
Unbounded length contexts for PPM

John G. Cleary, W. J. Teahan, Ian H. Witten�

Department of Computer Science, University of Waikato, New Zealand

The PPM data compression scheme has set the performance standard in lossless
compression of text throughout the past decade. The original algorithm was �rst
published in 1984 by Cleary and Witten [3], and a series of improvements was de-
scribed by Mo�at [6], culminating in a careful implementation, called PPMC, which
has become the benchmark version. This still achieves results superior to virtually
all other compression methods, despite many attempts to better it. Other methods
such as those based on Ziv-Lempel coding [9] are more commonly used in practice,
but their attractiveness lies in their relative speed rather than any superiority in
compression|indeed, their compression performance generally falls distinctly below
that of PPM in practical benchmark tests [1].

Prediction by partial matching, or PPM, is a �nite-context statistical modeling
technique that can be viewed as blending together several �xed-order context models
to predict the next character in the input sequence. Prediction probabilities for
each context in the model are calculated from frequency counts which are updated
adaptively; and the symbol that actually occurs is encoded relative to its predicted
distribution using arithmetic coding. The maximum context length is a �xed constant,
and it has been found that increasing it beyond about six or so does not generally
improve compression [3, 6].

The present paper describes a new algorithm, PPM*, which exploits contexts
of unbounded length. It reliably achieves compression superior to PPMC, although
our current implementation|which we have not yet attempted to optimize|uses
considerably greater computational resources (both time and space). The next section
describes the basic PPM compression scheme. Following that we motivate the use of
contexts of unbounded length, introduce the new method, and show how it can be
implemented using a trie data structure. Then we give some results that demonstrate
an improvement of about 6% over the old method. Finally, a recently-published and
seemingly unrelated compression scheme [2] is related to the unbounded-context idea
that forms the essential innovation of PPM*.

1 PPM: Prediction by partial match

The basic idea of PPM is to use the last few characters in the input stream to predict
the upcoming one. Models that condition their predictions on a few immediately
preceding symbols are called \�nite-context" models of order k, where k is the num-
ber of preceding symbols used. PPM employs a suite of �xed-order context models
with di�erent values of k, from 0 up to some pre-determined maximum, to predict
upcoming characters.

For each model, a note is kept of all characters that have followed every length-k
subsequence observed so far in the input, and the number of times that each has
occurred. Prediction probabilities are calculated from these counts. The probabilities
associated with each character that has followed the last k characters in the past are

�email fjcleary, wjt, ihwg@waikato.ac.nz

1

Order k = 2 Order k = 1 Order k = 0 Order k = �1

Predictions c p Predictions c p Predictions c p Predictions c p

ab ! r 2 2

3
a ! b 2 2

7
! a 5 5

16
! A 1 1

jAj

! Esc 1 1

3
! c 1 1

7
! b 2 2

16

! d 1 1

7
! c 1 1

16

ac ! a 1 1

2
! Esc 3 3

7
! d 1 1

16

! Esc 1 1

2
! r 2 2

16

b ! r 2 2

3
! Esc 5 5

16

ad ! a 1 1

2
! Esc 1 1

3

! Esc 1 1

2

c ! a 1 1

2

br ! a 2 2

3
! Esc 1 1

2

! Esc 1 1

3

d ! a 1 1

2

ca ! d 1 1

2
! Esc 1 1

2

! Esc 1 1

2

r ! a 2 1

3

da ! b 1 1

2
! Esc 1 1

3

! Esc 1 1

2

ra ! c 1 1

2

! Esc 1 1

2

Table 1: PPM model after processing the string abracadabra (maximum order 2)

used to predict the upcoming character. Thus from each model, a separate predicted
probability distribution is obtained.

These distributions are e�ectively combined into a single one, and arithmetic cod-
ing is used to encode the character that actually occurs, relative to that distribution.
The combination is achieved through the use of \escape" probabilities. Recall that
each model has a di�erent value of k. The model with the largest k is, by default,
the one used for coding. However, if a novel character is encountered in this context,
which means that the context cannot be used for encoding it, an \escape" symbol is
transmitted to signal the decoder to switch to the model with the next smaller value
of k. The process continues until a model is reached in which the character is not
novel, at which point it is encoded with respect to the distribution predicted by that
model. To ensure that the process terminates, a model is assumed to be present below
the lowest level, containing all characters in the coding alphabet. This mechanism
e�ectively blends the di�erent order models together in a proportion that depends on
the values actually used for escape probabilities.

