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In this paper, we consider an uncertain project scheduling problem, in which activity durations, with no
historical data generally, are estimated by belief degrees and assumed to be uncertain variables. To achieve
different management goals, we build three uncertain chance-constrained programming models for project
scheduling problem, in which the chance constraint must reach a predetermined confidence level. Moreover,
these models can all be transformed to their crisp forms, and an intelligent algorithm is designed to search
the optimal schedule. Finally, a numerical example is presented to illustrate the usefulness of the proposed
model.
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1. Introduction

Project scheduling problem is to determine the schedule of

allocating resources, especially the loan allocation times, so as

to balance the total cost and the completion time of a project.

Researchers have studied project scheduling problem more

and more widely since 1960s. Kelley (1961, 1963) originally

proposed the project scheduling problem under deterministic

environment, in which the activity duration was assumed to

deterministic. From then on, deterministic models were

continuously discussed by other researchers (Demeulemeester,

1995; Vanhoucke, 2008).

However, the activity durations in the project scheduling

problem are always variational owing to many indeterministic

factors, such as the weather change, the fluctuations of

machine prices and the absent workers. As a result, the

schedules gained from deterministic models might perform

very poor. Assume that activity duration was a random

variable. Probability theory, which is based on probability

measure, was first introduced to project scheduling problem by

Freeman (1960). After that, Charnes et al (1964) employed

stochastic chance-constrained programming philosophy into

project scheduling problem. In 1984, Möhring (1984) modeled

project scheduling problems into two aspects: minimize the

total cost of the project under the constraints of the completion

time, or minimize the completion time under the constraints of

the total cost. From then on, Golenko-Ginzburg and Gonik

(1997) established an expected value model for solving a

simple type of project scheduling problem. In 2005, Ke and

Liu (2005) built three stochastic models for PSP. Interested

readers may refer to Loostma (1966), Parks and Ramsing

(1969), and Özdamar and Alanya (2001), to study various

types of stochastic project scheduling problem, in which

different probability distributions were employed to describe

the activity durations.

As far as we know, a premise of applying probability

theory is that the available probability distribution is close

enough to the true frequency. Thus, we have to rely on a great

quantity of observed data and employ statistics to get the

probability distribution. However, each project is somewhat

unique and its activity durations are usually lack of historical

data in real world. In this case, probability theory applied into

project scheduling problem may be out of work, and belief

degrees given by the experienced project managers or experts

might be employed to estimate values or distributions.

Possibility theory first attempted to model the belief degree

based on possibility measure. In 1979, Prade (1979) applied

fuzzy set to PSP. Then, Dubois et al (1995) built a chance

constraint model considering both fuzzy duration times and

the fuzzy due dates. In the next few years, Wang (2002)

developed a fuzzy beam search approach for solving product

development project scheduling, Long and Öhsato (2008)

performed a fuzzy critical chain method for fuzzy resource-

constrained project scheduling problem, and Ke and Liu

(2010) established three models for fuzzy project scheduling

problem.

Belief degree used to be considered as subjective probability

or fuzzy concept. However, surveys showed that human beings

usually estimate a much wider range of values than the object

actually takes (Liu, 2015). This conservatism of human beings

makes the belief degree deviate far from the frequency. As a
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result, the belief degree cannot be treated as a random variable,

otherwise some counterintuitive phenomena may happen. On

the other hand, for any events A and B no matter whether they

are independent or not, possibility measure (Pos) satisfies

PosfA [ Bg ¼ PosfAg _ PosfBg. But, the measure of a union

of events is usually greater than the maximum of the measures

of individual events when they are not independent (Liu, 2015).

Therefore, these indeterminacies described by human belief

degrees cannot be treated as random variables or fuzzy

variables. When indeterminacy behaves neither randomness

nor fuzzyness, uncertainty theory based on uncertain measure,

founded by Liu (2007) in 2007, can be applied. Different from

probability measure satisfying normality, nonnegativity and

additivity axioms, uncertain measure follows normality, dual-

ity, subadditivity and product axioms. Nowadays, uncertainty

theory has become a branch of axiomatic mathematics and has

been successfully applied in plenty of practical problems:

inventory problem (Qin and Kar, 2013), currency option

pricing problem (Wang and Ning, 2016), interest rate problem

(Zhang et al, 2016), maximum flow problem (Han et al, 2014)

among others.

