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We consider bright solitons supported by a symmetric inhomogeneous defocusing nonlinearity growing rapidly
enough toward the periphery of the medium, combined with an antisymmetric gain–loss profile. Despite the
absence of any symmetric modulation of the linear refractive index, which is usually required to establish a
parity-time (PT ) symmetry in the form of a purely real spectrum of modes, we show that the PT symmetry is never
broken in the present system, and that the system always supports stable bright solitons, i.e., fundamental andmulti-
pole ones. This fact is connected to the nonlinearizability of the underlying evolution equation. The increase of the
gain–loss strength results, in lieu of the PT symmetry breaking, in merger of pairs of different soliton branches, such
as fundamental and dipole, or tripole and quadrupole ones. The fundamental and dipole solitons remain stable at
arbitrarily large values of the gain–loss coefficient. © 2014 Optical Society of America
OCIS codes: (190.5940) Self-action effects; (190.6135) Spatial solitons.
http://dx.doi.org/10.1364/OL.39.005641

The high current interest in parity-time (PT )-symmetric
systems with complex potentials is partially motivated
by the remarkable behavior of the corresponding linear
spectrum, which remains purely real until the strength
of the imaginary part of the potential attains a certainPT -
symmetry breaking threshold, above which it becomes
complex [1]. The effect has been experimentally observed
in optics, where the similarity of the paraxial evolution
equation, governing the propagation of light beams in me-
dia with an even spatial profile of the refractive-index
modulation and an odd gain–loss profile, with the Schrö-
dinger equation governing the evolution of the quantum-
mechanical wave function in a complex potential, enables
visualization of the PT symmetry and its breakup at a
critical point [2]. While eigenmodes of linearPT -symmet-
ric potentials are well-understood [1,3,4], the evolution of
nonlinear excitations in them remains a subject of active
research. In particular, the properties of solitons and dis-
crete nonlinear modes have been studied in free-standing
PT -symmetric waveguides [5], couplers [6–9], oligomers
[10,11], and periodic lattices with [12] andwithout [13–17]
transverse refractive-index gradients, and in truncated lat-
tices [18], among other settings. An especially interesting
situation occurs when the underlying evolution equations
contain only nonlinear PT -symmetric terms [19,20], or
mixed linear–nonlinear lattices [21–23].
As mentioned previously, a generic property of

PT -symmetric structures is that they support stable
excitations only if the spectrum of the associated linear
system is real, i.e., the symmetry is not broken. As a
result, the stability domain of nonlinear excitations, if
defined in terms of the gain–loss strength, often coin-
cides with the domain of the unbroken PT symmetry
in the respective linear system. However, systems may be
prepared to be nonlinearizable, i.e., the nonlinear terms
in the underlying evolution equation cannot be omitted
even for the decaying tails of localized nonlinear

excitations. Under such conditions, no direct link can
be drawn between the spectra of the nonlinear system
and its linear counterpart.

In this Letter, we address that case in a system with an
odd gain–loss profile and defocusing nonlinearity, whose
local strength grows toward the periphery. In the
absence of gain and loss, such a system supports bright
solitons in all three dimensions [24–28]. Existence of
bright solitons in spite of the self-defocusing nature of
the nonlinearity is at first counterintuitive, but actually
it is a consequence of the nonlinearizability of the respec-
tive nonlinear Schrödinger equation on the soliton tails.
In this Letter, we show that a system of this type, with an
even profile of the growing nonlinearity, supports stable
bright solitons even in the presence of the odd (PT -
symmetric) gain–loss profile, without any spatial modu-
lation of the linear refractive index, which is required for
supporting the real spectrum in usual PT -symmetric sys-
tems. Without the rapidly growing defocusing nonlinear-
ity, the PT symmetry of the system considered in this
Letter is always broken; in the presence of the nonline-
arity modulation the symmetry may be said to become
unbreakable, as it holds at arbitrarily large strengths of
the balanced gain and loss. Recently, unbreakable sym-
metry was demonstrated for a dimer, but it was a very
special case of a PT -symmetric Hamiltonian system [29].

We address the propagation of a laser beam along the ξ
axis of a medium with a transverse modulation of the
gain–loss and defocusing nonlinearity, obeying the para-
xial nonlinear Schrödinger equation for scaled amplitude
q of the electromagnetic field

i
∂q
∂ξ

� −

1
2
∂2q
∂η2

� σ�η�qjqj2 � iR�η�q; (1)

where the propagation distance ξ is normalized to the
diffraction length kx20; the transverse coordinate η is
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normalized to the characteristic transverse scale x0; the
function σ�η� > 0, which is assumed to be even, describes
the profile of a defocusing nonlinearity whose strength
grows as η → �∞; and the function R�η�, assumed to
be odd, stands for the gain–loss profile. In accordance
with [24,25], we adopt the following nonlinearity and
gain–loss profiles:

σ � �σ0 � σ2η
2� exp�αη2�;

R � βη exp�−γη2�: (2)

Note that the necessary and sufficient condition for the
existence of bright solitons with power (or norm),
U � R∞

−∞ jqj2dη, sustained by a growing defocusing non-
linearity, is weaker, namely, it is σ�η�∕jηj → ∞ at jηj → ∞
[24]. Nevertheless, in this Letter we use the steep modu-
lation profiles described by Eq. (2) because they create
tightly localized solitons, which are convenient for the
numerical and analytical considerations alike. The odd
profile of R�η� accounts for the mutually balanced attenu-
ation of the field at η < 0, and amplification at η > 0. Non-
linearity and gain landscapes are depicted in Fig. 1(j) for
σ0 � 1, σ2 � 0, and α � γ � 1∕2. The model gives rise to
bright soliton solutions in the form q�η; ξ� � �wr�η��
iwi�η�� exp�ibξ�. Despite the dissipative character of
the system, such solitons form continuous families, like
in conservative media, parameterized by the propagation
constant b < 0. The complex form of the solitons gives
rise to the intrinsic currents, j � w2dϕ∕dη, where
w exp�iϕ� � wr � iwi, with wr and wi being real and
imaginary parts of the solution, respectively.
We have found multiple soliton families, including fun-

damental [Figs. 1(a) and 1(b)], dipole [Figs. 1(c) and
1(d)], tripole [Figs. 1(e) and 1(f)], and quadrupole
[Figs. 1(g) and 1(h)] soliton solutions, and even more
complex states. Their multi-pole structure is readily vis-
ible, mostly for small values of β, when soliton solutions
are close to their conservative counterparts. Increasing β
leads to notable transformations of the field-amplitude

distributions, as shown in the top and bottom lines of
Fig. 1. The intrinsic currents rapidly grow when β
increases, but the profile of j�η� remains bell-shaped,
even for solitons with a large number of humps [Fig. 1(i)].

Next, we vary the gain–loss strength, β, for a fixed
propagation constant, in order to study the impact of
the imaginary potential in Eq. (1) on the soliton proper-
ties. Without nonlinearity modulation, the PT symmetry
in Eq. (1) is broken, as the real part of the linear potential
is zero. However, in what follows we show that the non-
linear pseudo-potential [30], σ�η�jqj2, does sustain the PT
symmetry. A key insight comes from the observation that
Eqs. (1) and (2) with γ � 0 admit the exact soliton solu-
tion q � �2σ2�−1∕2α exp�ibξ − iβη∕α − αη2∕2�, with propa-
gation constant b � −�α� σ0α

2∕σ2 � �β∕α�2�∕2, which
can be found for arbitrarily large values of the gain–loss
coefficient β. Moreover, this solution can be completely
stable (the stability was checked at σ2 � α � β � 1∕2),
indicating the conservation of the PT symmetry in the
presence of pseudo-potential.

The soliton families are characterized by the depend-
ences of the total power on β, which are depicted in
Figs. 2(a) and 2(b) for the four types of modes shown
in Fig. 1. Here, subscripts f , d, t, and q refer to the families
of fundamental, dipole, tripole, and quadrupole solitons,
respectively. A first noteworthy result is that different
soliton families, with completely different internal struc-
ture when β � 0, merge at different critical values of β,
for a fixed propagation constant, b. Specifically, the fam-
ily of fundamental solitons merges with the family of di-
poles, the family of tripoles merges with the quadrupoles,
and so on. We observed that the value, βupp, at which
merging occurs increases with the order of the soliton
families, as seen by comparing the βupp values for the di-
pole d and quadrupole q families in Fig. 2(c). Close to the
merger point, the distributions of the absolute value of
the field amplitude for solitons belonging to the merging
branches are nearly indistinguishable, cf. Figs. 1(f) and
1(h). The numerical calculations also reveal that the
soliton power decreases when the number of lobes in

Fig. 1. Profiles of (a) and (b) fundamental; (c) and (d) dipole; (e) and (f) tripole; (g) and (h) quadrupole solitons at b � −10. Panels
(a) and (c) correspond to β � 0.55; in (b) and (d) β � 1.98; in (e) and (g) β � 1.04; while in (f) and (h) β � 3.47. Panel (i) shows
currents in fundamental solitons from (a) and (b). Panel (j) shows nonlinearity and gain–loss landscapes for β � 3.47.
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the soliton profiles increases for given values of b and β,
and that the largest gain–loss strength, βupp, at which
different families merge, monotonously increases with
jbj for all types of solutions considered in this Letter
[Fig. 2(c)].
Therefore, despite the absence of any linear refractive-

