
Unbounded Page-Based Transactional Memory

Weihaw Chuang†, Satish Narayanasamy†, Ganesh Venkatesh†, Jack Sampson†,
Michael Van Biesbrouck†, Gilles Pokam†, Osvaldo Colavin‡, and Brad Calder†∗

†University of California - San Diego, ‡ST Microelectronics, ∗Microsoft

Abstract
Exploiting thread level parallelism is paramount in the multi-core
era. Transactions enable programmers to expose such parallelism by
greatly simplifying the multi-threaded programming model. Virtu-
alized transactions (unbounded in space and time) are desirable, as
they can increase the scope of transactions’ use, and thereby further
simplify a programmer’s job. However, hardware support is essen-
tial to support efficient execution of unbounded transactions. In this
paper, we introduce Page-based Transactional Memory to support
unbounded transactions. We combine transaction bookkeeping with
the virtual memory system to support fast transaction conflict detec-
tion, commit, abort, and to maintain transactions’ speculative data.

Categories and Subject Descriptors C. Computer Systems Orga-
nization [C.1 Processor Architectures]: C.1.4 Parallel Architectures

General Terms Design, Languages, Performance

Keywords Transactions, Transactional Memory, Parallel Program-
ming, Concurrency, Virtual Memory

1. Introduction
Effective utilization of multi-core processors is stymied by the diffi-
culty of programming multithreaded programs. Failure to obey data
dependencies between threads results in race conditions, where vari-
ables are modified in an order not possible in a single thread of exe-
cution. This results in bugs that are extremely hard to detect, under-
stand and replicate. Many serious bugs are attributed to race condi-
tions.

Most parallel programs use locks and other synchronization
primitives to impose an order between threads. Poor lock usage
results in incorrect code and performance penalties [15, 11]. Coarse-
grained locks result in inefficient execution causing threads to wait
when they could otherwise be executed in parallel. Too fine a granu-
larity adds programming complexity and increases the likelihood of
deadlock or other incorrect behavior.

Transactions provide the appearance to any external viewer of
atomic execution of code regions, simplifying the creation of parallel
code. Any memory access in a transactional region that aliases with
a concurrent external memory access is detected as a conflict and ei-
ther the transaction aborts [11] or stalls [14], or the external memory
operation stalls. Stalling or aborting on conflict serializes the data
accesses, thus preventing the data races and providing atomicity for
the transaction’s execution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00

To maintain the appearance of atomicity, transactional memo-
ries must perform two tasks: detect conflicts and recover from them.
Doing this efficiently under all conceivable operating conditions is a
significant challenge. We focus on hardware transactional memories,
which provide these features while maintaining good performance.
To facilitate conflict detection and recovery, transactional memory
maintains a speculative version of memory. If a conflict is detected,
the hardware can quickly abort, discarding the speculative mem-
ory modifications to recover the original memory state before the
transaction started. Otherwise, it can commit quickly to promote the
speculative memory to non-transactional memory. Both operations
are done atomically so that all processors see consistent state before
and after the operation. Virtually all recent proposals for hardware
transactional memory build versioning hardware into the cache and
use cache coherence for conflict detection [11, 9, 1, 15]. One critical
issue is what to do when a program’s transactional working set ex-
ceeds the cache capacity, or must be evicted due to a context switch.
Once a transaction’s data is placed in some backing store such as
main memory, it is important that memory accesses that conflict with
that transaction be detected.

We propose a Page-based Transactional Memory (PTM) tech-
nique to handle the transactional state overflow condition to min-
imize overhead, and handle all possible cases including context
switches, exceptions, and inter-process shared memory. For PTM,
the cache overflow bookkeeping is done at the page level, but per-
forming conflict detection for overflowed blocks is at the cache block
granularity. This distinction is one of the differences we have over
prior techniques [15, 1, 14] that do both the bookkeeping and detec-
tion at the cache line level. In order for PTM to efficiently organize
transactional state occurring at the cache block level the state is re-
duced to a boolean bit value and packed into a bit-vector for each
transactional page being used.

All transactional-memory systems incur an overhead cost for
committing or aborting transactions whose memory footprint in-
cludes blocks that have overflowed from the cache. Several prior
techniques use some temporary backing-store in main memory such
as a log [15, 1, 14], or hash table [1], and they either copy-update
on commit, or copy-restore on abort. In PTM, an additional phys-
ical page is allocated for an overflowed physical page called the
shadow page. We refer to the original physical page as the home
page. One of the two physical pages holds the non-speculative com-
mitted data while the other holds the speculative version. Both the
non-speculative and the overflowed speculative version of a cache
block are kept in the same page offsets on these two pages. We in-
vestigate a PTM design, called Copy-PTM, where we use a copy-
restore on abort policy. That is, when a transaction block overflows,
it is always written to the home page and the old committed data is
copied to the shadow page. This design enables fast commit. How-
ever, on abort the data from the shadow page needs to be restored to
the home page.

Copying from main memory is expensive, and is compounded
by the number of overflowed lines that must be copied. In the Copy-
PTM design, the original memory block, which is being overwritten

1

by the transaction, has to be copied once if the transaction com-
mits (eviction) or twice if the transaction aborts (eviction and abort
restoration). To address this, we investigate another design for PTM,
Select-PTM, where we use a set of selection bits (one for each block
in a page) to avoid copying the memory blocks. The selection bit
for a memory block determines which of the two pages contain the
non-speculative data. With this approach the original memory block
never has to be moved, even if the transaction commits or aborts,
which provides both fast commit and abort.

2. Transaction Model
Transactional memory has its roots in database transactions [5].
Transactions are sequences of memory operations that are atomic,
isolated and serializable. Atomicity guarantees that either all or
none of the operations within a given transaction take effect. Iso-
lation ensures that no other transaction can observe the sequence
of operations in a partially completed state. Having serializability
means that there exists a serial execution of the transactions that has
the same effect as the actual execution that occurs. Transactions sim-
plify the task of writing concurrent programs because they ensure
that each thread observes data in a consistent state and can be pro-
grammed as if other threads do not exist.

2.1 Size of Transactions

With the advent of multi-cores, exploiting thread level parallelism
has become important to an increasingly broad set of programmers,
including many not well-versed in parallel programming. Transac-
tions can enable programmers to write multi-threaded code and ex-
pose such parallelism. It is not reasonable to expect them to use fine
grained critical regions safely. Hence, we firmly believe that pro-
grammers will create large transactions (either by accident if not on
purpose). For example, a straight-forward method to use transactions
is to put the transaction around the start and end of a loop, and the
loop may contain procedures calls that go off and touch more data
than the programmer is aware of. In addition, transactions can be
applied to loops to exploit thread level speculation (TLS) in order to
derive parallelism in the presence of loop carried dependencies.

Harris et al. [10] examined optimizations for software transac-
tional memory, and provided support for long running transactions
containing millions of shared memory accesses. The approach relied
solely on software support, and such long transactions had signifi-
cantly greater slowdown than shorter transactions. Recently, Chung
et al. [3] benchmarked several different styles of parallel programs
such as SpecOMP programs, which have significantly larger trans-
actional regions.

2.2 Ordered vs. Unordered Transactions

In creating transactions for our study, we supported two types of
transactions: ordered and unordered. Ordered transactions constrain
the sequence of commits amongst the transaction threads to enforce
some programmer defined order. Unordered transactions allow the
transactions to commit in any order. Ordered transactions are used
by programmers when they do not know if there is a potential loop-
carried dependency in a loop that they want to parallelize. In this
case, they will invoke a call to create a new ordered transaction, and
then each transaction created will execute in parallel, but commit in
the order in which it was created. If programmers know that there
are no loop-carried dependencies, then they can create an unordered
parallel transaction loop, where the transactions can commit in any
order.

2.3 Transactional Execution Model

We now summarize our transaction execution model and how it
deals with nested transactions, non-transactional code, and how it
interacts with the operating system.

2.3.1 Nested Transactions

A nested transaction is a transaction that starts within a trans-
action. Like many other transactional memory proposals, PTM
flattens nested transactions into the outermost already existing
transaction[15, 1]. This means that for nested transactions, trans-
action begin and end result in just incrementing and decrementing a
transaction nest count maintained in the architecture. It also means
that if an inner transaction aborts, all outer transactions also have to
abort.