With regard to project scheduling problem under uncertain

environment, Liu (2009) first built an uncertain project

scheduling model, of which the objective was to minimize

the total cost under the constraints of the completion time.

Zhang and Chen (2012) built expected time minimized model

for PSP in 2012. Ji and Yao (2014) recently gave an uncertain

multi-objective programming model for PSP. In this paper, we

further study the uncertain project scheduling problem and

build three models based on uncertain chance-constrained

programming with the assumptions that the constraints will

maintain at a predetermined confidence level. Meanwhile, we

set the objective as minimizing the total cost or completion

time at a preset confidence level.

To investigate the aforementioned problem carefully, the

remainder of this paper is organized as follows. The next

section is intended to introduce some basic concepts and

theorems of uncertainty theory and uncertain chance-con-

strained programming. Section 3 describes the project

scheduling problem under uncertain environment in detail. In

Section 4, an a-cost model for project scheduling problem is

presented and a genetic algorithm is introduced to solve the

model. Then, a numerical example is given to illustrate the

usefulness of the a-cost model in Section 5. To achieve

different management goals, Section 6 presents other two

extended optimization models for project scheduling problem.

Finally, some conclusions are covered in Section 7.

For convenience, some notations used in the later sections

are introduced as follows:

Kc: the complement of K;
a ^ b: a ^ b ¼ minða; bÞ;
a _ b: a _ b ¼ maxða; bÞ;
½a�: the minimal integer greater than or equal to a;

M: uncertain measure;

Pr: probability measure;

ðC;L;MÞ: uncertainty space.

2. Preliminary

In this section, we make a brief overview of some foundational

concepts and theorems of uncertainty theory and introduce

uncertain chance-constrained programming which is used in

the later sections.

2.1. Uncertainty theory

Definition 2.1 (Liu, 2007) Let C be a nonempty set, and L be

a r-algebra on C. A set function M is called an uncertain

measure if it satisfies the following axioms:

Axiom 1 (Normality Axiom) MfCg ¼ 1;

Axiom 2 (Duality Axiom) MfKg þMfKcg ¼ 1 for any

K 2 L;

Axiom 3 (Subadditivity Axiom) For every countable se-

quence of events K1;K2; . . ., we have

M
[1

i¼1

Ki

( )
�

X1

i¼1

MfKig:

Besides, the product uncertain measure on the product r-
algebre is defined by Liu (2009) as follows:

Axiom 4 (Product Axiom) Let ðCk;Lk;MkÞ be uncertainty

spaces for k ¼ 1; 2; . . . The product uncertain measure M
is an uncertain measure satisfying

M
Y1

k¼1

Kk

( )
¼

1̂

k¼1

Mk Kkf g

where Kk are arbitrarily chosen events from Lk for

k ¼ 1; 2; . . ., respectively.

Definition 2.2 (Liu, 2007) An uncertain variable n is a

measurable function from an uncertainty space ðC;L;MÞ
to the set of real numbers, i.e., for any Borel set B of real

numbers, the set

fn 2 Bg ¼ fc 2 CjnðcÞ 2 Bg

is an event.

Definition 2.3 (Liu, 2007) A k-dimensional uncertain vector

is a function n from an uncertainty space ðC;L;MÞ to the

set of k-dimensional real vectors such that is an event for

any Borel set B of k-dimensional real vectors.

Uncertain variable is used to represent quantities in

uncertainty. Sometimes, to model the real-life uncertain
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optimization problem, it is sufficient to know the uncertainty

distribution rather than the uncertain variable itself.

Definition 2.4 (Liu, 2007) The uncertainty distribution U of

an uncertain variable n is defined by

UðxÞ ¼ M n� xf g; 8x 2 R:

In addition, the inverse function U�1 of U is called the

inverse uncertainty distribution of n.

