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Unboundedness of solutions of time-dependent

differential systems of parabolic type

Kusuo Kobayashi and Norio Yoshida

Abstract. Unboundedness of matrix solutions of time-dependent
differential systems of parabolic type is studied. The key tool is to
use the Picone-type identity for strongly elliptic systems. The results
about oscillations of solutions are also derived.

Beginning with the work of McNabb [10], unboundedness of solutions has
been investigated by numerous authors. We refer the reader to Dunninger
[4], Jaroš, Kusano and Yoshida [5, 6] for scalar parabolic equations, and
to Chan [1], Chan and Young [2, 3], Kuks [7], Kusano and Narita [8] for
parabolic systems.

The purpose of this paper is to modify the results of Chan [1], Chan and
Young [2] and obtain the results about the oscillations of matrix solutions.

We are concerned with the matrix solutions of the time-dependent dif-
ferential system of parabolic type

∂W

∂t
− P [W ] = 0 in Ω ≡ G× (0,∞), (1)

where G is a bounded domain in Rn with piecewise smooth boundary ∂G

and

P [W ] ≡
n∑

i,j=1

∂

∂xi

(
Gij(x, t)

∂W

∂xj

)
+ H(x, t)W.

It is assumed that :
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(H1) Gij(x, t) (i, j = 1, 2, ..., n) and H(x, t) are m×m real symmetric matrix
functions ;

(H2) Gij(x, t) ∈ C1(Ω) (i, j = 1, 2, ..., n) and H(x, t) ∈ C(Ω) ;

(H3) Gij(x, t) = Gji(x, t) (i, j = 1, 2, ..., n) and the mn ×mn matrix G =
(Gij(x, t)) is positive definite in Ω.

The domain DP (Ω) of P is defined to be the set of all m × m matrix
functions W ∈ C2(Ω) ∩ C1(Ω).

Definition 1. A function v : Ω −→ R is said to be oscillatory on Ω if v

has a zero on G× [t,∞) for any t > 0. Otherwise, v is called nonoscillatory
on Ω.

Definition 2. An m ×m matrix W (x, t) ∈ C1(Ω̃), Ω̃ ⊂ Ω, is said to be
prepared in Ω̃ with respect to P if the matrices

n∑

j=1

W T (x, t)Gij(x, t)
∂W

∂xj
(x, t) (i = 1, 2, ..., n)

are symmetric in Ω̃, where the superscript T denotes the transpose.

Theorem 1. Let W ∈ DP (Ω) and let detW 6= 0 in G × I, where I is
any interval in R. If W is prepared in G × I with respect to P , then the
following identity holds for any m-column vector u ∈ C1(G) :

n∑

i,j=1

(
W

∂

∂xi

(
W−1u

))T

Gij(x, t)
(

W
∂

∂xj

(
W−1u

))

+
n∑

i,j=1

∂

∂xi

(
uT Gij(x, t)

∂W

∂xj
W−1u

)

=
n∑

i,j=1

(
∂u

∂xi

)T

Gij(x, t)
∂u

∂xj
− uT H(x, t)u + uT P [W ]W−1u. (2)

Proof. In the case where Gij(x, t) = Gij(x), the identity (2) was es-
tablished (see, e.g., Kusano and Yoshida [9, p.172]). The differentiations
appearing in (2) are only partial differentiations with respect to xi, and so
we can consider t as a parameter. Hence, the identity (2) holds.
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Lemma. Assume that W ∈ DP (Ω) is symmetric and nonsingular on
G×[t0,∞) for some t0 > 0. If ∂

∂t log W commutes with log W on G×[t0,∞),
then we obtain

∂W

∂t
W−1 =

∂

∂t
log W =

∂

∂t

(
Re log W

)
on G× [t0,∞), (3)

where log W is the principal value and Re means the real part.

Proof. Since

W = exp(log W ) =
∞∑

j=0

1
j!

(log W )j ,

we have

∂W

∂t
=

∞∑

j=0

1
j!

∂

∂t
(log W )j

=
∞∑

j=1

1
j!

j

(
∂

∂t
log W

)
(log W )j−1

=
(

∂

∂t
log W

)
exp(log W )

=
(

∂

∂t
log W

)
W.

Hence, we obtain
∂W

∂t
W−1 =

∂

∂t
log W.

Since W is a real symmetric matrix, there exists an orthogonal matrix S

such that S−1WS = J , where

J =




λ1 0
λ2

. . .

0 λm




,

λi (i = 1, 2, ..., n) being the eigenvalues of W . It can be shown that

log W = log(SJS−1) = S(log J)S−1

= S




log λ1 0
log λ2

. . .

0 log λm




S−1,
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where

log λi = log |λi|+
√−1 arg λi (0 ≤ arg λi < 2π)

=

{
log |λi| if λi > 0
log |λi|+

√−1π if λi < 0.

Hence, we obtain

∂

∂t
log W =

∂

∂t




S




log |λ1| 0
log |λ2|

. . .

0 log |λm|




S−1




=
∂

∂t

(
Re log W

)
.