As an illustration of the operation of PPM, Table 1 shows the state of the four
models with k = 2, 1, 0, and �1 after the input string abracadabra has been processed.
For each model, all previously-occurring contexts are shown with their associated
predictions, along with occurrence counts c and the probabilities p that are calculated
from them. By convention, k = �1 designates the bottom-level model that predicts
all characters equally; it gives them each probability jAj where A is the alphabet used.

Some policy must be adopted for choosing the probabilities to be associated with
the escape events. There is no sound theoretical basis for any particular choice in

2

character probabilities encoded probabilities encoded code space occupied

(without exclusions) (with exclusions)

c 1

2

1

2
� log2

1

2
= 1 bit

d 1

2
, 1

7

1

2
, 1

6
� log2(

1

2
�
1

6
) = 3:6 bits

t 1

2
, 3

7
, 5

16
, 1

jAj

1

2
, 3

6
, 5

12
, 1

jAj�5
� log2(

1

2
�
3

6
�

5

12
�

1

251
) = 11:2 bits

Table 2: Encodings for three sample characters using the model in Table 1

the absence of some a priori assumption on the nature of the symbol source; some
alternatives are evaluated in [8]. The method used in the example, commonly called
\Method C," gives a count to the escape event equal to the number of di�erent
symbols that have been seen in the context so far [6]; thus, for example, in the order-
0 column of Table 1 the escape symbol receives a count of 5 because �ve di�erent
symbols have been seen in that context.

Sample encodings using these models are shown in Table 2. As noted above,
prediction proceeds from the highest-order model (k = 2). If the context successfully
predicts the next character in the input sequence, the associated probability p is used
to encode it. For example, if c followed the string abracadabra, the prediction ra!c
would be used to encode it with a probability of 1

2
, that is, in one bit.

Suppose instead that the character following abracadabra were d. This is not
predicted from the current k = 2 context ra. Consequently, an escape event occurs
in context ra, which is coded with a probability of 1

2
, and then the k = 1 context

a is used. This does predict the desired symbol through the prediction a!d, with
probability 1

7
. In fact, a more accurate estimate of the prediction probability in this

context is obtained by noting that the character c cannot possibly occur, since if it did
it would have been encoded at the k = 2 level. This mechanism, called \exclusion,"
corrects the probability to 1

6
as shown in the third column of Table 2. Finally, the

total number of bits needed to encode the d can be calculated to be 3.6.
If the next character were one that had never been encountered before, say t,

escaping would take place repeatedly right down to the base level k = �1. Once this
level is reached, all symbols are equiprobable|except that, through the exclusion
device, there is no need to reserve probability space for symbols that already appear
at higher levels. Assuming a 256-character alphabet, the t is coded with probability
1

251
at the base level, leading to a total requirement of 11.2 bits including those needed

to specify the three escapes.
It may seem that PPM's performance should always improve when the maximum

context length is increased, because the predictions are more speci�c. Figure 1 shows
how the compression ratio varies when di�erent maximum context lengths are used,
for the text of Thomas Hardy's novel Far from the Madding Crowd (�le book1 in the
Calgary text compression corpus [1]). The graph shows that the best compression is
achieved when a maximum context length of �ve is chosen and that it deteriorates
slightly when the context is increased beyond this.

This general behavior is quite typical. The reason is that while longer contexts
do provide more speci�c predictions, they also stand a much greater chance of not
giving rise to any prediction at all. This causes the escape mechanism to be used more
frequently to reduce the context length down to the point where predictions start to
appear. And each escape operation carries a small penalty in coding e�ciency.

