∈K

γV \K .

Hence the preceding section immediately gives the following corollary of Theorem 20.

Corollary 21. Let β∂V > 0 or γ∂V > 0. Then σess(H) = ∅ if and only if d(xn) + c(xn)→∞ along

any infinite path (xn) with pairwise distinct vertices.
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7. Graph Laplacians and Markov processes

We have already discussed that our Laplacians come from Dirichlet forms. Now, Dirichlet forms

and symmetric Markov processes are intimately connected. The crucial link is given by the semi-

group generated by a Dirichlet form. The connection to Markov processes means that

• there is a wealth of results on the semigroup associated to a graph Laplacian,

• there is a good interpretation of properties of the semigroup in terms of a stochastic process.

Details are discussed in this section.

7.1. Graph Laplacians, their semigroup and the heat equation

Let a measure m on V with full support and a graph (b, c) over V be given. Let Q be the associated

form and L its generator.

Standard theory [8, 15, 25] implies that the operators of the associated semigroup e−tL, t ≥ 0, and

the associated resolvent α(L+α)−1, α > 0 are positivity preserving and even markovian. Positivity

preserving means that they map nonnegative functions to nonnegative functions. Markovian means

that they map nonnegative functions bounded by one to nonnegative functions bounded by one.

This can be used to show that semigroup and resolvent extend to all ℓp(V,m), 1 ≤ p ≤ ∞. These

extensions are consistent i.e., two of them agree on their common domain [7]. The corresponding

generators are denoted by Lp, in particular L = L2. We can describe the action of the operator

Lp explicitly. More precisely, the situation on ℓ2 (see Proposition 3 and Theorem 4) holds here as

well:

Theorem 22. Let (V, b, c) be a weighted graph and m a measure on V of full support. Then, the

operator Lp is a restriction of L̃ for any p ∈ [1,∞]. If furthermore (A) holds, then the operator L

is the restriction of L̃ to

{u ∈ ℓp(V, m) : L̃u ∈ ℓp(V,m)}.

A function N : [0,∞) × V −→ R is called a solution of the heat equation if for each x ∈ V the

function t 7→ Nt(x) is continuous on [0,∞) and differentiable on (0,∞) and for each t > 0 the

function Nt belongs to the domain of L̃, i.e., the vector space F̃ and the equality

d

dt
Nt(x) = −L̃Nt(x)

holds for all t > 0 and x ∈ V . For a bounded solution N validity of this equation can easily be

seen to automatically extend to t = 0 i.e., t 7→ Nt(x) is differentiable on [0,∞) and d
dt

Nt(x) =

−L̃Nt(x) holds for any t ≥ 0.

The following theorem is a standard result in the theory of semigroups. A proof in our context can

be found in [22] (see [33, 34, 32] for related material on special graphs).
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Theorem 23. Let L be a selfadjoint restriction of L̃, which is the generator of a Dirichlet form

on ℓ2(V, m). Let v be a bounded function on V and define N : [0,∞) × V −→ R by Nt(x) :=
e−tLv(x). Then, the function N(x) : [0,∞) −→ R, t 7→ Nt(x), is differentiable and satisfies

d

dt
Nt(x) = −L̃Nt(x)

for all x ∈ V and t ≥ 0.

Let us conclude this section by noting that the semigroups are positivity improving for connected

graphs. This has been shown in [22] in our setting after earlier results in [8, 32, 33] for locally

finite graphs.

Theorem 24. (Positivity improving) Let (V, b, c) be a connected graph and L be the associated

operator. Then, both the semigroup e−tL, t > 0, and the resolvent (L + α)−1, α > 0, are positivity

improving (i.e., they map nonnegative nontrivial ℓ2-functions to strictly positive functions).

7.2. Connection to Markov processes

In this section we discuss the relationship between Dirichlet forms and Markov processes in our

context. Let Q be the Dirichlet form associated to a weighted graph (V, b, c) with measure m.

For convenience we assume m ≡ 1. Let L be the associated operator and e−tL, t > 0, the

associated semigroup. We will take the point of view that we already know that e−tL is a semigroup

of transition properties of a Markov process. We will then show how we can identify the key

quantities of the Markov process in terms of the graph (V, b, c).

A (time homogenous) Markov process on V consists of a particle moving in time without memory

between the points of V . It is characterized by two sets of quantities: These are

• a function a : V −→ [0,∞) such that e−tax is the probability that a particle in x at time 0 is

still in x at time t.