Example 2.1 An uncertain variable n is said to be linear if

its uncertainty distribution is

UðxÞ ¼
0; if x\a

ðx� aÞ=ðb� aÞ; if a� x� b

1; if x[ b

8
><

>:

which is denoted by n�Lða; bÞ. Apparently, the inverse

uncertainty distribution of Lða; bÞ is

U�1ðaÞ ¼ aðb� aÞ þ a; a 2 ½0; 1�:

Definition 2.5 (Liu, 2009) The uncertain variables

n1; n2; . . .; nn are said to be independent if

M
\n

i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g

for any Borel sets B1;B2; . . .;Bn of real numbers.

Theorem 2.1 (Liu, 2015) Let n1; n2; . . .; nn be independent

uncertain variables with regular uncertainty distri-

butions U1;U2; . . .;Un; respectively. If the function

f ðx1; x2; . . .; xnÞ is strictly increasing with respect to

x1; x2; . . ., xm ðm� nÞ and strictly decreasing with respect

to xmþ1; xmþ2; . . .; xn, n ¼ f ðn1; n2; . . .; nnÞ has an inverse

uncertainty distribution

W�1ðaÞ ¼ f U�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;

�

U�1
n ð1� aÞÞ;

and

M f ðn1; n2; . . .; nnÞ� 0f g� a ða 2 ½0; 1�Þ

holds if and only if

f U�1
1 ðaÞ;U�1

2 ðaÞ; . . .;U�1
m ðaÞ;U�1

mþ1ð1� aÞ;
�

U�1
mþ2ð1� aÞ; . . .;U�1

n ð1� aÞÞ� 0:

2.2. Uncertain chance-constrained programming

Assume that x is a decision vector, n is an uncertain vector,

f ðx; nÞ is a return function, and gjðx; nÞ are constraint

functions, j ¼ 1; 2; . . .; p. Since the uncertain constraints

gjðx; nÞ� 0 do not define a deterministic feasible set, it is

naturally desired that the uncertain constraints hold with

chance bj, where bj is a predetermined confidence level.

That is, a chance constraint can be expressed as

Mfgjðx; nÞ� 0g�bj; j ¼ 1; 2; . . .; p. Based on this idea,

uncertain chance-constrained programming was proposed by

Liu (2009) as the optimization theory in generally uncertain

environments, and its general form can be written as:

maxx �f

subject to :

Mff ðx; nÞ� �fg� a;

Mfgjðx; nÞ� 0g� bj; j ¼ 1; 2; . . .; p

8
>>><

>>>:
ð1Þ

where a is also a predetermined confidence level, and

a; bj 2 ½0; 1�; j ¼ 1; 2; . . .; p.

3. Problem description

In general, a project can be described by a networkG ¼ ðV;AÞ,
whereV ¼ f1; 2; . . .; nþ 1g is the set of nodes andA is the set of

arcs. In the networkG, node 1 and nþ 1mark the beginning and

the end of the project, respectively. An element k 2 V denotes a

milestone of the project, and an element ði; jÞ 2 A denotes an

activity from the milestones i to j.

Project scheduling is a complex process involving many

activities that require optimizing and can be regarded as a

dynamic decision process. The manager makes decisions on

which activity to start at each decision times subject to some

constraints. In many projects, especially the large-scale ones,

loan is always the source for the capital. Hence, how to make

the schedule of loan time for the activity and economize the

payout becomes significant to the decision-maker. That is,

project scheduling problem considered in this paper is to

schedule the loan allocation time for a project such that the

total cost and the completion time of the project are balanced

under some constraints. The solution of project scheduling

problem is an activity order list which depicts the starting time

of each activity.

In reality, a project usually undergoes a wide variety of

disruptions such as fluctuant execution durations, unavailable

resources, overdue materials and the schedules gained from

deterministic models might perform very poor as a result. In

order to deal with more realistic circumstances, where the

variability in durations should not be neglected, stochastic

project scheduling problem has been developed, in which

activity durations are represented as random variables.

Xiao Wang and Yufu Ning—Uncertain chance-constrained programming model



However, the actual activity duration of the majority of the

projects can only be attained after it is completed. Hence,

majority of the projects are unique in nature and the activity

durations are usually lack of historical data in the real world.

