
187

Uncalibrated X-Ray Stereo

Reconstruction

Dan Talmage, Alison Noble and Andrew Zisserman

Robotics Research Group, Department of Engineering Science

Oxford University, 0X1 3PJ.

Abstract

We describe a novel application of uncalibrated stereo reconstruction
to Roentgen Stereophotogrammetry Analysis (RSA). In RSA, stereo
X-ray images are taken of a bone containing a prosthesis (e.g. a re-
placement knee) and a number of metal markers. The aim is to recover
the relative position of the prosthesis and markers in 3D.

Accuracy in previous RSA methods has been limited by two factors:
manual feature selection and an assumption that camera calibration
parameters are known to high precision - this is not the case in practice.
Furthermore, the manual processing is slow and tedious.

We report progress towards developing a fully automatic RSA sys-
tem. New algorithms are described for automatically localising marker
points in X-ray images to sub-pixel accuracy, and using them to recon-
struct accurate 3D positions using robust statistical methods. Prelim-
inary experiments give excellent results.

1 Introduction

Total knee replacement operations are one of the successes of medical surgery. The
success rate for the operation is high, with implanted knee prostheses (figure 1)
lasting an average of around ten years. A minority of prostheses need early revision
due to pain from loosening of the prosthesis, which then migrates (moves) relative
to the bone [12, 14]. It is important to examine these cases not only to predict
early failure but also to provide manufacturers with information on which to base
new prosthesis designs. A key challenge that this presents is that migration is
small - typically of the order of lmm/year.

One non-invasive method that has shown potential for measuring this migra-
tion is called Roentgen Stereophotogrammetry Analysis (RSA) [8, 13, 16]. For
RSA, tantalum marker beads are implanted in the bones during a knee arthro-
plasty operation. These remain fixed and locate the positions of the bones. Post
operatively, simultaneous stereo X-rays are taken of a calibration frame (figure 2)
around the knee. The frame and the markers are then located in the images
(figure 3), and photogrammetric methods are used to reconstruct the Euclidean
positions of the bones and prosthesis. Repeated RSA examinations allow cal-
culation of the prosthesis migration. To date, this approach has been based on
conventional photogrammetric methods, using fiducial markers for camera cali-
bration and calibrated reconstruction to recover position [4]. However, current
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methods do not achieve the accuracy required in a robust and repeatable manner.
This is due to reliance on camera parameters which may be poorly known, and
due to manual feature extraction.

This paper describes a novel application of uncalibrated stereo reconstruction
to RSA. Uncalibrated stereo allows projective reconstruction without knowledge
of any camera parameters or of the relationship between the cameras. Euclidean
reconstruction is then achieved by means of known 3D points.

Figure 1: The experimental replica knee, showing the implanted prosthesis; (a)
coronal, and (b) sagittal views.

Sicro

X-Ray Cameras
Angular Range

Figure 2: The calibration frame; this is placed around the patient's knee during
X-ray image acquisition, (a) a photograph of the frame, showing the etched lattice
and the grid centre, formed by the diagonal lines, (b) The coordinate frame and
camera motion. The world frame of reference (X, Y, Z) is defined by the grid.

We focus on how to measure the relative migration of an artificial knee pros-
thesis relative to a bone. Namely, given two digital X-ray images of the bones, the
prosthesis, fiducial markers in the bones and a calibration grid around the whole,
determine the positions of the markers and of the prosthesis relative to a known
frame of reference. An ultimate goal of our work is to achieve very high accuracy
reconstruction to enable displacements of the order of 100/zm to be discerned. In
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Figure 3: (a) Coronal and (b) sagittal X-rays of the replica knee, showing the

calibration frame grid lines. The images are 575 x 772 pixels.

this paper we describe progress towards developing a fully automated system to

achieve this.

Our approach involves four steps:

1. Feature localisation and matching: A key problem in X-ray image segmen-

tation is that conventional methods such as edge detection do not work well.