• a function q : V × V −→ [0,∞) such that qx(y) is the probability that the particle jumps to

y from x.

Given such a Markov process we can define

Pt(x, y) := Probability that the particle is in y at time t if it starts in x at time 0

for t ≥ 0, x, y ∈ V and the operators Pt provide a semigroup of operators. It is then possible to

infer the quantities a and q from the behavior of Pt for small t in the following way:

Pt(x, x) is the probability to find the particle at x at time t (for a particle starting at x at time 0).

This means that the particle has either stayed at x for the whole time between 0 and t or has jumped

from x away and come back by the time t. The probability that the particle stayed in x (i.e., did

not move away) is e−tax . The event that the particle left x and returned by the time t means that the
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particle left x, which occurs with probability 1− e−tax , and then returned from V \ {x} to x in the

remaining time, which occurs with probability r(t) going to zero for t → 0. Accordingly we have

Pt(x, x) = e−tax + φx(t),

where φx summarizes the probability of returning to x, is therefore bounded by (1−e−tax)r(t) and

hence has derivative equal to zero at t = 0. We therefore obtain

d

dt

∣∣∣∣
t=0

Pt(x, x) = −ax + φ′
x(0) = −ax.

By a similar reasoning the probability Pt(x, y) is governed by the event that the particle starts at x
at time 0 and has done one jump to y and then stayed in y up to the time t. The probability pt for

this event satisfies

(1 − e−tax)qx(y)e−tay ≤ pt ≤ (1 − e−tax)qx(y).

Here, the term e−tay serves to take into account that the particle did not leave y. Accordingly,

Pt(x, y) = pt + ψ(t),

where the derivative of ψ at 0 is zero and we obtain

d

dt

∣∣∣∣
t=0

Pt(x, y) = axqx(y) + ψ′(0) = axqx(y).

We now return to the Dirichlet form setting. As e−tL describes a Markov process we can now set

Pt(x, y) = 〈e−tLδx, δy〉

for t ≥ 0, x, y ∈ V and use this to calculate the the a’s and q’s in terms of b and c as follows:

∑

y∈V

b(x, y) + c(x) = Q(δx, δx) =
d

dt

∣∣∣∣
t=0

〈e−tLδx, δx〉 =
d

dt

∣∣∣∣
t=0

Pt(x, x) = −ax

and

−b(x, y) = Q(δx, δy) =
d

dt

∣∣∣∣
t=0

〈e−tLδx, δy〉 =
d

dt

∣∣∣∣
t=0

Pt(x, y) = qx(y)ax.

This gives

qx(y) =
b(x, y)∑

z∈V b(x, z) + c(x)
, ax =

∑

z∈V

b(x, z) + c(x)

for all x, y ∈ V . Note that symmetry of b does not imply symmetry of q but rather

axqx(y) = ayqy(x).

If m is not identically equal to one, we will have to normalize the formula for P above by setting

Pt(x, y) =
1

m(x)m(y)
〈e−tLδx, δy〉

and change the emerging formulae accordingly.

218



M. Keller and D. Lenz Unbounded Laplacians on graphs

8. Stochastic completeness

We consider a Dirichlet form Q on a weighted graph (V, b, c) with associated operator L and

semigroup e−tL. The preceding considerations show that

0 ≤ e−tL1(x) ≤ 1

for all t ≥ 0 and x ∈ V . The question, whether the second inequality is actually an equality has

received quite some attention. In the case of vanishing killing term, this is discussed under the

name of stochastic completeness or conservativeness. In fact, for c ≡ 0 and b(x, y) ∈ {0, 1} for

all x, y ∈ V , there is a characterization of stochastic completeness of Wojciechowski [33] (see the

introduction for discussion of related results of Feller [13] and Reuter [27] as well). This charac-

terization is an analogue to corresponding results on manifolds of Grigor’yan [16] and results of

Sturm for general strongly local Dirichlet forms [28].

Our first main result concerns a version of this result for arbitrary regular Dirichlet forms on graphs.

As we allow for a killing term c we have to replace e−tL1 by the function

Mt(x) := e−tL1(x) +

∫ t

0

(e−sL c

m
)(x)ds, x ∈ V.

It is possible (and necessary) to show that this quantity is well defined. In fact, it can be proven that

it satisfies 0 ≤ M ≤ 1 and that for each x ∈ V , the function t 7→ Mt(x) is continuous and even

differentiable [22]. Note that for c ≡ 0, M = e−tL1 whereas for c 6= 0 the inequality Mt > e−tL1
holds on any connected component of V on which c does not vanish identically (as the semigroup

is positivity improving).