Theorem 2. Assume that (H1)–(H3) hold, and that there is a nontrivial
m-column vector function u ∈ C1(G) such that u = 0 on ∂G and

lim
t→∞

∫ t

T
M [u](s)ds = −∞ for any T > 0, (4)

where

M [u](t) ≡
∫

G




n∑

i,j=1

(
∂u

∂xi

)T

Gij(x, t)
∂u

∂xj
− uT H(x, t)u


 dx.

Let W ∈ DP (Ω) be a solution of (1) such that :

(i) W is symmetric in Ω ;

(ii) W is prepared in Ω with respect to P ;

(iii) detW is nonoscillatory on Ω, that is, detW 6= 0 on G × [t0,∞) for
some t0 > 0 ;

(iv) ∂
∂t log W commutes with log W on G× [t0,∞).

Then the following condition holds :

lim
t→∞

∫

G
uT

(
Re log W

)
u dx = ∞. (5)
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Proof. The hypotheses (i) and (ii) imply that the identity (2) holds in
G× [t0,∞). Integrating (2) over G and taking account of (H3) yield

0 ≤ M [u](t) +
∫

G
uT P [W ]W−1u dx

= M [u](t) +
∫

G
uT ∂W

∂t
W−1u dx, t ≥ t0,

which implies

−M [u](t) ≤
∫

G
uT ∂W

∂t
W−1u dx, t ≥ t0.

Using Lemma, we obtain

−M [u](t) ≤ d

dt

∫

G
uT

(
Re log W

)
u dx, t ≥ t0. (6)

Integrating (6) on [t0, t], we have

−
∫ t

t0

M [u](s)ds ≤ z(t)− z(t0),

where

z(t) =
∫

G
uT

(
Re log W

)
u dx.

It follows from the hypothesis (4) that

lim
t→∞ z(t) = ∞,

which is equivalent to (5).

Theorem 3. Assume that (H1)–(H3) hold, and that there is a nontriv-
ial m-column vector function u ∈ C1(G) satisfying (4) and the boundary
condition u = 0 on ∂G. Let W ∈ DP (Ω) be a solution of (1) which satisfies
the hypotheses (i)–(iv) of Theorem 2. Then, ‖W‖ is unbounded in Ω, where

‖W‖ =
(
tr W T W

)1/2
,

tr W being the trace of W .
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Proof. It is easy to see that
∣∣∣∣
∫

G
uT

(
Re log W

)
u dx

∣∣∣∣ ≤ K‖Re log W‖ (7)

for some positive constant K. As was shown in the proof of Lemma,
Re log W can be written in the form

Re log W = S(log J̃)S−1,

where S is an orthogonal matrix such that S−1WS = J and

J̃ =




|λ1| 0
|λ2|

. . .

0 |λm|




.

Hence, we obtain

‖Re log W‖ ≤ ‖S‖ · ‖ log J̃‖ · ‖S−1‖ = m ‖ log J̃‖. (8)

We easily see that

‖J̃‖ = ‖J‖ ≤ ‖S−1‖ · ‖W‖ · ‖S‖ = m ‖W‖. (9)

Assume that ‖W‖ is bounded. Then, ‖J̃‖ is bounded from (9), and there-
fore ‖ log J̃‖ is also bounded. The inequality (8) implies that ‖Re log W‖
is bounded. In view of (7), we find that

∫
G uT (Re log W )u dx is bounded.

Hence, the condition (5) means that ‖W‖ is unbounded.

The following corollary is an immediate consequence of Theorem 3.

Corollary 1. Assume that (H1)–(H3) hold, and that there is a nontriv-
ial m-column vector function u ∈ C1(G) satisfying (4) and the boundary
condition u = 0 on ∂G. Let W ∈ DP (Ω) be a solution of (1) which satisfies
the hypotheses (i)–(ii) of Theorem 2. If ‖W‖ is bounded in Ω, then either
that det W is oscillatory on Ω, or (if detW is nonoscillatory on Ω) that
(iv) of Theorem 2 does not hold.
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We now consider the comparison equation

L[u] ≡
n∑

i,j=1

∂

∂xi

(
Aij(x)

∂u

∂xj

)
+ C(x)u, (10)

where Aij(x) (i, j = 1, 2, ..., n) and C(x) satisfy the following hypotheses :

(H4) Aij(x) (i, j = 1, 2, ..., n) and C(x) are m ×m real symmetric matrix
functions ;

(H5) Aij(x) ∈ C1(G) (i, j = 1, 2, ..., n) and C(x) ∈ C(G) ;

(H6) Aij(x) = Aji(x) (i, j = 1, 2, ..., n) and the mn × mn matrix A =
(Aij(x)) is positive definite in G.

The domain DL(G) of L is defined to be the set of all m−column vector
functions u ∈ C2(G) ∩ C1(G).