According to the information incompleteness, the manager can

merely apply partial information which is available before or

at the time he makes decision. In such cases, the manager has

to rely on the belief degree given by the experienced project

managers or experts. Since the indeterminacies described by

the belief degrees cannot be treated as random variables,

employing uncertain variables to denote the activity durations

is feasible. Besides, in order to simplify, the other assumptions

and some simplifications in the project scheduling problem are

stated as follows:

1. each activity can be processed only when the loan needed

is allocated and all the foregoing activities are finished;

2. each activity should be processed without interruption;

3. the costs of all the activities are obtained via loans with a

given interest rate;

4. the cost needed for each activity is a constant;

5. all uncertain variables ‘‘activity durations’’ are assumed to

be independent.

Hereafter, in order to model the project scheduling problem

with uncertainty theory conveniently, we introduce the

following indices and parameters, which will be used in the

following formulas and models:

nij: the uncertain duration time of activity (i, j);

n ¼ fnijjði; jÞ 2 Ag: the vector of uncertain duration times;

xij: decision variable representing the loan time of activity

(i, j), and we assume that all the decision variables are

nonnegative integers;

x ¼ fxijjði; jÞ 2 Ag: the vector of decision variables;

Uij: the uncertainty distribution of nij;

Sijðx; nÞ: the starting time of activity (i, j), and the starting

time of activity ð1; jÞ 2 A is defined as S1jðx; nÞ ¼ 0, which

means that the starting time of the total project is assumed to

be 0;

Wij: the uncertainty distribution of Sijðx; nÞ;
Tðx; nÞ: the completion time of the project G;

W: the uncertainty distribution of Tðx; nÞ;
cij: a given loan amount of activity (i, j);

r: the loan interest rate;

Cðx; nÞ: the total cost of the project G;

!: the uncertainty distribution of Cðx; nÞ.

Thus, the project scheduling problem is to find the optimal

schedule x so that the total cost Cðx; nÞ or the completion time

Tðx; nÞ can be minimized. Based on the above assumptions,

we then formulate the completion time and the total cost of

uncertain project scheduling problem. The starting time of

activity ð1; jÞ 2 A is its loan time, denoted by

S1jðx; nÞ ¼ x1j; ð1; jÞ 2 A:

The starting time of the whole project is the minimal value of

S1jðx; nÞ. And the starting time of activity (i, j) can be

expressed by the following recursive formula

Sijðx; nÞ ¼ xij _ max
ðk;iÞ2A

Skiðx; nÞ þ nkið Þ:

By a recursive process, we can derive the completion time

Tðx; nÞ of the total project by

Tðx; nÞ ¼ max
ðk;nþ1Þ2A

Sk;nþ1ðx; nÞ þ nk;nþ1

� �
: ð2Þ

Applying the compound interest formula to calculate the future

value of all the loans, the total cost of the project can be

written as

Cðx; nÞ ¼
X

ði;jÞ2A
cijð1þ rÞ½ðTðx;nÞ�xijÞ�: ð3Þ

4. Uncertain chance-constrained programming model
for PSP

After establishing the completion time and the total cost

formulas in Section 3, we can model the project scheduling

problem in many ways according to different management

goals. For example, part of the decision-makers may expect to

optimize expected objectives and establish the expected value

model for PSP. Although expected value model is widely used

for solving various types of practical problems, it does not take

into account the uncertain measure of disobeying the con-

straints. In fact, sometimes the managers have to consider the

risk, referred to as the uncertain measure that some unfavor-

able event will occur. That is, the management goal may

include the condition of satisfying some chance constraints

with at least some predetermined confidence levels. To

achieve this management goal, we link with uncertain

chance-constrained programming (UCCP) which is applied

to solve these practical optimization problems. In this section,

we first give a definition of a-cost and then establish an a-cost
model based on UCCP.

Definition 4.1 The a-cost of a project is defined as

minf �CjMfCðx; nÞ� �Cg� ag

where a is a predetermined confidence level and

a 2 ½0; 1�.