2.3.2 System Calls, Exceptions, Context Switch and Interrupts

For the transactions in this paper, we did not use system calls in-
side the transactions, although nothing precludes transactions with
system calls from being supported by PTM. It is expected that trans-
actional support be provided for a restricted set of system calls by
operating systems. For example, Microsoft Windows Vista has soft-
ware transaction support for the file system and registry system calls.
For the restricted set of system calls with transaction support, the op-
erating system must buffer the speculative state, and be able to com-
mit and abort that state. If the system calls were to be used inside
of hardware transactions, the act of committing and aborting would
have to invoke the appropriate software handler to also commit or
abort the system state. Investigating the use of a restricted set of sys-
tem calls with hardware transactions is an interesting area of future
research.

For exceptions, we execute an exception as part of the transaction
that caused the exception. Whenever a processor is running a trans-
action thread and a context switch or interrupt occurs, recording of
the current transaction state is stopped until the running of the trans-
action thread resumes. We correctly maintain the state of the cache
blocks and the unbounded transaction state across context switches
and interrupts using the techniques described in Section 4.7.

2.3.3 Interaction with Non-Transactional Code

Non-transactional memory writes to locations accessed by uncom-
mitted transactions affect the correctness of program execution. A
complete transactional system must address this issue. For our ap-
proach, the solution is simply to abort the transactions affected by
a non-transactional write. Detecting non-transactional conflicts with
transactions is straightforward with our approach because our trans-
action conflict detection mechanism monitors all non-transactional
writes. If a conflict is found, it is treated like a conflict between trans-
actions except that in this particular case the conflicting transaction
has to always abort.

3. Page-Based Transactional Memory (PTM)
The purpose of Page-based Transactional Memory (PTM) is to sup-
port efficient virtualization of a transaction’s execution in the pres-
ence of cache overflows, context switches, thread migration, paging
and inter-process shared memory communication. PTM achieves its
goal by extending the virtual memory support in the operating sys-
tem to virtualize a transaction’s execution.

3.1 Transaction Cache State

For handling bounded transactions, PTM assumes hardware support
similar to the architectures proposed in prior work [15, 1]. To support
bounded transactions, we need to keep track of the read and the
write transactional states for each cache block, and use the coherence
mechanism to do an eager conflict detection [15, 1]. The eager
conflict detection mechanism checks for a violation on every cache
coherence miss. If there is a violation, the oldest transaction always
wins the conflict.

In addition to augmenting the cache blocks with the transactional
states and supporting eager conflict detection, we also need a check-

2

point mechanism to abort and re-execute a transaction. Our approach
assumes support for checkpointing the register state when starting
the execution of a transaction, similar to the earlier studies [1, 15].
Apart from such basic transactional-memory support in the proces-
sor core, PTM does not require any other significant change in the
processor core, as most of its functionalities are placed in the mem-
ory controller.

In our PTM design, we take care not to adversely impact the per-
formance of transactions whose working sets fit within the transac-
tional cache. As long as the cache blocks accessed by a transaction
do not get evicted from the transactional caches, the basic on-chip
transactional memory system handles the execution of the transac-
tion, detecting violations, and providing support for committing and
aborting of cache blocks. This is similar to how the bounded transac-
tions are handled in prior work [1, 15]. To provide this functionality,
we keep a global flag indicating if any blocks have been overflowed
or not, for a set of transactions in the same scope. If none of the trans-
action blocks overflow the cache, then when a thread misses in the
cache, a conflict check does not need to be performed by PTM for
the miss. The conflict check is instead handled completely by the on-
chip transactional memory system. Only when a transactional block
(read or written by a running transaction) has been evicted does our
PTM mechanism come into play.

3.2 Home and Shadow Pages

A key difference between our approach and the prior techniques is
how we maintain the transactional information for the transaction
blocks that have been evicted from the cache. A transaction block is
a block of memory accessed by a transaction that is still executing.

For an evicted transaction block we need to maintain the follow-
ing information in a data structure: (1) the speculative data for the
block, if it has been written by a transaction, and (2) a list of all the
transactions that either read from or wrote to the evicted transaction
block, as required for conflict resolution.

We will now describe how we store the speculative data for a
transactional block when it gets evicted from the transactional cache.
We observe that, for a set of transactions that are currently executing,
there can be only one transactional writer to an address at any instant
of time (otherwise, a conflict would be detected and one of the two
conflicting transactions would have been aborted). Therefore, all
that we need for any physical page accessed by a transaction is an
additional page that can hold a transactional version of data for the
memory blocks in the page. We call the original physical page the
home page, and the additional physical page allocated as the shadow
page.

Figure 1 shows an example of the PTM data structures used to
maintain the unbounded transactional memory. On the left side of
the figure, we show the page tables used to perform the traditional
virtual to physical page translation. We also have another structure
called the Shadow Page Table (SPT), which contains one entry for
every physical page of memory, and is indexed with the physical
page number. In the SPT entry, we store the address of the allo-
cated shadow page, the home page’s address, and some additional
information required to maintain the unbounded transactional states.
There is a valid bit associated with the shadow page pointer, since
not every SPT entry will have a shadow page allocated for it. Since
the SPT is indexed by the physical page number, we can access in-
formation about the transactional memory block given its physical
or virtual address. Given a physical address, we can directly index
into the SPT. Given a virtual address, we can use the page table to get
the physical address and then access the corresponding SPT entry.

When a page is allocated, its corresponding allocated physical
page entry in the SPT is initialized and marked as valid. When a
dirty transactional block is first evicted for a page used within a
transaction, PTM allocates a shadow physical page, a pointer to it

is stored in the SPT, and the shadow pointer is marked as valid
for that SPT entry. For example purposes, we show in Figure 1
an SPT entry for a physical page address “0x0000000” containing
the shadow physical page address “0xFE03000”. The corresponding
speculative transactional block and the non-speculative block can
then be kept track of in the two pages (home and shadow). Note, the
physical shadow page that was allocated does not have a valid SPT
entry. Only the home physical pages have valid SPT entries, which
are marked as valid when the home physical pages are allocated. In
addition, not all SPT entries have a valid (allocated) shadow page.
If there are transaction blocks evicted from the cache that were
only read (not written), then they may have an SPT entry without
a shadow page allocated for it. In this case, the SPT entry serves the
purpose of finding the transaction access information for the home
page (what blocks were read, and by which transaction), which we
describe later in Section 3.3.

3.2.1 Copy-PTM

Now that we have the shadow page, the question is where to store
the speculative transaction blocks that have been evicted from the
cache? One could have the policy where the speculative blocks are
stored in the shadow page, and on commit they are copied back to the
home page. We originally examined this design, but found the cost
of commit to be higher than we desired. We hope to see many more
commits than aborts when using transactions and we do not want to
slow down the execution of transactions that are doing useful work.
We therefore want to optimize the performance of committing, and
start running the transactions in order if aborts are too frequent.

The first PTM approach we examine is called Copy-PTM. In this
approach we copy the home block to the shadow page when a dirty
transaction block overflows, and then store the speculative block in
the home page. This policy enables fast commits, since the blocks
that we want to commit are already in the home page. It requires
that we make a copy of the non-speculative block from the home
page to the shadow page when a dirty transaction block is evicted
for the first time in a transaction. Then on abort we have to pay a
penalty because we have to copy the non-speculative blocks, which
were overwritten in the home page, back from the shadow page to
the home page.

3.2.2 Select-PTM

The more aggressive solution we examine is to allow both the home
and the shadow page to contain speculative and non-speculative
blocks and use Selection Vectors to maintain them. We call this
Select-PTM.

In Select-PTM, both speculative and non-speculative blocks are
allowed to exist in either the home or the shadow page. We use a
Selection Vector to indicate which of the two pages contain the non-
speculative block and the speculative block. The selection bit vector
is stored along with the shadow page pointer in the SPT structure
as shown in Figure 1. Each bit in the selection vector represents a
memory block in the page. We chose the size of the memory block
to be the same as the cache block size of the outermost transactional
cache in the processor, but our design does allow for larger or smaller
memory blocks to be used.

A bit in the selection vector tells us which of the two pages, the
home or the shadow page, contains the current committed data for
the memory block for which the bit corresponds to. If a bit in the
selection vector is set, then this means that the non-speculative data
for that memory block resides in the shadow page and that the home
page should be used for holding the speculative version and vice
versa.

Whenever a transaction modifies a cache block and evicts it, the
block is copied to the speculative location in memory, which is either
the home or the shadow page depending upon the state of the bit in

3

...

...
...
...

...

...
...
...

...

...
...
...

487

487

487

42

42

42

42

1023

1023

X
X

...