3

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

B
its

 p
er

 c
ha

ra
ct

er

Maximum context length

Figure 1: How the PPM compression ratio varies with maximum context length

2 PPM*: Exploiting longer contexts

An alternative to PPM's policy of imposing a universal �xed maximum upper bound
on context length is to allow the context length to vary depending on the coding situ-
ation. It is possible to store the model in a way that gives rapid access to predictions
based on any context, eliminating the need for an arbitrary bound to be imposed.
We call this approach, in which there is no a priori bound on context length, PPM*.
It bestows the freedom to choose any policy for determining the context to be used
for prediction, subject only to the constraint that the decoder must be able to make
the same choice despite the fact that it does not know the upcoming character.

How to choose which context is the best for prediction is an area of intense research.
One attractive-sounding possibility is to keep a record, for each context, of how well
it compressed in the past. The same record could be maintained independently by
both encoder and decoder, and they could use the context with the best average
compression. Curiously, this policy does not perform well in practice. This can be
explained by considering its behavior under random input. Then some contexts will
perform better than others purely by chance, and the best-performing ones will be
selected for prediction. Of course, with random input good performance in the past is
no guarantee of good performance in the future. The best policy is to use a zero-length
context, and the worst thing one can do is to use a relatively \extreme" context, even
if its historical performance does lie markedly above that of its competitors!

A simple but e�ective strategy is as follows. A context is de�ned to be \determin-
istic" when it gives only one prediction. We have found in experiments that for such
contexts the observed frequency of the novel characters is much lower than expected
based on a uniform prior distribution. This can be exploited by using such contexts
for prediction. The strategy that we recommend is to choose the shortest determin-
istic context currently in the context list. If there is no deterministic context, then
the longest context is chosen instead.

A histogram of the context lengths chosen by this strategy is shown in Figure 2(a)
for the �le book1. The histogram peaks sharply at a context length of �ve to six; not
surprisingly the best context length (for this �le) is �ve (Figure 1). Notwithstanding
this peak, however, the length of the shortest deterministic context varies widely:
Figure 2(b) plots it for the �rst 40,000 character positions in the �le book1. The
graph demonstrates that deterministic contexts much longer than �ve or six occur

4

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35

F
re

qu
en

cy

Context length

0

5

10

15

20

25

0 5000 10000 15000 20000 25000 30000 35000 40000

Le
ng

th
 o

f c
ho

se
n

co
nt

ex
t

Position in input string

(a) (b)

Figure 2: (a) Histogram of the length of shortest deterministic contexts (b) Length

of the deterministic context at each character position of book1

frequently and gradually increase in length as more input is seen, providing evidence
that longer contexts provide improved compression.

The main problem associated with the use of unbounded contexts is the amount
of memory necessary to store them. It has often been noted that it is impractical to
extend PPM to models with a substantially higher order because of the exponential
growth of the memory that is required as k increases. For PPM*, the problem is even
more daunting, as it demands the ability to access all possible contexts right back to
the very �rst character. Although this can be done by simply scanning back through
the input string, the O(N2) execution time incurred rules that out in practice.

2.1 Context tries

A key insight in solving this problem is that the trie structure used to store PPM
models can operate in conjunction with pointers back into the input string. In partic-
ular, a leaf node can point into the input string whenever a context is unique. Then,
if the context needs to be extended, it is only necessary to move the input pointer
forward by one position. To update the trie, a linked list of pointers to the currently
active contexts can be maintained, with the longest context at the top. We call the
resulting data structure a \context trie."

Figure 3 illustrates the context trie for the string abracadabra. The root node of
the trie (the null string \�") is at the top. Contexts that have occurred before in the
input string extend downward until they become unique, at which point a pointer,
shown by a dashed line in the diagram, is stored back into the input string. For
example, looking to the very left of the tree, none of a, ab, abr, abra are unique|
they all appear two or more times in the input string|whereas abrac is unique.
Consequently it is at this level that a pointer into the input string is substituted for
further re�nement of the trie structure.

The context list is shown at the lower right. It relates to the current position
in the input string, and contains pointers to the contexts that are currently active.
These are labelled 0 to 4 in the boxes on the left, and the corresponding nodes are
marked with numbered arrows. The longest active context abra is placed at the top
of the list, and each context below it is missing one further character. The number of
elements in the context list is the length of the longest context, plus one for the root

5

node. The list always contains at least one node|the root.
As each character is processed, the context trie is updated by updating each node

pointed at by the context list. There are four possibilities when updating a node,
depending on the new symbol in the input string and the state of the node.