In practice, if the manager wants to seek maximum benefits

before the due date T0, we tend to minimize the a-cost of the
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project under the completion time chance constraint with a

predetermined confidence level. Following the idea of UCCP,

we can present an a-cost model

minx �C

subject to :

MfCðx; nÞ� �Cg� a;

MfTðx; nÞ�T0g�b;

x� 0; integers

8
>>>>>><

>>>>>>:

ð4Þ

where a; b 2 ½0; 1� are two predetermined confidence levels.

For each fixed feasible solution x, the objective value �C should

be the minimum value that the cost function Cð x; nÞ achieves
with at least predetermined confidence level a.
Since the function Tðx; nÞ (see expression (2)) is increasing

with respect to nij ði; jÞ 2 Að Þ and uncertain variables (nij) are
independent, we have the inverse uncertainty distribution of

the completion time Tðx; nÞ by Theorem 2.1

W�1ðx; aÞ ¼ max
ðk;nþ1Þ2A

W�1
k;nþ1ðx; aÞ þ U�1

k;nþ1ðx; aÞ
� �

: ð5Þ

Note that the total cost of the project

Cðx; nÞ ¼
X

ði;jÞ2A
cijð1þ rÞ½ðTðx;nÞ�xijÞ�

is increasing with respect to Tðx; nÞ, the total cost Cðx; nÞ has
an inverse uncertainty distribution

!�1ðx; aÞ ¼
X

ði;jÞ2A
cijð1þ rÞ½ðW

�1ðx;aÞ�xijÞ�: ð6Þ

By Theorem 2.1, the constraints in model (4)

MfCðx; nÞ� �Cg� a and MfTðx; nÞ�T0g�b

are, respectively, equivalent to

!�1ðx; aÞ� �C and W�1ðx; bÞ� T0

where !�1ðx; aÞ and W�1ðx; bÞ are defined by (6) and (5),

respectively.

Hence, model (4) can be transformed into an equivalent

crisp programming model as below,

minx !�1ðx; aÞ
subject to :

W�1ðx; bÞ� T0;

x� 0; integers:

8
>>><

>>>:
ð7Þ

Hereafter, a genetic algorithm is introduced to solve model (7),

which contains the following steps.

Step 1: Representation

Use x ¼ fxijjði; jÞ 2 Ag as a chromosome to represent a

solution, where xij denotes the allocation loan time of activity

ði; jÞ 2 A.

Step 2: Initialization

Generate xij randomly for all ði; jÞ 2 A, and obtain a vector

x ¼ fxijjði; jÞ 2 Ag.
Give the population size of one generation pop size, a

crossover probability Pc and a mutation probability Pm.

Give a and b, calculate W�1ðx; bÞ, and verify whether it is

less than T0.

If so, the vector x is feasible, and we get a chromo-

some; otherwise, regenerate x.

Repeat this process for pop size times, and we get pop size

chromosomes x1; x2; . . .; xpop size.

Step 3: Crossover

For each chromosome xi, generate a random number

ui 2 ½0; 1�; i ¼ 1; 2; . . .; pop size.

If ui\Pc, xi is selected as a parent for crossover operation.

Divide all the selected chromosomes into some groups such

that each group contains only two chromosomes, and perform

crossover operations on these groups. Redo the crossover

operation until obtain the feasible children.

Step 4: Mutation

For each chromosome xi, generate a random number

ui 2 ½0; 1�; i ¼ 1; 2; . . .; pop size.

If ui �Pm, xi is selected for mutation operation. Generate a

random vector d ¼ fdijjði; jÞ 2 Ag.
If xi þ d is feasible, replace xi with xi þ d; otherwise,

generate a random number u 2 ½0; 1�, and verify whether the

vector xi þ u� d is feasible.

If xi þ u� d is feasible, replace xi with xi þ u� d;

otherwise, regenerate the random number u until xi þ u� d is

feasible.

Step 5: Evaluation

Calculate !�1ðxi; aÞ; i ¼ 1; 2; . . .; pop size. According to

!�1ðxi; aÞ in an ascending order, rearrange

x1; x2; . . .; xpop size and denote them by x01; x
0
2; . . .; x

0
pop size.

