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Abstract

Uncertain Growth Cycles, Corporate Investment, and Dynamic Hedging

by

Adam Theodore Yonce
Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Richard Stanton, Chair

In the theory of finance, uncertainty plays a crucial role. Economists often use the
terms uncertainty and volatility interchangeably, yet volatility is not the only form of
uncertainty. Firms face uncertainty about whether the economy is in an expansionary
or recessionary state, industries face regulatory uncertainty, and individuals face un-
certainty about risk premia. In this dissertation, I consider the role that uncertainty
about growth rates, regulatory policy, and risk premia play in the investment deci-
sions of firms and individuals. The key theme linking the three chapters is learning
in dynamic environments.

In Chapter 1, I study the effects of demand growth uncertainty on corporate
investment decisions. In particular, how does uncertainty about the state of the
economy and the state of demand growth affect a firm’s decision to allocate capital
to irreversible investment projects? In the model, firms are able to choose both the
timing and scale of their investments, and the optimal scale will depend on the un-
observed state of demand growth. This second decision gives rise to an incentive to
delay investment that does not exist in standard real option models: When invest-
ment is irreversible, firms risk allocating a sub-optimal level of capital to a project.
Theoretically, I show how this incentive to delay is closely linked to the benefits of
learning about the economy. Empirically, using estimated probabilities filtered from
GDP growth, I find that 1) beliefs about the economy inform corporate investment
decisions, and 2) the relationship between investment and beliefs is quadratic.

In Chapter 2, I study an empirical extension of the model. Many industries in the
United States face regulatory uncertainty, and a natural conjecture is that increased
regulatory uncertainty has a dampening effect on investment if 1) regulatory policy
affects the cash flows of the firm, 2) firms have flexibility over the scale of their invest-
ments, and 3) regulatory uncertainty resolves quickly. While regulatory uncertainty
is not observable, I consider two proxies: A variable indicating Presidential election
years, and a variable indicating divided government. The former is meant to capture
policy uncertainty associated with the possibility of a change in government, while
the latter is meant to capture policy uncertainty associated with ideological variance.
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Empirically, both measures are associated with a decrease in corporate investment
rates, consistent with the theoretical framework. The second purpose of this chapter
is to highlight the dangers of making inferences about investment using inconsistent
estimators and regressions that fail to account for plausible alternative hypotheses.
Previous work linking investment to the political cycle relies on least squares estima-
tors that are inconsistent because the firm-specific control variables are endogenous
to the investment decision. For a specific sub-sample of non-manufacturing firms, I
show that least squares estimates easily reject the null hypothesis, while consistent
first-difference estimates fail to do so. Finally, I include a control for the fiscal en-
vironment of the federal government, which helps to uncover important dynamics
between investment, the budget deficit, and the election cycle.

In chapter 3, I consider the currency hedging problem of a risk-averse interna-
tional investor who faces an unobservable currency risk premium. A non-zero risk
premium introduces a speculative motive for holding foreign currency in the opti-
mal portfolio, and a time-varying risk premium introduces a market-timing strategy.
Uncertainty about the stochastic properties of the risk premium significantly tames
both the speculative and market timing components, especially at long investment
horizons, and the optimal hedge approaches a complete hedge as risk aversion and
the investment horizon increase. However, an investor who ignores the risk premium
and fully hedges foreign investments faces a substantial opportunity cost because she
forgoes the benefits of dynamic learning.
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Chapter 1

A Model of Investment Under
Demand Growth Uncertainty

1.1 Introduction

In the theory of real options, uncertainty plays a crucial role. Investing in a project
is equivalent to exercising a call option; as in equity options, increased volatility is
associated with increased potential upside, but without any increased downside. All
else equal, higher volatility leads to higher exercise thresholds and greater project
values.

Yet volatility is not the only form of uncertainty. Firms also face uncertainty about
whether the economy is in an expansionary or recessionary state, and certain indus-
tries also face regulatory uncertainty. Indeed, in Chapter 2 I provide evidence that
corporate cash flows differ systematically across policy environments, and that firms
systematically decrease investment rates during periods of higher policy uncertainty.

This chapter is a study the effects of demand growth uncertainty on corporate
investment decisions. In particular, how does uncertainty about the state of the
economy and the state of demand growth affect a firm’s decision to allocate capital
to irreversible investment projects? Firms may find it optimal to forgo NPV-positive
projects while retaining their right to invest at a later date, if delaying allows them
to learn about the demand.

I study the link between economic uncertainty and investment through a dynamic
real option model with two key ingredients. First, firms do not have perfect informa-
tion about the economic environment, which governs the growth rate of demand and
cash flows, and must form a belief about whether the economy is expanding or con-
tracting. Beliefs about the economy then inform the firm’s valuation of a perpetual
stream of cash flows.

Second, unlike standard real option models, firms are able to choose the scale of
their investments. In addition to choosing the optimal time to invest, firms must
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choose the optimal amount of capital to invest. When beliefs are optimistic, so that
estimated growth rates and present values are high, firms will want to commit a large
amount of capital to take advantage of high growth. When beliefs are pessimistic,
however, firms commit less capital since valuations are lower and projects appear less
attractive.

Under this setup, the model generates two key predictions:

1. Firms will invest when they have precise beliefs about the economic environ-
ment, regardless of whether beliefs are optimistic or pessimistic, but will delay
when uncertainty is highest.

2. The incentive to delay is strongest when uncertainty resolves quickly.

The first prediction is a consequence of a firm’s ability to choose the scale of its
projects. The amount of capital that maximizes NPV differs in the two economic
environments. When investment is irreversible, firms must guard against allocating
an inefficient amount of capital to a project. Therefore, they may optimally delay
projects to gather more information about demand. This result is intuitive, but it
depends critically on allowing the scale of the project to vary. In standard real option
models, where firms face just a timing problem, firms will only invest if uncertainty
resolves in the favorable direction. When scale is a choice variable, firms invest even
when uncertainty resolves unfavorably; they just choose smaller projects.

The second prediction is a consequence of learning. Forgoing an NPV-positive
project can be optimal if delaying investment allows the firm to learn about the eco-
nomic environment. The benefit can be substantial if delaying allows the firm to make
a more informed capital allocation choice. When uncertainty resolves slowly, however,
there is little to learn. In this case, the opportunity cost of delaying investment will
outweigh the benefits gained from learning.

I test the predictions on U.S. firms by fitting a switching model to the growth of
real gross domestic product and estimating a time series of associated probabilities
that the economy is in a high-growth state. Together with the estimated probabilities,
the parameters of the switching model provide evidence of a bi-modal distribution in
beliefs about the economy, and quick resolution of uncertainty. Consistent with the
model, I find that 1) beliefs about the economy do indeed inform corporate invest-
ment decisions, and 2) the relationship between investment and beliefs is quadratic.
The intuition is that the relationship between uncertainty and beliefs is also quadratic
- if the probability that the economy is in a high-growth state is given by π, then
uncertainty is given by π(1 − π). Therefore, as information about the economy be-
comes less precise, firms find it optimal to delay investment in order to learn about
the economy. However, this incentive to delay is substantially diminished if learning
is slow.

The theoretical framework builds on previous work by Bernanke (1983) and Klein
(2007). Bernanke introduced Bayesian analysis into investment decisions in order to
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explain aggregate investment cycles. In his model, the economic policy environment
directly affects the relative value of mutually exclusive investments, and investors
form beliefs about how long a policy persists. A key feature of his analysis is that
beliefs evolve monotonically and deterministically, so there is a sectoral shift in in-
vestment and cyclical behavior. In his example of an energy cartel, where a firm
chooses between energy-intensive and energy-saving investments, there is a period
of no investment before the shift as beliefs about cartel persistence evolve from low
probability to high probability.

Unlike Bernanke (1983), in this paper beliefs evolve stochastically, and potentially
non-monotonically, in response to news about the economy. Because the economic
environment can always change, there is a tendency for beliefs to mean-revert, and
uncertainty never disappears completely.1

Klein (2007) studies a model where the total value of the investment project is the
stochastic variable. In his model, firms have incomplete information over the drift
of the value process - they know it can take one of only two values, but they are
uncertain which value is the true growth rate. Because there are no regime shifts in
his model, firms eventually completely uncover the true stochastic process. In this
paper, the primitive stochastic variable is demand, and the growth rate is allowed
to randomly switch between high-growth and low-growth states. Because the growth
rate can shift between two regimes, firms are never able to completely learn the true
stochastic process, although they are able to form very precise beliefs. An additional
feature of the setup is that the model endogenously generates stochastic volatility in
project values.

I now turn to a discussion of the theoretical framework and the solution to the
firm’s investment problem.

1.2 Theoretical Framework

1.2.1 Market Dynamics

A firm has the option to invest K units of capital in a project. Investment is
irreversible, and I assume that capital does not depreciate. After investment, the
firm produces F (K) = log(1 + K) units of output in perpetuity. The output price is
P , so that per-period cash flows are P (t)F (K).

The firm is risk-neutral, and its objective is to choose an investment time τ , as
well as an investment level K, to maximize the expected net present value (NPV) of

1Prediction markets provide a useful example of beliefs evolving in a stochastic and non-monotonic
way. See Wolfers and Zitzewitz (2006) for a discussion of when we can interpret prediction market
prices as probabilities.
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cash flows,

G = max
K,τ

E0

[∫

∞

τ

e−ruP (u)F (Kτ )du − e−rτpKKτ

]

. (1.1)

The integral term in (1.1) is the expected present value of future cash flows; pK is the
per-unit price of capital, so that e−rτpKKτ is the discounted cost of the investment.
As with standard real option models, the expected NPV of delaying investment may
exceed the expected NPV of investing immediately. In this case, firms find it optimal
to forgo positive NPV projects while retaining their right to invest at a future date.

For simplicity, I assume the price of capital is non-random and normalize pK to
unity.2 The price of the output good is stochastic and is governed by a downward-
sloping inverse demand curve

P (t) = Y (t)F (K)−1/γ (1.2)

where γ is the price elasticity of demand.3 Y is a stochastic demand shock and follows
a geometric process,

dY

Y
= µ(θ)dt + σdZY (1.3)

where ZY is a standard Brownian motion and θ(t) ∈ {θh, θl} is a state variable de-
scribing the economic environment, corresponding to ‘high growth’ and ‘low growth.’
This is meant to capture periods of economic expansion and recession. θ, itself a
random process, follows a two-state Markov process with transition matrix

Λ =

(

−λlh λlh

λhl −λhl

)

(1.4)

where λlh is the hazard rate for transition from the low growth state to the high
growth state, and λhl is the hazard rate for transition from the high growth state to
the low growth state.

As a consequence of the two-state Markov assumption, θ has dynamics

dθ = (θh − θl)

[

1 − 2(θ(t) − θh)

θl − θh

]

dq(θ)

where dq is a Poisson process governed by transition matrix Λ. Under this process,
θ jumps between states at random, discrete intervals, and the time between jumps
follows an exponential distribution. The arrival rate of the Poisson process (also the

2Adapting the model to include stochastic pK is conceptually straightforward. See Chapter 6
of Dixit and Pindyck (1994) for the standard method of transforming a two-variable investment
problem to a single-variable problem.

3The price elasticity of demand ǫ is defined as ǫ = dQ
dP

P
Q

. For an iso-elastic demand function of

the form Q =
(

P
Y

)

−γ
, this simplifies to ǫ = −γ.



5

rate parameter of the exponential distribution) is λ(θ), with

λ(θ) =

{

λlh if θ = θl

λhl if θ = θh

, (1.5)

so that the mean time between jumps is 1/λ(θ).
In this model, there is nothing special about the numerical values of θ; the only

requirement is that θh 6= θl. In the numberical analysis of the model it will be
convenient to normalize to θl = 0 and θh = 1. In this case, the process for θ simplifies
to

dθ = [1 − 2θ(t)] dq(θ).

I make two key assumptions about Y and θ:

1. Demand Y is observable, but the Brownian motion ZY is unobservable.

2. θ follows a hidden (i.e. unobservable) Markov process. The parameters of the
process (θl, θh, Λ) are known, but the current state θ(t) is unknown.

Given these assumptions, the firm cannot directly observe the economic environ-
ment; that is, they have incomplete information. While Y is observable, growth (or
decay) in Y due to θ is indistinguishable from growth (or decay) due to ZY . To
gain an intuitive understanding, briefly suppose that µ(θh) > 0 and µ(θl) < 0. Then
growth in Y could be due to a strong overall economy (θ(t) = θh), a positive demand
shock (dZY > 0), or both. Likewise, decay in Y could be due to a weak overall econ-
omy (θ(t) = θl), a negative demand shock (dZY < 0), or both. The important feature
is that a firm observing the path of Y (t) would not be able to perfectly distinguish
between the alternatives.

However, while not having complete information, the firm may see a noisy signal
s about the economy,

ds = θdt + ηρdZY + η
√

1 − ρ2dZs, (1.6)

or, intuitively, the signal of θ is equal to the true value plus some random noise.
The diffusion parameter η captures noise, and Zs is a standard Brownian motion
orthogonal to ZY . The parameter ρ captures any possible correlation between demand
and signals. Indeed, positive demand shocks are likely to be correlated with positive
signals about θ. Examples of noisy signals include economic indicators such as equity
market returns and employment data, and may also include actions and statements
by monetary authorities, regulators, and politicians.
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1.2.2 The Firm’s Learning Problem

The Filtering Equations

While the firm does not directly observe the economic environment, they may use
observations of Y and s to form beliefs about θ. In particular, beliefs are summarized
by the posterior probability π,

π(t) = Prob(θ = θh|Ft), (1.7)

i.e. the probability that the economic growth environment is high, conditional on the
current information set. The firm updates beliefs via Bayes’s Rule as new observations
of demand and signals arrive. Armed with posterior beliefs, the firm then forms
expectations about the current economic environment and the growth rate of demand:

θ̂ = πθh + (1 − π)θl

µ̂ = πµh + (1 − π)µl

where, to simplify notation, I define µh = µ(θh) and µl = µ(θl).
Optimal filtering equations (i.e. the stochastic processes for posterior beliefs π

and expected growth rates µ̂) follow from, in the case of one signal, Theorem 9.1 of
Liptser and Shiryaev (2001). Lemma 1 of Veronesi (2000) generalizes to a multivariate
setting. Equation (A.1.13) in Appendix A gives the stochastic process for π when the
firm observes both demand Y and the noisy signal s:

dπ =κ(π̄ − π)dt

+ π(1 − π)

(

µh − µl

σ2(1 − ρ2)
− θh − θl

ησ

ρ

1 − ρ2

)(

dY

Y
− µ̂dt

)

+ π(1 − π)

(

θh − θl

η2(1 − ρ2)
− µh − µl

ησ

ρ

1 − ρ2

)

(

ds − θ̂dt
)

(1.9)

with

κ = λlh + λhl

π̄ =
λlh

λlh + λhl

.

The firm optimally updates its beliefs about the economic environment according
to equation (1.9), which contains two components: A deterministic, mean-reverting
component, which pulls beliefs towards a long-run value of π̄ at rate κ, and a stochastic
component driven by unexpected shocks to dY and ds. Intuitively, the stochastic
component represents news from demand (or price) and signals. When dY and ds are
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large relative to expectations (in absolute value), signals convey a lot of information
about θ, and the revision in beliefs is potentially large.

When the firm only observes demand, the filtering equation simplifies to

dπ = κ (π̄ − π) dt + π(1 − π)
µh − µl

σ2

[

dY

Y
− µ̂dt

]

.

While equation (1.9) fully characterizes the learning process of the firm, the
stochastic equations for prices and signals are still written in terms of unobserv-
able parameters and shocks, specifically θ(t), dZY (t), and dZs(t). However, consider
the transformations defined in equation (A.1.15):

dẐY =
µ(θ) − µ̂

σ
dt + dZY (1.11a)

dẐs =

(

θ − θ̂

η
√

1 − ρ2
− µ(θ) − µ̂

σ

ρ
√

1 − ρ2

)

dt + dZs. (1.11b)

Formally, dẐY and dẐs are standard Brownian motions adapted to the firm’s filtra-
tion. In less technical terms, they represent observable shocks that are part of the
firm’s information set. To see this, rewrite the stochastic processes for Y and s by
substituting (1.11) into (1.3) and (1.6),

dY

Y
= µ̂dt + σdẐY (1.12a)

ds = θ̂dt + ηρdẐY + η
√

1 − ρ2dẐs, (1.12b)

so that Y and s are written using only observable information.
Finally, after some straightforward but tedious algebra, substitution of (1.11) into

(1.9) yields

dπ =κ(π̄ − π)dt + π(1 − π)

(

µh − µl

σ

)

dẐY

+ π(1 − π)

(

θh − θl

η
√

1 − ρ2
− µh − µl

σ

ρ
√

1 − ρ2

)

dẐs

=κ(π̄ − π)dt + π(1 − π)
(

ωY dẐY + ωsdẐs

)

,

(1.13)
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where, for ease of notation, I define the constants

ωY =
µh − µl

σ

ωs =
θh − θl

η
√

1 − ρ2
− µh − µl

σ

ρ
√

1 − ρ2
.

To summarize, while equations (1.3), (1.4), and (1.6) define an incomplete-information
system, the filtering equations allow us to rewrite the stochastic processes in terms
of observable parameters, transforming the equations into a complete information
system.

Properties of the Learning Process

Several features of the learning process are worth pointing out. The first is that
beliefs mean revert to π̄ at rate κ. Indeed, given a prior π(0), the conditional expec-
tation of the posterior probability is given by

E [π(t)|π(0)] = π(0)e−κt + π̄
(

1 − e−κt
)

= π(0)e−(λ
lh

+λhl)t +

(

λlh

λlh + λhl

)

(

1 − e−[λlh
+λ

hl]t
) (1.15)

with
lim
t→∞

E [π(t)|π(0)] = π̄,

a weighted average of the prior and the long-run mean. This is the familiar form for
mean-reverting stochastic processes. I derive this result in Appendix A.

The second property is that one statistic, π, characterizes both means and vari-
ances, which are given by

θ̂ = E [θ|π] = πθh + (1 − π)θl

µ̂ = E [µ(θ)|π] = πµh + (1 − π)µl

and

Var(θ) = E
[

(θ − θ̂)2|π
]

= π(1 − π) (θh − θl)
2

Var(µ(θ)) = E
[

(µ(θ) − µ̂)2|π
]

= π(1 − π) (µh − µl)
2 .

Intuition for this result comes from the diffusion terms in equation (1.13). When
π is close to zero or one, the diffusion terms, which are proportional to π(1 − π),
are small. In this case, beliefs, and therefore estimates of θ and µ(θ), are precise,
and any revision in beliefs in response to new information is small unless there is a
large surprise. However, when beliefs are close to π = 1

2
, there is a large amount
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of uncertainty about the state variable, and estimates are relatively imprecise. Even
relatively little news about about the state of the economy can result in a large
revision of beliefs.

Finally, inspection of the diffusion terms in equation (1.13) suggest a dual role
for demand volatility. In the standard theory of real options, higher volatility unam-
biguously leads to higher exercise thresholds and option values due to convexity of
the payoff function. However, in the case of incomplete information, higher volatility
has the effect of making it more difficult to learn about the economic environment.
Mathematically, this is because volatility enters into the denominator of the diffusion
terms; all else equal, higher volatility leads to smaller revisions in beliefs and slower
resolution of uncertainty. Intuitively, this is because higher volatility leads to noisier
observations which may mask the true state if, for example, noise cancels out any
sustained periods of growth or decay in demand.