Valid

Valid

......

Valid

Valid

...
...

X

X

Page Tables

Valid
Valid X

...
...

Trans Trans Trans

R
W X

X

X
X

X
X

X
X

X

X

State State StateRunning Committing Aborting

X
R
W

R
W

R
W

R
W

R
W

Trans Trans

TransTrans

Trans Trans

0x8F48000

X

XX

X

0x4321000

0xFE03000

X

Shadow
Home
Sel ...

...

Shadow

Sel ...

Shadow
Home
Sel

......
...

X
0xE431000
0xB1EF000

T−State ...

...

Shadow Page Table

Swap Index Table

TAV Lists

0x0000000

...

Home

Figure 1. PTM structures. Physical page numbers and swap file offsets are obtained from the page tables and used to index into the Shadow
Page Table (SPT) and the Swap Index Table (SIT) respectively. An entry in the SPT and SIT tables for a page indicate the locations of the
shadow page and contain a Selection Vector in which each bit indicates which of the two pages contain the committed version of a block in
the page. An entry also points to a Transaction Access Vector (TAV) List, which contain one node per transaction that has accessed the list’s
page, but was not able to keep the accessed blocks in the cache. The nodes in a TAV list indicate the transactions in question and contain the
Read and Write Vectors to mark the accessed blocks that do not stay in the transactions’ cache. The T-State table is indexed by a transaction
number and contains the state of each transaction. An entry in the T-State table links to a list of TAV nodes that were overflowed by the
transaction.

the selection vector. Similarly, while fetching data from memory we
can determine where to find the committed and speculative copies
based on the state of the bit in the selection vector.

When a dirty transaction block is evicted, we write the block to
the speculative location. We write the speculative block to the home
page if the bit is set, or to the shadow page if the bit is clear. When
a transaction aborts, nothing needs to be done, since the bits in the
selection vectors for the pages touched by the transaction are al-
ready pointing to the non-speculative blocks. On commit, however,
we must go through the selection vectors and toggle the bit corre-
sponding to the overflowed memory blocks that were written by that
transaction, though hardware can accelerate this, which we describe
later.

3.2.3 Trade-offs Between Copy-PTM and Select-PTM

The PTM structures required for both Copy-PTM and Select-PTM
are the same structures shown in Figure 1, except that Copy-PTM
does not need the selection vector in each SPT entry.

In Select-PTM, the benefit of using a selection vector and allow-
ing committed blocks to reside on either of the two pages (the home
or the shadow page) is that it does not have to copy non-speculative
blocks during eviction and abort, as described earlier for Copy-PTM.
The downside to using the selection vector is that a non-speculative
block can now reside in either the home or the shadow page, and we
need to have an efficient way of finding the correct physical address
to fetch the block, given the virtual address. The policy PTM en-
forces is that even when a block is fetched from a shadow page, the
physical address seen by the cache hierarchy and the TLB structures
is the home page physical address corresponding to that block. This
allows Select-PTM to only have to perform TLB translation to the
home page as in a conventional design. Then Select-PTM will mon-
itor the block addresses at the memory controller to decide where to
fetch the correct blocks from (the home or the shadow page). How

this is done is described in Section 4.2.2. Therefore, the advantage
of the Copy-PTM approach is that, since the committed blocks are
always on the home page, it does not have to deal with this address
translation issue, and it does not have to maintain the selection vec-
tors.

3.3 Conflict Detection using Transaction Access Vectors

In addition to keeping track of the speculative data for the over-
flowed cache blocks, we must also keep track of the information
about the list of the transactions that read or write to an overflowed
cache block. To accomplish this task, we maintain a Transaction Ac-
cess Vector (TAV) data structure as shown in Figure 1. Each TAV
node in the data structure is for a transaction and for a page that a
transaction has overflowed. The TAV contains a read vector and a
write vector for the page. Each bit in the read/write vectors corre-
sponds to a cache block in the page and it tells us if the cache block
was read or written by a transaction.

The read and the write bits are set when the blocks accessed
within a transaction are evicted from the cache. For example, Fig-
ure 1 shows that the transaction 42 read the 4th block and wrote
the 2nd and 5th block in the virtual page with the physical home
address “0x0000000” and the shadow page address “0xFE03000”.
When a read or write (executed in a transaction’s code or even in the
non-transactional code) misses the cache, PTM is consulted with the
home page’s physical address checking these read and write vectors
to determine if there is a conflict. Note, we only need to check for
conflicts in PTM if there is a live transaction and if a transaction has
overflowed the cache.

All the TAV nodes corresponding to a transaction are linked to-
gether (vertical links in the Figure 1). Given the transaction number,
we can find all the TAV nodes for that transaction. The TAV nodes
corresponding to a page are linked together (horizontal links in the
Figure 1). Thus, for a given TAV we can find its corresponding SPT

4

entry. The same horizontal link is also used to find the TAV nodes
of other transactions that have also accessed the same physical page,
which enables us to determine the conflicting transactions.

TAV organization: Let us summarize the TAV data structure
organization. An entry in the SPT structure contains a pointer to a
linked list of these access vectors (transaction access vector (TAV)
list). These are the horizontal linked lists in the Figure 1 and the last
node in the list points back to the SPT entry. Each node in the TAV
list is for a transaction that had at least one overflowed block for that
page in the past. A node in a TAV list contains a transaction’s read
and write access bit vector, where each read/write bit corresponds to
an overflowed cache block in the page and tells us if the overflowed
cache block was read or written by the transaction. In addition, each
entry also contains a transaction identifier, constructed by the TM
hardware, which enables us to determine the transaction to which
the TAV read and write access vectors belong. A node in a TAV list
is updated when a transactional cache block is evicted, and freed
when the corresponding transaction either commits or aborts.

Conflict detection using TAV: If a read or write (executed in
a transaction or in the non-transaction code) misses the cache, and
there exists an overflowed block, PTM is consulted with the physical
address to resolve any potential conflict. PTM uses the physical
address to index into the SPT structure to get the pointer to the TAV
list. Each node in the TAV list corresponds to a transaction that has
overflowed a read or write to the page, and has to be examined to
determine if there is a conflict. If the current memory operation that
triggered a miss is a read, then there is a conflict if there exists a node
in the TAV list with the write bit set for the accessed memory block
and the transaction identifier is different from the current read’s
transaction identifier. Conflict detection for a transaction write is
similar, and we detect a conflict if there exists a node in the TAV
list with either the read or the write bit set for the accessed memory
block, and the transaction identifier differs.

In Section 4, we describe how information in the TAV list can
be summarized into one vector and cached in a hardware structure
to perform efficient conflict detection. These summary vectors are
also used with the selection vector to determine which of the two
physical pages to fetch from on a cache miss for Select-PTM.

3.4 Commit and Abort

To commit or abort a transaction, we use the vertical links shown
in the Figure 1. The head of the vertical list is maintained in the T-
State structure and it also contains the transaction identifier along
with its current status, which is atomically set to either committing
or aborting before processing the TAV list.

Select-PTM: On commit, we traverse the vertical list for the
committing transaction and free the nodes in the list. In addition,
we update the selection vectors as needed. This is achieved while
traversing each node in the vertical list, where we access the TAV
node’s corresponding SPT entry by following the horizontal list.
We update the selection vector for that SPT entry if the committing
transaction has overflowed any dirty block for the page correspond-
ing to the SPT entry. On abort, we also have to traverse the vertical
TAV list and free the TAV nodes. But, unlike what we did for com-
mit, we do not have to update the selection vectors.

Copy-PTM: On commit and abort we traverse the vertical list
and free the TAV nodes. For commit, we do not need to do any addi-
tional work, since there are no selection vectors. On abort however,
we need to restore the original non-speculative blocks to the home
page, for those overflow blocks that were written by the transaction.

3.5 Paging and the Freeing the Shadow Pages

Since the blocks representing a page are split across the home and
shadow pages, we need to correctly deal with paging those pages in
and out, as well as how to free the shadow pages.

3.5.1 Paging

To deal with the paging out of transaction pages, we actually have
two tables, the Shadow Page Table (SPT) and the Swap Index Table
(SIT). The first is indexed using the physical address (when the page
is in main memory) and the second is indexed using the swap index
number (when the page is swapped out to disk).