Then, the fitness of x0i is Evalðx0iÞ ¼ qð1� qÞi�1
for

i ¼ 1; 2; . . .; pop size, where q 2 ½0; 1� is a given parameter.

Step 6: Selection

Calculate the cumulative fitness qk ¼
Pk

i¼1 Evalðx0iÞ; k ¼
1; 2; . . .; pop size; and set q0 ¼ 0.

Repeat the following process for pop size times to get a

new generation of the chromosomes:

Generate a random number u 2 ð0; qpop size� and select

the chromosome xk if qk�1\u� qk.

Step 7: Repetition

Repeat Steps 3�6 for a number of cycles, and select the

best chromosome as the optimal solution for model (7).

Remark 4.1 As we know, the fundamental assumption of

applying probability theory is that the estimated proba-

bility is close enough to the long-run cumulative fre-

quency. In practice, this means that we need sufficient

statistical data. When the managers own the available and

sufficient information of the activity duration in PSP, the

activity durations can be represented as random variables

Xiao Wang and Yufu Ning—Uncertain chance-constrained programming model



and stochastic chance-constrained programming model

for PSP is feasible. Ke and Liu (2005) proposed a

stochastic chance-constrained programming model

minx �C

subject to :

PrfCðx; nÞ� �Cg� a;

PrfTðx; nÞ�T0g�b;

x� 0; integers:

8
>>>>>><

>>>>>>:

ð8Þ

Since model (8) cannot be converted into an equivalent

crisp programming model, we need to carry out the

additional stochastic simulation on the constraint condi-

tions. Successively, we have to embed the stochastic

simulation into genetic algorithm to design a hybrid

intelligent algorithm to search for the optimal schedule for

PSP. However, we can solve uncertain chance-con-

strained programming model (4) only by means of genetic

algorithm. Compared with model (4), solving model (8)

greatly increases the computational complexity.

5. Numerical example

In this section, we consider a project schedule problem

containing 8 milestones and 10 activities as shown in Figure 1.

For assumption of uncertainty, the activity durations are

estimated by experts and characterized as uncertain variables.

Interested readers can consult Liu (2015) for more details

about how to use experts belief degrees to estimate uncertain

distributions. The activity durations and the costs needed for

the relevant activities in the project are presented in Table 1,

and the loan interest rate is set to r ¼ 0:6% according to some

practical project cases.

If the project manager expects to finish this project in T0 ¼
26 time units with the confidence level b ¼ 0:85 and

meanwhile seek the minimum a-cost ( �C), model (4) is needed

and applied. Assume the confidence level a ¼ 0:9, the 0.9-cost

model for this project scheduling problem is:

minx �C

subject to :

MfCðx; nÞ� �Cg� 0:9;

MfTðx; nÞ� 26g� 0:85;

x� 0; integers:

8
>>>>>><

>>>>>>:

ð9Þ

According to model (5), model (9) is equivalent to

minx !�1ðx; 0:9Þ
subject to :

W�1ðx; 0:85Þ� 26;

x� 0; integers:

8
>>><

>>>:
ð10Þ

In the following, a genetic algorithm is employed to search for

the optimal solution for model (10). There exist three

parameters given in advance in the genetic algorithm: the

population size of one generation pop size, the probability of

crossover Pc and the probability of mutation Pm. To demon-

strate the effectiveness of the algorithm, the above three

parameters will be given in several values and different

optimal results are compared and evaluated in Table 2.

From Table 2, it can be seen that all the optimal costs differ

little from each other. Therefore, in order to further compare

the difference among these costs, we introduce an evaluation

index called relative error, which corresponds with the last

column in Table 2. The relative error is calculated by the

formula

jactual value� optimal valuej=optimal value� 100%;

where the optimal value means the minimal one of all the costs

in Table 2. It follows from Table 2 that the relative error does

not exceed 0:47% when different parameters are selected,

which actually implies that the intelligent algorithm is

effective to solve model (4).

As can be seen from Table 2, the total cost reaches its

minimum at pop size ¼ 80; Pm ¼ 0:1 and Pc ¼ 0:4. At the

same time, the optimal schedule for allocating the loan times

of activities is shown in Table 3. In addition, the expected total

cost of the project in Figure 1 is 7957.6, and the expected

completion time is 22 time units.