Therefore a new parametric-model fitting algorithm has been developed to

localise marker features to sub-pixel accuracy. This method is described in

Section 2. Currently, features are manually corresponded across views. This

step will be automated in future.

2. Projective reconstruction: We make use of the fundamental matrix and

recent results in uncalibrated stereo [3, 5] to accurately recover projective

structure. This step is described in section 3.

3. Metric reconstruction: Given a projective reconstruction we can transform

it into a metric reconstruction using a number of known 3D locations in a

Euclidean frame of reference. This step is described in section 4.

4. Prosthesis registration: The final step is to determine the prosthesis position

in the same Euclidean reference frame as the bone.

Steps (l)-(3) are described in this paper. Step (4) is the subject of current

work. The main contribution of the paper is to show that using automated feature

extraction and uncalibrated stereo reconstruction, 3D locations can be recovered

to within the accuracy required to measure prosthesis migration.
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2 Automatic Marker Segmentation

In order to achieve the required accuracy for RSA, manual feature localisation is
inadequate. Therefore a new method of segmentation has been developed to locate
markers in an image to subpixel accuracy. The approach used is similar to that
described in [7] but the model is quite different. Marker segmentation involves
three steps:

1. Finding seed points: Localisation of markers involves first applying the
morphological opening residue [11] to remove background gradations from the
view followed by thresholding with a fixed grey level threshold value. This process
detects regions which correspond to the markers, and others which correspond to
spurious noise. The centre of gravity of each local region (x0, j/o) is computed, and
used to seed the parameterised model fit described in the next step.

2. Fitting the parameterised model: We model the X-ray projection of
a marker as a 2-dimensional Gaussian, parameterised by its height A, shape pa-
rameters (<7x,(Ty) and image location (xc,yc). We assume that the marker is su-
perimposed on an arbitrarily oriented planar background slope Qo + Q\X + Q2y
where Q,,i = 0,1,2, are constants. The complete marker intensity model I(x, y; a)
therefore is described by 8 parameters and defined by,

, (1)

where a = [A, ax, (Xy, xc, yc, Qo,Qi,Q2\, and (x,y) is the image location.
The seed point (zo,yo) is used to initialise the model parameters xc and yc.

We assume a nominal diameter dm for a marker (in pixels). The parameters <JX

and ay are initialised as 0.25c/m. An N x N region-of-interest (ROI) is set around
each seed point of height and width 2>dm. Qo is set equal to the average pixel value
computed over the ROI. Q\ and Q2 are initially set to be zero. The initial value
of A is set equal to I(xc, yc) — QQ.

This initial model is refined to best-fit the image function using the Levenberg-
Marquardt algorithm for non-linear least-squares parameter fitting [15]. This
method iteratively refines the model parameters until the cost function C(a) de-
fined by

is minimised. Here I,j is the actual intensity value at (x,,yj), I(x,,yj]&) is the
value of the intensity model and the summation is taken over the ROI. The algo-
rithm is iterated until this cost function decreases between iterations by less than
0.1%. Once the best-fit has been found the final values of xc and yc are taken as
the marker centre.

Figure 4 shows a typical marker and the parameters that fit it. Extensive
experimentation on many such markers has been carried out and has shown that
the current initialisation method is good for cases where the marker approximately
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Parameter

A

ay

xc

Qo

Qx

g2

Initial

15.88

2.8

2.8

12

12

3.12

0

0

Final

19.35

2.79

3.65

12.59

13.08

1.38

-0.02

0.03

Range

1

0.5

0.5

9

8

0

0

0

250

12

12

15

18

255

30

30

Figure 4: (a) the image surface in the region of a marker ball, with no grid lines

included, (b) The table gives initial and final values for a successful fit. The last

column shows the range of parameter values for which the fit converges, with the

other parameters set at their initial values.

fits the model. The most critical thing is to provide good starting values for xe

and yc. As a suggested rule of thumb, a seed point within ax and ay from the true

centre works well except in those cases where the background is radically different

from that expected by the model.

