Unboundedness of solutions of time-dependent differential systems of parabolic type

Kusuo Kobayashi and Norio Yoshida

Abstract

Unboundedness of matrix solutions of time-dependent differential systems of parabolic type is studied. The key tool is to use the Picone-type identity for strongly elliptic systems. The results about oscillations of solutions are also derived.

Beginning with the work of McNabb [10], unboundedness of solutions has been investigated by numerous authors. We refer the reader to Dunninger [4], Jaroš, Kusano and Yoshida [5, 6] for scalar parabolic equations, and to Chan [1], Chan and Young [2, 3], Kuks [7], Kusano and Narita [8] for parabolic systems.

The purpose of this paper is to modify the results of Chan [1], Chan and Young [2] and obtain the results about the oscillations of matrix solutions.

We are concerned with the matrix solutions of the time-dependent differential system of parabolic type

$$
\begin{equation*}
\frac{\partial W}{\partial t}-P[W]=0 \quad \text { in } \Omega \equiv G \times(0, \infty) \tag{1}
\end{equation*}
$$

where G is a bounded domain in \mathbb{R}^{n} with piecewise smooth boundary ∂G and

$$
P[W] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(G_{i j}(x, t) \frac{\partial W}{\partial x_{j}}\right)+H(x, t) W
$$

It is assumed that :
2000 Mathematics Subject Classification. 35B05.
Key words and phrases. Unboundedness, differential systems, parabolic type.
$\left(\mathrm{H}_{1}\right) G_{i j}(x, t)(i, j=1,2, \ldots, n)$ and $H(x, t)$ are $m \times m$ real symmetric matrix functions ;
$\left(\mathrm{H}_{2}\right) G_{i j}(x, t) \in C^{1}(\bar{\Omega})(i, j=1,2, \ldots, n)$ and $H(x, t) \in C(\bar{\Omega})$;
$\left(\mathrm{H}_{3}\right) \quad G_{i j}(x, t)=G_{j i}(x, t)(i, j=1,2, \ldots, n)$ and the $m n \times m n$ matrix $\mathscr{G}=$ $\left(G_{i j}(x, t)\right)$ is positive definite in Ω.

The domain $\mathfrak{D}_{P}(\Omega)$ of P is defined to be the set of all $m \times m$ matrix functions $W \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.

Definition 1. A function $v: \bar{\Omega} \longrightarrow \mathbb{R}$ is said to be oscillatory on $\bar{\Omega}$ if v has a zero on $\bar{G} \times[t, \infty)$ for any $t>0$. Otherwise, v is called nonoscillatory on $\bar{\Omega}$.

Definition 2. An $m \times m$ matrix $W(x, t) \in C^{1}(\tilde{\Omega}), \tilde{\Omega} \subset \Omega$, is said to be prepared in $\tilde{\Omega}$ with respect to P if the matrices

$$
\sum_{j=1}^{n} W^{T}(x, t) G_{i j}(x, t) \frac{\partial W}{\partial x_{j}}(x, t) \quad(i=1,2, \ldots, n)
$$

are symmetric in $\tilde{\Omega}$, where the superscript T denotes the transpose.
Theorem 1. Let $W \in \mathfrak{D}_{P}(\Omega)$ and let $\operatorname{det} W \neq 0$ in $G \times I$, where I is any interval in \mathbb{R}. If W is prepared in $G \times I$ with respect to P, then the following identity holds for any m-column vector $u \in C^{1}(G)$:

$$
\begin{align*}
& \sum_{i, j=1}^{n}\left(W \frac{\partial}{\partial x_{i}}\left(W^{-1} u\right)\right)^{T} G_{i j}(x, t)\left(W \frac{\partial}{\partial x_{j}}\left(W^{-1} u\right)\right) \\
& +\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(u^{T} G_{i j}(x, t) \frac{\partial W}{\partial x_{j}} W^{-1} u\right) \\
= & \sum_{i, j=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{T} G_{i j}(x, t) \frac{\partial u}{\partial x_{j}}-u^{T} H(x, t) u+u^{T} P[W] W^{-1} u . \tag{2}
\end{align*}
$$

Proof. In the case where $G_{i j}(x, t)=G_{i j}(x)$, the identity (2) was established (see, e.g., Kusano and Yoshida [9, p.172]). The differentiations appearing in (2) are only partial differentiations with respect to x_{i}, and so we can consider t as a parameter. Hence, the identity (2) holds.