Since there are two parameters a and b in model (4), we had

better to analyze the relationship between the objective value

( �C) and parameters (a; b). Next, we first consider one case as

under different b and fixed a (a ¼ 0:9), and the result of the

objective value �C is displayed in Table 4; then, consider other

case as under different a and fixed b ðb ¼ 0:85Þ, and obtain the
result of the objective value �C in Table 5.

From Table 4, we can find that the result of the objective

value �C does not exhibit monotonic trend with the change of

the parameter b. However, Table 5 shows that the result of the

objective value �C obviously exhibits monotone increasing

trend with the increase in the parameter a. In other words, the

objective value in model (4) is mainly associated with the

predetermined confidence level a for the total cost. Besides,

the parameter a in model (4) is usually fixed with subjective

prior knowledge and it usually depends on the specific

practical problem.

6. Extended project scheduling models

We have discussed the a-cost model for PSP in Section 4, in

which the a-cost is to be minimized under the total cost chance

constraint. However, the a-cost model cannot achieve all

practical management goals. Different project managers may

have different goals. To meet other goals, this section will

propose another two optimization models for PSP based on

Journal of the Operational Research Society



UCCP. More specifically, if the manager wishes to finish the

project as soon as possible, we optimize the schedule of

allocating loans in order to minimize the total time; if the

manager expects to pursue the maximum interests as well as to

finish as soon as possible, we need to optimize the schedule in

order to minimize the total cost and completion time under

uncertain measure constraints. To satisfy these two require-

ments, we first define a concept of b-time and then establish a

b-time model for PSP based on UCCP. Finally, connecting a-
cost model and b-time model, we propose a multi-objective

uncertain project scheduling model.

Definition 6.1 The b-time of a project is defined as

minf�T jMfTðx; nÞ� �Tg�bg

where b is a predetermined confidence level and

b 2 ½0; 1�.

When the project managers hope to finish the project as

soon as possible under the budget C0, we tend to minimize the

b-time of the project under the total cost chance constraint

with a predetermined confidence level. In light of the idea of

UCCP, we propose a b-time model

Table 1 Duration times and costs of all activities

Activity (1,2) (1,3) (2,4) (3,4) (3,5)
Duration time L(3,5) L(2,4) L(4,5) L(3,8) L(5,7)
Cost 1000 800 900 1100 700
Activity (4,6) (4,7) (5,7) (6,8) (7,8)
Duration time L(3,6) L(4,6) L(5,6) L(3,7) L(4,7)
Cost 900 1200 600 800 1100

Table 2 Comparison of optimal costs of model (10)

pop size 50 50 50 80 80 80
Pc 0.4 0.5 0.5 0.4 0.5 0.4
Pm 0.05 0.05 0.1 0.05 0.05 0.1
Cost 7985.9 7988.3 7995.3 7982.2 7969.9 7957.6
Relative error (%) 0.36 0.39 0.47 0.31 0.15 0.00

Table 3 Optimal allocation times of the loans in model (10)

Activity (1,2) (1,3) (2,4) (3,4) (3,5)
Allocation time 1 1 6 5 4
Activity (4,6) (4,7) (5,7) (6,8) (7,8)
Allocation time 10 9 11 15 16

Table 4 The objective value �C in model (4) under different b and fixed a ða ¼ 0:9Þ

b 0.7 0.75 0.8 0.85 0.9 0.95
�C 8069.3 8093.5 8074.9 8084.4 8067.5 8081.1

Table 5 The objective value �C in model (4) under different a and fixed b ðb ¼ 0:85Þ

a 0.7 0.75 0.8 0.85 0.9 0.95
�C 7991.0 8010.5 8042.6 8064.2 8081.9 8103.9

1

2

3

4

5

6

7

8

Figure 1 A project with 8 milestones and 10 activities.
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minx �T

subject to :

MfCðx; nÞ�C0g� a;

MfTðx; nÞ� �Tg�b;

x� 0; integers

8
>>>>>><

>>>>>>:

ð11Þ

where a; b 2 ½0; 1� are two predetermined confidence levels.