We can give an interpretation of M in terms of a diffusion process on V as follows: For x ∈ V , let

δx be the characteristic function of {x}. A diffusion on V starting in x with normalized measure is

then given by δx/m(x) at time t = 0. It will yield to the amount of heat

〈e−tL δx

m(x)
, 1〉 = 〈

δx

m(x)
, e−tL1〉 =

∑

y∈V

e−tL(x, y) = e−tL1(x)

within V at the time t. Thus, the first term of M describes the amount of heat within the graph at

a given time.

Moreover, at each time s the rate of heat killed at the vertex y by the killing term c is given

by e−sL(x, y)c(y)/m(y). The total amount of heat killed at y till the time t is then given by∫ t

0
e−sL(x, y)c(y)/m(y)ds. The total amount of heat killed at all vertices by c till the time t is

accordingly given by

∑

y∈V

∫ t

0

e−sL(x, y)
c(y)

m(y)
ds =

∫ t

0

∑

y∈V

e−sL(x, y)
c(y)

m(y)
ds =

∫ t

0

(e−sL c

m
)(x)ds.

Thus, the second term of M describes the total amount of heat killed up to time t within the graph.

Altogether, 1−Mt is then the amount of heat transported to the ’boundary’ of the graph by the time
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t and Mt can be interpreted as the amount of heat, which has not been transported to the boundary

of the graph at time t.

Our question concerning stochastic completeness then becomes whether the quantity

1 − Mt

vanishes identically or not. Our result reads (see [22] for a proof):

Theorem 25. (Characterization of heat transfer to the boundary) Let (V, b, c) be a weighted graph

and m a measure on V of full support. Then, for any α > 0, the function

w :=

∫ ∞

0

αe−tα(1 − Mt)dt

satisfies 0 ≤ w ≤ 1, solves (L̃ + α)w = 0, and is the largest nonnegative function l ≤ 1 with

(L̃ + α)l ≤ 0. In particular, the following assertions are equivalent:

(i) For any α > 0 there exists a nontrivial, nonnegative, bounded l with (L̃ + α)l ≤ 0.

(ii) For any α > 0 there exists a nontrivial, bounded l with (L̃ + α)l = 0.

(iii) For any α > 0 there exists an nontrivial, nonnegative, bounded l with (L̃ + α)l = 0.

(iv) The function w is nontrivial.

(v) Mt(x) < 1 for some x ∈ V and some t > 0.

(vi) There exists a nontrivial, bounded, nonnegative N : V × [0,∞) −→ [0,∞) satisfying

L̃N + d
dt

N = 0 and N0 ≡ 0.

Let us give a short interpretation of the conditions appearing in the theorem. Conditions (i), (ii)

and (iii) deal with eigenvalues of L̃ considered as an operator on ℓ∞(V ). Thus, they concern

spectral theory in ℓ∞(V ). Condition (v) refers to loss of mass at infinity. Finally condition (vi) is

about unique solutions of a partial difference equation. Thus, the result connects properties from

stochastic processes, spectral theory and partial difference equations.

Sketch of proof. We refrain from giving a a complete proof of the theorem but rather discuss three

key elements of the proof and how they fit together. These are the following three steps:

(S1) If N : [0,∞) × V −→ R is a bounded solution of d
dt

N = −L̃N , then v =
∫ ∞

0
αe−tαNtdt is

a solution to (L̃ + α)v = 0 for any α > 0.

(S2) The function N = 1 − M satisfies 0 ≤ N ≤ 1 and d
dt

N = −L̃N .

(S3) The function w =
∫ ∞

0
αe−tα(1 − Mt)dt is the largest solution of (L̃ + α)v = 0 with 0 ≤

v ≤ 1.
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The proof of the first step is a direct calculation via partial integration. The second step is a direct

calculation but requires quite some care as the quantities are defined via sums and integrals whose

convergence is not clear. The fact that w of the last step is a solution follows from the second step.

The minimality of the solution requires some care. It follows by approximating the graph via finite

graphs. Here, a nontrivial issue is that this approximation may actually cut infinitely many edges

(as we do not have locally finite edge degree).