A reasonable guess then is that, for some regions of the parameter space, higher
volatility may be associated with lower exercise thresholds, which I call a learning
affect. All else equal, if delaying investment to observe demand conveys little to
no information, the benefits to delaying may be small. I explore this possibility in
Section 1.3.4

Steady-State Density

To explore the effects of volatility on learning, it is useful to examine the long-run
stationary distribution of π. Denote f(π, t) as the probability density function of π
at any time t. Using standard results, the density function must satisfy the following
partial differential equation,

∂f

∂t
=

1

2

∂

∂π2

[

π2(1 − π)2

(

µh − µl

σ

)2

f(π, t)

]

− ∂

∂π

[

(λlh + λhl)

(

λlh

λlh + λhl

− π

)

f(π, t)

]

.

This is known as the Kolmogorov forward equation. The steady-state, or stationary,
distribution must also satisfy this equation, except that the derivative with respect
to time is equal to zero. David (1997) and David and Veronesi (2002) show that the

4The same should be true for the noisy signals and the signal volatility η, except in this case the
result should be unambiguous. Because noisy signals do not affect intrinsic value, there should only
be a learning affect associated with η.
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solution in the stationary case is

f(π) ∝ exp

{−2(λhlπ + λlh(1 − π))

π(1 − π) (ω2
Y + ω2

s)

}(

1 − π

π

)

2(λ
hl
−λ

lh
)

ω2
Y

+ω2
s

× 1

π2(1 − π)2 (ω2
Y + ω2

s)

(1.18)

Figure 1.1 plots the stationary distribution under four scenarios which highlight
the role volatility and the transition parameters play in the resolution of uncertainty.
Consider first the top two figures, which vary demand volatility while maintaining
a symmetric transition density (λhl = λlh = 0.25). In the case with high volatility
(top left), demand is a very imprecise indicator of the economic environment, so the
revision in beliefs due to news is small. Noisy demand makes it difficult to filter
out the state, so beliefs tend to be clustered around the mean. Hence, uncertainty
resolves slowly, if at all.

Contrast this to the case with low volatility (top right). In this scenario, demand
is a high-quality signal about the state of the economy. New signals convey a lot of
information about the economy, so periods of high economic uncertainty are relatively
rare. This translates into a bi-modal steady-state distribution - beliefs tend to be
clustered near the two boundaries, and uncertainty resolves quickly.

The bottom two figures focus on the case of asymmetric parameters in the transi-
tion density, while holding volatility constant. In the bottom left figure, both λhl and
λlh are large, with λhl > λlh. In this scenario, changes in the economic environment
happen often, and recessions are more frequent and longer-lasting than expansions,
which implies that the steady-state distribution will be skewed. This scenario is
again one of slow learning. Recall that the rate of mean-reversion in beliefs is given
by λhl + λlh. In this scenario, beliefs are reverting towards the mean at a high rate -
the intuition is that it is difficult to filter out the state of the economy if it is changing
frequently. Therefore, beliefs again tend to be clustered around the long-run mean,
and uncertainty resolves slowly.

Finally, the last figure considers the case of asymmetric parameters with infrequent
changes in the economic environment and λlh > λhl. This results in a skewed bi-modal
distribution. The distribution is skewed because, in this scenario, expansions are more
common than recessions, so beliefs tend to be more optimistic than pessimistic. It is
bi-model because the relatively rare changes in the economic environment allow firms
to form relatively precise beliefs - it is easier to learn when the economy is not always
changing. Thus, in this scenario, uncertainty once again resolves quickly.
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1.2.3 Project Valuation

Valuing the Cash Flows

Once the firm exercises its option to invest, the project generates per-period cash
flows of P (t)F (K) = Y (t)F (K)1−1/γ in perpetuity. Firms are risk-neutral and dis-
count cash flows at a constant rate r, with r > µh > µl:

V (Y, π; K, t) = Et

[∫

∞

t

e−r(u−t)Y (u)F (K)1− 1
γ du

]

(1.19)

I solve the expectation in (1.19) by recasting the present value function as the solu-
tion to a partial differential equation. Using a dynamic programming argument (see
Section A for a derivation), the following valuation equation must hold for the present
value of the cash flows:

rV dt = Y F (K)1− 1
γ dt + E[dV ] (1.20)

In words, (1.20) says that the total return to owning the perpetual stream of cash
flows (dividends Y (t)F (K)1−1/γ and expected capital gain E[dV ]/dt) must equal the
risk-free return rV . Using Ito’s Lemma, V (Y, π) obeys the stochastic process5

dV =

(

µ̂Y VY +
1

2
σ2Y 2VY Y + κ(π̄ − π)Vπ

+
1

2
π2(1 − π)2 (ωY + ωs)

2 Vππ + π(1 − π)(µh − µl)Y VY π

)

dt

+

(

σY VY + π(1 − π)ωY Vπ

)

dẐY + π(1 − π)ωsVπdẐs

(1.21)

Substituting the drift of (1.21)into (1.20) leads to the partial differential equation
characterizing the present value of the cash flows,

rV = Y F (K)1− 1
γ + [πµh + (1 − π)µl] Y VY +

1

2
σ2Y 2VY Y + κ(π̄ − π)Vπ

+
1

2
π2(1 − π)2

(

ω2
Y + ω2

s

)

Vππ + π(1 − π) (µh − µl) Y VY π,
(1.22)

with boundary condition V (0, π; K, t) = 0.
I solve the partial differential equation by the method of undetermined coefficients.

5The subscript notation denotes partial derivatives: VY = ∂V
∂Y

, VY Y = ∂2V
∂Y 2 , etc.
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To begin, conjecture that the present value function takes the form

V (Y, π; K, t) = H(π)Y (t)F (K)1− 1
γ

= [Aπ + B(1 − π)] Y (t)F (K)1− 1
γ

where A and B are coefficients to be determined. Substituting the conjecture into
(1.22), simplifying, and collecting terms yields,

0 = Y F (K)1− 1
γ

(

[1 + Aκπ̄ + B(µl − r − κπ̄)]

+ π [A(µh − r − κ) + B(r + κ − µl)]

)

This equation must hold for all values of Y and π. In particular, for the equation to
hold, the terms multiplying Y and π must equal zero. This implies that A and B
must satisfy the system of equations

[

κπ̄ µl − r − κπ̄
µh − r − κ r + κ − µl

] [

A
B

]

=

[

−1
0

]

.

Therefore, the coefficients are

A =
r − µl + λlh + λhl

(r − µh)(r − µl) + [λlh(r − µh) + λhl(r − µl)]
(1.23a)

B =
r − µh + λlh + λhl

(r − µh)(r − µl) + [λlh(r − µh) + λhl(r − µl)]
(1.23b)

To understand the solution, it is useful to consider two limiting cases. In the first
case, set λhl = λlh = 0. Then the solution for V simplifies to

V (Y, π; K, t) = π
Y F (K)1− 1

γ

r − µh

+ (1 − π)
Y F (K)1− 1

γ

r − µl

,

a probability-weighted average of two growing perpetuity formulas. Intuitively, when
there are no changes in the economic environment, beliefs eventually converge to one
or zero as firm learn the true value of θ. In this case, the value of future cash flows
is simply the expected value over two possible outcomes.

At the other extreme, set λhl = λlh = λ. Then, as λ tends towards infinity, the
solution is

lim
λ→∞

V (Y, π; K, t) =
Y F (K)1− 1

γ

r − 1
2
(µh + µl)

,

which does not depend on π. In this scenario, beliefs are constant at π = 1/2; the
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state of the economy is changing every instant, and firms have no ability to identify
the state.

Between these two extremes, the value of future cash flows is still linear in beliefs;
λhl and λlh are parameters which control the sensitivity of project values to beliefs.
When both parameters are small, expansionary and recessionary periods are highly
persistent, so project values will be very sensitive to beliefs about the economic envi-
ronment. The opposite case holds when both parameters are large, and the economy
rapidly cycles between booms and busts.

Finally, substituting the solution for V into (1.21), the stochastic process for
V (Y, π) is given by

dV

V
=

[

r − 1

H(π)

]

dt +

[

σ +
Hπ

H
π(1 − π)ωY

]

dẐY +
Hπ

H
π(1 − π)ωsdẐs (1.24)

so that 1/H(π) is the ‘dividend yield’ or opportunity cost of delaying investment.
When firms forgo an investment project, they are passing up cash flows today to
keep open the option to invest at a future date. Because H is linear and increasing
in π, 1/H is monotonically decreasing in π. In other words, the opportunity cost
of delaying investment decreases as beliefs become more optimistic. The intuition is
that, in the high growth state, project valuations depend relatively more on future
cash flows, while in the low growth state, project valuations depend relatively more
on current cash flows. Therefore, delaying an investment is less costly when growth
rates are high.

Furthermore, note that this framework endogenously generates stochastic volatil-
ity in project valuations, with volatility a quadratic function of beliefs. Because
Hπ = A − B > 0, volatility is increasing with economic uncertainty.

Valuing the Option to Invest

Standard real option models typically assume a fixed capital investment (i.e. K
is fixed), but this assumption ignores that, in addition to choosing when to invest,
firms have some flexibility in choosing how much to invest. In other words, K is a
choice variable. Recognizing this flexibility, and denoting G(Y, π) as the value of the
firm’s investment option, the firm’s optimization problem is given by

G(Y, π) = max
K,τ

E0

[

e−rτ (V (Y, π; K, τ) − K)
]

(1.25)

where the firm chooses both an optimal time to invest, τ , and an optimal level of
investment, K.6

As with standard real option models, we can recast the optimal stopping problem

6This is just equation (1.1), where I have substituted in the solution for the present value of cash
flows.
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as an exercise threshold: Firms optimally delay investment until demand Y (or the
output price P ) reaches some threshold (which may vary with π). Once demand hits
the threshold, firms invest the amount of capital that maximizes net present value,
which follows from the first-order condition,

∂V

∂K
=

(

1 − 1

γ

)

[Aπ + B(1 − π)] Y ∗F (K)−1/γF ′(K) = 1. (1.26)

Condition (1.26) simply requires that the marginal benefit of an additional unit of
capital equals the marginal cost, and must hold if firms are investing to maximize
NPV.

Due to the functional form of F (K), the first-order condition is non-linear and
must typically be solved numerically. However, in the case of a perfectly elastic
demand curve (γ → ∞), the first-order condition simplifies to

∂V

∂K
= [Aπ + B(1 − π)] Y ∗F ′(K) = 1.

Using F (K) = log(1+K) and imposing the additional constraint K ≥ 0, the optimal
capital choice conditional on reaching the investment threshold is

K∗ = max {[Aπ + B(1 − π)] Y ∗ − 1, 0} .

Owning an option to invest is analogous to owning a perpetual American call option
on the investment project. At any point in time, a firm may either exercise their
option and invest, or delay investment while retaining the option to invest at a future
date. In the inaction region, where firms find it optimal to delay investment, the
total return to owning the option must equal the risk-free return. (This is due to the
assumption of risk-neutrality.) The option pays no dividends, i.e. the firm receives no
cash flows from the project unless the option is exercised; total return is from capital
gain only. Therefore, rG dt = E[dG], the option analogue to the cash flow valuation
equation in (1.20).

To obtain the expected capital gain, apply Ito’s Lemma to G(Y, π). Setting the
drift term equal to rG dt produces a partial differential equation for the value of the
option to invest,

rG = [πµh + (1 − π)µl] Y GY +
1

2
σ2Y 2GY Y + κ(π̄ − π)Gπ

+
1

2
π2(1 − π)2

(

ω2
Y + ω2

s

)

Gππ + π(1 − π) (µh − µl) Y GY π.
(1.27)

This is a free boundary problem (i.e. for each π we look for an optimal investment
threshold Y ∗), and the solution is subject to value-matching and smooth-pasting
conditions.
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The value-matching condition requires that, at the investment boundary, the value
of the option equals the value from investing immediately. Therefore,

G(Y ∗, π; τ) = V (Y ∗, π; K∗, τ) − K∗ = (Aπ + B(1 − π)) Y ∗F (K∗)1− 1
γ − K∗. (1.28)

The smooth-pasting condition requires that, at the investment boundary, the value
of the option and the intrinsic value meet tangentially. Therefore,

GY (Y ∗, π; τ) = VY (Y ∗, π; K∗, τ) (1.29a)

Gπ(Y ∗, π; τ) = Vπ(Y ∗, π; K∗, τ). (1.29b)

Finally, when the firm has the option to choose the scale of the project, investment
must satisfy the marginal capital condition in (1.26).

The partial differential equation in (1.27) is similar to (1.22); in theory, the con-
ditions in (1.26), (1.28), and (1.29) can be used to derive a solution. However, in
this case, the free boundary problem rules out a closed-form solution, so numerical
techniques are used.

1.3 Numerical Analysis

I solve the partial differential equation in (1.27) using a finite difference scheme;
details of the grid and numerical procedure are in Appendix A. I solve the model
under two scenarios. In the first, there are no signals, and the firm only observes
demand. In the second, I allow for the firm to observe noisy signals. To improve
computational efficiency, I also assume the demand curve is perfectly elastic, so that
I can solve for the optimal capital allocation analytically.

1.3.1 Calibration to US GDP Growth

In order to study the model, I calibrate the model to US GDP growth. While
I defer a discussion of the estimation method until Section 1.4, a brief discussion
is warranted. Under the assumption that GDP is a reasonable proxy for aggregate
demand, I estimate the parameters µh, µl, σ, λhl, and λlh, as well as a time series of
filtered probabilities analogous to π, from the time series of GDP growth using the
procedure for regime-switching models outlined in Chapter 22 of Hamilton (1994).

The calibration to GDP serves two purposes. First, it is always preferable to
calibrate a model using reasonable parameters, so going to the data to find those
parameters is a useful exercise. Second, the model will generate some predictions
about the response of investment to beliefs about the economic environment; I use
the filtered probabilities as regressors to test those predictions in Section 1.4.

Using quarterly data, I estimate annualized expansionary and recessionary growth
rates of 4.1% and -1.8%, respectively, with annualized volatility of 3.1%. Additionally,
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the estimate of λhl is 0.058, while the estimate of λlh is 0.302. These estimates imply
that expansions last for about 17.3 quarters on average (or about 5.5 years), while
recessions last for about 3.3 quarters on average (or just short of one year). Table 1.2
reports results of the estimation procedure, while the associated probabilities of being
in the recessionary state are graphed in Figure 1.2. As a non-rigorous validation of
the estimation and filtering procedure, the estimated probabilities line up well with
NBER recession dates. Finally, I use r = 5% as the discount rate.

Benchmark Results

I first focus on the relationship between investment and growth rate uncertainty.
Figure 1.4 plots the investment exercise threshold as a function of posterior beliefs for
the case of both variable and fixed capital decisions. In terms of the partial differential
equation (1.27), Figure 1.4 is the free boundary solution.

Consider first the top panel, which plots the exercise threshold when the invest-
ment scale of the project is a choice variable. The lower threshold is for the case
when the firm only observes demand, while the upper threshold is for the case when
the firm observes an additional noisy signal. Notice that the addition of a noisy sig-
nal increases the exercise boundary, leading to further delays in investment. This is
because additional signals about demand improve the firm’s ability to learn about
the economy. Under the benchmark set of parameters drawn from U.S. GDP growth,
the incentive to delay investing is a non-monotonic function of beliefs. Indeed, in the
case with signals, the incentive to delay is highest when beliefs are near π = 0.50.
Since the posterior probability π describes the probability that the economy is in
a high-growth environment, uncertainty about beliefs is given by π(1 − π), which is
maximized at π = 0.50. Hence, if we believe that higher exercise boundaries translate
into lower aggregate investment, Figure 1.4 suggests that investment is lowest almost
precisely when uncertainty is highest, especially in the case of noisy signals.

Contrast this with the case where project scale is fixed. In this scenario, firms
only choose when to invest, and the exercise threshold is plotted in the bottom panel
of Figure 1.4. With fixed capital, the investment threshold declines monotonically
as beliefs become more optimistic. The intuition for this result is that, while firms
don’t know the current economic environment, they do know that it can be only one
of two cases, expansionary or recessionary. If demand is high enough such that firms
would always invest if they knew the environment with certainty, then they would
never delay; investing immediately is a dominant strategy.

What explains the markedly different results under the two cases? In the case
with flexibility over project scale, there are two costs associated with exercising the
investment option. One is the standard real option opportunity cost - by investing
today, firms forgo the opportunity to exercise their option at a later date. When
project scale is a choice variable, there is an additional cost: Firms risk irreversibly
allocating a suboptimal level of capital to an investment project. As a result, the
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benefit to delaying can be substantial during periods of high uncertainty if delaying
allows the firm to make a more informed investment decision. This second cost is
absent in the case of fixed capital decisions - investing immediately is a dominant
strategy as long as demand is above the recessionary threshold as there is no risk of
allocating the wrong amount of capital to a project.

To think about the fixed capital result another way, recall that the opportunity
cost of delaying investment is 1/H(π), which is monotonic in beliefs since H(π) is
linear in beliefs. Since there is only an investment timing decision, and no investment
scale decision, firms only face an invest-or-delay decision. Because the cost of delaying
investment is monotonic in beliefs, the exercise threshold is also monotonic in beliefs.

The Effect of Volatility

Uncertainty about the economic environment resolves quickly when demand volatil-
ity is low. In this case, demand is highly informative about the true state of the econ-
omy, and learning is fast. Therefore, during periods of high uncertainty, there may
be a large incentive to delay investment. Likewise, when volatility is high, demand is
a very imprecise signal of the true state, and learning is slow. This suggests that the
learning effects of high volatility may offset the usual convexity effects of volatility
associated with higher expected payoffs.

Figure 1.5 plots the investment exercise threshold for various levels of volatility,
and for both fixed and variable capital decisions. In the top panel, when capital is
a choice variable, the effects of volatility appear to be striking. During periods of
low economic uncertainty, when beliefs are close to either π = 0 or π = 1, the usual
convexity effect dominates. Higher volatility appears to be associated with higher
exercise thresholds - learning is relatively unimportant since there is little uncertainty
about the economic environment.

However, as beliefs become less precise, the figure reveals a more complicated
relationship between volatility and exercise thresholds. When demand volatility is
low (σ = 0.02 or σ = 0.03 in the graph), beliefs about the economy can change
quickly in response to new information, so delaying investment to learn can confer
substantial benefits in the form of a more informed investment decision. For low
enough levels of volatility, this effect can outweigh the convexity effect, so that lower
volatility is associated with higher exercise thresholds. A similar result is found in
Bernardo and Chowdhry (2002).

However, this effect appears to die out as volatility increases. Recall that higher
volatility makes it more difficult to learn about the economy. Intuitively, there should
be little benefit to delaying investment if information about the economy does not
change. This is apparent for the higher volatility parameters (σ = 0.04 and σ =
0.05) in Figure 1.5, where the traditional relationship between volatility and exercise
thresholds returns. As volatility increases, the benefits to learning diminish, so that
the convexity effect outweighs the learning affect.
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Finally, note that in the bottom figure, where project scale is fixed, the relationship
between demand volatility and exercise thresholds appears to be monotonic. The
numerical analysis suggests that the learning effects of volatility are closely linked
to the additional cost associated with option exercise in the variable case. Delaying
investment during periods of high economic uncertainty allows firms to make a more
informed capital allocation decision. In a low-volatility environment, the benefits of
delaying to learn can outweigh the opportunity costs associated with delaying exercise
(the forgone cash flows). However, when capital is fixed and firms face only a timing
decision, the cost of making a suboptimal capital investment are no longer present,
and the economic benefits of delaying to learn are much smaller.7

The Effects of Signal Quality and Shift Intensity

Figure 1.6 plots the investment exercise threshold for various levels of signal quality
η. The plots identify a negative relationship between noise and investment thresholds.
As signal quality deteriorates (η increases), benefits to delaying investment diminish.
Noisy signals are uninformative, so firms find them to be of little use in making their
investment decision, while the delaying effect is strongest when signals are precise.
The intuition closely resembles the learning effects of volatility - precise signals confer
substantial learning benefits - except that there is no associated convexity effect since
noise does not affect intrinsic value.