The swap index number is the number used by the operating sys-
tem to keep track of the pages that are swapped out. It is equivalent
to the physical page number. The difference between the two is that
the swap index number refers to a location on the disk, but the phys-
ical page number refers to a location in the main memory. Thus,
when a page is swapped out of the main memory to a location in the
disk, the swap index number corresponding to that location is stored
in place of the physical page number in the page table entry. When
an application refers to a swapped-out page, the swap index number
is used to locate the paged out data and swap the page back in to
the main memory. The new location in main memory referred by a
physical page number is stored in the page table entry.

In PTM, the shadow and the home page cannot be swapped
out independent of each other. If one of the pages is swapped out,
both pages have to be swapped out. The operating system does
not consider the shadow pages to be candidates for swap out. The
operating system only makes decisions about swapping out home
pages. When a page is swapped out, if the page has a valid SPT entry,
then it has to be copied to a SIT entry. The index for the SIT entry is
the swap index number corresponding to the location in the disk that
is allocated to hold the swapped-out home page. If there is a valid
shadow page for the home page, then it is also swapped or garbage
collected (see below). If swapped out, then its SIT shadow pointer
is used to point to where the shadow page is stored on disk. When a
transaction page is swapped back in, the SIT entry is copied to the
SPT entry corresponding to the newly allocated physical home page.
If the SPT entry has a shadow page, it is also allocated a physical
page, and its shadow pointer is updated in the home page’s SPT
entry.

3.5.2 Freeing Shadow Pages

Copy-PTM frees a shadow page when there are no more transactions
using it, which is determined by the NULL TAV Link.

Similarly, for Select-PTM, a shadow page can be freed when
there are no more transactions using it. That is, the page has only
one version (committed version) for each memory block in the page.
However, since the committed blocks can reside in both the home
and the shadow page, we need to copy the contents from the shadow
page back to the home page before we can free the shadow page.

We examined two different policies for freeing shadow pages for
Select-PTM. One approach is to merge the home and the shadow
pages together when the home page is swapped out by the operating
system. To accomplish this, when a home page is swapped out,
if it has a corresponding shadow page and there are currently no
transactions using that page (determined by the NULL TAV link),
then the operating system stores the valid blocks in the shadow page
to the backing store location that is allocated for the home page.
The SIT entry is updated to indicate that the page does not have a
shadow page anymore and the selection vector is also cleared. This
completes the process of freeing a shadow page.

Another approach to free a shadow page for Select-PTM is to
lazily migrate the committed blocks to the home page. Whenever a
non-speculative dirty block is written back to main memory, we can
force it to be written back to the home page, even if the bit in the
selection vector points to the shadow page. After writing back the
cache block, the bit in the selection vector is toggled to indicate that
the committed copy is in the home page. This allows the memory
blocks to be gradually merged back to the home page when they are
read and written. Eventually, when the selection vector is completely

5

clear (all the blocks are now in the home page), the shadow page can
be freed.

3.5.3 Shared Memory Inter-Process Communication

Since the SPT entry (or SIT entry) and the TAV list are maintained
for a physical page (or a swapped out page) rather than a virtual
page, conflicts between transactions executing in two different pro-
cesses accessing the same physical page can be detected. Thus, PTM
supports shared memory inter-process communication.

4. PTM Hardware Implementation
This section examines the hardware changes necessary to support
PTM. We modify caches and the cache coherence protocol in a way
similar to other hardware transactional memory models. In addition,
paging and swapping are changed in ways that the operating system
needs to be aware of. We also add hardware to the memory controller
to cache the transactional state.

4.1 When Everything Fits in the Cache

Each processor core is largely unaware of the memory controller’s
PTM hardware. All requests for cache blocks use the home page
address. Each core can detect transaction conflicts within its cache
through the existing cache coherence mechanism. Each cache line
contains a valid bit, coherence state bits to support MOESI, a Trans-
action ID, and bits indicating if the transaction read or wrote the
block.

A transaction may complete without overflowing its cache. When
a dirty block commits and it has never overflowed the cache, no
work needs to be done by PTM. The block is just marked as non-
speculative, and at that point it is treated as a normal cache block. It
will continue to reside in the processor core’s cache until the cache
sets overflow or another core requests the block. When a cache miss
results in a conflict with another block in a cache, we use a Virtual
Transaction Supervisor (VTS) to arbitrate which transaction to abort.
The aborted transaction’s cached data is invalidated in the cache.

4.2 VTS Caches

In order for PTM to provide efficient unbounded transactional mem-
ory, we provide hardware support to make the following tasks effi-
cient:
• Fast Conflict Detection - When a transaction scope has over-

flowed the cache we need a way to quickly determine a violation
when processing a cache miss. We therefore cache in the memory
controller, the summary information for the transaction blocks
that have been read and written for recently accessed pages.

• Fast Commit and Abort - We need to have the ability to quickly
commit or abort a transaction, and to let future execution con-
tinue, while the overflow data structures used by the transaction
are cleaned up.

• Fast Selection Between Home and Shadow Page for Select-
PTM - We need to be able to quickly choose between the home
and the shadow page when fetching a block from memory.
To achieve this, the memory controller caches the information
needed to correctly choose between the home and shadow page
for recently accessed pages.

To provide the above functionality, PTM uses a Virtual Trans-
action Supervisor, which is shown in Figure 2. The VTS is part of
the memory controller for a snoopy architecture, and part of the di-
rectory controller for a directory based system. VTS has two main
caches. A cache of the shadow page table entries and a cache of the
current transaction access vectors. We describe them as if they are
updated on-demand, but performance improvements can be had by
prefetching data into the caches.

TAV cacheSPT cache

supervisor processor

t rans
number

block
address

Figure 2. The Virtual Transaction Supervisor (VTS) has a memory
backed cache holding the SPT entries and the TAV nodes.

4.2.1 Transaction Access Vector (TAV) Cache

The first cache is called the Transaction Access Vector (TAV) cache
and is used to hold the nodes in the TAV lists in memory. An entry
in the TAV cache corresponds to a TAV node shown in Figure 1. The
TAV cache entry contains the read and write transaction vectors for
a page accessed by a transaction. The TAV cache is indexed by the
physical page number, and is tagged by the physical page number
and the transaction ID. This allows multiple TAV nodes for the same
physical page, corresponding to different transactions, to be stored
in the cache at the same time. Indexing by the physical page allows
PTM to quickly find all of the cached TAV nodes for that page.

The TAV cache is an important component in the PTM archi-
tecture for providing fast conflict detection. When there is a cache
miss, the resulting memory request may need to determine exactly
which transactions were prior readers or which transaction was a
prior writer to the block. In this case, if the TAV nodes for the page
of the block are found in the TAV cache, the read and write vectors
for the page can be quickly examined to determine the conflicting
transactions (if there are any).

When a TAV cache entry is evicted and the access vectors have
been updated (the entry is dirty), the access vectors need to be
written back to their corresponding TAV entries in memory.

4.2.2 Shadow Page Table (SPT) Cache

The second cache structure, called the Shadow Page Table cache, is
used to cache the entries in the SPT structure, which was described
in Section 3.2. The SPT cache is indexed by the physical page
number, and is used to quickly determine conflicts.

When there are overflowed transactions being executed, we al-
locate an SPT cache entry for every non-transactional page and
home page accessed. This is needed because non-transactional cache
misses, which are executing while there are evicted transactional
blocks, still need to be checked for conflicts. For non-transactional
pages, the SPT cache entry allocated for it is used to quickly identify
this.

The contents of an SPT cache entry is shown in Figure 3. An
SPT cache entry contains the shadow page number (if there is a
valid one). In addition, it contains a write summary vector and a
read summary vector. The write summary bit vector for a page is an
OR of all the transaction write access vectors that exist in the TAV
list for the page. This provides immediate identification for a cache
block that a transaction has speculatively overflowed that block. The
read summary vector is a single bit vector where each bit indicates if
there has been at least one overflow transaction read for that block.

6

For Select-PTM, the SPT entry also has the selection vector
as shown in Figure 1. When an SPT cache entry is evicted, the
corresponding selection vector in memory is updated if the SPT
cache’s selection vector is dirty. The SPT cache entry for Copy-PTM
is the same as Select-PTM, but without the selection vector.

The SPT cache stores the information for the most recently ac-
cessed pages. A miss in the SPT cache requires the VTS to lookup
the shadow page table to find the SPT entry, calculate the write
and read summary vector from the TAV list, and then update the
SPT cache. While the read and write vectors are calculated from the
transaction’s read and write access vectors for that page, TAV cache
entries are created (if they do not exist) for each TAV node corre-
sponding to that page.