The �rst two cases correspond to a situation where the next character is already
predicted by the context trie. If there is link to a lower node in the trie for the
new symbol, the context pointer is replaced by a pointer to that node. Suppose, in
Figure 3, that the next character is c. Because this has occurred before in all the
contexts, the structure can be updated by moving each of the �ve context pointers
down one level to the corresponding nodes for the letter c. However, if the link pointed
into the input string instead of to a lower node in the trie, then a new node is created
along one position in the input string. Both the original link and the context are
updated to point to the new node. Suppose that the next character after the c is a.
This is already predicted by the abrac context to the left of the trie, as well as by the
brac, rac, ac, and c contexts, so that �ve new nodes are created all pointing at the
letter d.

The second pair of cases correspond to the situation where the next character
is new in this context, that is, when there is no prediction out of the current node
corresponding to that character. Suppose �rst that there are links to lower levels in
the trie, but that they correspond to other characters. Then a new node is created for
the new character, containing that symbol and a pointer to the next input position
and it is dropped from the context list. For example, in Figure 3, if the next character
is b then the contexts at pointers 2, 3, and 4 will be updated by adding child nodes
for the character b. The contexts at positions 0 and 1, however, already have b
predictions and so do not need to be changed. Finally, if there is a link out of the
current node into the input string, but the next character is not the expected one,
then two new trie nodes will have to be created, one for the expected character and
the other for the new one. Both of these will have pointers into the input string, the
former to (one past) the original position, and the latter to the new position at the
end of the string. For example, if �rst c and then x were added to Figure 3, the �ve
c nodes at the leaves of the trie would each gain two children, an a child pointing to
around the middle of the input string and an x child pointing to the end.

2.2 Implementation issues

Using a patricia-style trie. Substantial space can be saved in the context trie by
collapsing non-branching sub-paths into single nodes, just like the standard patricia
trie data structure [7]. For each collapsed node, only one branch emanates from it.
In Figure 3 there are three such paths, two with the letters brac and the third with
rac. Collapsing non-branching paths requires two extra pointers to be stored with
each node: the length of the string that the node represents, and a pointer to where it
ends in the input string. In addition, an extra pointer associated with each position
in the context list gives the current position in the non-branching path. The e�ect
of collapsing all such paths into single nodes is to make the number of nodes in the
trie linear with the size of the input string. Note that deterministic contexts, de�ned
earlier, correspond to the non-branching paths in the context trie.

Storing the counts. Prediction in PPM* is based upon the frequencies of the charac-
ters that follow each context. These counts are stored with each node in the context
trie, and are incremented whenever the node is updated. Collapsing non-branching
paths causes some complication with count storage, because several di�erent contexts

6

a b c

b c d r

r

a

c

a

c

^

d r

a

c

4

3

2

0

abra

bra

ra

a

4

3

2

1

input string

context list

context trie

a b r a c a d a b r a ...

^0

1

Figure 3: Context trie for the string abracadabra

may point to the same trie node. In this case a di�erent count will be associated with
each context, and so the count needs to be stored with the context list entry. When
a collapsed node is �rst entered, this count is set to the current node count, which is
then incremented. In the event that the non-branching path becomes split later on,
the count from the context list is stored with the new node.

Scaling the counts. As is usual in PPM implementations, the frequency counts must
be scaled downward periodically to prevent over
ow in the arithmetic coder. This
is normally done by halving the counts when a certain threshold has been exceeded,
which has generally been found to improve compression because of its locally adaptive
e�ect. For PPM*, counts are best scaled at the encoding stage because of the large
number of 1 counts that occur throughout the context trie. Experimental results show
that low scaling thresholds consistently reduce the compression obtained, and so the
largest scaling threshold consistent with the requirements of the arithmetic encoder
is used.

Escaping. In PPM* it is still necessary to cope with novel characters that have not
been encountered before in the chosen context. Escaping can be used here, just as in
PPM, by dropping down to the next member of the context list until a context that
predicts the character is found. If the bottom of the list is reached, a uniform �xed
distribution (k = �1) is used. We are presently using escape method C, which needs
an extra \escape" count, equal to the number of branches, to be stored with every trie
node. Other methods such as the ones proposed in [5, 8] may improve compression,
although this remains to be investigated.