3. Validating the model fit: The final step in marker segmentation is to

check that the fitted model parameters are valid. Currently the following checks

are made.

A. Marker centre: If xc - x0 or yc - j/o > dm the fit is rejected. This condition

rejects fits that lie too far away from the seed.

B. Marker shape: If ax or ay > 0.5rfm the fit is rejected. This test removes

markers which have been confused by the background. This occurs, for

example, when a marker bead aligns directly with a grid line.

C. Marker size: If crx or ay < 0.1dm the fit is rejected. This removes fits on

seed points which are associated with noise.

D. Marker height: If A < 5 grey levels the fit is rejected. This condition rejects

fits to areas of the image with a gentle image curvature. This condition is

the least satisfactory; it occasionally rejects valid markers that have been

poorly imaged.

These criteria were arrived at by fitting the model to around 140 markers in

ten images. Validation rejects an average of 20% of the markers, depending on

the image quality. Rejected points generally lie either behind the prosthesis, or

on a grid line
1
. In the former case there is little which can be done. In the latter

1 About half the markers are close enough to grid lines that the lines are included in the fit
region.
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case, one possible solution would be to enhance the intensity model described in

Equation (1) to account for the shape of the grid line. This enhancement may be

implemented in future work.

3 Projective Reconstruction

Given a set of marker locations identified in a number of X-ray image views the

next step is to perform a projective reconstruction. The method we apply to do

this is based on the fundamental matrix [3, 5].

Plane containing both sources
and the object

epipolar . / / p o i n t \ ^ V epipolar
line ..•••/ / \ \ V line

c X-ray source X-ray source d

Figure 5: Stereo X-Ray Camera Geometry. An object X casts images x on the

left film and x' on the right film. A point x in the left image lies on an epipolar

line 1, which is where the plane of the X-ray cameras cuts the image. The epipoles

e, e' lie at the intersection of the film planes and the line joining the X-ray camera

centres.

Projective geometry The imaging geometry of the X-ray image acquisition

system is illustrated in figure 5. The X-ray cameras take perspective views of

objects and therefore the standard model of stereo geometry under perspective

projection is applicable. Stereo image pairs therefore satisfy the epipolar con-

straint, represented by the fundamental matrix.

The fundamental matrix Recall that the fundamental matrix is the 3 x 3

matrix which satisfies,

x '
T

F x = 0, (3)

where x is a point in the left image and x' is a point in the right image. The

epipoles e, e' are found by solving Fe = 0, F
T
e' — 0. From these and F, a

pair of projection matrices P and P' can be obtained which define the perspective

projection from projective 3-space onto the image planes [1, 5].

The fundamental matrix can be computed in a number of ways. The method

used here is to calculate F in a two-stage process, beginning with Longuet-Higgins

eight-point algorithm [9] and utilising the result as the initial estimate for a robust

non-linear method, which enforces rank two and rejects poor points [1, 10].
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Finding projective structure The projection matrices P and P' define a point

X in projective space, by the equations x = PX, x' = P 'X. X is found for each

pair of image points x, x' by Hartley's Iterative-Eigen method [6].

4 Metric reconstruction

The final stage is to find the 4 x 4 matrix Tp tha t transforms the recovered

projective structure into a known metric coordinate frame,

x(
E
 = 7f x,-

p
, (4)

where X is a metric point and X is a projective point. This transformation has

fifteen degrees of freedom and hence at least five known world points are required.

These points are provided by grid intersections on the calibration frame. The

matrix Tp is computed by minimising,

fX . -
B

-7^X i Y, (5)

for N > 5 points. In the following N typically equals forty. The method used for

minimisation is singular value decomposition [15].

5 Reconstruction Experiments

This section describes three experiments to measure the accuracy of our recon-

struction method. Ten X-ray images were acquired, at angles of ten degrees apart

starting with the coronal view and progressing to the sagittal view, as in figure 3.