Figure 1.7 plots the investment exercise threshold for various levels of the transi-
tion density parameters, λhl and λlh, and suggests that investment thresholds typically
decline as shifts in the economic environment become more frequent. While qualita-
tively similar to the effect noise, the mechanism is different. Whereas volatility and
noise affect the precision of beliefs, shift intensity affects average beliefs. When the
economy is shifting frequently between expansions and recessions, beliefs are converg-
ing towards the mean at a higher rate; even if firms have precise beliefs about the
economic environment today, they know that the environment is likely to change and
become more uncertain. For high enough transition parameters, the effect of mean
reversion dominates so that uncertainty effectively becomes long-lasting.

1.4 Empirical Analysis

With the numerical analysis of the investment boundary complete, let us now turn
to the empirical analysis and a detailed explanation of the empirical procedure used
to estimate the switching model parameters and associated probabilities.

7In the absence of closed-form solutions to the investment problem, a formal proof is unavailable.
Therefore, any interpretation of the volatility effects in Figure 1.5 rely on the accuracy of the
numerical procedure used to solve the problem.
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1.4.1 Parameter Estimation

Estimation Procedure

I estimate the parameters of the switching model for U.S. GDP growth via maxi-
mum likelihood, using the method outlined in Chapter 22 of Hamilton (1994). Begin
by applying Ito’s Lemma to y = log Y ,

dy =

[

πµh + (1 − π)µl −
1

2
σ2

]

dt + σdẐY .

Then, conditional on θ, y(t) is Normally distributed with density8

fh =f(y(t)|θ(t) = θh) =
1√

2πσ2
exp

{

−1

2

(

y(t) − µh + 1
2
σ2

σ

)2
}

fl =f(y(t)|θ(t) = θl) =
1√

2πσ2
exp

{

−1

2

(

y(t) − µl + 1
2
σ2

σ

)2
}

.

Summing over the possible states θh and θl at t− 1, the density at time t is given by

f(y(t)) =(1 − λhl)πt−1fh + λhlπt−1fl

+ λlh(1 − πt−1)fh + (1 − λlh)(1 − πt−1)fl.
(1.31)

Finally, working from equation (1.31), the updated probabilities at time t are given
by

πt =
(1 − λhl)πt−1fh + λlh(1 − πt−1)fh

f(y(t))
(1.32a)

1 − πt =
(1 − λlh)(1 − πt−1)fl + λhlπt−1fh

f(y(t))
. (1.32b)

Therefore, starting with an initial value π0, we can construct a series of conditional
likelihoods and associated probabilities by iterating through equations (1.31) and
(1.32).

Denote the parameter vector as Θ. Then the log-likelihood function is,

L(Θ) =
T
∑

t=1

log f(y(t))

which must be evaluated numerically.

8The reader should not confuse the posterior belief π(t) with the mathematical constant π in the
Normal distribution.
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To calculate standard errors, I rely on the asymptotic distribution theory of max-
imum likelihood (see Campbell et al. (1997) for a reference), which states

√
T
(

Θ̂ − Θ
)

∼ N
(

0, I−1(Θ)
)

where

I(Θ) = lim
T→∞

−E

[

1

T

∂2L(Θ)

∂Θ∂Θ′

]

is the information matrix.
Rather than calculate second derivatives numerically, I rely on the information-

matrix equality, which states that the information matrix can be estimated consis-
tently from sample first derivatives as

Î =
1

T

T
∑

t=1

∂ log f(Θ̂)

∂Θ

∂ log f(Θ̂)′

∂Θ
(1.33)

The relevant derivatives are given in Appendix A.

Estimation Results

I fit the switching model to both quarterly and annual growth in real gross domes-
tic product from 1951 to 2009. I source the data from the FRED (Federal Reserve
Economic Data) database provided by the Federal Reserve Bank of St. Louis. To ease
the comparison, I annualize quarterly growth rates. Table 1.2 presents the results.

Using quarterly data, I estimate annualized growth rates of 4.1% in the high
state and -1.8% in the low state, with volatility of 3.1% per year. This compares
to an unconditional mean and volatility of 3.2% and 3.8%, respectively, and the
likelihood ratio test easily rejects the one-state model in favor of a two-state model.
The estimates of λhl and λlh imply that expansions last for 17.3 quarters on average,
while recessions last for 3.3 quarters on average (or about 5.5 years and just under 1
year).

The annual results give similar numbers for the length of regimes: Based on esti-
mates for λhl and λlh, expansions last for about 5.2 years on average, while recessions
last for about 1.4 years on average. However, the likelihood ratio test fails to reject
the one-state model, and while the point estimate on µl is negative, it is statistically
indistinguishable from zero. The quarterly estimate of λlh, which suggests recessions
last for less than a year on average, provides a clue that annual data may be masking
some short-lived recessions. Indeed, based on NBER recession dates, there were re-
cessions in 1960, 1970, and 2001, each lasting for less than a year, that do not appear
in annual GDP data. In other words, annual GDP growth rates were positive in each
of these years. However, while these recessions do not appear in the annual data,
they do appear in the estimated annual probabilities, as shown in the bottom half of
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Figure 1.2.
Figure 1.3 plots the empirical and theoretical distribution of beliefs. The empir-

ical density is simply the histogram of estimated probabilities, while the theoretical
density is the predicted distribution according to equation (1.18). Empirically, the
distribution of beliefs is bi-model and skewed - beliefs are usually optimistic about
the economy, with brief periods of pessimism, and periods of high uncertainty are
rare. Although not visually obvious in the graphs, the estimated parameters imply a
bi-modal theoretical distribution as well, with modes at π = 0.10 and π = 0.98 when
fit to quarterly data, and modes at π = 0.12 and π = 0.97 when fit to annual data.

1.4.2 Empirical Analysis of Corporate Investment

Estimation Procedure

Given the theoretical predictions on the relationship between demand uncertainty
and investment, as well as the evidence of high-growth and low-growth states of the
US economy, a natural question to ask is the following: Do the filtered probabilities
have explanatory power in explaining US investment behavior? Or are beliefs about
the economy embedded within market values and Tobin’s Q?

To explore these questions, I start with the following empirical specification:

Ii,t

Ai,t

= β1
Ii,t−1

Ai,t−1

+ β2
CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2
t + αi + ǫi,t (1.34)

where Ii,t is corporate investment, Ai,t is the book value of assets, CFi,t is cash flow,
Qi,t is a proxy for marginal Q, and πt is the filtered belief that the economy is in
an expansionary state. While this belief is common across all firms, all other regres-
sors are firm-specific. The squared regressor captures any possible non-monotonic
relationship between investment and beliefs. αi is a firm-specific fixed effect, which
captures unobserved heterogeneity across firms.

I also test a restricted form of (1.34), which combines beliefs and squared beliefs
into one variable:

Ii,t

Ai,t

= β1
Ii,t−1

Ai,t−1

+ β2
CFi,t

Ai,t

+ β3Qi,t−1 + β4πt(1 − πt) + αi + ǫi,t (1.35)

This restriction explicitly imposes β4 = −β5 in (1.34).
The regression equations in (1.34) and (1.35) present several empirical challenges

for testing. The first is that the lagged dependent variable is cross-sectionally corre-
lated with the fixed effect, as is the case in any dynamic panel regression. The idea
is that large, unexplained shocks to investment go into the error term, which is the
sum of the unobserved fixed effect and the random error ǫi,t. All else equal, firms
with large, positive investment shocks will have large fixed effects, while firms with
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large, negative shocks to investment will have small fixed effects. This violates the
assumptions required for consistency of the ordinary least squares estimator.

The standard method of removing fixed effects is to take a within-groups trans-
formation of the data. In this transformation, group means are subtracted from the
observations for each firm; since fixed effects are constant within groups, this removes
the fixed effect. While this transformation is successful in eliminating the fixed effect,
it has the unfortunate side effect of introducing correlation between the transformed
lagged dependent variable and the transformed random error term. Unless there is a
suitable instrument for lagged investment, within-groups estimation is inconsistent.9

An alternative method of removing fixed effects is the first differences estimator.
In this transformation, the fixed effect is eliminated by taking first differences of all
observations within groups. The resulting regression equation is

∆
Ii,t

Ai,t

= β1∆
Ii,t−1

Ai,t−1

+ β2∆
CFi,t

Ai,t

+ β3∆Qi,t−1 + β4∆πt + β5∆π2
t + ∆ǫi,t. (1.36)

where ∆ is the first differences operator.
This approach still introduces correlation between the transformed lagged de-

pendent variable and the transformed error term, since both transformed variables
contain t − 1 terms:

∆
Ii,t−1

Ai,t−1

=
Ii,t−1

Ai,t−1

− Ii,t−2

Ai,t−2

(1.37a)

∆ǫi,t = ǫi,t − ǫi,t−1. (1.37b)

The correlation arises because, from equation (1.34), investment at t− 1 is correlated
with the error term at t − 1. However, as long as the transformed error term is
serially uncorrelated, deeper lags of investment, which contain no t− 1 terms, will be
uncorrelated with the error. Therefore, unlike in the within groups transformation,
deeper lags are potentially valid instruments for lagged investment. This approach
to using deeper lags as instruments in dynamic panels is due to Arrelano and Bond
(1991).

An additional empirical challenge is that cash flow, used as a firm control in (1.34),
is simultaneously determined with investment. It too will be correlated with the error
term in (1.34) and (1.36) due to un-modeled operating decisions which jointly affect
both investment and cash flow. Again, we require a suitable instrument for cash
flow. Appealing to the logic used above for investment, lagged values of cash flow are
potentially suitable, if not economically meaningful, instruments if the error term is
i.i.d. Brown and Petersen (2009) also take this approach to instrumenting cash flow.

To summarize, I estimate the parameters in (1.34) using two-stage least squares
on first differences. The excluded instrument set contains the second, third, and

9See Roodman (2006) and Bond (2002) for a discussion of this point.
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fourth lags of cash flow, and the third and fourth lags of investment. With more
instruments than endogenous regressors, the system is over-identified; this allows us
to use the χ2 test of over-identifying restrictions to test the orthogonality conditions.
If the χ2 statistic is sufficiently large, we reject the hypothesis that the instruments
are uncorrelated with the error term.

The included instrument set contains Q, π, and π2. In the first stage regressions
I fit cash flow and lagged investment to the entire set of included and excluded in-
struments, while in the second stage I regress investment on the included instruments
and the fitted values of lagged investment and cash flow. The first stage F-test of
excluded instruments tests the joint significance of the instrumental variables. Taken
together, the F-test and χ2 statistic provide two useful metrics in determining the
validity of the instruments.10

Data Description

The empirical study utilizes annual data on US firms from 1964 to 2008. Firm
data come from the COMPUSTAT database; I use 1964 as the beginning date due to
limited data availability prior to 1964. In most cases I follow Lewellen and Lewellen
(2010) when constructing the relevant variables.11

Table 1.1 contains a list and description of the relevant variables from COMPUS-
TAT. The first step is filtering down the database to the set of relevant firms. First,
following convention, I classify firm-years according to the fiscal year-end month. If
a firm’s fiscal year ends in January through May, that observation is classified to the
prior year. For example, Circuit City’s fiscal year ended in March prior to 1979, and
February thereafter. Therefore, the COMPUSTAT record dated March 31, 1977 is
assigned to the year 1976.

Next, I keep only firms headquartered within the United States, as well as only
those with ISO or native currency equal to the U.S. dollar. Finally, I remove any
firms with SIC codes ranging from 6000 to 6799 (‘Fire, Insurance, and Real Estate’
division) or 9100 to 9999 (‘Public Administration’ division).

I consider two measures of investment. The first is simply capital expenditures,
from the statement of cash flows. Following Lewellen and Lewellen (2010), I also
consider a measure of the investment which is the sum of capital expenditures and
cash spent on acquisitions (again, from the statement of cash flows).

Cash flow is defined as operating income before depreciation. However, this vari-
able is not always reported, so I rely on some accounting relationships to fill in
missing values where possible. If operating income is missing, I then define cash flow
as income before extraordinary items plus extraordinary items and depreciation and

10I implement the two-stage regression procedure in Stata using the xtivreg2 command authored
by Schaffer (2007).

11Note that, because of the use of both first differences and up to four lags of investment and cash
flow as instruments, the first observation in the estimation is 1969.
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amortization, both from the statement of cash flows. Occasionally, depreciation and
amortization is missing as well, so I replace this with depreciation and amortization
from the income statement where possible.

I define net assets as book value of total assets less non-debt current liabilities, and
calculate net debt as total liabilities less non-debt current liabilities. I fill in missing
net asset values with the sum of net debt and book equity, where possible. Likewise,
I fill in missing debt values with the sum of long-term debt, short-term debt, and
other liabilities.

Market value of equity is the closing share price times the number of common
shares outstanding, and I define Q as the sum of market equity and net debt, scaled
by net assets. I then drop any observations with either a market value of equity equal
to zero, or a book value of equity less than or equal to zero, and also any observations
with missing values for net assets, investment, cash flow, or Q. This results in a final
data set with 158,491 firm-year observations.

Finally, since both cash flow and investment are flow variables that occur through-
out the year, I scale each by the average of beginning-year and ending-year net assets.
Furthermore, to reduce the impact of outliers and associated measurement error, I

Winsorize investment, cash flow, and Q at the 1st and 99th percentiles. This adjust-
ment, common in the literature, converts all values in the upper and lower tails of

the distribution to the 1st and 99th percentile values.

Estimation Results

I estimate (1.34) using annual data for all COMPUSTAT firms, and also split
the sample into manufacturing and non-manufacturing firms. To review, the relevant
regression equation is

Ii,t

Ai,t

= β1
Ii,t−1

Ai,t−1

+ β2
CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2
t + αi + ǫi,t (1.38)

where π measures the estimated probability that the economy is in an expansionary
environment. I consider two measures of beliefs. The first is simply the probability of
economic expansion estimated from annual data. However, I also estimate the regres-
sion using average quarterly beliefs over the year, for two reasons. First, since beliefs
evolve dynamically and investment takes place throughout the year, a beginning-year
annual belief can become stale rather quickly. Second, the likelihood ratio tests re-
ject the two-state model using annual data, but fail to reject using quarterly data.
Nevertheless, the regressions using annual beliefs perform better in terms of testing
the over-identifying restrictions, perhaps because smoothness induced by averaging
quarterly data.
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I also estimate a restricted form of the regression,

Ii,t

Ai,t

= δ1
Ii,t−1

Ai,t−1

+ δ2
CFi,t

Ai,t

+ δ3Qi,t−1 + δ4πt(1 − πt) + αi + ǫi,t (1.39)

which imposes the restriction β4 = −β5 in (1.39). I do this because π(1 − π) is the
measure of economic uncertainty in the theoretical framework, but also because of
concerns about multi-collinearity. Because estimated beliefs are typically close to
zero or one, squared beliefs are also typically close to zero or one. As we shall see, in
eleven out of twelve cases, the point estimate of β3 is negative and the point estimate
of β4 is positive. Although this result is consistent with the theoretical framework,
the alternating coefficients could be indicative of two highly collinear variables.

Turning now to the regression results, Table 1.4 presents results using 1) capital
expenditures as the measure of investment, and 2) estimated annual beliefs. The point
estimates of β4 and β5 are -0.016 and 0.022, respectively, which implies a quadratic re-
lationship between investment and beliefs. Starting out at π = 0, investment initially
declines as beliefs become more optimistic - even though the probability of an expan-
sionary environment is increasing, economic uncertainty is also increasing. However,
after reaching some threshold, investment begins to increase as beliefs become more
optimistic and uncertainty falls. The pattern is qualitatively the same for the manu-
facturing and non-manufacturing sub-samples, although the χ2 test rejects the model
for the manufacturing sector. All coefficients are significant at the 5% level, with all
but one significant at the 1% level, and the F-tests of instrument significance reject
the null of joint insignificance.

The restricted estimates of δ4 are -0.030 for all firms, -0.027 for manufacturing
firms, and -0.036 for non-manufacturing firms, again implying that investment rates
systematically decrease as economic uncertainty increases. However, Wald tests easily
reject the restrictions, suggesting that the unrestricted regressions provide a better
fit to the data.

Although the patterns of the estimated coefficients are the same, regressions using
the average of quarterly beliefs (reported in Table 1.5) are somewhat less successful
overall in terms of χ2 tests, which reject the over-identifying restrictions for all firms
and the manufacturing sub-sample. The χ2 test fails to reject the model for the
non-manufacturing sub-sample, but the estimates of β4 and β5 are statistically in-
distinguishable from zero. However, the estimate of δ4 in the restricted regression is
significant, which suggests that multi-collinearity in beliefs and squared beliefs are
combining with the smaller sample size to mask any relationship between investment
and beliefs for non-manufacturing firms. One notable difference when using average
quarterly beliefs is the Wald test, which fails to reject the hypothesis that β4 = −β5

in all three cases.
Tables 1.6 and 1.7 present regression results when the measure of investment is the

sum of capital expenditures and cash spent on acquisitions, and the results are broadly
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consistent with the previous results, except that the magnitudes are somewhat larger.
For all firms using annual beliefs, the point estimates of β4 and β5 are -0.024 and 0.030,
respectively, and the Wald test rejects the hypothesized restriction on the coefficients.
Furthermore, the χ2 test fails to reject the over-identifying restrictions in every case,
though again the point estimates in the non-manufacturing are statistically zero when
using average quarterly beliefs.12

Figure 1.8 plots the expected level of investment conditional on beliefs, in both
the restricted and unrestricted cases. In the top panel, the measure of investment is
capital expenditures, while the bottom panel includes acquisitions. In all cases, the
figures display the quadratic relationship between investment and beliefs described
above, which are consistent with the theoretical results when firms have flexibility over
the scale of their investments. (Recall that higher investment thresholds translate into
lower aggregate investment.)

In summary, the empirical findings suggest that uncertainty about the economic
environment indeed plays a role in corporate investment decisions, consistent with
the theoretical framework. The parameters of the switching model estimated from
U.S. GDP growth imply a distribution of beliefs that is bi-modal, with quick res-
olution of uncertainty, and exercise thresholds that are approximately quadratic in
beliefs (or linear in uncertainty). Using probabilities estimated from time series of
GDP growth, the empirical relationship between corporate investment and beliefs is
quadratic, which is consistent with the theoretical model with flexible capital alloca-
tion.

1.5 Concluding Remarks

Economic growth and demand uncertainty is important for corporate investment
decisions if the demand environment affects the cash flows generated by an investment
project and investment is irreversible. Guided by this intuition, I develop a theoret-
ical framework which incorporates growth rate uncertainty into a firm’s investment
decision.

The model developed in this chapter suggests that firms will decrease investment
as growth uncertainty increases provided that 1) firms have flexibility over the scale
of their investments, and 2) uncertainty resolves quickly. Uncertainty will typically
resolve quickly as long as demand volatility is relatively low, signals about demand
are relatively precise, and changes in the economic environment happen infrequently.

Empirically, real gross domestic product displays precisely the properties necessary
for uncertainty to resolve quickly. Although we do not observe noisy signals, volatility

12A caveat about the results: The estimated standard errors do not account for the fact the the
probabilities used in the regressions are themselves estimates and subject to error. As a consequence,
the reported standard errors are potentially too small, and the statistical significance is perhaps less
remarkable than reported.
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is sufficiently low and shifts in the economy are sufficiently infrequent to generate the
bi-modal distribution of beliefs that is consistent with quick resolution of uncertainty.
Therefore, we might expect corporate investment rates to respond systematically to
beliefs about the economy.