Escaping is even more crucial to PPM* than it is to PPM. With a �xed maximum
context length, use of the escape mechanism in PPM will decay with time as all the
contexts' predictions �ll up. However, in PPM*|particularly with our current policy
of choosing deterministic contexts|escaping will always be frequently used no matter

7

�le size PPMC PPM* BW94

(bytes) (bpc) (bpc) (bpc)

bib 111261 2.11 1.91 2.07

book1 768771 2.48 2.40 2.49

book2 610856 2.26 2.02 2.13

geo 102400 4.78 4.83 4.45

news 377109 2.65 2.42 2.59

obj1 21504 3.76 4.00 3.98

obj2 246814 2.69 2.43 2.64

paper1 53161 2.48 2.37 2.55

paper2 82199 2.45 2.36 2.51

pic 513216 1.09 0.85 0.83

progc 39611 2.49 2.40 2.58

progl 71646 1.90 1.67 1.80

progp 49379 1.84 1.62 1.79

trans 93695 1.77 1.45 1.57

average 224402 2.48 2.34 2.43

Table 3: Compression ratios for the Calgary corpus

how much input is processed, possibly at a constant rate. It is interesting to note that
escaping down contexts one character at a time may not be the best strategy. Since
there are numerous contexts to choose from, it may be better to select the new context
on grounds other than its length. Such strategies have not yet been investigated.

Exclusions. PPM* makes use of exclusions when performing prediction by excluding
predictions found at a higher order when calculating the probabilities for lower-order
contexts, just as described previously for PPM (and illustrated in Table 2). Update
exclusion, a feature of PPMC (not described above) in which the count for a predicted
character is not incremented if it is already predicted by a higher-order context, is not
incorporated into PPM* because to do so would require signi�cant re-organization of
the data structure. Update exclusion improves the performance of PPMC by about
2%; whether it provides similar gains for PPM* is an open question.

3 Results

Table 3 shows the result of running PPM* on the Calgary corpus [1], along with the
standard PPMC implementation and a recently-published, and extremely competi-
tive, non-adaptive scheme labeled BW94 [2] (described in the following section). The
best �gure for each �le is printed in bold.

Averaged over the entire corpus, PPM* yields a 5.6% improvement over PPMC,
and a 3.7% improvement over BW94. It performs relatively poorly on just three
�les|obj1, geo and pic. It tends to perform less well on smaller �les (e.g. obj1) and
on �les that are binary rather then character-based (e.g. geo and pic). It is interesting
to note that of all the compression schemes listed in [1], PPMC is the only one that
ever outperforms either BW94 or PPM*, and then only on a single �le (obj1).

8

´ a

´ b

´ d

´ b

´ c

 ´

´ r

´ r
´ a

´ a

´ a

´ a

abracadabra´

bracadabra´ a

dabra´ abraca

bra´ abracada

cadabra´ abra

´ abracadabra

racadabra´ ab

ra´ abracadab

adabra´ abrac

abra´ abracad

acadabra´ abr

a´ abracadabr

abracadabra´

bracadabra´ a

racadabra´ ab

acadabra´ abr

cadabra´ abra

adabra´ abrac

dabra´ abraca

abra´ abracad

bra´ abracada

ra´ abracadab

a´ abracadabr

´ abracadabra

M M’

I

L

sort

M’’

L

´

´ a

ca

da

´ abra

dabra

´ ab

dab

c

d

´ abr

dabr

rearrange

Figure 4: BW94 compression of the string abracadabra2

4 Related work

The archetypical compression scheme that uses unbounded contexts is, of course,
LZ78, which parses the text into ever-growing phrases and encodes it as phrase
numbers alternating with explicitly-represented single characters [9]. This scheme
is known to be asymptotically optimal for an ergodic source, although convergence
is very slow and in practice the method does not perform particularly well. Much
e�ort has gone into devising improvements to the basic method, and one of the later
ones, LZFG [4], is not too far behind PPMC in compression performance (and greatly
superior to it in speed).