For each fixed feasible solution x, the objective value �T should

be the minimum value that the time function Tðx; nÞ achieves
with at least predetermined confidence level b.
Similar to model (4), the equivalent crisp programming

model of model (11) is

minx W�1ðx; bÞ
subject to :

!�1ðx; aÞ�C0;

x� 0; integers:

8
>>><

>>>:
ð12Þ

When the project managers not only expect to complete the

project as quickly as possible, but also seek to minimize a cost

value at the same time, we establish a multi-objective

uncertain chance-constrained programming model

minx f �C; �Tg
subject to :

MfCðx; nÞ� �Cg� a;

MfTðx; nÞ� �Tg�b;

x� 0; integers:

8
>>>>>><

>>>>>>:

ð13Þ

According to Theorem 2.1, model (13) is equivalent to

minx f!�1ðx; aÞ;W�1ðx; bÞg
subject to :

x� 0; integers:

8
><

>:
ð14Þ

The most common approach to solve multi-objective opti-

mization is the weighted sum method. Thus, employing the

weighted sum method, model (14) could be transformed into

the following programming model

minx x1!
�1ðx; aÞ þ x2W

�1ðx; bÞ
subject to :

x� 0; integers

8
><

>:
ð15Þ

where x1 and x2 ðx1;x2 [ 0Þ are the weights of the first

objective !�1ðx; aÞ and the second objective W�1ðx; bÞ,
respectively.

Remark 6.1 Similar to model (4), a genetic algorithm can

also be designed to solve models (12) and (15). Here we

no longer elaborate it in detail.

7. Conclusions

The paper studied the project scheduling problem under

uncertain environment, of which the activity duration was

described as an uncertain variable. Based on uncertain chance-

constrained programming, the a-cost model, b-time model and

a multi-objective programming model were built to satisfy the

different management goals. Moreover, the proposed uncertain

project scheduling models can all be transformed into

corresponding crisp equivalent form, respectively. For purpose

of capturing optimal strategy, an intelligent algorithm was

designed to solve the a-cost model, and a numerical example

was provided to illustrate the effectiveness of this model and

algorithm as well.
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Özdamar L and Alanya E (2001). Uncertainty modelling in software

development projects (with case study), Annals of Operations

Research 102(1–4):157–178.
Prade H (1979). Using fuzzy set theory in a scheduling problem: A

case study. Fuzzy Sets and Systems 2(2):153–165.
Parks W and Ramsing K (1969). The use of the compound Poisson in

PERT. Management Science 15(8):397–402.
Qin Z and Kar S (2013). Single-period inventory problem under

uncertain environment. Applied Mathematics and Computation

219(18):9630–9638.
Vanhoucke M (2008). Setup times and fast tracking in resource-

constrained project scheduling. Computers & Industrial Engineer-

ing 54(4):1062–1070.

Wang J (2002). A fuzzy project scheduling approach to minimize

schedule risk for product development. Fuzzy Sets and Systems

127(2):99–116.
Wang X and Ning Y (2016). An uncertain currency model with

floating interest rates. Soft Computing. doi:10.1007/s00500-016-

2224-9.

Zhang X and Chen X (2012). A new uncertain programming model

for project scheduling problem. Information: An International

Interdisciplinary Journal 15(10):3901–3910.
Zhang Z, Ralescu A and Liu W (2016). Valuation of interest rate

ceiling and floor in uncertain financial market. Fuzzy Optimization

and Decision Making 15(2):139–154.

Received 3 May 2016;

accepted 17 August 2016

This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Unported

License. The images or other third party material in this article are included in the article’s Creative

Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons

license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Xiao Wang and Yufu Ning—Uncertain chance-constrained programming model

http://dx.doi.org/10.1007/s00500-016-2224-9
http://dx.doi.org/10.1007/s00500-016-2224-9
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Uncertain chance-constrained programming model for project scheduling problem
	Abstract
	Introduction
	Preliminary
	Uncertainty theory
	Uncertain chance-constrained programming

	Problem description
	Uncertain chance-constrained programming model for PSP
	Numerical example
	Extended project scheduling models
	Conclusions
	Acknowledgments
	References