The coronal view was successively matched to each of the others to give stereo

pairs, on which feature extraction and reconstruction were performed using the

methods described in sections (2)-(4).

Experiment 1 - accuracy of grid reconstruction: The first experiment ex-
amines how reconstruction accuracy of hand picked grid intersections varies with

angular separation. For each stereo pair, the Euclidean positions of the grid inter-

sections were found using the methods in sections (3)-(4). The root mean square

(RMS) of the Euclidean distances between the reconstructed points and ground

truth was then calculated. The results are shown in Figure 6a. Figure 6b shows

a plot of the number of points used in the calculation for each stereo pair. The

plot shows that the RMS error decreases with increasing angular separation, as

expected. Beyond a separation of fifty degrees, there are no longer any common

grid points between the images. This shows that there is a tradeoff between im-

proving accuracy (for which a large angular separation is desirable) and finding

many common points (which limits the maximum angular separation). Our ex-

perimentation shows that an angle of forty or fifty degrees gives best results. This

angular separation was used in experiment 3.
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Figure 6: Results for experiment 1. (a) root mean square of the distance between
grid intersections and calculated metric points, measured in mm, plotted against
angular separation in degrees, (b) the number of matching grid intersections used
for reconstruction.

Experiment 2 - accuracy of feature extraction: The second experiment
examines the accuracy of automatic feature extraction versus hand picking for
markers. The locations of the femoral markers were found in the ten views, using
hand picking and automatic feature extraction. For each stereo pair, the funda-
mental matrix was calculated. For each point, F was used to find the corresponding
epipolar line by 1 = Fx.

The root mean square of the distances y5Zi=i Hf between the lines and the

points was found, where d = * . f 2", the epipolar line is given by lxx + lyy +

lz = 0 and the point lies at (X, Y).
Figure 7a summarises the results. The main conclusion that we draw is that

automatic segmentation gives a marked improvement in feature extraction over
hand picking.

Experiment 3 - accuracy of marker reconstruction: The final experiment
examines the accuracy of full marker reconstruction against ground truth. Marker
features were extracted manually and automatically and reconstruction was done
using two views 40 degrees apart. Ground truth was obtained by taking measure-
ments on the experimental knee using a gauge with a precision of ±̂ mm. The
table in 7b shows the distances between the actual marker balls and reconstructed
points. These results show that good accuracy can be obtained using our method
even for the hand picked points. However, the automatically extracted points
gives superior accuracy. We conclude that the accuracy of the current algorithm
is within the bounds needed for quantifying prosthesis migration.
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Q J RMS ana/pawl;

i *

Measured

15±0.5
10±0.5
31±0.5

22.5±0.5
22.5±0.5

Hand picked

14.05

9.66

31.87

22.93

26.54

Automatic

14.24

9.72

31.30

22.44

21.43

Figure 7: (a) Results for experiment 2. The x-axis shows the angular separation
between views; the y-axis shows the root mean square of the distances between
points and their epipolar lines. The solid line is for hand-picked points; the dashed
line is for fitted points, (b) Results for experiment 3. Distances between markers,
in millimetres; the first column shows measured distances, the second calculated
distances based an hand picking, and the third calculated distances based on
automatic extraction.

6 Discussion

We have presented a new approach to X-ray stereo reconstruction which is based
on robust methods for automatic feature extraction and uncalibrated stereo. We
have examined the accuracy and sensitivity of stages in the algorithm. Preliminary
results are excellent and show that our method can achieve reconstruction accuracy
to within the tolerance required of the application.

We are currently extending this work in two ways: first, assessing the advantage
- principally an increase in accuracy, if multiple (more than two) stereo views
are used, taking into account practical and clinical constraints. Second, we are
investigating if the dependence on the calibration grid can be removed, with the
prosthesis itself providing the information required for the conversion to metric
structure.
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