4.3 Cache Eviction

When a cache block read/written by a transaction is evicted, the
VTS takes action in response to the coherence message triggered
as a result of the eviction. The coherence message will contain the
physical address of the home page and is also piggy-backed with the
transaction identifier. When a block is evicted, we do not need to
check for a violation. We only need to check for a violation for the
read or write cache miss. The following actions need to be taken on
eviction.

When an unmodified block is evicted in the normal MOESI pro-
tocol, there is no need to generate a coherence message, but in our
case, when a cache block read by a transaction is evicted it has to
generate a coherence message to inform VTS to keep track of the
overflow information. However, the data block is not written back
because the cache block was not modified. When the VTS receives
the coherence message for the unmodified transactional block, it will
update the read transaction access vector in the TAV cache corre-
sponding to the transaction that accessed the evicted cache block.
Also, the read summary vector in the SPT cache for the physical
page of the cache block is also updated. Note, when an unmodified
non-transactional block is evicted, no coherence message is sent.

When a modified transaction block is evicted, we write the trans-
action access vector in the TAV cache and update the write summary
vector in the SPT cache. If a shadow page has not been allocated for
the home page, then one is allocated at this time. The modified cache
block then needs to be written to the page that is supposed to hold
the speculative version. For Select-PTM, the selection vector indi-
cates which page (home or shadow) to write the speculative block
to, and the write is done to the speculative location. For Copy-PTM,
the block is always written to the home page. For Copy-PTM, we
need to determine when we need to copy the non-speculative block
to the shadow page on eviction. This is done by checking the write
summary vector for the modified block being evicted. If the bit is
not set, then this is the first modified overflow of that block, so we
first copy the non-speculative block to the shadow page. We can then
write the evicted block to the home page and set the write summary
vector bit. If the bit is set, and there is no conflict, then we do not
have to perform any copy, and the evicted block is written to the
home page.

When a modified non-transaction block is evicted, we always
write the block to the home page for Copy-PTM, and we do not
need to do any SPT cache lookup. For Select-PTM, we first need
to perform a SPT cache lookup, and use the selection vector to
determine which page to write the block to, which is the non-
speculative location.

4.4 Cache Miss

There are two operations that need to be performed on a cache miss.
The first operation identifies from which of the two pages we need to
fetch the data to serve the cache miss. The second operation detects
any potential conflict. We initiate the fetch for the data block from

memory in parallel with the conflict resolution and hold back the
coherence reply with the data until the conflict is resolved.

4.4.1 Finding the Block to Fetch on a Miss

To fetch a block in Copy-PTM, we always fetch the block from the
home page.

For Select-PTM, on a miss we need to look up the selection
vector and write summary vector in the SPT cache. We XOR the bit
in the write summary vector and the bit in the selection vector for the
current cache block request, and the resulting bit value determines
the page (home or shadow) we want to read the block from. This
logic is shown in Figure 3.

4.4.2 Conflict detection

Read Miss: If the memory access is a read to a memory block, then
there is a conflict only if there exists an uncommitted transaction that
has modified the memory block (RAW conflict). To determine this,
first we examine the bit in the write summary vector that corresponds
to the memory block being accessed. If the bit is not set, then
there is no conflict. If the bit is set, then there are two possible
cases. Either the transaction that is currently accessing the block has
itself modified the memory block in the past, or the block has been
modified by another transaction. There exists a conflict only in the
latter case. To determine which case it is, we look up the block’s
physical address with the current transaction ID in the TAV cache.
If there is a match, then we check to see if the current transaction is
the owner of the write. If so, then there is no conflict. If not, there
is a conflict and we find the conflicting transaction. If we get a miss
in the TAV cache, the VTS has to perform a hardware walk on the
TAV list, starting from the shadow page table entry, to find out the
conflicting transaction, and the TAV structures found are put into the
TAV cache.

We assume MOESI protocol. In PTM, a transactional read miss
request to a block that has already been overflown by a different
transaction is not granted exclusive permission even if there are
no sharers in the system (that is, no processor in the system has
read permission). This is required because the transaction that gets
the block might later write to it and at that time we have to make
sure to resolve any potential conflict that may exist with that write.
However, if there are no transactional read overflows to the block
and if there are no other sharers in the system, then the read miss
request can be granted exclusive permission.

Write Miss: If the memory access is a write to a memory block,
then there is a conflict if there exists an uncommitted transaction
that had read (WAR conflict) or written the memory block (WAW
conflict). An SPT cache lookup is performed to examine the write
and read summary bit vectors. If the write summary bit is not set,
and if the read summary bit is not set, then we know there is no
conflict.

If the write summary bit is set, we need to lookup the write access
vector in the TAV cache to see who the writer was. If the TAV write
vector shows that the same transaction was the prior overflowed
writer, then there is no conflict. If not, then we know there is a WAW
conflict, and one of the transactions must be aborted.

If the write summary bit is not set, but the read summary bit is
set, then we look through the TAV list to see who the readers are. If
the current transaction is the only reader, then there is no conflict,
otherwise there is a WAR conflict, and one of the transactions has to
be aborted.

4.4.3 Arbitration

When conflicts are detected, the oldest transaction wins the arbitra-
tion causing the younger conflicting transactions to abort, thereby
guaranteeing forward progress, as any long waiting thread eventu-
ally becomes the oldest. Unique transaction identifiers generated se-

7

original phys. address shadow phys. address select ion vector

actual physical page
address of block

block offset
in page

write summary vector read summary vector......

Figure 3. SPT cache entry. The SPT cache entry stores the selection vector, the write summary vector, and the read summary vector for a
page.

quentially at the transaction start allows us to determine the age of
the transaction. This also supports ordered transactions described in
Section 2, by assigning the identifiers to match the program defined
ordering. When a transaction is aborted and restarted, it maintains
the transaction identifier that was originally assigned to it.

4.5 Commit and Abort

On commit, all of the cache blocks with the transaction ID are
specified as no longer being speculative, and the transaction ID is
cleared. On abort, all of the cache blocks with the transaction ID
that are dirty are invalidated. Those that are not dirty just have their
transaction ID cleared.

To process the PTM state on commit or abort, the VTS will first
atomically change the status of the transaction in the T-State struc-
ture shown in the Figure 1. This is referred to as the logical com-
mit/abort by VTM [15]. Once the transaction has been logically
committed or aborted, the thread can continue its execution. The
TAVs of the transaction are lazily freed on commit and abort. Before
freeing a TAV node, we update the read and write summary vectors
in the SPT cache as necessary. During this lazy commit, if another
transaction accesses a “not-yet-committed” memory block (in cache
or in main memory) it sees that there might be a conflict. However,
while resolving the conflict, PTM knows that the conflicting trans-
action ID has already committed, when it looks up cached T-State
structure in VTS. The transaction that has the outstanding miss is
made to wait until the commit for that page finishes. After the com-
mit for the conflicting transaction is over, the stalled transaction can
continue its execution with the committed data block. After abort or
commit, if the shadow page does not contain any committed blocks,
then the shadow page is put on the free list and the SPT entry is
updated.

For Select-PTM, as the TAV structures are committed for a trans-
action, the corresponding pages in the SPT cache and TAV cache are
processed to correctly update the selection vector in the cache (if
there is an SPT cache hit) and in memory (if there is a SPT cache
miss). On abort, the selection vectors do not need to be update.

In the case of Copy-PTM, on abort we need to restore the original
cache blocks that were overwritten by the transaction in the home
page from the shadow page. We walk the TAV list and use the write
vector to determine which blocks to restore from the shadow page to
the home page. On commit, no data needs to be copied.

4.6 VTS Implementation for Snoopy-based and
Directory-based Systems

To implement VTS as part of a snoopy architecture we integrate VTS
into the memory controller. This is straightforward for a central-
ized controller, but it is also possible if there are multiple memory
controllers. For multiple memory controllers, if the memory con-
trollers are associated with particular regions of physical memory,
this means a partitioned and distributed SPT cache and TAV cache. If
instead the memory controllers are associated with particular cores

rather than memory regions, this means distributed SPT and TAV
caches with a dedicated coherence network among them.

For a directory protocol, the VTS would be distributed among the
directories and implemented in the directory controller. Essentially,
the SPT cache and the TAV cache in a directory will be caching the
information corresponding to the physical pages maintained by that
directory. The directory based VTS implementation requires some
additional hardware support to perform arbitration to resolve con-
flicts. The additional support is required to ensure that all commits
and aborts will be serialized correctly to guarantee atomic commit
and aborts. Each directory entry has an overflow bit, which is set
when the corresponding memory block overflows. Cache overflow
due to a cache miss triggers a coherence request. When a cache miss
coherence message reaches a directory, and if the overflow bit is set,
the VTS associated with the directory is consulted to resolve con-
flicts. Thus, selecting between the home and the shadow page and
resolving the conflicts can all be done as before. In addition, the
shadow page for a home page is allocated so that they reside in the
same directory controller.