Lemma. Assume that $W \in \mathfrak{D}_{P}(\Omega)$ is symmetric and nonsingular on $G \times\left[t_{0}, \infty\right)$ for some $t_{0}>0$. If $\frac{\partial}{\partial t} \log W$ commutes with $\log W$ on $G \times\left[t_{0}, \infty\right)$, then we obtain

$$
\begin{equation*}
\frac{\partial W}{\partial t} W^{-1}=\frac{\partial}{\partial t} \log W=\frac{\partial}{\partial t}(\operatorname{Re} \log W) \quad \text { on } \quad G \times\left[t_{0}, \infty\right) \tag{3}
\end{equation*}
$$

where $\log W$ is the principal value and Re means the real part.
Proof. Since

$$
W=\exp (\log W)=\sum_{j=0}^{\infty} \frac{1}{j!}(\log W)^{j},
$$

we have

$$
\begin{aligned}
\frac{\partial W}{\partial t} & =\sum_{j=0}^{\infty} \frac{1}{j!} \frac{\partial}{\partial t}(\log W)^{j} \\
& =\sum_{j=1}^{\infty} \frac{1}{j!} j\left(\frac{\partial}{\partial t} \log W\right)(\log W)^{j-1} \\
& =\left(\frac{\partial}{\partial t} \log W\right) \exp (\log W) \\
& =\left(\frac{\partial}{\partial t} \log W\right) W
\end{aligned}
$$

Hence, we obtain

$$
\frac{\partial W}{\partial t} W^{-1}=\frac{\partial}{\partial t} \log W
$$

Since W is a real symmetric matrix, there exists an orthogonal matrix S such that $S^{-1} W S=J$, where

$$
J=\left(\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{m}
\end{array}\right)
$$

$\lambda_{i}(i=1,2, \ldots, n)$ being the eigenvalues of W. It can be shown that

$$
\begin{aligned}
\log W & =\log \left(S J S^{-1}\right)=S(\log J) S^{-1} \\
& =S\left(\begin{array}{cccc}
\log \lambda_{1} & & & 0 \\
& \log \lambda_{2} & & \\
& & \ddots & \\
0 & & & \log \lambda_{m}
\end{array}\right) S^{-1},
\end{aligned}
$$

where

$$
\begin{aligned}
\log \lambda_{i} & =\log \left|\lambda_{i}\right|+\sqrt{-1} \arg \lambda_{i} \\
& = \begin{cases}\log \left|\lambda_{i}\right| & \text { if } \lambda_{i}>0 \\
\log \left|\lambda_{i}\right|+\sqrt{-1} \pi & \text { if } \lambda_{i}<0 .\end{cases}
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial t} \log W & =\frac{\partial}{\partial t}\left(S\left(\begin{array}{cccc}
\log \left|\lambda_{1}\right| & & & 0 \\
& \log \left|\lambda_{2}\right| & & \\
& & \ddots & \\
0 & & & \log \left|\lambda_{m}\right|
\end{array}\right) S^{-1}\right) \\
& =\frac{\partial}{\partial t}(\operatorname{Re} \log W) .
\end{aligned}
$$

Theorem 2. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold, and that there is a nontrivial m-column vector function $u \in C^{1}(\bar{G})$ such that $u=0$ on ∂G and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{T}^{t} M[u](s) d s=-\infty \quad \text { for any } T>0 \tag{4}
\end{equation*}
$$

where

$$
M[u](t) \equiv \int_{G}\left[\sum_{i, j=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{T} G_{i j}(x, t) \frac{\partial u}{\partial x_{j}}-u^{T} H(x, t) u\right] d x .
$$

Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) such that:
(i) W is symmetric in Ω;
(ii) W is prepared in Ω with respect to P;
(iii) $\operatorname{det} W$ is nonoscillatory on $\bar{\Omega}$, that is, $\operatorname{det} W \neq 0$ on $\bar{G} \times\left[t_{0}, \infty\right)$ for some $t_{0}>0$;
(iv) $\frac{\partial}{\partial t} \log W$ commutes with $\log W$ on $G \times\left[t_{0}, \infty\right)$.

Then the following condition holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{G} u^{T}(\operatorname{Re} \log W) u d x=\infty \tag{5}
\end{equation*}
$$

Proof. The hypotheses (i) and (ii) imply that the identity (2) holds in $G \times\left[t_{0}, \infty\right)$. Integrating (2) over G and taking account of $\left(\mathrm{H}_{3}\right)$ yield

$$
\begin{aligned}
0 & \leq M[u](t)+\int_{G} u^{T} P[W] W^{-1} u d x \\
& =M[u](t)+\int_{G} u^{T} \frac{\partial W}{\partial t} W^{-1} u d x, \quad t \geq t_{0}
\end{aligned}
$$

which implies

$$
-M[u](t) \leq \int_{G} u^{T} \frac{\partial W}{\partial t} W^{-1} u d x, \quad t \geq t_{0}
$$

Using Lemma, we obtain

$$
\begin{equation*}
-M[u](t) \leq \frac{d}{d t} \int_{G} u^{T}(\operatorname{Re} \log W) u d x, \quad t \geq t_{0} \tag{6}
\end{equation*}
$$

Integrating (6) on $\left[t_{0}, t\right]$, we have

$$
-\int_{t_{0}}^{t} M[u](s) d s \leq z(t)-z\left(t_{0}\right),
$$

where

$$
z(t)=\int_{G} u^{T}(\operatorname{Re} \log W) u d x
$$

It follows from the hypothesis (4) that

$$
\lim _{t \rightarrow \infty} z(t)=\infty,
$$

which is equivalent to (5).

Theorem 3. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold, and that there is a nontrivial m-column vector function $u \in C^{1}(\bar{G})$ satisfying (4) and the boundary condition $u=0$ on ∂G. Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) which satisfies the hypotheses (i)-(iv) of Theorem 2. Then, $\|W\|$ is unbounded in Ω, where

$$
\|W\|=\left(\operatorname{tr} W^{T} W\right)^{1 / 2}
$$

$\operatorname{tr} W$ being the trace of W.

Proof. It is easy to see that

$$
\begin{equation*}
\left|\int_{G} u^{T}(\operatorname{Re} \log W) u d x\right| \leq K\|\operatorname{Re} \log W\| \tag{7}
\end{equation*}
$$

for some positive constant K. As was shown in the proof of Lemma, Re $\log W$ can be written in the form

$$
\operatorname{Re} \log W=S(\log \tilde{J}) S^{-1}
$$

where S is an orthogonal matrix such that $S^{-1} W S=J$ and

$$
\tilde{J}=\left(\begin{array}{cccc}
\left|\lambda_{1}\right| & & & 0 \\
& \left|\lambda_{2}\right| & & \\
& & \ddots & \\
0 & & & \left|\lambda_{m}\right|
\end{array}\right)
$$

Hence, we obtain

$$
\begin{equation*}
\|\operatorname{Re} \log W\| \leq\|S\| \cdot\|\log \tilde{J}\| \cdot\left\|S^{-1}\right\|=m\|\log \tilde{J}\| . \tag{8}
\end{equation*}
$$

We easily see that

$$
\begin{equation*}
\|\tilde{J}\|=\|J\| \leq\left\|S^{-1}\right\| \cdot\|W\| \cdot\|S\|=m\|W\| . \tag{9}
\end{equation*}
$$

Assume that $\|W\|$ is bounded. Then, $\|\tilde{J}\|$ is bounded from (9), and therefore $\|\log \tilde{J}\|$ is also bounded. The inequality (8) implies that $\|\operatorname{Re} \log W\|$ is bounded. In view of (7), we find that $\int_{G} u^{T}(\operatorname{Re} \log W) u d x$ is bounded. Hence, the condition (5) means that $\|W\|$ is unbounded.