Indeed, estimated probabilities from GDP growth are useful in explaining cor-
porate investment. The estimated relationship between investment and beliefs is
quadratic; correspondingly, the estimated relationship between investment and un-
certainty is linear. In sum, uncertainty about the state of the economy appears to be
important for corporate investment, both theoretically and empirically.
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1.6 Figures and Tables

Figure 1.1: Steady-state probability density for π given by equation (1.18) when
learning is slow (left), and when learning is fast (right), under the assumption that
no additional signals are observed. In the top panel, probabilities of regimes shifts
are symmetric, while in the bottom panel they are asymmetric. Demand growth is
4% in the high state and -1% in the low state.
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Figure 1.2: Probability that the economy is in a recessionary state based on US GDP
growth, 1951 - 2009. The shaded bars represent recessions as defined by NBER. I
estimate probabilities using the procedure outlined in Chapter 22 of Hamilton (1994).
Table 1.2 provides the associated parameter estimates of the regime-switching model.
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Figure 1.3: Empirical and theoretical densities of the probability that the economy is
in a expansionary state based on US GDP growth, 1951 - 2009. I estimate probabilities
using the procedure outlined in Chapter 22 of Hamilton (1994). The theoretical
density, calculated with estimated parameters, is given in equation (1.18).
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Figure 1.4: Free boundary solution to the PDE in equation (1.27) when investment
scale is a choice variable (top), and when investment scale is fixed (bottom). The
PDE solution is based on quarterly parameter estimates of the regime-switching model
given in Panel A of Table 1.2. In the case with noisy signals, η = 0.40.
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Figure 1.5: Free boundary solution to the PDE in equation (1.27) for varying levels
of demand volatility σ when investment scale is a choice variable (top), and when
investment scale is fixed (bottom). The PDE solution is based on quarterly parameter
estimates of the regime-switching model given in Panel A of Table 1.2.
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Figure 1.6: Free boundary solution to the PDE in equation (1.27) for varying levels of
noise quality η when investment scale is a choice variable (left), and when investment
scale is fixed (right). The PDE solution is based on quarterly parameter estimates of
the regime-switching model given in Panel A of Table 1.2.
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Figure 1.7: Free boundary solution to the PDE in equation (1.27) for varying economic
transition parameters when investment scale is a choice variable (left), and when
investment scale is fixed (right). The PDE solution is based on quarterly parameter
estimates of the regime-switching model given in Panel A of Table 1.2.



35

Figure 1.8: This figure displays the expected level of investment conditional on beliefs
for both restricted and unrestricted cases, where investment is measured as capital
expenditures (top) and the sum of capital expenditures and acquisitions (bottom).
Capital expenditure plots are based on regression estimates in Table 1.4, while capital
expenditure plus acquistion plots are based on regression estimates in Table 1.6.
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Table 1.1: Description of COMPUSTAT variables

Data Code Descriptor

gvkey Global Company Key
loc Current ISO Country Code - Headquarters
sic Standard Industry Classification Code
datadate Data Date
fyr Fiscal Year-end Month
curcd ISO Currency Code
curncd Native Currency Code
aqc Acquisitions
at Assets - Total
capx Capital Expenditures
csho Common Shares Outstanding
dlc Debt in Current Liabilities - Total
dltt Long-Term Debt - Total
dp Depreciation and Amortization
dpc Depreciation and Amortization (Cash Flow
ibc Income Before Extraordinary Items (Cash Flow)
lct Current Liabilities - Total
lo Liabilities - Other - Total
lt Liabilities - Total
oiadp Operating Income After Depreciation
oibdp Operating Income Before Depreciation
prcc c Price Close - Annual - Calendar
seq Shareholders’ Equity - Total
xidoc Extraordinary Items and Discontinued Operations (Cash Flow)
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Table 1.2: Regime-Switching Parameters for GDP Growth
This table presents maximum likelihood estimates of the two-state model for GDP growth
from 1951 to 2009, for both quarterly and annual data. For comparison purposes, quarterly
growth rates are annualized. L(Θ) is the maximized value of the log-likelihood function,
and LR is the likelihood ratio statistic comparing the two-state model to a one-state model.
Maximum likelihood standard errors are in parentheses, and p-values for the likelihood ratio
test come from Table 1A in Garcia (1998).

Panel A: Two-State Model

µh µl σ λhl λlh L(Θ) T

Quarterly 0.041 -0.018 0.031 0.058 0.302 450.340 235
(0.004) (0.006) (0.002) (0.102) (0.153)

Annual 0.039 -0.001 0.015 0.192 0.701 141.753 58
(0.003) (0.007) (0.002) (0.147) (0.099)

Panel B: One-State Model

µ σ L(Θ) LR p-value T

Quarterly 0.032 0.038 436.818 27.045 0.000 235
(0.003) (0.001)

Annual 0.031 0.022 138.986 5.535 0.300 58
(0.003) (0.002)
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Table 1.3: Summary Statistics - Investment, Cash Flow, and Tobin’s Q
This table presents summary statistics for corporate financial data from the COMPUSTAT database,
before and after adjusting for outliers. Capital expenditures, acquisitions, and cash flow are scaled by
the average of beginning and ending book value of assets, and Tobin’s Q is calculated as the market
value of equity plus debt, scaled by book assets. To adjust for outliers, variables are Winsorized at
the 1st and 99th percentiles.

Panel A: Pre-Winsor

Capital Expenditures CapEx + Acquisitions Cash Flow Tobin’s Q

Mean 0.097 0.120 0.107 2.442
Median 0.066 0.079 0.156 1.327
Standard Deviation 0.118 0.147 0.414 20.351
Skewness 18.347 10.827 -39.375 230.409
Kurtosis 1,919.142 801.461 4,002.407 68,717.710
Minimum -0.209 -1.526 -55.628 0.003
Maximum 15.569 15.569 3.670 6,530.038
1st percentile 0.000 0.000 -1.102 0.421
99th percentile 0.537 0.704 0.603 15.547

Panel B: Post-Winsor

Capital Expenditures CapEx + Acquisitions Cash Flow Tobin’s Q

Mean 0.094 0.118 0.115 2.102
Median 0.066 0.079 0.156 1.327
Standard Deviation 0.095 0.125 0.253 2.309
Skewness 2.252 2.329 -2.205 3.552
Kurtosis 9.161 9.485 10.345 17.956
Minimum 0.000 0.000 -1.102 0.421
Maximum 0.537 0.704 0.603 15.547
1st percentile 0.000 0.000 -1.102 0.421
99th percentile 0.537 0.704 0.603 15.547
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Table 1.4: IV Regressions - Capital Expenditures and Annual Beliefs
This table presents second stage IV regressions of corporate investment on cash flow, lagged invest-
ment, Tobin’s Q, and estimated beliefs about the economy. The second-stage regression equation
is:

Ii,t

Ai,t

= αi + β1

Ii,t−1

Ai,t−1

+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2

t + ǫi,t

where the dependent variable is capital expenditures scaled by assets, and π is the belief that
the economy is in an expansionary state. The Wald test is a test of the restriction that β4 +
β5 = 0; the restricted regression imposes this restriction. Cash flow and lagged investment are
endogenous controls and dependent variables in unreported first-stage regressions. The set of first
stage instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years;
F-statistics test the joint significance of the instruments. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. All regressions include firm fixed effects; robust standard errors,
clustered by firm, are shown in parentheses. The χ2 statistic with three degrees of freedom (J Test)
tests the over-identifying restrictions.

All Firms Manufacturing Non-Manufacturing

Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted

Cash Flowt 0.146∗∗∗ 0.150∗∗∗ 0.126∗∗∗ 0.132∗∗∗ 0.166∗∗∗ 0.168∗∗∗

(0.019) (0.019) (0.019) (0.019) (0.037) (0.037)
Investmentt−1 0.297∗∗∗ 0.296∗∗∗ 0.222∗∗∗ 0.221∗∗∗ 0.378∗∗∗ 0.377∗∗∗

(0.037) (0.037) (0.037) (0.037) (0.069) (0.069)
Q 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
π -0.016∗∗∗ -0.011∗∗ -0.023∗∗∗

(0.004) (0.005) (0.007)
π2 0.022∗∗∗ 0.017∗∗∗ 0.029∗∗∗

(0.004) (0.005) (0.007)
π × (1 − π) -0.030∗∗∗ -0.027∗∗∗ -0.036∗∗∗

(0.004) (0.004) (0.007)

CF Stage 1 F-stat 141.25 114.23 79.56 79.66 41.24 41.22
p-value 0.000 0.000 0.000 0.000 0.000 0.000
I Stage 1 F-stat 233.60 232.520 189.35 189.18 81.83 81.40
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Wald Test (χ2
(1)) 81.10 72.36 20.41

p-value 0.000 0.000 0.000
J Test (χ2

(3)) 5.836 5.723 8.085 7.655 1.658 1.689

p-value 0.120 0.126 0.044 0.054 0.646 0.639

# Obs. 92,117 92,117 52,333 52,333 39,784 39,784
# Clusters 8,580 8,580 4,448 4,448 4,132 4,132
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Table 1.5: IV Regressions - Capital Expenditures and Average Quarterly
Beliefs
This table presents second stage IV regressions of corporate investment on cash flow, lagged invest-
ment, Tobin’s Q, and estimated beliefs about the economy. The second-stage regression equation
is:

Ii,t

Ai,t

= αi + β1

Ii,t−1

Ai,t−1

+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2

t + ǫi,t

where the dependent variable is capital expenditures scaled by assets, and π is the belief that
the economy is in an expansionary state. The Wald test is a test of the restriction that β4 +
β5 = 0; the restricted regression imposes this restriction. Cash flow and lagged investment are
endogenous controls and dependent variables in unreported first-stage regressions. The set of first
stage instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years;
F-statistics test the joint significance of the instruments. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. All regressions include firm fixed effects; robust standard errors,
clustered by firm, are shown in parentheses. The χ2 statistic with three degrees of freedom (J Test)
tests the over-identifying restrictions.

All Firms Manufacturing Non-Manufacturing

Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted

Cash Flowt 0.153∗∗∗ 0.153∗∗∗ 0.137∗∗∗ 0.137∗∗∗ 0.168∗∗∗ 0.168∗∗∗

(0.019) (0.019) (0.019) (0.019) (0.037) (0.037)
Investmentt−1 0.301∗∗∗ 0.301∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.384∗∗∗ 0.384∗∗∗

(0.038) (0.038) (0.037) (0.037) (0.070) (0.070)
Q 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
π -0.017∗∗ -0.022∗∗ -0.009

(0.008) (0.009) (0.014)
π2 0.016∗∗∗ 0.018∗∗∗ 0.012

(0.006) (0.006) (0.010)
π × (1 − π) -0.014∗∗∗ -0.010∗∗∗ -0.020∗∗∗

(0.003) (0.004) (0.006)

CF Stage 1 F-stat 114.50 114.39 80.89 80.85 41.01 40.98
p-value 0.000 0.000 0.000 0.000 0.000 0.000
I Stage 1 F-stat 228.85 228.22 185.00 184.77 80.48 80.14
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Wald Test (χ2
(1)) 0.19 1.98 0.67

p-value 0.667 0.160 0.414
J Test (χ2

(3)) 6.339 6.309 8.333 8.113 1.895 1.893

p-value 0.096 0.098 0.040 0.044 0.595 0.595

# Obs. 92,117 92,117 52,333 52,333 39,784 39,784
# Clusters 8,580 8,580 4,448 4,448 4,132 4,132
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Table 1.6: IV Regressions - Capital Expenditures and Acquisitions, Annual
Beliefs
This table presents second stage IV regressions of corporate investment on cash flow, lagged invest-
ment, Tobin’s Q, and estimated beliefs about the economy. The second-stage regression equation
is:

Ii,t

Ai,t

= αi + β1

Ii,t−1

Ai,t−1

+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2

t + ǫi,t

where the dependent variable is capital expenditures scaled by assets, and π is the belief that
the economy is in an expansionary state. The Wald test is a test of the restriction that β4 +
β5 = 0; the restricted regression imposes this restriction. Cash flow and lagged investment are
endogenous controls and dependent variables in unreported first-stage regressions. The set of first
stage instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years;
F-statistics test the joint significance of the instruments. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. All regressions include firm fixed effects; robust standard errors,
clustered by firm, are shown in parentheses. The χ2 statistic with three degrees of freedom (J Test)
tests the over-identifying restrictions.

All Firms Manufacturing Non-Manufacturing

Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted

Cash Flowt 0.268∗∗∗ 0.273∗∗∗ 0.195∗∗∗ 0.203∗∗∗ 0.324∗∗∗ 0.325∗∗∗

(0.041) (0.041) (0.042) (0.042) (0.080) (0.079)
Investmentt−1 0.401∗∗∗ 0.401∗∗∗ 0.228∗∗∗ 0.225∗∗∗ 0.560∗∗∗ 0.560∗∗∗

(0.074) (0.074) (0.079) (0.079) (0.125) (0.125)
Q 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
π -0.024∗∗∗ -0.020∗ -0.039∗∗∗

(0.008) (0.010) (0.014)
π2 0.030∗∗∗ 0.028∗∗∗ 0.042∗∗∗

(0.008) (0.010) (0.013)
π × (1 − π) -0.039∗∗∗ -0.041∗∗∗ -0.045∗∗∗

(0.008) (0.010) (0.013)

CF Stage 1 F-stat 113.97 113.94 79.72 79.82 41.29 41.26
p-value 0.000 0.000 0.000 0.000 0.000 0.000
I Stage 1 F-stat 109.03 108.30 68.42 68.16 46.41 46.18
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Wald Test (χ2
(1)) 24.82 36.57 1.66

p-value 0.000 0.000 0.198
J Test (χ2

(3)) 2.292 2.155 2.563 2.452 1.486 1.472

p-value 0.514 0.541 0.464 0.484 0.686 0.689

# Obs. 92,117 92,117 52,333 52,333 39,784 39,784
# Clusters 8,580 8,580 4,448 4,448 4,132 4,132
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Table 1.7: IV Regressions - Capital Expenditures and Acquisitions, Quar-
terly Beliefs
This table presents second stage IV regressions of corporate investment on cash flow, lagged invest-
ment, Tobin’s Q, and estimated beliefs about the economy. The second-stage regression equation
is:

Ii,t

Ai,t

= αi + β1

Ii,t−1

Ai,t−1

+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4πt + β5π
2

t + ǫi,t

where the dependent variable is capital expenditures scaled by assets, and π is the belief that
the economy is in an expansionary state. The Wald test is a test of the restriction that β4 +
β5 = 0; the restricted regression imposes this restriction. Cash flow and lagged investment are
endogenous controls and dependent variables in unreported first-stage regressions. The set of first
stage instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years;
F-statistics test the joint significance of the instruments. *, **, and *** denote significance at the
10%, 5%, and 1% level, respectively. All regressions include firm fixed effects; robust standard errors,
clustered by firm, are shown in parentheses. The χ2 statistic with three degrees of freedom (J Test)
tests the over-identifying restrictions.

All Firms Manufacturing Non-Manufacturing

Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted

Cash Flowt 0.279∗∗∗ 0.279∗∗∗ 0.213∗∗∗ 0.212∗∗∗ 0.327∗∗∗ 0.327∗∗∗

(0.040) (0.040) (0.041) (0.041) (0.079) (0.079)
Investmentt−1 0.411∗∗∗ 0.410∗∗∗ 0.238∗∗∗ 0.234∗∗∗ 0.569∗∗∗ 0.570∗∗∗

(0.074) (0.074) (0.080) (0.080) (0.125) (0.125)
Q 0.008∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
π -0.032∗∗ -0.058∗∗∗ 0.013

(0.014) (0.016) (0.025)
π2 0.029∗∗∗ 0.046∗∗∗ -0.001

(0.011) (0.012) (0.019)
π × (1 − π) -0.022∗∗∗ -0.019∗∗∗ -0.028∗∗∗

(0.005) (0.006) (0.010)

CF Stage 1 F-stat 114.24 114.14 81.11 81.06 41.06 41.02
p-value 0.000 0.000 0.000 0.000 0.000 0.000
I Stage 1 F-stat 106.97 106.76 66.57 66.57 45.95 45.79
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Wald Test (χ2
(1)) 0.64 6.81 3.04

p-value 0.424 0.009 0.081
J Test (χ2

(3)) 2.220 2.218 2.512 2.545 1.559 1.561

p-value 0.528 0.529 0.473 0.467 0.669 0.668

# Obs. 92,117 92,117 52,333 52,333 39,784 39,784
# Clusters 8,580 8,580 4,448 4,448 4,132 4,132
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Chapter 2

An Empirical Analysis of
Investment Over the Political
Cycle

2.1 Introduction

Controlling for investment opportunities, the investment behavior of U.S. firms
varies systematically over the political cycle. Consider the simple regression

Ii,t

Ai,t

= αi + β1Qi,t−1 + β2Electiont + β3 (Qi,t−1×Electiont) + ǫi,t (2.1)

where I is corporate investment (capital expenditures plus acquisitions), A is book
value of assets, Q is the market-to-book ratio, a proxy for marginal Q, and Election
is a dummy variable equal to one during Presidential election years and zero other-
wise. For U.S. firms, the estimate of β2 is negative: Across all firms from 1964 to
2008, the point estimate is -0.0021, with a t-statistic of -2.65. In economic terms,
this amounts to a 2.43% reduction in investment expenditures during election years,
holding investment opportunities constant.1

Investment rates also differ systematically across periods of divided and single-
party government. Investment tends to fall during periods of divided government,
though this relationship varies with Q. For firms with low Q (a sign of few investment
opportunities), investment decreases when government is divided; assuming a value
of Q = 1, the effect is approximately a 4.03% reduction in investment expenditures
as a percentage of assets. For firms with high Q (a sign of valuable investment
oppotunities), the effect turns positive; at the sample average value of Q = 2.11, the

1The estimate of β3 is -0.0004, and the average investment rate I/A is 0.1178. Using the sample
average 2.1197 for Q, the calculation is %∆(I/A) = (−.0021− .0004×2.1197)/.1178 = −.0243. Table
2.3 reports the regression estimates.
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effect is a 0.79% increase in investment during periods of divided government. This
dynamic effect is not very robust, however. 2

Neoclassical investment theory has little to say about direct links between invest-
ment and the political environment. Indeed, policy should play a role only indirectly
if investment opportunities vary with the political cycle. Loosely speaking, equation
(2.1) captures this indirect channel through β3 and the interaction term; β2 and the
dummy variable captures direct links.

What direct channel might be driving this result? From an empirical standpoint,
the regression results provide evidence that political uncertainty and political out-
comes play a role in corporate investment decisions. Indeed, political uncertainty
should matter for a firm’s investment decisions if regulatory policy affects either
project cash flows or the (sunk) cost of an investment. Guided by these results, I
study the effect of regulatory and public policy on corporate decisions. In particu-
lar, how does regulatory and political uncertainty affect a firm’s decision to allocate
capital to irreversible investment projects? Firms may find it optimal to forgo NPV-
positive projects while retaining their right to invest at a later date, if delaying allows
them to learn about the regulatory environment.

I study the link between policy uncertainty and investment through a straightfor-
ward re-thinking of the model presented in Chapter 1. In the theoretical framework,
firms do not have perfect information about the regulatory environment and must
form a belief about whether the environment is favorable or unfavorable. The reg-
ulatory environment governs the growth rate of cash flows, which is higher during
periods of favorable policy. Growth rates are also unobservable, and beliefs inform
the firm’s estimates of growth rates and the value of a perpetual stream of cash flows.