Very recently, a novel block-sorting algorithm has been described that achieves
compression as good as context-based methods such as PPM but at execution speeds
closer to Ziv-Lempel techniques [2]; we call this BW94 after its inventors Burrows
and Wheeler. This method, unlike all others considered in the present paper, is not
adaptive: �rst the complete input sequence is transformed and then the resulting
output is encoded. The algorithm is e�ective because the transformed string contains
more regularities than the original one.

At �rst glance, BW94 seems completely di�erent to the context-based approach
taken by PPM*. However, it can indeed be viewed as a context-based method, with no
predetermined upper bound to context length. We illustrate it using \abracadabra2"
again (note the inclusion of 2 as end of �le symbol).

Using the algorithm described in [2], �rst generate the matrix of strings M in
Figure 4, then sort the reversed strings alphabetically to produceM 0. Two parameters
are extracted from the sorted matrix. The �rst, I, is an integer that records which
row number corresponds to the original string. The second, L, is the character string
that constitutes the �rst column. In this example, I = 0 and L = abdbc2rraaaa.
Strange as it may seem, the input string is completely speci�ed by I and L: the
reverse transformation for reconstructing the original is explained in [2]. Moreover,
L can be transmitted very economically because it has the property that the same
letters often fall together into long runs.

M 00 is the same as M 0 but with L moved from the left to the right and symbols
not needed to form unique contexts suppressed. It is clear then that the characters
of L correspond to the predictions of the unbounded contexts lying to their left. It
is also interesting to note that the context trie used to implement PPM* can equally

9

well be applied to generate the BW94 transform, instead of the su�x trees proposed
in [2]. This is accomplished by building the context trie from the input text as for
PPM*. Then, after the complete string has been processed, one simply writes out
for each leaf node the character in the input string that precedes the context pointed
to by that node. The output can be encoded in the same manner as described by
Burrows and Wheeler.

In summary, whereas BW94 can be viewed as exploiting contexts of unbounded
length by sorting them after the whole input string has been processed, PPM* works
adaptively by predicting the next character from previous, unbounded-length, con-
texts.

5 Conclusions

A new method of text compression, PPM*, has been described that outperforms all
others on test �les such as the Calgary corpus. The method revolves around the use of
ever-growing contexts, and a data structure has been detailed that permits arbitrarily
long contexts to be represented e�ciently.

Also described is another, seemingly quite di�erent, method of compression that
has been introduced very recently. Surprisingly, this also appears to gain its power
from its ability to utilize unbounded contexts.

Although there are a number of obvious areas in which further investigation will
probably result in improvements to PPM*, it already provides a 5.6% performance
increase over its predecessor, PPM. While this is not a large practical gain, we are
clearly in an area where diminishing returns are to be expected. The most impor-
tant contribution of PPM* is in pointing the way towards a general treatment of
unbounded contexts.

References

[1] Bell, T.C., Cleary, J.G. and Witten, I.H. (1990) Text compression. Prentice Hall, NJ.

[2] Burrows, M. and Wheeler, D.J. (1994) \A block-sorting lossless data compression
algorithm," Technical Report, Digital Equipment Corporation, Palo Alto, California.

[3] Cleary, J.G. and Witten, I.H. (1984) \Data compression using adaptive coding and
partial string matching," IEEE Transactions on Communications, 32(4), 396{402.

[4] Fiala, E.R. and Green, D.H. (1989) \Data compression with �nite windows," Com-
munications of the ACM, 32(4), 490{505.

[5] Howard, P.G. (1993) \The design and analysis of e�cient lossless data compression
systems," Report CS{93{28, Brown University, Providence, Rhode Island.

[6] Mo�at, A. (1990) \Implementing the PPM data compression scheme," IEEE Trans-
actions on Communications, 38(11), 1917{1921.

[7] Sedgewick, R. (1988) Algorithms. Addison-Wesley, Reading, Massachusetts.

[8] Witten, I.H. and Bell, T.C. (1991) \The zero-frequency problem: estimating the
probabilities of novel events in adaptive text compression," IEEE Transactions on
Informaton Theory, 37(4), 1085{1094.

[9] Ziv, J. and Lempel, A. (1978) \Compression of individual sequences via variable rate
coding," IEEE Transactions on Information Theory, 24(5), 530{536.

10