The following corollary is an immediate consequence of Theorem 3.

Corollary 1. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold, and that there is a nontrivial m-column vector function $u \in C^{1}(\bar{G})$ satisfying (4) and the boundary condition $u=0$ on ∂G. Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) which satisfies the hypotheses (i)-(ii) of Theorem 2. If $\|W\|$ is bounded in Ω, then either that $\operatorname{det} W$ is oscillatory on $\bar{\Omega}$, or (if $\operatorname{det} W$ is nonoscillatory on $\bar{\Omega}$) that (iv) of Theorem 2 does not hold.

We now consider the comparison equation

$$
\begin{equation*}
L[u] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+C(x) u \tag{10}
\end{equation*}
$$

where $A_{i j}(x)(i, j=1,2, \ldots, n)$ and $C(x)$ satisfy the following hypotheses:
$\left(\mathrm{H}_{4}\right) A_{i j}(x)(i, j=1,2, \ldots, n)$ and $C(x)$ are $m \times m$ real symmetric matrix functions;
$\left(\mathrm{H}_{5}\right) \quad A_{i j}(x) \in C^{1}(\bar{G})(i, j=1,2, \ldots, n)$ and $C(x) \in C(\bar{G})$;
$\left(\mathrm{H}_{6}\right) A_{i j}(x)=A_{j i}(x)(i, j=1,2, \ldots, n)$ and the $m n \times m n$ matrix $\mathscr{A}=$ $\left(A_{i j}(x)\right)$ is positive definite in G.

The domain $\mathfrak{D}_{L}(G)$ of L is defined to be the set of all m-column vector functions $u \in C^{2}(G) \cap C^{1}(\bar{G})$.

Theorem 4. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{6}\right)$ hold, and that there is a nontrivial m-column vector function $u \in \mathfrak{D}_{L}(G)$ such that:

$$
\begin{align*}
& L[u]=0 \quad \text { in } G \tag{11}\\
& u=0 \text { on } \partial G \tag{12}\\
& \lim _{t \rightarrow \infty} \int_{T}^{t} V[u](s) d s=\infty \quad \text { for any } T>0 \tag{13}
\end{align*}
$$

where

$$
\begin{aligned}
V[u](t) \equiv \int_{G}\left[\sum_{i, j=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{T}\left(A_{i j}(x)-G_{i j}(x, t)\right) \frac{\partial u}{\partial x_{j}}\right. \\
\left.+u^{T}(H(x, t)-C(x)) u\right] d x
\end{aligned}
$$

Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) which satisfies the hypotheses (i)-(iv) of Theorem 2. Then, the condition (5) holds.

Proof. Proceeding as in the proof of Theorem 1, we observe that the following Picone-type identity

$$
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(u^{T} A_{i j}(x) \frac{\partial u}{\partial x_{j}}-u^{T} G_{i j}(x, t) \frac{\partial W}{\partial x_{j}} W^{-1} u\right)
$$

$$
\begin{aligned}
= & \sum_{i, j=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{T}\left(A_{i j}(x)-G_{i j}(x, t)\right) \frac{\partial u}{\partial x_{j}}+u^{T}(H(x, t)-C(x)) u \\
& +\sum_{i, j=1}^{n}\left(W \frac{\partial}{\partial x_{i}}\left(W^{-1} u\right)\right)^{T} G_{i j}(x, t)\left(W \frac{\partial}{\partial x_{j}}\left(W^{-1} u\right)\right) \\
& +u^{T} L[u]-u^{T} P[W] W^{-1} u
\end{aligned}
$$

holds in $G \times\left[t_{0}, \infty\right)$. Integrating the above identity over G and taking account of the hypotheses yield the inequality

$$
0 \geq V[u](t)-\int_{G} u^{T} P[W] W^{-1} u d x, \quad t \geq t_{0}
$$

or

$$
V[u](t) \leq \int_{G} u^{T} \frac{\partial W}{\partial t} W^{-1} u d x, \quad t \geq t_{0}
$$