Firms are also able to choose the scale of their investments. In addition to choos-
ing the optimal time to invest, firms must choose the optimal amount of capital to
invest. When beliefs are optimistic, so that estimated growth rates and present values
are high, firms will want to commit a large amount of capital to take advantage of
high growth. When beliefs are pessimistic, however, firms commit less capital since
valuations are lower and projects appear less attractive.

Under this setup, the theoretical framework generates two key predictions:

1. Firms will invest when they have precise beliefs about the regulatory environ-
ment, regardless of whether beliefs are optimistic or pessimistic, but will delay
when uncertainty is highest.

2. The incentive to delay is strongest when uncertainty resolves quickly.

The first prediction is a consequence of a firm’s ability to choose the scale of its
projects. The amount of capital that maximizes NPV differs in the two regulatory

2Simple regressions also suggest that investment rates are systematically lower during Republican
presidential administrations. However, this effect does not remain after controlling for the economic
and fiscal environment.
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environments. When investment is irreversible, firms must guard against allocating
an inefficient amount of capital to a project. Therefore, they may optimally delay
projects to gather more information about regulatory policy. This result is intuitive,
but it depends critically on allowing the scale of the project to vary. In standard
real option models, where firms face just a timing problem, firms will only invest if
uncertainty resolves in the favorable direction. When scale is a choice variable, firms
invest even when uncertainty resolves unfavorably; they just choose smaller projects.

The second prediction is a consequence of learning. Forgoing an NPV-positive
project can be optimal if delaying investment allows the firm to learn about the regu-
latory environment. The benefit can be substantial if delaying allows the firm to make
a more informed capital allocation choice. When uncertainty resolves slowly, however,
there is little to learn. In this case, the opportunity cost of delaying investment will
outweigh the benefits gained from learning.

The election year results are consistent with the theoretical framework if 1) reg-
ulatory uncertainty is higher during election years, and 2) uncertainty resolves fairly
quickly after an election as policy-makers take action. Empirically, I attempt to rule
out other interpretations that are not consistent with the model. For example, a
simple crowding-out story may drive this result. Politicians want to win reelection
and, during election years, have incentives to spend more money in an effort to se-
cure votes. If deficit spending draws resources away from private investment, then
we would expect to see investment rates fall, all else equal. I control for potential
crowding-out effects by including the federal budget deficit as an explanatory variable
in the empirical analysis.

The crowding-out hypothesis highlights the central empirical challenge in taking
the model to the data - political uncertainty is unobservable. The Presidential election
cycle may capture the evolution of political uncertainty, but it may also proxy for
other effects, such as politicians concerned with reelection. To minimize the possibility
that the empirical results are spurious, I also include cash flows and lagged investment
as firm-level controls and GDP growth as a macroeconomic control.

The empirical and theoretical frameworks build on previous work by Julio and
Yook (2009) and Hassett and Metcalf (1999). Empirically, using ordinary least squares
regressions, Julio and Yook find that the election year effect exists internationally as
well. Across a sample of 48 countries, they find that during the year leading up to
a national election (President or Prime Minister, as opposed to legislative elections),
firms reduce investment expenditures by 5.3% on average. In addition to including
an indicator variable for divided government, my analysis differs from theirs for two
key reasons. First, because cash flows are endogenous to the corporate investment
decision, the results of Julio and Yook may be due to the use of an inconsistent es-
timator. Indeed, I show that, for a specific non-manufacturing sub-sample of firms,
least squares regressions easily reject the null hypothesis that investment is unrelated
to the political cycle. However, after controlling for endogenous cash flows and poten-
tial autocorrelation in the error term, investment for this sample of firms appears to
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have no relationship with political cycle, outside of effects associated with the fiscal
environment.3

Second, my analysis suggests that the relationship between investment and the
election cycle is much more dynamic. In particular, it strongly depends on the fiscal
environment. In a balanced budget environment, investment indeed declines during
election years, all else constant. However, firms react differently to federal budget
deficits in election years so that when the country is running large deficits, invest-
ment can actually increase during election years. Failure to control for the fiscal
environment may mask important dynamics in the relationship between investment
and policy uncertainty.

In Hassett and Metcalf, the policy environment affects the value of a single project
over time. The enactment and reversal of investment tax credits, which decrease the
price of capital and increase the attractiveness of investment opportunities, arrive
randomly and at discrete intervals. Similarly, Chen and Funke (2003) develop an
incremental investment model where regulatory policy affects the profitability of the
firm. Both of these papers assume that 1) the regulatory environment is known, and
2) policy change follows a Poisson arrival process. These assumptions are convenient
in that they allow for closed-form solutions and comparative statics. Finally, Rodrik
(1991) considers how potential reversals of policy reforms designed to stimulate in-
vestment may actually hinder investment; in his model, the probability of reversal is
constant.

These previous models cannot capture changes in political uncertainty because of
the memoryless property of the exponential distribution. Under a Poisson process,
the expected time until the next policy change does not depend on the length of time
since the last policy change; in these models, policy uncertainty is constant. To put
it in the context of Bernanke (1983), beliefs about policy persistence never change.
Incomplete information turns out to be an analytically convenient and economically
intuitive way to introduce time-varying regulatory uncertainty.4

Nevertheless, incomplete information is a simplifying assumption. Intuitively,
policy-makers may have preferences for regulations that favor either business or la-
bor, and those preferences may not be immediately apparent during campaigns if a
politician’s incentives are to appeal to as many voters as possible. Furthermore, even
if a politician’s preferences are transparent, enactment of policy may be delegated
to regulators within agencies who have their own set of preferences and are subject
to industry capture. Spiller (1990) models the agency problems between the U.S.
Congress and its regulators, both theoretically and empirically, and fails to reject the
existence of an agency problem. While his framework suggests that Congress may
use the budgeting process to discipline regulators, the empirical findings suggest that

3The discussion of the empirical specification in Section 2.3 provides more detail on the identifi-
cation strategy and the associated econometric issues. Table 2.5 presents the regression results for
this particular sub-sample.

4See Shreve (2004) for a detailed discussion of the memoryless property of Poisson processes.
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Congressional control over regulatory agencies is far from perfect.
Finally, there is both anecdotal and empirical evidence that regulatory uncertainty

is indeed a factor in firms’ investment decisions. As reported in the journal Refocus,
a 2005 survey by PricewaterhouseCoopers on the power supply industry found that
“more than a third (39%) [of investors] say market reforms are damaging confidence,
highlighting the dangers of inconsistent regulation, energy, tax, and environmental
policies. The major survey of boardroom opinion inside utility companies also found
that regulatory uncertainty is also affecting investment in renewables.”

2.2 Theoretical Review

I use the model presented in Chapter 1 as a tool to think about how policy
uncertainty may affect investment. Because I discuss the model in full detail in the
previous chapter, I provide a hands-off review of the relevant details here.

Model Setup

A firm has the option to invest K units of capital in a project. Investment is
irreversible, and I assume that capital does not depreciate. The firm is risk-neutral,
and its objective is to choose an investment time τ , as well as an investment level K,
to maximize the expected net present value (NPV) of cash flows,

G = max
K,τ

E0

[∫

∞

τ

e−ruP (u)F (Kτ )du − e−rτKτ

]

. (2.2)

After investment, the firm produces F (K) = log(1+K) units of output in perpetuity.
The output price is P , so that per-period cash flows are P (t)F (K). The price of
capital is normalized to unity.

I assume that the price of the output good is stochastic and follows a geometric
process5

dP

P
= µ(θ)dt + σdZP (2.3)

where PY is a standard Brownian motion and θ(t) ∈ {θf , θu} is a state variable
describing the regulatory environment, corresponding to ‘favorable’ and ‘unfavorable.’
This is meant to capture periods of differing regulatory policy.

Shifts in θ are governed by a hidden two-state Markov process. I make the simpli-
fying assumption that the probability of a change in policy is equally likely in both

5Assuming stochastic price is identical to assuming stochastic demand in Chapter 1 when the
demand curve is perfectly elastic.
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environments. Therefore, the transition matrix is

Λ =

(

−λ λ
λ −λ

)

. (2.4)

I make two assumptions about θ. The first assumption is that the regulatory
environment affects the output price, and hence the cash flows of the investment
project, through the growth rate. As an example, consider the pharmaceutical in-
dustry, where prices and cash flows may depend on whether regulators impose price
controls on prescription drugs, allow less expensive drugs to be imported from abroad,
or allow generic competition. A second example is the oil and gas industry, where reg-
ulators may explicitly focus on price as a mechanism to discourage carbon emissions,
for example through tax policy.

Furthermore, note that ‘favorable’ need not imply the absence of regulation. In
the case of farm subsidies or anti-dumping laws, regulations are often put in place to
protect the cash flows of certain industries.6

I also assume the firm cannot directly observe the regulatory environment; only
the regulator or policy maker knows his or her type. From a technical standpoint,
this means that the firm does not observe either θ or dZP , nor do they observe µ(θ);
they only directly observe the output price P .

However, while not having complete information, the firm does see a noisy signal
s about the regulatory environment,

ds = θdt + ηρdZP + η
√

1 − ρ2dZs. (2.5)

Examples of noisy signals include regulatory decisions about other industries or prod-
ucts, public statements given by regulators or political candidates, and election re-
sults. The signal is noisy because regulatory policy is discretionary, changes in polit-
ical leadership do not necessarily mean a change in regulatory and public policy, and
campaigning is different from governing.

The Filtering Equations

Define the conditional expectations,

θ̂ = πθf + (1 − π)θu

µ̂ = πµf + (1 − π)µu,

6I will typically assume that µ(θf ) > µ(θu).
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the constants

ωP =
µf − µu

σ

ωs =
θf − θu

η
√

1 − ρ2
−

µf − µu

σ

ρ
√

1 − ρ2
,

and the adapted Brownian motions

dẐP =
µ(θ) − µ̂

σ
dt + dZY

dẐs =

(

θ − θ̂

η
√

1 − ρ2
− µ(θ) − µ̂

σ

ρ
√

1 − ρ2

)

dt + dZs.

Then using the filtering results in Chapter 1 (or, alternatively, in Appendix A), the
observed stochastic processes for price, signals, and posterior beliefs are

dP

P
= µ̂dt + σdẐP (2.9a)

ds = θ̂dt + ηρdẐP + η
√

1 − ρ2dẐs (2.9b)

dπ = λ(1 − 2π)dt + π(1 − π)
(

ωP dẐP + ωsdẐs

)

, (2.9c)

In this simpler setting, because the probability of policy change is identical for both
policy environments, beliefs revert to a mean of π = 1/2 at rate 2λ.

Project Valuation

Once the firm exercises its option to invest, the project generates per-period cash
flows of P (t)F (K) in perpetuity. Firms are risk-neutral and discount cash flows at
a constant rate r. Using the results in Chapter 1, specifically equations (1.23) and
(1.23), the discounted value of future cash flows is given by

V (P, π; K, t) = [Aπ + B(1 − π)] P (t)F (K) (2.10)

with

A =
r − µu + 2λ

(r − µf )(r − µu) +
[

λ(r − µf ) + λ(r − µu)
]

B =
r − µf + 2λ

(r − µf )(r − µu) +
[

λ(r − µf ) + λ(r − µu)
] .

Finally, the value of the investment option must satisfy the partial differential
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equation

rG =
[

πµf + (1 − π)µu

]

PGP +
1

2
σ2P 2GPP + λ(1 − 2π)Gπ

+
1

2
π2(1 − π)2

(

ω2
P + ω2

s

)

Gππ + π(1 − π)
(

µf − µu

)

PGPπ.
(2.12)

subject to value-matching and smooth-pasting conditions. When firms are able to
choose the amount of capital allocated to a project, the capital decision is

K∗ = max {[Aπ + B(1 − π)] P ∗ − 1, 0} .

I refer readers to the numerical analysis presented in Chapter 1 for a detailed
review of the properties of the solution. Briefly, Figures 1.4 and 1.6 present two key
results. The first is that investment thresholds are increasing with uncertainty when
firms have flexibility over both the timing and scale of their investment projects. The
intuition is that, by making an investment decision during periods of high policy un-
certainty, firms risk irreversibly allocating a suboptimal level of capital to a project.
Therefore, prices need to be sufficiently ‘high’ before an investment opportunity be-
comes attractive. Contrast this to the case where capital is inflexible. In this case
firms face only a timing decision - because irreversibly committing an inefficient level
of capital is never a possibility, investing is always a dominant strategy as long as
prices are higher than the π = 0 threshold.

The second result is that the timing of uncertainty resolution is important for
determining investment. When uncertainty resolves quickly, which is likely to be the
case for uncertainty associated with political elections, the benefits to delaying during
periods of high uncertainty can be substantial. However, when uncertainty resolves
slowly, or not at all, there is little benefit to delaying.

To summarize, the investment model predicts that firms will delay investment
during periods of high policy uncertainty if 1) firms have flexibility over both the
timing and scale of their investments, and 2) policy uncertainty resolves quickly.

2.3 Empirical Framework

2.3.1 Empirical Specification

To study the empirical relationship between political cycles and corporate in-
vestment, I use equation (2.1) as a starting point. To estimate the effect of policy
uncertainty on investment, I run the following regression:

Ii,t

Ai,t

= αi + β1Qi,t−1 + β2Ut + Witθ + Xitγ + Ytδ + ǫi,t (2.13)
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where I is corporate investment, A is the book value of assets, Q is a proxy for
marginal Q, and U is a measure of political or regulatory uncertainty. Additionally,
W is a set of endogenous firm-specific controls, X is a set of exogenous firm-specific
controls, and Y is a set of exogenous macroeconomic controls. Under the null hy-
pothesis, Q is a sufficient statistic for investment. Thus, under the null, only β1 is
nonzero.

Equation (2.13) presents several empirical challenges for testing. The first is that
policy uncertainty is unobservable; testing (2.13) requires a good proxy. The statisti-
cal issue is that the proxy variable may capture effects unrelated to policy uncertainty,
generating a spurious relationship. Essentially, there may be firm-level or macroeco-
nomic variables in the error term ǫi,t that are correlated with the proxy for policy
uncertainty. If so, this will bias the estimate of β2 and potentially suggest a relation-
ship that does not exist. Therefore, I include firm-level and macroeconomic controls
Wit, Xit, and Yt.

I consider two measures of policy uncertainty: an election year indicator equal to
one during Presidential election years, and a divided government indicator equal to
one during periods of divided government. Consider first the election year variable.
If the outcome of an upcoming election is in doubt, uncertainty about regulatory and
public policy is likely higher, to the extent that policy platforms differ across parties.
Therefore, all else equal, the election year indicator should capture this effect, relative
to non-election years.

Next, consider the divided government variable, where I define divided government
as any scenario in which no single party has control simultaneously over the White
House and both branches of Congress. This variable is meant to capture ideological
variance and uncertainty about the legislative agenda - if the outcome of legislation is
more uncertain during periods of divided government, then all else equal, the divided
government indicator should capture this effect.

I also include an indicator for periods when the President is a member of the
Republican party. I use this variable not to measure uncertainty, but rather to cap-
ture different policy environments. As the modeling framework suggests, regulatory
uncertainty is important only if policy affects the cash flows generated by a project.
Therefore, the Republican variable becomes economically important in the first stage
cash flow regressions.

The exogenous firm-level controls include lagged investment and Q interacted with
the political indicators. I use cash flows as an endogenous control:

Wit =
CFi,t

Ai,t

, Xit =
[

Ii,t−1

Ai,t−1
, Interaction Terms

]

. (2.14)

I include investment as an exogenous control mainly for econometric reasons. If
investment is persistent, shocks to investment will generate serially-correlated error
terms. Including lagged investment is a straightforward way to generate error terms
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with more desirable properties in the time series. (Blundell et al. (1992) and Brown
and Petersen (2009).) Additionally, the political business cycle literature suggests
that investment opportunities may vary with the political cycle for reasons that are
unrelated to uncertainty. The interaction terms control for this possibility. If political
cycles in investment are solely due to systematic variation of Q with the political
cycle, coefficients on the interaction terms should be non-zero, and coefficients on the
dummy variables should be zero.

A large body of literature, beginning with Fazzari et al. (1988), suggests that cash
flow is an important determinant of investment, so I include it as an endogenous
control. Although these studies typically argue that investment-cash flow sensitiv-
ities are evidence of financing constraints (but see Kaplan and Zingales (1997) for
a counter-argument), this is only true if marginal Q is measured without error, a
point made by Erickson and Whited (2000) and Lewellen and Lewellen (2010). An
alternative rationale for including cash flow as a regressor is that cash flow may be
a better proxy for marginal Q than the observed average Q. Indeed, in the model
of Abel and Eberly (1997), where firms face convex adjustment costs, cash flows are
perfectly correlated with marginal Q, while average Q is a biased measure of marginal
Q.7

The macroeconomic controls are the growth rate of real gross domestic product,
the federal budget deficit, and the deficit interacted with the election year dummy,

Yt =
[

%∆GDP, Deficit, Deficit × Election
]

. (2.15)

Including GDP growth controls for business cycle effects and possible covariance of
GDP with the political variables. I also include the control for government expen-
ditures to help distinguish between two potential, but very different, interpretations
of the negative relationship between investment and national elections. Under one
interpretation, firms reduce investment expenditures during election years because
of Bernanke’s (1983) “bad news” principle: If uncertain election outcomes increase
the perceived probability of negative regulatory change, firms may delay investment
until some or all of the uncertainty is resolved. Alternatively, politicians motivated
by reelection concerns may be more likely to spend money in election years in an
effort to secure votes. If this increased spending is financed through a budget deficit,
then government borrowing may crowd out private investment.

To disentangle these two effects, I include a control for the deficit, as well as an
interaction term between the deficit and the election year dummy. If politicians’ in-
centives are different during election years vs. non-election years, so that governments
spend money for different reasons in election years, then we might expect corporate
investment to respond differently to deficit spending in election years relative to non-

7Additionally, Novy-Marx (2006) argues from a theoretical standpoint that observed investment-
cash flow sensitivities arise endogenously in general equilibrium due to the nonlinear relationship
between demand and investment, Q, and cash flow.
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election years. The interaction term captures this differential effect.
The second empirical challenge involves the inclusion of lagged investment in the

vector of exogenous controls Xit, which is correlated with the unobserved firm fixed
effect αi. Failure to correct for unobserved heterogeneity will result in biased coef-
ficients due to omitted variable bias. Two methods are available to deal with the
fixed effect. The more common method, a within-groups transformation of the data,
eliminates the fixed effect but in the process generates correlation between the trans-
formed lagged dependent variable and the transformed error term. Unless a suitable
instrument is available, the within-groups fixed effects estimator is inconsistent.

An alternative method, the first-differences fixed effects estimator, also generates
correlation between the differenced lagged dependent variable and the differenced
error term. However, as long as the error term is serially uncorrelated, deeper lags
of investment (two periods and beyond), which are not available as instruments in
the within-groups case, will be uncorrelated with the error term and make suitable
instruments. This approach is due to Anderson and Hsiao (1982) and Arrelano and
Bond (1991).

The final empirical consideration in estimation is that the endogenous control,
cash flows, is simultaneously determined with investment. Therefore, the cash flow
variable is likely correlated with the error term in the regression equation due to un-
modeled operating decisions within the firm. Following Brown and Petersen (2009), I
use lagged values of cash flow as instruments, as in the lagged investment case. While
not necessarily economically meaningful, these are valid instruments if the error term
in the regression is i.i.d. Intuitively, since lagged values are predetermined, they
will be uncorrelated with the error term at time t. With more instruments than
endogenous regressors, the system is over-identified; the χ2 test of over-identifying
restrictions is a test of orthogonality conditions.