Processing cache overflows and non-conflicting cache misses
does not involve the supervisor processor, unless there is a miss in
the SPT cache or TAV cache. If that is the case, then the supervisor
processor needs to fill in the entries. The only other main functional-
ity the supervisor processor does is to perform the TAV list walks on
commit or abort. For snoopy and directory, we make sure that all of
the TAV entries for a transaction are to the same memory/directory
controller. An issue to keep in mind here is that the supervisor pro-
cessor needs to have low enough occupancy to not become a bottle-
neck.

4.7 Efficient Context Switching

Context switches can be handled by just forcing an overflow of all
the cache blocks read/written by a transaction. We assume physically
indexed caches. Prior schemes like VTM [15] require the ability to
translate the physical address to the virtual address as their overflow
structures are virtually indexed. In comparison, PTM can update
SPT entries and TAV entries using just the physical address.

On context switches, we avoid overflowing the cache blocks by
tagging the transactional cache blocks with the transaction identi-
fiers. In this case, the normal cache coherency conflict detection
mechanism will be able to identify conflicts with the cache blocks
that were not overflowed when the transaction was context switched
out.

When a transaction begins, PTM takes a checkpoint of the archi-
tectural register states in the processor so that on an abort they can
be restored. To support context switches for a transaction, we save
and restore the transaction’s checkpointed register state. In PTM, the
T-State, which contains an entry for each transaction is used to save
the checkpointed register state of a transaction when it is context
switched out.

8

5. Prior Hardware Unbounded Transaction Work
In this section, we describe related work, and provide a detailed
description of VTM, which is the prior unbounded transactional
memory approach that we compare against.

5.1 Related Work Outside of Transactional Memories

Chang, et al. [2] introduced support for efficient locks in hardware.
A bit or a bit-vector is associated with each page by extending
page tables and the TLB. A memory word is locked by setting its
corresponding bit. The primary similarity between PTM and the
IBM 801 processor is that PTM also associates a bit-vector with each
transactionally touched page. However, the PTM extensions are used
for supporting unbounded transactions, as opposed to locks.

5.2 Related Work on Unbounded Transactional Memory

Recently, many hardware transactional memory techniques have
been proposed [6, 7, 9, 13, 3, 1, 15, 14]. Due to space limitations,
we only provide a summary of four prior techniques that focused on
large or unbounded transactions: UTM [1], VTM [15], LogTM [14],
and LTM [1].

UTM was one of the earliest approaches to completely support
unbounded transactions. UTM uses its XState data structure to log
all transaction-related information. Each memory block has a log
pointer associated to the list of transactions that accessed it. All
writes done inside a transaction modify the memory in place, storing
a copy of the old non-speculative value in the XState Log. This
approach makes abort a costly operation, though commit can be
done very efficiently. UTM requires multiple memory lookups to
traverse the log pointer on abort, since it does not cache the log
entries, although it could potentially do so. The UTM approach can
support most system events, including overflows, context switches,
process migration, and paging. Their approach requires significant
hardware changes including globally unique virtual addressing.

LTM [1] supports reasonably large transactions with the memory
footprint size comparable to that of physical memory. LTM uses the
memory coherence protocol to detect conflicts. It uses an overflow
bit in caches to let the coherence protocol know if there is potentially
a conflicting overflowed transactional block. LTM stores all the over-
flowed speculative values in a memory-based hashed data structure
until the transaction commits. This approach results in an efficient
abort operation, but the commit operation can incur high overhead as
the new values need to be copied from the backup structures to their
corresponding memory locations. LTM can avoid conflict-detection
overhead for non-overflowed blocks using its overflow bits, but it
must do multiple memory lookups to resolve conflicts for the over-
flowed blocks. LTM cannot support transactions longer than a time
slice or with footprints larger than physical memory.

LogTM [14], like LTM [1], supports reasonably large transac-
tions that fit in the physical memory. LogTM uses a directory-based
coherence protocol for conflict detection. It makes in-place memory
updates for overflowed speculative values and hence, abort can po-
tentially be a high overhead operation. Also, aborts are handled in
software with LogTM, which makes them costly. LogTM can do ef-
ficient conflict detection using the directory state, but it requires that
transactional state is never paged out. The LogTM approach does not
handle thread migration, context switches and paging. To ameliorate
the abort cost, LogTM stalls the transaction whenever possible in-
stead of aborting it.

5.3 VTM

In this paper we compare our approach to VTM [15]. The VTM
approach provides an efficient and nearly complete handling of
unbounded transactions. The key structures needed to implement
VTM are an in-cache hardware transactional memory system, and
a set of hardware and software structures to handle transactional

overflow and context switching. VTM is oriented towards in-cache
TM with eager conflict detection, but is otherwise mostly agnostic
about the particulars of the in-cache hardware transactional memory
system.

The software structures for VTM consist of transactional state
information (XSWs), a table tracking overflowed blocks and their
original values (XADT), an overflow counter, and a counting Bloom
Filter (XF). Unlike PTM, the addresses tracked by VTM for over-
flowed blocks are virtual. Instances of the software structures reside
in the virtual address spaces of each transactional application, and
are shared among the threads. The hardware structures needed for
VTM are an XADT walker that performs lookups on overflowed
state in the XADT and walks the XADT on commit and abort, and
a cache of meta-data for overflowed blocks, called the XADC. The
bloom filter XF is used to reduce the frequency of having to access
the XADT when doing conflict detection. A set of counters in the
XF will be incremented when a cache block is overflowed, and are
decremented lazily during commit or abort. A value of zero means
that there is no overflow block, and a non-zero value means that there
may be an overflow block.

The XADT log table contains the virtual addresses, transaction
state, and data of the overflowed cache lines, buffering all specula-
tive state. VTM uses the old value of the transaction-modified mem-
ory, also stored in the XADT, to detect non-transactional code inter-
action with transactional code. Whenever a transaction encounters a
read or write miss, the XF will be consulted to determine if the mem-
ory block being accessed may have been overflowed in the past. If
so, the corresponding entry, if any, in the XADT will be looked up
to resolve the potential conflict. VTM accesses the XADT via the
XADT hardware walker.

If no blocks are currently overflowed, then conflict detection be-
yond the in-cache mechanism consists only of checking the over-
flow counter. When there are overflows, VTM can avoid the over-
head of performing conflict-detection for addresses that have never
overflowed by filtering out queries to those addresses using the XF,
but it requires XADT look-ups to resolve conflicts for overflowed
cache blocks. We model using an XAD Cache (XADC), similar to
the cache structure used in PTM. The XADC stores the meta-data for
the most recently accessed evicted transaction blocks, and a pointer
to the XADT structure for that block in memory. The meta-data de-
scribes what transactions have read the overflowed block, and, if the
block was dirty, which transaction wrote it. When a query to the XF
says that there may be an overflowed block, we look up the block
being loaded in the XADC. If there is a hit, then we have all of the
information to determine if there is a conflict, and a pointer to the
data blocks in memory to load the speculative block if needed.

VTM stores the new speculative value in their overflow data
structure and the memory is updated on transaction commit. This
allows fast aborts, but results in memory-copying overhead at the
time of commit. VTM can hide some of this cost by doing a lazy
commit, but the memory updates still consume bandwidth, and all
the transactions that need to access a memory block modified by
a committed transaction, but yet to be updated in memory, have
to stall. In comparison, PTM does not involve any data movement
at the time of commit. One can potentially change VTM to write
speculative blocks to memory when a block is evicted, and only
store the non-speculative block in the XADT structure. This would
make it similar to our Copy-PTM approach, but with XADT and XF
structures, and an approach along these lines was proposed by Zilles
and Baugh [18].

VTM virtualizes the execution of transactions across most sys-
tem events, which include cache overflows, context switches, pro-
cess migration and paging. However, they require that the cache
blocks touched by the transaction be evicted from caches and inval-
idated before the transaction is context-switched out. Further, VTM

9

needs to record virtual addresses for locally cached transactional
blocks so that it can do the reverse address translation from physical
address to virtual address. This enables VTM to evict all the cache
blocks read or written by a transaction that is being context-switched
out. In contrast, we propose the use of additional tags for cache
blocks to support context switches without unnecessarily evicting
transactional cache blocks as explained in Section 4.7. Even if we
do not use the tags, flushing the blocks touched by a transaction
entry is simple, as the PTM structures are indexed by the physical
addresses. Therefore, for physically tagged caches we do not have
the complexity of doing reverse address translation.