Given the three steps, the proof of the theorem goes along the following line: The implication (v)

=⇒ (i) follows from Step (S1) and (S2). The implication (i) =⇒ (v) follows from the maximality

property in Step (3). The implication (v) =⇒ (vi) follows from Step (S2). The implication (vi) =⇒
(v) follows from Step (S1). The equivalence between (iv) and (v) is immediate from Step (S3). The

equivalence between (i), (ii) and (iii) follows by taking suitable minima of (super-) solutions.

Definition 26. The weighted graph (V, b, c) is said to satisfy (SI∞) if one of the equivalent asser-

tions of the theorem holds. If the graph is not (SI∞) it is said to satisfy (SC∞).

In the case of vanishing killing term (i.e. c ≡ 0) (SC∞) and (SI∞) are just the standard defi-

nitions of stochastic completeness and stochastic incompleteness. By a slight abuse of language

we will call any graph satisfying (SC∞) stochastically complete and any graph satisfying (SI∞)
stochastically incomplete.

Corollary 27. Assume the situation of the previous theorem. Let L̃ be the operator associated to

the graph (V, b, c). If L̃ gives rise to a bounded operator on ℓ2(V ), then (V, b, c) satisfies (SC∞).

Proof. If L̃ is bounded on ℓ2(V,m) it is bounded on ℓ∞(V ) by Theorem 11. Then, the spectrum of

L̃ on ℓ∞ is bounded and hence its set of eigenvalues is bounded as well. Thus, (ii) of the theorem

must fail (for large α).

Remark. (a) The corollary shows that stochastic completeness is a phenomenon for unbounded

operators.

(b) The corollary generalizes the results of Dodziuk/Matthai [12] and Wojciechowski [33]. It

is furthermore relevant as its proof gives an abstract i.e., spectral theoretic reason for stochastic

completeness in the case of bounded operators.

Let us finish this section by discussing how the existence of α > 0 and t > 0 and x ∈ V with

certain properties in the above theorem is actually equivalent to the fact that all α > 0 , t > 0 and

x ∈ V have these properties. We first discuss the situation concerning the α’s.

Proposition 28. Let (V, b, c) be a weighted graph and m a measure on V of full support. Then,

the following are equivalent:

(i) For any α > 0 there exists a nontrivial, nonnegative, bounded l with (L̃ + α)l ≤ 0.

(ii) For some α > 0 there exists a nontrivial, nonnegative, bounded l with (L̃ + α)l ≤ 0.
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Proof. It suffices to show the implication (ii) =⇒ (i): By the maximality property of the function

w =
∫ ∞

0
αe−tα(1 − Mt)dt discussed in the third step of the proof of the main result, (ii) implies

that Mt(x) < 1 for some x ∈ V and t > 0. Now, the claim (i) follows from the second step

discussed in the proof of the main result.

We now show that loss of mass in one point at one time is equivalent to loss of mass in all points

at all times (if the graph is connected). For locally finite graphs this is discussed in [33].

Proposition 29. Let (V, b, c) be a connected weighted graph and m a measure on V of full support.

Let M be defined as above. Then, the following assertions are equivalent:

(i) There exist x ∈ V and t > 0 with Mt(x) < 1.

(ii) Mt(x) < 1 for all x ∈ V and all t > 0

Proof. The implication (ii) =⇒ (i) is clear. It remains to show the reverse implication. A direct

calculation (invoking
∫ t+s

0
...dr =

∫ s

0
...dr +

∫ t+s

s
...dr) shows that

Mt+s = e−sLMt +

∫ s

0

e−rL c

m
dr.

This easily gives that

(1) Mt ≡ 1 for some t > 0 implies Mnt ≡ 1 for all n ∈ N.

(2) Mt 6= 1 for some t > 0 implies that Mt+s < 1 for all s > 0.

(Here (1) follows by induction and (2) follows as Mt 6= 1 implies Mt ≤ 1 and Mt(x) < 1 for

some x ∈ V . As the graph is connected this implies e−sLMt < esL1 and the statement follows.)

Assume now that Mt(x) < 1 for some x ∈ V and t > 0. We consider Mr for r > t and for r < t
separately: By (2), Mr < 1 for all r > t. Assume that Mr = 1 for some 0 < r < t, then Ms = 1
for all s ≤ r by (2). Hence, by (1) Mns = 1 for all n ∈ N and 0 < s ≤ r. This gives Mr = 1 for

all r > 0 which contradicts Mt 6= 1. Thus, Mr 6= 1 for all 0 < r < t. Hence, by (2) Mr < 1 for all

0 < r ≤ t.
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