2.3.2 Data Description

The empirical analysis in this chapter utilizes the same data on US firms as the
analysis in Chapter 1, and I refer readers to the description in Chapter 1 for detail on
the construction of the corporate data set. The only difference is that I also remove
firms with missing values for cash and net working capital, whereas the Chapter 1
analysis keeps these observations.8

Briefly, firm investment and cash flow data come from the COMPUSTAT database;
I use 1964 as the beginning date due to limited availability prior to 1964. I consider
two measures of investment. The first, capital expenditures, is taken from the state-
ment of cash flows. The second measure adds cash spent on acquisitions, also taken
from the statement of cash flows. To measure cash flow, I use operating income
before depreciation and amortization, taken from the income statement. Because

8The results are virtually identical when these observations are kept.



54

cash flow and investment are flow variables, I scale yearly values by the average of
beginning-year and ending-year book value of assets.

To proxy for marginal Q, which is generally unobservable, I estimate average Q
as the sum of market value of equity and book value of liabilities, all scaled by book
value of assets. Average Q is an imperfect measure of marginal Q, which neoclassical
investment theory identifies as the appropriate measure of the value of capital rela-
tive to replacement cost. Nevertheless, this proxy for average Q is standard in the
literature.

In order to be included, firms must have non-missing values for Q, assets, invest-
ment, and cash flow. Additionally, I drop any firms with negative book value of equity
(a sign of severe financial distress, which constrains investment), and those with mar-
ket value of equity equal to zero. Furthermore, as previously mentioned, I remove
observations with missing values for cash and net working capital. Finally, I remove
any firms with headquarters outside the United States, or with financial statements
reported in a currency other than the U.S. dollar. Given the size and influence of the
U.S. economy, it is reasonable to believe that U.S. political considerations my influ-
ence international firms as well. However, preliminary tests suggested that removing
these firms does not materially change the results.

Filtering down to non-missing observations and U.S.-based firms results in an
unbalanced panel of 155,078 firm-year observations over the sample. As a final ad-
justment, because of concerns about measurement error and data coding, I Winsorize
investment, cash flow, and Q at the 1st and 99th percentiles. Table 2.2 presents
summary statistics on these variables before and after the adjustment.

For the macroeconomic controls, I collect data on GDP, government expenditures,
and taxes from the FRED database at the St. Louis Federal Reserve Bank. Table 2.1
provides the data codes and descriptions. I calculate the budget deficit as government
expenditures less government tax receipts, scaled by government expenditures, so that
deficits are represented by positive values and surpluses by negative values. Although
the COMPUSTAT and fiscal data are reported in nominal terms, I use real instead
of nominal GDP as a macroeconomic control since scaling tends to remove price level
effects from the time series.

2.3.3 Estimation

Estimation of the empirical specifications is through first-differenced two-stage
least squares regression on an unbalanced panel. I estimate first stage regressions for
both cash flow and lagged investment, and the excluded instrument set includes cash
flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years. Following Stock
and Watson (2008), all regressions include firm fixed effects with standard errors
clustered by firm.

The first stage estimation of cash flow serves two purposes. First, as already
mentioned, cash flow is endogenous to the investment decision; failure to control for
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endogenous regressors may result in inconsistent estimates. Second, in order for policy
uncertainty to matter to the investment decision, cash flow must vary systematically
across policy regimes. Using the Republican presidential indicator as a proxy for the
policy environment, I can test this condition directly.

Nevertheless, while instrumental variable techniques are appropriate, I first esti-
mate (2.13) using least squares techniques. The purpose is twofold: First, in their
international study of investment over political cycles, Julio and Yook (2009) use or-
dinary least squares with fixed effects. Comparing results to theirs provides a useful
benchmark. Second, least squares regressions help to highlight the potential dangers
of drawing inferences from inconsistent estimators.

Ordinary Least Squares Regressions

Table 2.4 presents benchmark ordinary least squares regressions of both measures
of investment on cash flow, Q, GDP growth, and the presidential election indicator.
This is the same specification studied by Julio and Yook (2009). In each case, I
also break the sample into manufacturing and non-manufacturing firms, since irre-
versibility, which has its roots in asset specificity, is likely to be more important for
manufacturing firms. In all specifications, the coefficient on the election year indi-
cator is negative and statistically significant at the 1% level. Point estimates range
from -0.002 for manufacturing firms when using capital expenditures as the measure
of investment, to -0.007 for non-manufacturing firms when using the sum of capital
expenditures and acquisitions as the measure of investment.

In terms of economic magnitudes, these numbers imply a reduction in investment
rates on the order of 2.1% to 4.7% during election years, depending on the sample
and the measure of investment. These results are qualitatively similar to Julio and
Yook (2009), although the magnitudes are a bit smaller.

Table 2.5 explores the non-manufacturing sector a bit further. In this set of regres-
sions, I estimate the effect of the presidential election cycle using the sum of capital
expenditures and acquisitions as the measure of investment. The first three speci-
fications are estimated using ordinary least squares with fixed effects, the standard
econometric technique in the literature for estimating investment regressions, while
the fourth specification is estimated using instrumental variables and the within-
groups fixed effects estimator. Therefore, the first four specifications contain one or
more explanatory variables that, for some reason or another, are correlated with the
error term. Only the last specification, which uses the first-differences estimator,
is consistent, and only the last specification fails to reject the null hypothesis that
election years have no effect on investment policy. Note also that the χ2 test of over-
identifying restrictions easily rejects the within-groups instrumental variables model,
while failing to reject the first-differences model. The suggests that empirical studies
that rely on ordinary least squares estimates are not as reliable as thought.9

9Table 2.5 reports negative R2 statistics for the instrumental variables specifications of the model.
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Instrumental Variables Regressions

Turning attention now to instrumental variables regressions, Tables 2.6 and 2.7
present second-stage regression estimates of investment for all firms in the sample, as
well as first-stage estimates of cash flow and lagged investment. Table 2.6 uses capital
expenditures as the measure of investment, while Table 2.7 uses capital expenditures
plus cash spent on acquisitions as the measure of investment. These two tables reveal
several key results.

First, based on first-stage regressions, cash flows are systematically lower during
Republican presidential administrations, even after controlling for GDP growth. In
both cases, the coefficient is significant at the 1% level. This result is important since
a necessary assumption of the investment model is that prices and cash flows differ
across regulatory environments. Furthermore, F-statistics fail to reject the hypothesis
of joint insignificance of the excluded lagged instruments.

Second, χ2 tests of the over-identifying restrictions fail to reject the orthogonality
conditions, although p-values are much higher when the second measure of investment
is used. Indeed, the test almost rejects the model using only capital expenditures.
Nevertheless, the first-stage F tests combined with the χ2 tests give validity to the
excluded instrument set and estimation procedure.

Finally, the point estimates on the election year and divided government indicators
are negative and statistically significant at at least the 5% level, and the 1% level
when acquisitions are included, which is consistent with the results of Julio and Yook
(2009). Using the results in Table 2.7, the partial effect of divided government on
investment is given by

∂I/A

∂Divided
= −0.006 + 0.002 × Q,

so that investment declines during periods of divided government unless Q is suffi-
ciently high (Q > 3.42 to be exact). In the sample, the average investment rate is
0.118, while the average value of Q is 2.120. This translates into a reduction in invest-
ment rates of approximately 2% during periods of divided government, when using
both capital expenditures and acquisitions as the measure of investment. The effect
is the same when using only capital expenditures, and ranges from about -1% for
manufacturing firms to -3% for non-manufacturing firms. During periods of divided
government, ideological variance is higher. To the extent that policy uncertainty is
associated with ideological variance, then the relationship between investment and
divided government is consistent with a model where firms decrease investment in

This is always a possibility with IV regressions because the residual sum of squares is calculated using
actual values of endogenous and exogenous regressors, while the total sum of squares is calculated
using regressors projected onto the set of instruments. As a result, there is no guarantee that the
R2 statistic will lie between zero and one, nor R2 even a meaningful statistic. For this reason, I do
not report this statistic in the first differences regressions.
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response to higher policy uncertainty.
Coefficients on the election year indicator also suggest that investment rates de-

cline during election years. However, the coefficients on the deficit control and deficit-
election interaction term reveal a relationship between investment and election cycles
that is much more dynamic.

To be specific, in a balanced budget environment, firms indeed reduce investment
expenditures during election years. In Table 2.7, the coefficient on the election year
indicator is -0.005, which translates into an approximately 4.7% decrease in invest-
ment during election years. However, the regressions indicate that firms’ reactions to
budget deficits are markedly different during election years. The coefficient on the
deficit control is -0.069, implying that firms typically reduce investment expenditures
as deficits increase. This is the often-mentioned ‘crowding-out’ effect, where the need
to finance deficits draws resources away from private investment. However, during
election years, this effect almost completely disappears: The coefficient on the inter-
action term is 0.061, suggesting that the overall response to deficits is only -0.008
during election years.

This result may not be surprising if deficit spending is different during election
years relative to non-election years. If election-year deficit spending is geared more
towards stimulative projects, (e.g. investment tax credits), then it is reasonable to
expect that firms may react to deficits differently during election years. However,
regardless of the interpretation, the upshot is that the elimination of deficit effects
means that investment can actually increase in election years. To see this, note that
the partial effect of election years on investment is

∂I/A

∂Election
= −0.005 + 0.061 × Deficit.

which is positive for any budget deficit greater than 9% of government expenditures.
The U.S. government typically runs a deficit, and the average value of the deficit in the
sample is 10.1% of expenditures. Thus, on average, investment rates actually increase
during Presidential election years, and we can break the total effect into a deficit effect,
which is positive, and an additional effect, which is negative. It is this additional effect
which I associate with policy uncertainty. While other interpretations may exist, the
coefficients on the election year indicator are consistent with the hypothesis that
increased regulatory and policy uncertainty associated with political elections has a
dampening effect on overall investment.

2.4 Concluding Remarks

Uncertainty plays a critical role in determining when and how much capital firms
allocate to irreversible investment projects. While price and cash flow risk are perhaps
the most fundamental uncertainties, there are numerous risks the firm faces and must
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consider in decision-making.
One such risk is regulatory and policy uncertainty. The empirical results pre-

sented suggest that firms alter investment policy in response to changing political
environments and regulatory uncertainty. Firms care about political uncertainty if
regulatory and public policy affects the cash flows of their investments.

The theoretical analysis developed in Chapter 1 and adapted to a policy envi-
ronment provides a real option interpretation of the empirical results: Firms may
find it optimal to forgo NPV positive projects if delaying allows them to gather more
information about the regulatory environment. Of course, the model is not necessar-
ily one of regulatory uncertainty per se; for example, it cannot distinguish between
regulatory uncertainty and business cycle uncertainty. However, the usefulness of the
model is in its descriptive properties because it provides a mechanism for the effect of
policy uncertainty on investment that is consistent with the data: When uncertainty
resolves quickly and firms have flexibility over the scale of their investments, political
uncertainty can negatively affect corporate investment.
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2.5 Tables

Table 2.1: Description of FRED variables
Federal Reserve Economic Data, from the Federal Reserve Bank of St. Louis.

http://research.stlouisfed.org/fred2/

Data Series Descriptor

GDPCA Real Gross Domestic Product
AFEXPND Federal Government: Current Expenditures
AFRECPT Federal Government: Current Receipts
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Table 2.2: Summary Statistics - Investment, Cash Flow, and Tobin’s Q
This table presents summary statistics for corporate financial data from the COMPUSTAT database,
before and after adjusting for outliers. Capital expenditures, acquisitions, and cash flow are scaled by
the average of beginning and ending book value of assets, and Tobin’s Q is calculated as the market
value of equity plus debt, scaled by book assets. To adjust for outliers, variables are Winsorized at
the 1st and 99th percentiles.

Panel A: Unadjusted

Capital Expenditures CapEx + Acquisitions Cash Flow Tobin’s Q

Mean 0.097 0.120 0.106 2.458
Median 0.067 0.080 0.157 1.336
Standard Deviation 0.116 0.145 0.412 20.499
Skewness 19.439 11.249 39.874 230.248
Kurtosis 2,120.872 864.501 4,120.480 68,214.270
Minimum -0.209 -1.526 55.628 0.003
Maximum 15.569 15.569 3.670 6,530.038
1st Percentile 0.001 0.000 1.116 0.421
99th Percentile 0.525 0.692 0.599 15.709

Panel B: Adjusted

Capital Expenditures CapEx + Acquisitions Cash Flow Tobin’s Q

Mean 0.094 0.118 0.115 2.120
Median 0.067 0.080 0.157 1.336
Standard Deviation 0.094 0.123 0.254 2.335
Skewness 2.212 2.305 -2.233 3.545
Kurtosis 8.932 9.345 10.422 17.907
Minimum 0.001 0.000 -1.116 0.421
Maximum 0.525 0.692 0.599 15.709
1st Percentile 0.001 0.000 -1.116 0.421
99th Percentile 0.525 0.692 0.599 15.709
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Table 2.3: OLS Regressions - Investment and Political Cycles
This table presents OLS regressions of corporate investment on Tobin’s Q and political cycle indi-
cators. The regression equation is:

Ii,t

Ai,t

= αi + β1Qi,t−1 + β2Politicalt + β3 (Qi,t−1×Politicalt) + ǫi,t

where the dependent variable is the sum of capital expenditures and acquisitions, scaled by assets.
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. All regressions include
firm fixed effects; robust standard errors, clustered by firm, are shown in parentheses.

(1) (2) (3)

Q 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.000) (0.000) (0.000)
Election -0.002∗∗∗

(0.001)
Election×Q 0.000

(0.000)
Divided Government -0.002∗∗

(0.001)
Divided×Q 0.002∗∗∗

(0.000)
Republican President -0.016∗∗∗

(0.001)
Republican×Q 0.002∗∗∗

(0.000)
Constant 0.095∗∗∗ 0.097∗∗∗ 0.105∗∗∗

(0.001) (0.001) (0.001)

R2 0.031 0.031 0.034

# Obs. 155,078 155,078 155,078
# Clusters 14,838 14,838 14,838
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Table 2.4: Least Squares Regressions
This table presents OLS regressions of corporate investment on cash flow, Tobin’s Q, real GDP
growth, and an election year indicator variable. The regression equation is:

Ii,t

Ai,t

= αi + β1

CFi,t

Ai,t

+ β2Qi,t−1 + β3∆GDP t + β4Electiont + ǫi,t

where the dependent variable is either capital expenditures or the sum of capital expenditures and
acquisitions, scaled by assets. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. All specifications include firm fixed effects; robust standard errors, clustered by firm,
are shown in parentheses.

Capital Expenditures Cap. Ex. plus Acquisitions

All Firms Manuf. Non-Manuf. All Firms Manuf. Non-Manuf.

Cash Flowt 0.053∗∗∗ 0.051∗∗∗ 0.055∗∗∗ 0.061∗∗∗ 0.058∗∗∗ 0.066∗∗∗

(0.002) (0.003) (0.004) (0.003) (0.003) (0.005)
Q 0.008∗∗∗ 0.007∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.008∗∗∗ 0.013∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
∆GDPt 0.062∗∗∗ 0.095∗∗∗ 0.020 0.153∗∗∗ 0.175∗∗∗ 0.126∗∗∗

(0.011) (0.013) (0.020) (0.015) (0.017) (0.025)
Election -0.003∗∗∗ -0.002∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.003∗∗∗ -0.007∗∗∗

(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

R2 0.052 0.054 0.053 0.040 0.035 0.047

Average Investment 0.094 0.079 0.113 0.118 0.099 0.140
Average Q 2.120 2.138 2.098 2.120 2.138 2.098

# Obs. 153,460 83,483 69,977 153,460 83,483 69,977
# Clusters 13,220 6,497 6,723 13,220 6,497 6,723



63

Table 2.5: Least Squares vs. Instrumental Variables
This table presents OLS and IV regressions of corporate investment on Tobin’s Q, an election year
indicator, and firm and macroeconomic controls. The regression equation is:

Ii,t

Ai,t

= αi + β1

Ii,t−1

Ai,t−1

+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4Ut + Xitγ + Ytδ + ǫi,t

where the dependent variable is capital expenditures plus acquisitions scaled by assets and Q is
Tobin’s Q. Ut is a political cycle indicator, X is a set of exogenous firm controls, and Y is a set
of exogenous macroeconomic controls. Cash flow and lagged investment are endogenous controls
in the IV regressions; the set of first stage instruments includes cash flow lagged 2, 3, and 4 years,
and investment lagged 3 and 4 years. *, **, and *** denote significance at the 10%, 5%, and 1%
level, respectively. All specifications include firm fixed effects; ‘FE’ stands for the within-groups
fixed effects estimator, while ’FD’ stands for the first differences estimator. Robust standard errors,
clustered by firm, are shown in parentheses. The χ2 statistic with three degrees of freedom tests the
over-identifying restrictions.

OLS-FE OLS-FE OLS-FE IV-FE IV-FD

Cash Flowt 0.066∗∗∗ 0.068∗∗∗ 0.068∗∗∗ 0.354∗∗∗ 0.338∗∗∗

(0.005) (0.005) (0.005) (0.081) (0.077)
Investmentt−1 0.182∗∗∗ 0.181∗∗∗ 0.074 0.545∗∗∗

(0.007) (0.007) (0.121) (0.124)
Q 0.013∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.009∗∗∗ 0.011∗∗∗

(0.000) (0.001) (0.001) (0.001) (0.002)
∆GDPt 0.126∗∗∗ 0.152∗∗∗ 0.114∗∗∗ 0.004 0.056

(0.025) (0.023) (0.024) (0.046) (0.042)
Budget Deficit -0.044∗∗∗ -0.070∗∗∗ -0.057∗∗∗

(0.008) (0.014) (0.017)
Election Year -0.007∗∗∗ -0.005∗∗∗ -0.008∗∗∗ -0.009∗∗∗ -0.005

(0.001) (0.001) (0.002) (0.003) (0.003)
Election×Deficit 0.034∗∗∗ 0.038∗∗∗ 0.037∗

(0.012) (0.014) (0.019)
Election×Q 0.000 0.001 0.000

(0.001) (0.001) (0.001)

R2 0.047 0.077 0.078 -0.041 -0.793
χ2 16.128 1.081
p-value 0.001 0.782

# Obs. 69,977 61,418 61,418 42,478 38,235
# Clusters 6,723 5,893 5,893 3,998 3,993
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Table 2.6: Capital Expenditures, All Firms
This table presents IV regressions of corporate investment on Tobin’s Q, political cycle indicators, and firm and
macroeconomic controls. The second stage regression is:

Ii,t

Ai,t

= αi + β1
Ii,t−1

Ai,t−1
+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4Ut + Xitγ + Ytδ + ǫi,t

where the dependent variable is capital expenditures scaled by assets and Q is Tobin’s Q. Ut is a set of political cycle
indicators, X is a set of exogenous firm controls, and Y is a set of exogenous macroeconomic controls. Cash flow and
lagged investment are endogenous controls and dependent variables in first-stage regressions. The set of first stage
instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively. All specifications include firm fixed effects; robust standard
errors, clustered by firm, are shown in parentheses. The F-statistic tests the joint significance of the instruments,
while the χ2 statistic with three degrees of freedom tests the over-identifying restrictions.