Arguing as in the proof of Theorem 2, we conclude that the condition (5) holds.

Theorem 5. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{6}\right)$ hold, and that there is a nontrivial m-column vector function $u \in \mathfrak{D}_{L}(G)$ satisfying (11)-(13). Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) which satisfies the hypotheses (i)-(iv) of Theorem 2. Then, $\|W\|$ is unbounded in Ω.

Proof. By the same arguments as were used in Theorem 3, we conclude that the conclusion follows from Theorem 4.

We can obtain the analogue of Corollary 1.
Corollary 2. Assume that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{6}\right)$ hold, and that there is a nontrivial m-column vector function $u \in \mathfrak{D}_{L}(G)$ satisfying (11)-(13). Let $W \in \mathfrak{D}_{P}(\Omega)$ be a solution of (1) which satisfies the hypotheses (i)-(ii) of Theorem 2. If $\|W\|$ is bounded in Ω, then either that $\operatorname{det} W$ is oscillatory on $\bar{\Omega}$, or (if $\operatorname{det} W$ is nonoscillatory on $\bar{\Omega}$) that (iv) of Theorem 2 does not hold.

Example 1. We consider the matrix differential system

$$
\begin{equation*}
\frac{\partial W}{\partial t}-\left(\alpha \frac{\partial^{2} W}{\partial x^{2}}+\beta W\right)=0, \quad(x, t) \in(0, \pi) \times(0, \infty) \tag{14}
\end{equation*}
$$

where α and β are positive constants with $\alpha<\beta$. Here $n=1, G_{11}(x, t)=$ $\alpha \mathbf{I}_{m}\left(\mathrm{I}_{m}: m \times m\right.$ identity matrix $), H=\beta \mathrm{I}_{m}, G=(0, \pi)$ and $\Omega=(0, \pi) \times$ $(0, \infty)$. Letting

$$
u=\left(\begin{array}{c}
\sin x \\
\sin x \\
\vdots \\
\sin x
\end{array}\right)
$$

we see that $u(0)=u(\pi)=0$ and

$$
\begin{aligned}
M[u](t) & =\int_{0}^{\pi}\left[\alpha\left(\frac{\partial u}{\partial x}\right)^{T} \frac{\partial u}{\partial x}-\beta u^{T} u\right] d x \\
& =\int_{0}^{\pi}\left[\alpha m \cos ^{2} x-\beta m \sin ^{2} x\right] d x \\
& =\frac{\pi}{2} m(\alpha-\beta)<0
\end{aligned}
$$

Hence, we find that

$$
\lim _{t \rightarrow \infty} \int_{T}^{t} M[u](s) d s=-\infty
$$

for any $T>0$. It follows from Theorem 2 that if W is a solution of (14) satisfying (i)-(iv) of Theorem 2, then (5) holds. One such solution is $W=e^{\beta t} \mathrm{I}_{m}$. In fact, it is clear that (i)-(iv) hold for $W=e^{\beta t} \mathrm{I}_{m}$, and that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \int_{0}^{\pi} u^{T}(\operatorname{Re} \log W) u d x \\
= & \lim _{t \rightarrow \infty} \int_{0}^{\pi} \beta t m \sin ^{2} x d x \\
= & \lim _{t \rightarrow \infty} \frac{\pi}{2} \beta m t=\infty .
\end{aligned}
$$