As the VTM data structures are held in the private address spaces
of processes, VTM cannot offer transactional guarantees for inter-
process communication through shared memory segments mapped
to different virtual addresses. Our PTM technique, on the other hand,
is built on the top of the existing virtual memory and hence can
provide virtualization across processes.

5.3.1 Modeling VTM

In order to evaluate the performance of PTM, we constructed a
VTM model based on the description in [15]. We use the same
in-cache hardware transactional memory model for both PTM and
VTM. This is a more optimistic model for VTM than that featured
in [15]. We assume the presence of transaction IDs in the cache,
which can be used to avoid having to flush all transactional data
on every context switch. We also assume for the VTM model that
the XF counting Bloom filter has been implemented in dedicated
hardware. We model an XF with 1.6 million entries. We also assume
an XADC to cache the meta-data for the overflowed blocks.

When checking for conflicts, if all of the block’s XADT entries
have their meta-data cached in the XADC, then the conflict resolu-
tion is done in the time it takes to do the cache lookups. If there is
an XADC miss, it requires a reconstruction of meta-data via traver-
sal of the XADT, similar to creating a SPT cache entry from our
TAV structures for PTM. When walking the XADT for commit or
abort, we assume that each XADT entry lookup requires a single
main memory access, and that the number of memory accesses is
equal to the number of XADT entries traversed.

VTM, like PTM, supports a lazy commit, changing the status
of a transaction atomically via an atomic memory operation on the
transaction’s status word XSW and updating all other data and struc-
tures lazily. However, since it has buffered all overflowed specula-
tive values in the XADT, VTM must actually copy the speculative
data to the original memory location on commit. This occupies bus
resources, even when doing the commit lazily. As bus contention
in our memory model leads to performance degradation, we also
consider adding data buffering to the XADC to hold the speculative
and non-speculative block in addition to the meta-data. Because this
secondary cache acts like a victim cache, we refer to this variant
as Victim-VTM (VC-VTM) in our results, with the baseline VTM
labeled simply as VTM. Blocks in the victim cache are marked as
being committed instantly, and later written back to memory when
evicted from the cache. Currently executing transactions can then
use the blocks found in the victim cache, instead of having to wait
for them to be committed. We found this to significantly reduce the
commit delay penalty for VTM.

6. Results
This section evaluates the performance of PTM, demonstrating that
it efficiently supports virtual transactional systems without incurring
high overhead. For this evaluation, we used programs from the
SPLASH-2 [17] benchmark suite to evaluate PTM.

6.1 Simulation Platform

We modeled a CMP system using Virtutech Simics [12] based on
Enterprise machines running RedHat Linux 7.3, and extended the
model to simulate PTM and VTM. The entire system has 4 nodes,
each with two levels of private cache. The L1 cache is 16KB direct-
mapped with a 1-cycle latency, while the L2 cache is 256 KB 4-way
set associative with 6-cycle latency. Coherency is maintained at the
L2 cache using a snoopy-based MOESI protocol. The augmented
L2 cache blocks contain transactional read and write bits that are
used to track transactional read and write accesses similar to prior
work [8, 14]. In addition, each cache block contains a transaction
ID, a valid bit and the bits to implement MOESI protocol. Each node
in the system is a single-issue in-order pipeline. We simulate a 512
entry fully associative TLB where each page is of size 4 KB.

We added features to Simics to support a transactional memory
system. In particular, we modified the Simics instruction decoder
to recognize the instructions Begin and End, which are used in the
program to specify the begin and end of the transactions respectively.
Our simulation of PTM and VTM assumes that the processor has a
fast register checkpointing mechanism.

The Chip-Multiprocessor (CMP) memory hierarchy is supported
by a high speed on-chip bus and a low speed main memory bus. We
simulate a high speed on-chip bus connecting the four CPUs and the
on-chip memory controller with a minimum round-trip latency of
20 cycles. The memory controller contains the PTM caches and the
ancillary hardware. In the MOESI protocol that we model, a cache
miss request can be sourced from other caches containing a valid
copy instead of having to access the much slower external memory.
We assume access to main memory has a minimum latency of 200
cycles, but up to three requests can be pipelined simultaneously.

The PTM hardware in the memory controller handles transac-
tional coherence requests using the SPT cache and TAV cache to
speed up the process. We simulate a 512 entry SPT cache and 2048
entry TAV cache. Both are fully associative. A miss requires that we
access the shadow page table in memory. From the shadow page ta-
ble we can get access to all of the TAV structures for that page. To
ensure fairness, in our simulation of VTM, we use an XADC [15]
of capacity equal to the combined capacities of the SPT and TAV
cache. The victim cache, and the hardware resources to implement
it, are used only for the Victim-VTM results. Those extra hardware
resources not used by PTM.

6.2 Characterizing Transactional Applications

We studied the behavior of the transactional memory regions by
using Splash-2 [17] programs. We first removed all the locks from
the programs. We then parallelized each program using transactions.
We made use of two instructions, Begin and End, which specify the
begin and end of a transaction respectively. To parallelize the code,
we focused on creating critical transaction regions similar to how the
average programmer might go about doing this. We wrapped each
loop body with a transaction, so that each iteration of the loop can
be executed in parallel. If there are loop carried dependencies, we
used ordered transactions to enforce correct dependencies.

Various program characteristics relevant to PTM are presented
in Table 1. The second column in the table indicates the num-
ber of committed transactions per application, and the third col-
umn presents the number of aborted transactions. Both these results
demonstrate the significant amount of transactional activity in our
benchmarks. We present the results for system effects in the fourth
and fifth column of Table 1, listing the number of exceptions and
context switches seen by the program – the fact these system effects
exist is a motivation for our proposal’s support for virtualizing un-
bounded transactions.

The sixth column, titled “pages”, presents the memory footprint
in terms of the number of unique pages accessed during the course of

10

Application Transactions System Memory
commit abort exception context-switch pages pg-x-wr conservative ideal mop/evict

fft 34 5 595 52 1041 551 52.9% 9.5% 87.5
lu 656 0 17754 1079 2311 2130 92.2% 3.6% 95.3
radix 70 17 615 116 771 629 81.6% 2.0% 246.3
ocean 877 282 7417 1421 14966 6769 45.2% 0.2% 15.8
water 59 8 32 127 241 110 45.6% 2.6% 4926.3

Table 1. Transactional memory execution behavior for loop regions in the SPLASH-2 programs. The entries in the table are organized in
three sets. The first set describes the transactional behavior of the applications, the second set describes the system behavior, and the third set
provides information about the memory footprint of the transactions.

entire program execution by both transactional code as well as non-
transactional code. This does not include the shadow pages used.
The seventh column “pg-x-wr” shows the total number of unique
pages updated by just the transactional writes.

We estimate the worst case upper bound on additional pages
allocated due to allocation of the shadow pages. The upper bound
is shown in column eight with the title “conservative”. The upper
bound is computed as the fraction of transaction’s footprint (shown
in column six) and the entire program execution’s footprint (shown
in column seven). The column “ideal” shows the percent increase
in the number of pages if all of the shadow pages created for a
transaction were instantaneously committed or garbage collected
when a transaction commits. To calculate this number we determine
the average number of pages that are live at any instant for the
transactions. We treat this number to be the additional number of
shadow pages that are live at any instant and calculate the increase
in page overhead accordingly.

The last column “mop/evict” in the table describes the frequency
of cache block evictions. The results are shown in terms of how
many memory operations occur between evictions. For example,
radix shows that it evicts a block every 246 memory operations.
This is one measure of how much work the overflow transactional
memory has to perform. In the worst case (ocean), we see that a
cache block is evicted for every 16 memory operations.

6.3 PTM Performance Comparisons

To determine the usefulness of the proposed PTM, we simulated
the performance of PTM comparing it against the prior technique
VTM and lock-based multi-threaded execution. Figure 4 shows the
speedup over a single thread of execution for five SPLASH-2 bench-
marks. In this and our other figures, we abbreviate Select-PTM as
Sel-PTM. We first show the speedup of using the default p-thread
locks. Using fine grain locks we can achieve a speedup of 134%
on average. This approach does not have the overhead of the trans-
actional execution, speculative aborts, and the overhead of buffer-
ing the overflowed blocks, although lock-based execution lacks the
deadlock-free execution guarantees that transactional memories pro-
vide.