(1) (2)

CFt It−1 It CFt It−1 It

Cash Flowt 0.157∗∗∗ 0.155∗∗∗

(0.018) (0.018)
Investmentt−1 0.295∗∗∗ 0.293∗∗∗

(0.038) (0.038)
Q 0.007∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.007∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.000) (0.001) (0.000) (0.001)
∆GDPt 0.195∗∗∗ -0.188∗∗∗ -0.023∗ 0.192∗∗∗ -0.184∗∗∗ -0.025∗

(0.016) (0.011) (0.014) (0.016) (0.011) (0.014)
Budget Deficit -0.079∗∗∗ -0.031∗∗∗ -0.064∗∗∗ -0.079∗∗∗ -0.026∗∗∗ -0.006∗∗∗

(0.007) (0.004) (0.005) (0.008) (0.004) (0.005)
Election Year 0.003∗ -0.002∗∗ -0.001 0.000 -0.003∗∗∗ -0.002∗∗

(0.002) (0.001) (0.001) (0.002) (0.001) (0.001)
Election×Deficit -0.004 0.004 0.023∗∗∗ 0.025∗∗∗ 0.011∗∗ 0.033∗∗∗

0.008 (0.004) (0.005) (0.009) (0.005) (0.006)
Election×Q -0.001 0.000 0.000 -0.001 0.000 0.000

(0.001) (0.000) (0.000) (0.001) (0.000) (0.000)
Divided Government 0.000 0.006∗∗∗ -0.005∗∗∗

(0.003) (0.001) (0.001)
Divided×Q 0.001 0.000 0.001∗∗∗

(0.001) (0.000) (0.000)
Republican President -0.009∗∗∗ -0.007∗∗∗ -0.002

(0.003) (0.001) (0.001)
Republican ×Q -0.001 0.001 0.000

(0.001) (0.000) (0.001)

CFt−2 -0.144∗∗∗ 0.057∗∗∗ -0.144∗∗∗ 0.057∗∗∗

(0.008) (0.003) (0.008) (0.003)
CFt−3 -0.089∗∗∗ 0.012∗∗∗ -0.090∗∗∗ 0.012∗∗∗

(0.007) (0.002) (0.007) (0.002)
CFt−4 -0.056∗∗∗ 0.005 -0.057∗∗∗ 0.005∗∗

(0.008) (0.002) (0.008) (0.002)
It−3 0.000 -0.134∗∗∗ 0.001 -0.135∗∗∗

(0.007) (0.006) (0.007) (0.006)
It−4 -0.012∗ -0.064∗∗∗ -0.011∗ -0.064∗∗∗

(0.007) (0.005) (0.007) (0.005)

F-stat 113.09 229.77 113.01 228.86
p-value 0.000 0.000 0.000 0.000
χ2 5.853 6.246
p-value 0.119 0.100

# Obs. 89,881 89,881 89,881 89,881 89,881 89,881
# Clusters 8,422 8,422 8,422 8,422 8,422 8,422
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Table 2.7: Capital Expenditures and Acquisitions, All Firms
This table presents IV regressions of corporate investment on Tobin’s Q, political cycle indicators, and firm and
macroeconomic controls. The second stage regression is:

Ii,t

Ai,t

= αi + β1
Ii,t−1

Ai,t−1
+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4Ut + Xitγ + Ytδ + ǫi,t

where the dependent variable is capital expenditures plus acquisitions scaled by assets and Q is Tobin’s Q. Ut is a
set of political cycle indicators, X is a set of exogenous firm controls, and Y is a set of exogenous macroeconomic
controls. Cash flow and lagged investment are endogenous controls and dependent variables in first-stage regressions.
The set of first stage instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years.
*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. All specifications include firm fixed
effects; robust standard errors, clustered by firm, are shown in parentheses. The F-statistic tests the joint significance
of the instruments, while the χ2 statistic with three degrees of freedom tests the over-identifying restrictions.

(1) (2)

CF/At I/At−1 I/At CF/At I/At−1 I/At

Cash Flowt 0.280∗∗∗ 0.276∗∗∗

(0.040) (0.039)
Investmentt−1 0.397∗∗∗ 0.392∗∗∗

(0.074) (0.073)
Q 0.007∗∗∗ -0.001 0.008∗∗∗ 0.007∗∗∗ -0.001 0.006∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)
∆GDPt 0.194∗∗∗ -0.195∗∗∗ -0.011 0.191∗∗∗ -0.190∗∗∗ -0.014

(0.016) (0.016) (0.023) (0.016) (0.016) (0.023)
Budget Deficit -0.079∗∗∗ -0.058∗∗∗ -0.066∗∗∗ -0.079∗∗∗ -0.050∗∗∗ -0.069∗∗∗

(0.007) (0.006) (0.010) (0.008) (0.007) (0.010)
Election Year 0.003∗∗ -0.001 -0.005∗∗ 0.000 -0.004∗∗ -0.005∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Election×Deficit -0.004 -0.014 0.051∗∗∗ 0.025∗∗∗ 0.007 0.061∗∗∗

(0.008) (0.009) (0.012) (0.009) (0.010) (0.013)
Election×Q -0.001 0.000 0.000 -0.001 0.000 0.000

(0.001) (0.000) (0.001) (0.001) (0.004) (0.001)
Divided Government 0.000 0.010∗∗∗ -0.006∗∗

(0.003) (0.002) (0.003)
Divided×Q 0.001 0.000 0.002 ∗

(0.001) (0.001) (0.001)
Republican President -0.009∗∗∗ -0.014∗∗∗ -0.003

(0.003) (0.002) (0.003)
Republican×Q -0.001 0.001 0.001

(0.001) (0.001) (0.001)

CFt−2 -0.144∗∗∗ 0.085∗∗∗ -0.144∗∗∗ 0.084∗∗∗

(0.008) (0.004) (0.008) (0.004)
CFt−3 -0.089∗∗∗ 0.018∗∗∗ -0.089∗∗∗ 0.017∗∗∗

(0.007) (0.004) (0.007) (0.004)
CFt−4 -0.057∗∗∗ 0.005 -0.057∗∗∗ 0.004

(0.008) (0.004) (0.008) (0.004)
It−3 0.000 -0.059∗∗∗ 0.001 -0.060∗∗∗

(0.004) (0.006) (0.004) (0.006)
It−4 -0.001 -0.034∗∗∗ -0.001 -0.035∗∗∗

(0.004) (0.005) (0.004) (0.005)

F-stat 112.53 109.50 112.48 108.27
p-value 0.000 0.000 0.000 0.000
χ2 1.470 1.669
p-value 0.689 0.644

# Obs. 89,881 89,881 89,881 89,881 89,881 89,881
# Clusters 8,422 8,422 8,422 8,422 8,422 8,422
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Table 2.8: Capital Expenditures, Manufacturing Firms
This table presents IV regressions of corporate investment on Tobin’s Q, political cycle indicators, and firm and
macroeconomic controls. The second stage regression is:

Ii,t

Ai,t

= αi + β1
Ii,t−1

Ai,t−1
+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4Ut + Xitγ + Ytδ + ǫi,t

where the dependent variable is capital expenditures scaled by assets and Q is Tobin’s Q. Ut is a set of political cycle
indicators, X is a set of exogenous firm controls, and Y is a set of exogenous macroeconomic controls. Cash flow and
lagged investment are endogenous controls and dependent variables in first-stage regressions. The set of first stage
instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively. All specifications include firm fixed effects; robust standard
errors, clustered by firm, are shown in parentheses. The F-statistic tests the joint significance of the instruments,
while the χ2 statistic with three degrees of freedom tests the over-identifying restrictions.

Manufacturing Firms Non-Manufacturing Firms

CFt It−1 It CFt It−1 It

Cash Flowt 0.135∗∗∗ 0.180∗∗∗

(0.019) (0.036)
Investmentt−1 0.220∗∗∗ 0.372∗∗∗

(0.038) (0.069)
Q 0.007∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.007∗∗∗ 0.002∗∗ 0.003∗∗∗

(0.002) (0.000) (0.001) (0.002) (0.001) (0.001)
∆GDPt 0.249∗∗∗ -0.175∗∗∗ -0.040∗∗∗ 0.108∗∗∗ -0.200∗∗∗ -0.006

(0.022) (0.013) (0.015) (0.024) (0.019) (0.026)
Budget Deficit -0.102∗∗∗ -0.023∗∗∗ -0.064∗∗∗ -0.047∗∗∗ -0.029∗∗∗ -0.071∗∗∗

(0.010) (0.005) (0.006) (0.012) (0.008) (0.009)
Election Year -0.001 -0.002∗∗ -0.003∗∗∗ 0.002 -0.004∗∗ -0.002

(0.002) (0.001) (0.001) (0.003) (0.002) (0.002)
Election×Deficit 0.013 0.007 0.042∗∗∗ 0.039 0.016∗ 0.020∗

(0.013) (0.005) (0.006) (0.014) (0.009) (0.010)
Election×Q 0.001 0.000 0.000 -0.004∗∗∗ 0.000 0.000

(0.001) (0.000) (0.000) (0.001) (0.001) (0.001)
Divided Government -0.002 0.006∗∗∗ -0.002 0.004 0.007∗∗∗ -0.009∗∗∗

(0.003) (0.001) (0.001) (0.004) (0.002) (0.002)
Divided×Q 0.002 0.000 0.001 -0.001 0.000 0.003∗∗∗

(0.001) (0.000) (0.000) (0.002) (0.001) (0.001)
Republican President -0.006 -0.005∗∗∗ -0.005∗∗∗ -0.013∗∗∗ -0.009∗∗∗ 0.002

(0.004) (0.001) (0.001) (0.004) (0.002) (0.003)
Republican×Q -0.003∗ 0.000 0.001 0.002 0.002∗ -0.001

(0.002) (0.000) (0.001) (0.002) (0.001) (0.001)

CFt−2 -0.137∗∗∗ 0.054∗∗∗ -0.153∗∗∗ 0.060∗∗∗

(0.010) (0.003) (0.014) (0.005)
CFt−3 -0.092∗∗∗ 0.010∗∗∗ -0.087∗∗∗ 0.015∗∗∗

(0.009) (0.002) (0.012) (0.004)
CFt−4 -0.054∗∗∗ 0.004 -0.061 ∗∗∗ 0.007

(0.010) (0.003) (0.012) (0.004)
It−3 -0.012 -0.150∗∗∗ 0.011 -0.122∗∗∗

(0.011) (0.006) (0.010) (0.009)
It−4 -0.014 -0.061∗∗∗ -0.009 -0.067∗∗∗

(0.010) (0.007) (0.009) (0.008)

F-stat 79.26 181.91 39.27 80.98
p-value 0.000 0.000 0.000 0.000
χ2 8.40 1.454
p-value 0.038 0.693

# Obs. 51,646 51,646 51,646 38,235 38,235 38,235
# Clusters 4,429 4,429 4,429 3,993 3,993 3,993
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Table 2.9: Capital Expenditures and Acquisitions, Manufacturing Firms
This table presents IV regressions of corporate investment on Tobin’s Q, political cycle indicators, and firm and
macroeconomic controls. The second stage regression is:

Ii,t

Ai,t

= αi + β1
Ii,t−1

Ai,t−1
+ β2

CFi,t

Ai,t

+ β3Qi,t−1 + β4Ut + Xitγ + Ytδ + ǫi,t

where the dependent variable is capital expenditures scaled by assets and Q is Tobin’s Q. Ut is a set of political cycle
indicators, X is a set of exogenous firm controls, and Y is a set of exogenous macroeconomic controls. Cash flow and
lagged investment are endogenous controls and dependent variables in first-stage regressions. The set of first stage
instruments includes cash flow lagged 2, 3, and 4 years, and investment lagged 3 and 4 years. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively. All specifications include firm fixed effects; robust standard
errors, clustered by firm, are shown in parentheses. The F-statistic tests the joint significance of the instruments,
while the χ2 statistic with three degrees of freedom tests the over-identifying restrictions.

Manufacturing Firms Non-Manufacturing Firms

CFt It−1 It CFt It−1 It

Cash Flowt 0.208∗∗∗ 0.337∗∗∗

(0.041) (0.076)
Investmentt−1 0.231∗∗∗ 0.541∗∗∗

(0.080) (0.123)
Q 0.007∗∗∗ 0.000 0.005∗∗∗ 0.007∗∗∗ -0.002 0.009∗∗∗

(0.002) (0.001) (0.001) (0.002) (0.001) (0.002)
∆GDPt 0.247∗∗∗ -0.178∗∗∗ -0.057∗∗ 0.108∗∗∗ -0.209∗∗∗ 0.051

(0.022) (0.021) (0.025) (0.024) (0.027) (0.042)
Budget Deficit -0.102∗∗∗ -0.052∗∗∗ -0.083∗∗∗ -0.047∗∗∗ -0.047∗∗∗ -0.062∗∗∗

(0.010) (0.008) (0.012) (0.012) (0.011) (0.017)
Election Year -0.001 -0.004∗ -0.006∗∗ 0.002 -0.004∗ -0.005

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
Election×Deficit 0.013 0.008 0.076∗∗∗ 0.039∗∗∗ 0.004 0.042∗

(0.013) (0.013) (0.015) (0.014) (0.015) (0.021)
Election×Q 0.001 -0.001 0.000 -0.004∗∗∗ 0.001 -0.001

(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)
Divided Government -0.002 0.010∗∗∗ -0.002 0.004 0.011∗∗∗ -0.012∗∗

(0.003) (0.002) (0.003) (0.004) (0.003) (0.004)
Divided×Q 0.002 0.000 0.000 -0.001 0.000 0.004∗∗

(0.001) (0.001) (0.001) (0.002) (0.001) (0.002)
Republican President -0.006 -0.013∗∗∗ -0.007∗∗ -0.013∗∗∗ -0.015∗∗∗ 0.003

(0.004) (0.003) (0.003) (0.004) (0.003) (0.005)
Republican×Q -0.003∗ 0.000 0.001 0.002 0.002 -0.001

(0.002) (0.001) (0.001) (0.002) (0.001) (0.002)

CFt−2 -0.137∗∗∗ 0.083∗∗∗ -0.153∗∗∗ 0.087∗∗∗

(0.010) (0.005) (0.014) (0.008)
CFt−3 -0.092∗∗∗ 0.013∗∗∗ -0.086∗∗∗ 0.023∗∗∗

(0.009) (0.004) (0.012) (0.007)
CFt−4 -0.055∗∗∗ 0.003 -0.060∗∗∗ 0.006

(0.010) (0.004) (0.012) (0.007)
It−3 -0.004 -0.053∗∗∗ 0.006 -0.067∗∗∗

(0.005) (0.008) (0.006) (0.008)
It−4 -0.006 -0.023∗∗∗ 0.005 -0.046∗∗∗

(0.006) (0.007) (0.006) (0.007)

F-stat 79.27 64.51 38.96 47.89
p-value 0.000 0.000 0.000 0.000
χ2 2.234 1.253
p-value 0.525 0.740

# Obs. 51,646 51,646 51,646 38,235 38,235 38,235
# Clusters 4,429 4,429 4,429 3,993 3,993 3,993
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Chapter 3

Dynamic Currency Hedging

3.1 Introduction

What is the optimal currency hedge for a risk-averse investor? The conventional
wisdom/advice is that investors should hedge away the currency risk of their interna-
tional investments: Foreign assets are denominated in foreign currency, so domestic
investors (who care about payoffs in domestic currency) must convert the foreign cur-
rency payoffs to domestic currency at uncertain exchange rates. In other words, a
long position in, for example, foreign stock implicitly carries a long position in foreign
currency as well. If the foreign currency risk premium is zero, exchange rate uncer-
tainty increases the variance of an international investments without a corresponding
increase in expected return; investors can reduce the volatility of their international
portfolio with no loss in expected return through an offsetting short position in short-
term foreign bonds.

Indeed, this is the conclusion reached by Solnik (1974). When the currency risk
premium is zero, and exchange rate returns are uncorrelated with foreign asset re-
turns, a complete hedge is optimal - every dollar invested long (short) in foreign assets
is offset with a corresponding short (long) position in foreign currency, so that the
net foreign currency position is zero.

Solnik’s analysis can be viewed as a benchmark model, and there are reasons why
a complete hedge may be suboptimal. For example, if a foreign currency tends to
appreciate when equity values fall, then currency can serve as an effective hedge in
declining equity environments, and a net long position may be optimal. In an empir-
ical exercise, Campbell et al. (2008) study the effects of correlation in detail. They
find that, over the 30-year period from 1975 to 2005, a risk-minimizing global investor
would have benefitted from net long positions in the U.S. Dollar, the Euro, and the
Swiss Franc, and short positions in other major currencies. Their interpretation is
that the Dollar, Euro, and Swiss Franc are stores of value which tend to appreciate
when asset values fall.

A second reason why a net zero position in foreign currency may be suboptimal
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is predictability in speculative currency returns, studied by the large literature on
the forward premium anomaly.1. Briefly, the forward premium anomaly refers to the
empirical finding that excess returns to currency speculation are predictable by the
interest differential, whereas the theory of uncovered interest parity concludes that
this predictability should not exist.

One interpretation of this result is a time-varying risk premium in foreign ex-
change. The portfolio choice implication is that investors can dynamically adjust
their currency hedge position in response to the risk premium (or a proxy for the risk
premium such as the interest differential) to increase their Sharpe ratios. Such strate-
gies are studied in detail within a speculative framework by Burnside et al. (2008).
Additionally, Della Corte et al. (2008) find that a dynamic speculative strategy that
conditions on the forward premium outperforms a dynamic strategy that follows the
random walk benchmark, and that an investor with quadratic utility will pay a high
performance fee to switch to this strategy.2

Of course, if the risk premium is unobservable, the success of such a dynamic
strategy depends on how well the predictor variable proxies for the risk premium.
Indeed, recent research by Neely and Weller (2000) and Villanueva (2007) suggests
that predictability is much weaker than implied by the in-sample evidence. Neeley
and Weller find that VAR-based estimates of the risk premium fail to outperform
a constant risk premium in out-of-sample tests. Villanueva finds that excess return
predictions based on interest parity regressions fail to beat forecasts based on uncov-
ered interest parity, also out-of-sample. Both studies rely on mean-squared prediction
errors as the appropriate measure of out-of-sample predictability.

Empirical evidence on the effectiveness of currency hedging is inconclusive. As
mentioned above, Campbell et al. (2008) find that deviations from a complete hedge
can reduce the total risk of a portfolio due to non-zero correlations. Along another
dimension, Froot (1993) studies the effectiveness of hedging for long-horizon investors.
He finds that, while complete hedging is effective at reducing portfolio risk over short
horizons, the opposite may hold true at long horizons due to long-run mean reversion
in exchange rates. Campbell, et al., however, do not find this effect in their data set.

In this paper I study the optimal dynamic currency hedging strategy for an in-
vestor who is concerned about the time-varying risk premium, as well as the associated
uncertainty about the risk premium, which is unobservable. Investors must filter the
risk premium from observable asset prices, and therefore face estimation risk. The
estimated risk premium, which is time varying, introduces a speculative motive for
holding foreign exchange, which in turn moves the optimal hedge away from a com-
plete one. However, estimation risk has an offsetting effect, and considerably tempers
the dynamic strategy of a myopic investor.

1See Engel (1996) and Sarno (2005) for surveys of the forward premium anomaly literature.
2This result is termed an ‘anomaly’ because, to date, equilibrium models have generally failed to

identify a preference-based risk premium that can explain the excess returns to currency speculation.
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3.2 Currency Hedging with Constant Risk Premia

In this section I present a simple portfolio choice model to illustrate the effects
of parameter uncertainty on optimal currency hedging. I model the problem of a
domestic investor with access to a foreign bond and stock, as well as a domestic
bond. To isolate the effects of estimation risk, all parameters are constant, and
the correlation between the foreign stock and the exchange rate is zero. This is a
partial equilibrium environment, and the economic agent described is not necessarily
a representative agent.