index modulation profile in Eq. (1), the PT symmetry,
supported by the nonlinear pseudo-potential, is indeed
not broken in the present system, because the fundamen-
tal and higher-order stable solitons are found for arbitrar-
ily large β, at sufficiently large values of jbj. Belowwewill
show that such soliton solutions can also be stable at
arbitrarily large β values, a clear indication of unbreak-
able symmetry in the present setting.
On physical grounds, self-localization around the mini-

mum of σ�η� is provided by the growth of the local
strength of the defocusing nonlinearity at η → �∞ at
any rate faster than jηj, as mentioned previously. It is thus
not possible to drop the nonlinear term in Eq. (1) even for
the vanishing tails of the solution, due to the rapid growth
of σ�η� [24,25]. Accordingly, the nonlinear pseudo-
potential σ�η�jqj2 in Eq. (1) provides the balance with
the odd imaginary potential. This is in contrast with pre-
viously considered PT -symmetric systems with uniform
nonlinearity, where nonlinear terms may be dropped
far from the soliton center, and the conditions for main-
taining the PT symmetry are determined by the linear
terms in the evolution equation.
To test the dynamic stability of the soliton families, we

studied the evolution of the perturbed solutions in the
form q � �wr � iwi � u exp�δξ� � iv exp�δξ�� exp�ibξ�,

with ju; vj ≪ jwr;wij. Substitution of this field into
Eq. (1) and linearization leads to the eigenvalue problem

δu � −

1
2
∂2v
∂η2

� Ru� σ�2uwiwr � v�3w2
i �w2

r�� � bv;

δv � � 1
2
∂2u
∂η2

� Rv − σ�2vwiwr � u�3w2
r �w2

i �� − bu; (3)

that we solved numerically to obtain the growth rates δ of
the perturbations. We found that the families of funda-
mental and dipole solitons are fully stable for any value
of propagation constant b (even in small power limit
U → 0) and gain/loss strength β, within the existence do-
main of such states [Fig. 2(c)]. Instabilities emerge only
for some of the tripole and quadrupole solutions. The
unstable solutions are depicted in red in Fig. 2(b). In par-
ticular, tripoles are stable for 0 < β < βcr, and unstable
for βcr < β < βupp. The corresponding critical gain–loss
strength βcr is shown, as a function of propagation
constant b, in Fig. 3(a), along with the βupp�b� curve.
One observes that the stability region notably broadens
when the propagation constant decreases. The shape of
the stability area for quadrupole solitons is similar at
small values of jbj, but additional instability windows ap-
pear at large values of jbj. In general, tripole and quadru-
pole solutions become unstable at different critical
values of the gain–loss strengths, but a situation is pos-
sible when βcr nearly coincides for two families. Typical
dependences of the instability growth rates as a function
of β for tripole and quadrupole solutions families are
shown in Fig. 3(b). Examples of the stable evolution
of the four soliton families considered in this Letter
are displayed in Figs. 4(a)–4(c) and 4(e). Even in the
presence of strong perturbations, such solitons propa-
gate for unlimited distances without visible distortions.
In contrast, unstable tripoles and quadrupoles feature
progressively swinging amplitude oscillations in
Figs. 4(d) and 4(f).

In summary, we introduced the first example of a
nonlinear PT -symmetric system with an unbreakable
symmetry. Namely, for sufficiently large propagation
constants, soliton solutions of the system remain stable
for arbitrarily large values of the gain–loss strength. In
addition, families of fundamental and dipole solitons
are completely stable. On physical grounds, in this

Fig. 2. (a) Power U versus gain–loss strength β for fundamen-
tal and dipole solitons and (b) for tripole and quadrupole sol-
itons. Circles correspond to solutions shown in Fig. 1.
The fundamental and dipole families merge at βf ;dupp � 2.135,
while the tripole and quadrupole ones merge at βt;qupp � 3.565.
Black and red lines correspond to stable and unstable subfami-
lies, respectively; (c) largest β below which various soliton fam-
ilies exist, as a function of propagation constant b (at β → 0, the
curves originate from b � 0, which correspond to solitons with
zero amplitude).

Fig. 3. (a) Domains of stability (white) and instability (shaded)
for tripole solitons in the plane of �b; β�. (b) Real part of the
instability growth rate versus β at b � −5 for tripoles and quad-
rupoles.
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system the spatially odd gain–loss distribution is bal-
anced not by an even refractive-index profile, but by
the pseudo-potential induced by the spatially growing
strength of the defocusing nonlinearity.

The second author appreciates the hospitality of the
Institut de Ciencies Fotoniques (ICFO).
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Fig. 4. Stable propagation: (a) fundamental and (b) dipole sol-
itons at β � 0.55; (c) tripole and (e) quadrupole at β � 1.04. In-
stability development: (d) a tripole at β � 2.10; (f) a quadrupole
at β � 2.30. In all the cases, b � −10.
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