Example 2. We consider the matrix differential system

$$
\begin{equation*}
\frac{\partial W}{\partial t}-\left(\alpha \frac{\partial^{2} W}{\partial x^{2}}+\beta W\right)=0, \quad(x, t) \in(-1,1) \times(0, \infty) \tag{15}
\end{equation*}
$$

where α and β are positive constants satisfying $\alpha<(5 / 2) \beta$. Here $n=$ $1, G_{11}(x, t)=\alpha \mathrm{I}_{m}, H=\beta \mathrm{I}_{m}, G=(-1,1)$ and $\Omega=(-1,1) \times(0, \infty)$. We
let

$$
u=\left(\begin{array}{c}
1-x^{2} \\
1-x^{2} \\
\vdots \\
1-x^{2}
\end{array}\right)
$$

and find that $u(-1)=u(1)=0$ and

$$
\begin{aligned}
M[u](t) & =\int_{-1}^{1}\left[\alpha\left(\frac{\partial u}{\partial x}\right)^{T} \frac{\partial u}{\partial x}-\beta u^{T} u\right] d x \\
& =\int_{-1}^{1}\left[4 \alpha m x^{2}-\beta m\left(1-x^{2}\right)^{2}\right] d x \\
& =m\left(\frac{8}{3} \alpha-\frac{16}{15} \beta\right)<0 .
\end{aligned}
$$

Hence, it is easily seen that

$$
\lim _{t \rightarrow \infty} \int_{T}^{t} M[u](s) d s=-\infty
$$

for any $T>0$. Theorem 3 implies that if W is a solution of (15) satisfying (i)-(iv) of Theorem 2, then $\|W\|$ is unbounded in $(-1,1) \times(0, \infty)$. For example, $W=e^{\beta t} I_{m}$ is such a solution. In fact, we have that $\|W\|=$ $\sqrt{m} e^{\beta t}$.

References

[1] C. Y. Chan, Singular and unbounded matrix solutions for both timedependent matrix and vector differential systems, J. Math. Anal. Appl., 87 (1982), 147-157.
[2] C. Y. Chan and E. C. Young, Unboundedness of solutions and comparison theorems for time-dependent quasilinear differential matrix inequalities, J. Differential Equations, 14 (1973), 195-201.
[3] C. Y. Chan and E. C. Young, Singular matrix solutions for timedependent fourth order quasilinear matrix differential inequalities, J. Differential Equations, 18 (1975), 386-392.
[4] D. R. Dunninger, Sturmian theorems for parabolic inequalities, Rend. Accad. Sci. Fis. Mat. Napoli, 36 (1969), 406-410.
[5] J. Jaroš, T. Kusano and N. Yoshida, Oscillatory properties of solutions of superlinear-sublinear parabolic equations via Picone-type inequalities, Math. J. Toyama Univ., 24 (2001), 83-91.
[6] J. Jaroš, T. Kusano and N. Yoshida, Oscillation properties of solutions of a class of nonlinear parabolic equations, J. Comput. Appl. Math. (to appear).
[7] L. M. Kuks, Unboundedness of solutions of high-order parabolic systems in the plane and a Sturm-type comparison theorem, Differ. Uravn., 14 (1978), 878-884; Differ. Equ., 14 (1978), 623-627.
[8] T. Kusano and M. Narita, Unboundedness of solutions of parabolic differential inequalities, J. Math. Anal. Appl., 57 (1977), 68-75.
[9] T. Kusano and N. Yoshida, Nonoscillation criteria for strongly elliptic systems, Boll. Un. Mat. Ital. (4), 11 (1975), 166-173.
[10] A. McNabb, A note on the boundedness of solutions of linear parabolic equations, Proc. Amer. Math. Soc., 13 (1962), 262-265.

Kusuo Kobayashi
Department of Mathematics
Faculty of Science
Toyama University
Toyama, 930-8555, Japan

Norio Yoshida

Department of Mathematics
Faculty of Science
Toyama University
Toyama, 930-8555, Japan