The baseline VTM shows decent speedups for three of the bench-
marks, but we do not see any speedup for VTM on fft and ocean,
due to the overhead of commits. In comparison, if a victim cache is
used with the XADC to hold the recently evicted transaction blocks,
we achieve speedup for all benchmarks over single threaded exe-
cution. This is because currently executing transactions can access
the overflowed but not-yet-committed blocks from the victim cache,
while those blocks are being committed. Thus, for VC-VTM we see
an average speedup of 72% reflecting the benefits of overlapping
execution with physical commit to reduce the commit cost.

Our results for Copy-PTM show an average speedup of 116% and
for Select-PTM we observe 220% speedup. The difference between
the two is directly attributable to the additional overhead Copy-
PTM incurs for copying blocks to the home block on evictions and
restoring them on aborts. Note that we do not use a victim cache

0
50

100
150
200
250
300

fft lu radix ocean water Average

%
 S

p
ee

d
u

p

4p VTM
VC-VTM Copy-PTM
Sel-PTM

Figure 4. Comparing TM speedup for lock-based multithreading,
(base) VTM, Victim-Cache VTM, Copy-PTM and Select-PTM.
Speedup is over single threaded execution.

0
50

100
150
200
250
300

fft lu radix ocean water Average

%
 S

p
ee

d
u

p

4p
blk-only
wd:cache
wd:cache+mem

Figure 5. Advantage of conflict detection at the word granularity.

for the PTM results. One of the main differences between VTM and
Copy-PTM is that Copy-PTM incurs a penalty on abort, whereas
VTM incurs a penalty on commit. In the future we plan to compare
against a variant of VTM that does in-place speculative updates, so
that the main penalty is due to abort and not commit. We expect this
approach to perform closer to Copy-PTM.

Since coherence is done at the cache block granularity, there
can be false conflicts detected due to false sharing. This can lead
to unnecessary aborts, which incur extra run-time overhead [13]. It
has been shown that this overhead can be reduced by for tracking
conflicts at the word granularity [9, 8].

For the results we discussed thus far, we used a cache block of
size 64 bytes. Let us say a transaction read/wrote to one of the words
in the 64 bytes, and then it was followed by another transaction
that tried to write to a different word in the same 64 byte cache
block. Clearly, there was no conflict. However, our conflict detection
mechanism based on block sized coherence messages and PTM data
structures would detect a false conflict and unnecessarily abort one
of the transactions, because the conflict mechanism operates at the
cache block granularity.

Figure 5 shows the performance of modeling conflicts at the word
granularity compared to Select-PTM. Results are compared against
only using block granularity blk-only, and using p-threads locks.
The first approach we examine, wd:cache, performs cache coher-

11

ence at the word granularity, but still keeps track of transactional in-
formation for overflowed blocks at the block granularity (64 bytes).
As a result, this leads to more coherence traffic, which we modeled,
and also adds additional complexity to a directory system. This re-
sulted in only minor speedups, because evicting a block with multi-
ple writers would cause an abort, since the overflowed PTM struc-
tures would only kept track of one writer per block.

We then examined keeping track of transactional information
even for the overflowed blocks in PTM at the word granularity,
which is wd:cache+mem in Figure 5. Resolving conflicts at the
granularity of words is useful especially for programs such as radix
and water. For radix, this resulted in 170% speedup over single
threaded execution, which is a significant improvement over 116%
speedup from tracking all conflicts at the block level.

While the problem of false conflicts due to detection granularity
is highly benchmark dependent and not universal, it does affect
programs like radix dramatically. Techniques explored in prior
work should help reduce false conflicts, either by changing data
structure alignments [16] via the compiler, or allowing more than
one processor to own sub-partitions of the cache block [4].

7. Conclusion
With the advent of multi-cores, extracting task level parallelism is
going to be crucial. To meet this goal, transactions can help common
programmers to write multi-threaded programs. However, support
for unbounded transactions is crucial to develop a good transactional
programming model.

In this paper, we proposed a system design called PTM that ex-
tends existing virtual memory support to support unbounded trans-
actions. In PTM, when a transactionally modified cache block is
evicted, we allocate a shadow page, which can be used to hold
the speculative block. In addition, we aggregate and maintain all of
the transactional information on a page-level granularity. The PTM
structures are integrated with the virtual memory system, allowing
direct access to the transactional data for a page with both the virtual
and physical address of the page.

The first approach we examined is Copy-PTM, in which on a
transactional dirty block overflow, a copy of non-speculative block
is first backed up in the shadow page. On commit, the backed up
copy can be discarded, but on abort it has to be restored in the home
page. This allows commits to be fast, but aborts can be slow. We
optimized this design in Select-PTM, where the two versions of data
are allowed to be spread across the home and the shadow pages. To
determine which of the two pages contain the block to be fetched,
we used a selection bit vector. Select-PTM is efficient for performing
both commit and abort operations, as it does not have to physically
copy the data between the two pages. Also, on dirty block eviction
the non-speculative data need not be backed up.

Our PTM solution integrates well with the virtual memory and
paging subsystems, and is a promising option for supporting un-
bounded transactional memory.

Acknowledgments
We would like to thank the anonymous reviewers for providing
valuable feedback on this paper. This work was funded in part by
grants from ST Microelectronics, Microsoft, and Intel.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded transactional memory. In HPCA ’05: Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 316–327, Washington, DC, USA, 2005. IEEE
Computer Society.

[2] A. Chang and M. F. Mergen. 801 storage: Architecture and program-
ming. ACM Transactions on Computer Systems, 6(1):28–50, 1988.

[3] J. Chung, H. Chafi, C. C. Minh, A. McDonald, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun. The common case transactional
behavior of multithreaded programs. In HPCA ’06: Proceedings of
the 12th International Symposium on High-Performance Computer
Architecture, Washington, DC, USA, 2006. IEEE Computer Society.

[4] C. Dubnicki and T. J. LeBlanc. Adjustable block size coherent caches.
In Proceedings of the 19th International Symposium on Computer
Architecture, Gold Coast, Australia, 1992.

[5] J. N. Gray. Operating Systems: An Advanced Course, chapter Notes on
Database Operating Systems, pages 393–481. Springer-Verlag, Berlin,
1978. R. Bayer, R. M. Graham, and G. Seegmuller, editors.

[6] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and
K. Olukotun. Transactional coherence and consistency: Simplifying
parallel hardware and software. Mico’s Top Picks, IEEE Micro, 24(6),
nov/dec 2004.

[7] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,
C. Kozyrakis, and K. Olukotun. Programming with transactional
coherence and consistency (tcc). In ASPLOS-XI: Proceedings
of the 11th international conference on Architectural support for
programming languages and operating systems, pages 1–13, New
York, NY, USA, 2004. ACM Press.

[8] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. ACM SIGOPS Operating Systems Review,
32(5):58–69, 1998.

[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional memory coherence and consistency. In Proceedings of
the 31st Annual International Symposium on Computer Architecture,
page 102. IEEE Computer Society, Jun 2004.

[10] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In PLDI-06 Programming Languages Design and
Implementation, pages 14–25. ACM Press, 2006.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA ’93: Proceedings of the
20th annual international symposium on Computer architecture, pages
289–300, New York, NY, USA, 1993. ACM Press.

[12] S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. IEEE Computer, 35(2):50–58, 2002.

[13] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom,
L. Hammond, C. Kozyrakis, and K. Olukotun. Characterization of
tcc on chip-multiprocessors. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques,
Sept 2005.

[14] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
Logtm: Log-based transactional memory. In HPCA ’06: Proceedings
of the 12th International Symposium on High-Performance Computer
Architecture, Washington, DC, USA, 2006. IEEE Computer Society.

[15] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
SIGARCH Comput. Archit. News, 33(2):494–505, 2005.

[16] J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing and spatial
locality in multiprocessor caches. IEEE Trans. Computers, 43(6):651–
663, 1994.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-
2 programs: Characterization and methodological considerations. In
22nd Annual International Symposium on Computer Architecture,
pages 24–36. Association for Computing Machinery, 1995.

[18] C. Zilles and L. Baugh. Extending hardware transactional memory to
support non-busy waiting and nontransactional actions. In TRANSACT:
First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, June 2006.

12