Theorem 4. Assume that (H1)–(H6) hold, and that there is a nontrivial
m-column vector function u ∈ DL(G) such that :

L[u] = 0 in G, (11)

u = 0 on ∂G, (12)

lim
t→∞

∫ t

T
V [u](s)ds = ∞ for any T > 0, (13)

where

V [u](t) ≡
∫

G

[ n∑

i,j=1

(
∂u

∂xi

)T (
Aij(x)−Gij(x, t)

) ∂u

∂xj

+uT
(
H(x, t)− C(x)

)
u

]
dx.

Let W ∈ DP (Ω) be a solution of (1) which satisfies the hypotheses (i)–(iv)
of Theorem 2. Then, the condition (5) holds.

Proof. Proceeding as in the proof of Theorem 1, we observe that the
following Picone-type identity

n∑

i,j=1

∂

∂xi

(
uT Aij(x)

∂u

∂xj
− uT Gij(x, t)

∂W

∂xj
W−1u

)
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=
n∑

i,j=1

(
∂u

∂xi

)T (
Aij(x)−Gij(x, t)

) ∂u

∂xj
+ uT

(
H(x, t)− C(x)

)
u

+
n∑

i,j=1

(
W

∂

∂xi

(
W−1u

))T

Gij(x, t)
(

W
∂

∂xj

(
W−1u

))

+uT L[u]− uT P [W ]W−1u

holds in G × [t0,∞). Integrating the above identity over G and taking
account of the hypotheses yield the inequality

0 ≥ V [u](t)−
∫

G
uT P [W ]W−1u dx, t ≥ t0

or

V [u](t) ≤
∫

G
uT ∂W

∂t
W−1u dx, t ≥ t0.

Arguing as in the proof of Theorem 2, we conclude that the condition (5)
holds.

Theorem 5. Assume that (H1)–(H6) hold, and that there is a nontrivial
m-column vector function u ∈ DL(G) satisfying (11)–(13). Let W ∈ DP (Ω)
be a solution of (1) which satisfies the hypotheses (i)–(iv) of Theorem 2.
Then, ‖W‖ is unbounded in Ω.

Proof. By the same arguments as were used in Theorem 3, we conclude
that the conclusion follows from Theorem 4.

We can obtain the analogue of Corollary 1.

Corollary 2. Assume that (H1)–(H6) hold, and that there is a nontrivial
m-column vector function u ∈ DL(G) satisfying (11)–(13). Let W ∈ DP (Ω)
be a solution of (1) which satisfies the hypotheses (i)–(ii) of Theorem 2. If
‖W‖ is bounded in Ω, then either that det W is oscillatory on Ω, or (if
detW is nonoscillatory on Ω) that (iv) of Theorem 2 does not hold.

Example 1. We consider the matrix differential system

∂W

∂t
−

(
α

∂2W

∂x2
+ β W

)
= 0, (x, t) ∈ (0, π)× (0,∞), (14)
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where α and β are positive constants with α < β. Here n = 1, G11(x, t) =
αIm (Im : m×m identity matrix), H = β Im, G = (0, π) and Ω = (0, π)×
(0,∞). Letting

u =




sinx

sinx
...

sinx




,

we see that u(0) = u(π) = 0 and

M [u](t) =
∫ π

0

[
α

(
∂u

∂x

)T ∂u

∂x
− β uT u

]
dx

=
∫ π

0

[
αm cos2 x− βm sin2 x

]
dx

=
π

2
m(α− β) < 0.

Hence, we find that

lim
t→∞

∫ t

T
M [u](s)ds = −∞

for any T > 0. It follows from Theorem 2 that if W is a solution of
(14) satisfying (i)–(iv) of Theorem 2, then (5) holds. One such solution is
W = eβtIm. In fact, it is clear that (i)–(iv) hold for W = eβtIm, and that

lim
t→∞

∫ π

0
uT

(
Re log W

)
u dx

= lim
t→∞

∫ π

0
βtm sin2 x dx

= lim
t→∞

π

2
βmt = ∞.

Example 2. We consider the matrix differential system

∂W

∂t
−

(
α

∂2W

∂x2
+ β W

)
= 0, (x, t) ∈ (−1, 1)× (0,∞), (15)

where α and β are positive constants satisfying α < (5/2)β. Here n =
1, G11(x, t) = αIm, H = β Im, G = (−1, 1) and Ω = (−1, 1)× (0,∞). We
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let

u =




1− x2

1− x2

...
1− x2




and find that u(−1) = u(1) = 0 and

M [u](t) =
∫ 1

−1

[
α

(
∂u

∂x

)T ∂u

∂x
− β uT u

]
dx

=
∫ 1

−1

[
4αmx2 − βm(1− x2)2

]
dx

= m

(
8
3

α− 16
15

β

)
< 0.

Hence, it is easily seen that

lim
t→∞

∫ t

T
M [u](s)ds = −∞

for any T > 0. Theorem 3 implies that if W is a solution of (15) satisfying
(i)–(iv) of Theorem 2, then ‖W‖ is unbounded in (−1, 1) × (0,∞). For
example, W = eβtIm is such a solution. In fact, we have that ‖W‖ =√

meβt.
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