3.2.1 Asset Market Dynamics

The investment opportunity set includes domestic and foreign risk-free bonds,
and a foreign stock. For convenience, I omit a domestic stock from the investment
portfolio. Although it would be straightforward to include this asset, I wish to focus
mainly on the currency risk hedging problem of a domestic investor - in the simplified
framework presented here, a domestic stock would alter the hedging decision only if
domestic equity is correlated with the foreign exchange rate.

The foreign exchange rate Xt, defined as the domestic price of one unit of for-
eign currency (e.g. dollars per pound for a U.S.-based investor), obeys a stochastic
differential equation,

dXt

Xt

=
[

rd − rf + λX

]

dt + σXdZXt, (3.1)

where ZXt is a standard Brownian motion. The drift (or expected depreciation) of the
exchange rate is determined by the difference between domestic and foreign risk-free
interest rates (assumed constant), rd − rf , and a constant risk premium, λX . The
diffusion coefficient σX is constant and strictly positive. Both the risk premium and
the Brownian motion governing shocks to the exchange rate are unobservable.

Although I model the exchange rate process as exogenous, the functional form of
the drift arises endogenously in general equilibrium models. Holding the risk premium
constant, the depreciation of the exchange rate is driven by cross-country differences
in interest rates. Taking the U.S. as the domestic country, if the U.S. - U.K. interest
differential is +2%, then an investor in British bonds would expect the pound to
appreciate relative to the dollar (intuitively, a capital gain) to compensate for the
lower interest rate (or income yield). The risk premium enters due to the assumption
of convex preferences.3

The foreign stock St, denominated in foreign currency, follows a geometric Brow-
nian motion process,

3See Backus et al. (2001) for a discussion of how (3.1) arises endogenously.
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dSt

St

=
[

rf + λS

]

dt + σSdZSt, (3.2)

where ZSt is a Brownian motion orthogonal to ZXt. The variance of the foreign
stock, σ2

S, is constant and strictly positive, and the stock return is uncorrelated with
the currency return. To maintain focus on the currency risk premium, I assume the
foreign equity risk premium λS is constant and observable.

Domestic and foreign interest rates are constant; bond prices are denominated in
local currency and evolve deterministically over time:

dBdt

Bdt

= rddt,
dBft

Bft

= rfdt, (3.3)

with initial conditions Bd0 = Bf0 = 1.4

3.2.2 The Investor’s Learning Problem

Investors observe the foreign exchange rate Xt, as well as the instantaneous cur-
rency return dXt/Xt. However, they do not observe either the risk premium λX or
the Brownian motion ZXt, and face an inference problem. Investors use their obser-
vations of the exchange rate to form an estimate of the risk premium, which I call
λ̂Xt, and update their estimate via Bayes’s Rule as they observe new prices.

The Inference Process

The optimal filtering rules follow from Theorems 11.1 and 12.1 in Liptser and
Shiryayev (1978), hereafter LS. Denote the investor’s optimal estimate of the risk
premium (in the sense of minimizing mean-squared error) as λ̂Xt = E[λX |I t], with

variance νt = E[(λ̂Xt − λX)2|I t], and furthermore assume a Normal prior, i.e. λ̂Xt ∼
N (λ̂X0, ν0). Then the conditional (posterior) distribution at each date t ≥ 0 is also
normal, with moments that satisfy,

dλ̂Xt =
ν(t)

σ2
X

[

dXt

Xt

−
(

rd − rf + λ̂Xt

)

dt

]

(3.4a)

dν(t)

dt
= − 1

σ2
X

ν(t)2, (3.4b)

where I use ν(t) to explicitly denote that the conditional variance is a function of
time. Conditional Normality follows from Theorem 11.1, and the differential equa-
tions describing the conditional moments follow from Theorem 12.1.

4The solution to the ODE for deterministic bonds is Bt = ert.
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The estimated risk premium evolves stochastically with the exchange rate. To
simplify the expression in (3.4), substitute the exchange rate process in (3.1) and
rewrite the conditional mean as

dλ̂Xt =
ν(t)

σX

[

λX − λ̂Xt

σX

dt + dZXt

]

=
ν(t)

σX

dẐXt

(3.5)

where

dẐXt =
λX − λ̂Xt

σX

dt + dZXt, (3.6)

is a standard Brownian motion adapated to the investor’s observable information set.
Using (3.6), rewrite the process for the exchange rate as

dXt

Xt

=
[

rd − rf + λ̂Xt

]

dt + σXdẐXt, (3.7)

which depends only on observable processes. In this setting, the estimated risk pre-
mium is perfectly correlated with the exchange rate. As investors observe new infor-
mation on currency prices, they revise up or down their estimate of the currency risk
premium.5

Properties of the Estimator

Theorem 12.2 from LS provides the solutions to the differential equations in (3.4),
and establishes that λ̂X is a consistent estimator of λX . The estimated risk premium
is a stochastic function of time, and the expectation is given by

E
[

λ̂Xt

]

=
tν0λX + λ̂X0σ

2
X

tν0 + σ2
X

(3.8)

with
lim
t→∞

E
[

λ̂Xt

]

= λX .

In other words, the conditional mean of the posterior distribution is converging asymp-
totically to the true value of the risk premium.

The conditional (or posterior) variance of the estimate, ν(t), is a deterministic
function of time, and satisfies an ordinary differential equation with initial condition

5This is not always true - in a more general setting where the foreign stock is correlated with the
exchange rate, the conditional mean will be spanned by the stock and fx processes, but will not be
perfectly correlated with either.
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ν(0) = ν0. The solution is

ν(t) =
ν0σ

2
X

tν0 + σ2
X

, (3.9)

which declines monotonically to zero as t → ∞. Thus, estimation risk disappears
asymptotically as investors learn the true value of λX . (This is not generally true
when the unobserved risk premium is stochastic.)

3.2.3 The Investor’s Asset Allocation Problem

Foreign bonds and equity are denominated in foreign currency. However, a do-
mestic investor is concerned about payoffs in domestic currency and must convert the
foreign currency payoffs to domestic currency at prevailing exchange rates. Define
the domestic currency prices of the foreign bond and stock as PXt and PSt, with
PXt = XtBft and PSt = XtSt. An application of Ito’s Lemma delivers the domestic
currency dynamics of foreign assets:

dPXt

PXt

=
[

rd + λ̂Xt

]

dt + σXdẐXt (3.10a)

dPSt

PSt

=
[

rd + λ̂Xt + λS

]

dt + σXdẐXt + σSdZSt. (3.10b)

While the foreign bond is risk-free in foreign currency, it is risky in domestic currency
due to exchange rate risk; from the standpoint of the domestic investor, the foreign
bond earns the currency risk premium in excess of the domestic risk-free rate. This
excess return will introduce a speculative motive for holding foreign currency, which
is otherwise absent when risk premia are zero.

When converted to domestic currency, the foreign stock is exposed to both equity
risk and currency risk. Note that the foreign bond (which only carries currency risk)
is perfectly correlated with the currency component of foreign equity - an investor
who is long foreign equity can eliminate currency risk by taking an offsetting short
position in foreign bonds. When the currency risk premium is zero and investors are
myopic, a complete hedge is optimal. This is the basis for advice to completely hedge
currency risk.

The investor has CRRA utility over terminal wealth, and chooses a dynamic in-
vestment strategy in the foreign stock, the foreign bond, and the domestic risk-free
bond. Define αX as the optimal allocation to foreign bonds (as a percentage of total
wealth), and αS as the optimal allocation to foreign equity. The residual allocation
to domestic bonds is 1 − αX − αS, and the ratio −αX/αS determines the optimal
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currency hedge. Stated formally, the optimization problem is

J(W, λ̂Xt, t) = max
αX ,αS

E

[

W 1−γ

1 − γ

]

,

subject to the dynamic budget constraint,

dW

W
=
[

rd + αX λ̂Xt + αSλS

]

dt + (αX + αS) σXdẐXt + αSσSdZSt.

To solve the investor’s portfolio problem, I use the dynamic programming ap-
proach. Formally, this is a dynamic portfolio problem with a stochastic investment
opportunity set, with variation in the opportunity set summarized by the stochas-
tic properties of the estimated risk premium. (In other words, the estimated risk
premium is a state variable.) This is true even though the unobserved investment
opportunity set is constant; the investor is learning about the risk premium while
simultaneously making a portfolio decision, and uses the estimated risk premium
(which is only non-stochastic asymptotically) to solve the asset allocation problem.

The investor’s indirect utility function is J(W, λ̂Xt, t); the Bellman principle of
optimality implies E[dJ ] = 0. Applying Ito’s Lemma to J and taking expectations
yields the Hamilton-Jacobi-Bellman equation for this problem:

0 = max
αX ,αS

{

JW W
[

rd + αX λ̂Xt + αS(λ̂Xt + λS)
]

+
1

2
JWW W 2

[

α2
Sσ2

S + (αS + αX)2σ2
X

]

+
1

2
Jλ̂λ̂

ν(t)2

σ2
X

+ JWλ̂Wν(t)(αX + αS) +
∂J

∂t

}

(3.11)

The optimal risky asset demands follow from the first order conditions:

αX = − JW

JWW W

(

λ̂Xt

σ2
X

− λS

σ2
S

)

− JWλ̂

JWW W

ν(t)

σ2
X

(3.12a)

αS = − JW

JWW W

λS

σ2
S

(3.12b)

The optimal allocation to foreign equity is determined by the risk-return tradeoff
of the stock, as well as the coefficient of relative risk aversion. The allocation is myopic
because the state variable is uncorrelated with stock returns; if the correlation were
non-zero, there would be an intertemporal hedging term as well.

The optimal allocation to foreign bonds is made up of a myopic allocation and an
intertemporal hedging term. The myopic allocation contains two components: The
speculative demand for foreign currency, which is non-zero as long as the estimated
risk premium is non-zero, and the foreign currency hedge. The second term enters the
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myopic portfolio due the currency risk of the foreign stock. The optimal allocation
to foreign equity is determined by the equity risk-return tradeoff - however, when
purchasing foreign stock, a domestic investor takes on a potentially sub-optimal level
of currency risk. The investor offsets, or hedges, this risk with a short position in
foreign bonds, which are exposed only to currency risk.6

The intertemporal hedging term in the demand for foreign bonds is due to param-
eter uncertainty and learning. It is zero when there is no estimation risk (ν(t) = 0),
or when there is no motive to hedge (JWλ̂ = 0, as is the case with logarithmic utility).

The optimal currency hedge is defined as the negative of the ratio of foreign bond
demand to foreign equity demand,

−αX

αS

= 1 − λ̂Xtσ
2
S

λSσ2
X

− JWλ̂

JW

ν(t)σ2
S

λSσ2
X

. (3.13)

When there is no parameter uncertainty, the optimal hedge is independent of the
investor’s level of risk aversion. This is because, without parameter uncertainty,
investors are myopic and invest in the tangency portfolio - while risk aversion will
determine the optimal investment in the tangency portolio vs. risk-free bonds, the
weights within the tangency portfolio are fixed and independent of risk aversion.

In addition to full information, if the foreign currency risk premium is zero, the
optimal hedge is a complete one: investors offset 100% of the currency risk of foreign
equity with a short position in foreign bonds. This is the result of Solnik (1974). In
the presence of estimation risk, the optimal currency hedge will depend on, among
other things, risk aversion.

3.2.4 Value Function Solution

Evaluated at the optimum, the Bellman equation in (3.11) describes a partial
differential equation for expected utility. To solve the PDE, I follow the approach of
Kim and Omberg (1996) and conjecture the following solution:7

J(W, λ̂Xt, t) =
W 1−γ

1 − γ
exp

{

(1 − γ)

(

A(t) +
1

2
C(t)λ̂2

Xt

)}

(3.14)

where A(t) and C(t) are deterministic functions of time. Substitution of the conjec-
ture and its derivatives into (3.12) and (3.11) results in an equation that is quadratic
in λ̂Xt, the conditional mean; its coefficients must be zero for the PDE to hold. Set-

6If the foreign equity risk premium is negative, so that the optimal equity allocation is a short
position, then the offsetting currency hedge will be a long position in foreign bonds.

7The general solution for this problem is J(W, λ̂Xt, t) =
W 1−γ

1−γ
exp

{

(1 − γ)
(

A(t) + B(t)λ̂Xt + 1

2
C(t)λ̂2

Xt

)}

, with B[T ] = 0. However, when the ex-

change rate and foreign stock are uncorrelated, it is straightforward to verify that B(t) = 0 for all
t.
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ting the coefficients equal to zero results in a recursive system of ordinary differential
equations:

dC(t)

dt
= − 1

γσ2
X

− 2(1 − γ)

γ

ν(t)

σ2
X

C(t) − 1 − γ

γ

ν(t)2

σ2
X

C(t)2

dA(t)

A(t)
= −rd −

1

2γ

λ2
S

σ2
S

− 1

2

ν(t)2

σ2
X

C(t)

with boundary conditions A(T ) = C(T ) = 0 and ν(t) as defined in (3.9). The
solutions to the ODEs are given by:

C(t) =
(T − t)(tν0 + σ2

X)

σ2
X ((t + T (γ − 1))ν0 + γσ2

X)

A(t) =
(T − t)(λ2

S + 2γrdσ
2
S)

2γσ2
S

+

(

ln
[

Tν0+σ2
X

tν0+σ2
X

]

+ γ ln
[

1 − (T−t)ν0

γ(Tν0+σ2
X

)

])

2(γ − 1)

Finally, substitution of the value function solution into (3.13) yields the optimal hedge
ratio:

−αX

αS

= 1 − λ̂Xtσ
2
S

λSσ2
X



1 −
(

1 − 1

γ

)

(T − t)ν0
(

t + T
(

1 − 1
γ

))

ν0 + σ2
X



 . (3.17)

3.2.5 Analysis

When t = 0, the currency hedge ratio simplifies to

−αX

αS

= 1 − λ̂Xtσ
2
S

λS

(

T
(

1 − 1
γ

)

ν0 + σ2
X

) . (3.18)

Figure 3.1 plots the optimal hedge rule as a function the investment horizon, for
various levels of risk aversion.8 The estimated currency risk premium is λ̂X0 = .005,
and the prior variance is also ν0 = .005 (or a standard deviation of approximately
.071). The remaining values are .05 for the equity risk premium, and .10 and .15 for
the exchange rate and equity volatilities, respectively.

Inspection of both Figure 3.1 and equation (3.18) reveals that, for any level of risk

8I choose γ = 1.1 for the lowest level to illustrate an investor who is close to a logarithmic
investor. When utility is logarithmic (γ = 1), the optimal hedge is independent of the investment
horizon.
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aversion greater than logarithmic (i.e. γ > 1), increasing variance and investment
horizon will eventually outweigh the speculative motive for holding foreign currency,
and the optimal hedge approaches a complete one.

However, this is not the case for risk aversion. Taking limits,

lim
γ→∞

−αX

αS

= 1 − λ̂XtσS

λS(Tν0 + σ2
X)

,

which will not equal 1 unless the conditional risk premium is zero.9 To understand
this result, it is useful to rewrite the optimal demand for foreign bonds:

αX =
1

γ





λ̂Xt

T
(

1 − 1
γ

)

ν0 + σ2
X



− 1

γ

λS

σ2
S

(3.19)

The first term on the right hand side can be viewed as the adjusted speculative
demand for foreign currency, with the risk aversion parameter controlling how much
an investor adjusts for estimation risk. Speculative demand for foreign currency is
determined by the risk-return tradeoff, and risk aversion determines how an investor
views this tradeoff. Intuitively, uncertainty about the risk premium, and therefore
uncertainty about currency returns, gets added to the variance of returns. A myopic
investor will optimally ignore parameter uncertainty, while an infinitely risk averse
investor will fully include parameter uncertainty in the foreign exchange variance.

3.3 A General Model of Portfolio Choice

In this section I present a portfolio choice model that generalizes the simple model
presented earlier. The basic framework is the same, except that I allow for non-zero
correlation between the foreign exchange rate and foreign stock, and also introduce a
stochastic risk premium. For simplicity, interest rates remain constant. The simple
model is a special case of the general model presented here.

3.3.1 Asset Market Dynamics

The processes for the foreign exchange rate and foreign equity are identical to
(3.1) and (3.2), except that the processes are correlated, with the correlation equal to
ρXS. For the general model, it is convenient to stack the two processes into a vector
I t, which I call the investor’s information set:

9Although the optimal hedge limits towards a constant value (holding time and estimation risk
fixed), an infinitely risk averse investor will invest his entire wealth in domestic bonds, so no currency
hedging actually takes place.
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dI t =

[

dXt

Xt
dSt

St

]

=

[(

rd − rf

rf + λS

)

+

(

1
0

)

λXt

]

dt +

[

σX 0
σSρXS σS

√

1 − ρXS

]

×
[

dZXt

dZSt

]

= [M0(I , t) + M1(I , t)λXt] dt + Σ(I , t)dZI.

(3.20)

where λXt is the unobservable (stochastic) risk premium, and ZI is an unobservable,
two-dimensional Brownian motion. As with the simple model, investors will use their
observations of the exchange rate and stock returns to form an optimal estimate
of the risk premium. Because the two processes are correlated, equity returns will
contain information about the risk premium which investors can use to improve their
estimate.

The risk premium is stochastic and evolves according to an Ornstein-Uhlenbeck
process:

dλXt = κλ

(

1

2
σ2

X − λXt

)

dt + Σ′

λdZI + ωλdZλ, (3.21)

with

Σλ =
[

σλρXλ σλρ̂Sλ

]

′

ωλ = σλ

√

1 − ρ2
Xλ − ρ̂2

Sλ

ρ̂Sλ =
ρSλ − ρXSρXλ
√

1 − ρ2
XS

,

where Zλ is a standard Brownian motion orthogonal to ZX and ZS, ρXλ is the cor-
relation between foreign exchange and the risk premium, and ρSλ is the correlation
between foreign equity and the risk premium. In general, the risk premium will not be
spanned by foreign exchange and equity, and markets are incomplete. When ωλ = 0,
markets are complete.10 When κλ = σλ = 0, the risk premium is constant as in
Section 3.2.

The risk premium reverts towards a long-run mean equal to 1
2
σ2

X , with the rate of
mean reversion governed by the parameter κλ. To understand this particular choice
for the long-run mean, it is useful to briefly consider the problem of a foreign investor.
While a domestic investor prices foreign assets in terms of domestic currency, and is

10The assumption of complete markets imposes additional restrictions on the correlations.
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therefore interested in the exchange rate Xt, a foreign investor will be interested in
the foreign price of domestic currency, or Yt = 1/Xt. An application of Ito’s Lemma
delivers the dynamics of Yt,

dYt

Yt

=
[

rf − rd + λY t

]

dt − σXdZXt (3.23a)

λY t = σ2
X − λXt, (3.23b)

with

dλY t = κλ

(

1

2
σ2

X − λY t

)

dt − Σ′

λdZI − ωλdZλ.

Notice from (3.23) that exchange rate risk premia do not sum to zero, as intuition
would suggest, but rather to the variance of the exchange rate. This is true for means
as well, and risk premia are identical when λXt = λY t = 1

2
σ2

X . This makes 1
2
σ2

X

a convenient choice for the long-run mean since it yields symmetric exchange rate
processes for foreign and domestic investors.

Economically, when the foreign exchange risk premium is equal to its long-run
mean, foreign and domestic investors both expect a positive excess return from spec-
ulation in foreign currency. This is a manifestation of Siegel’s Paradox (Siegel; 1972)
which, roughly speaking, states that the exchange rate risk premium cannot be si-
multaneously zero for both foreign and domestic investors, and is due to Jensen’s
Inequality.

In other words, the textbook case of uncovered interest parity (UIP), which as-
sumes excess speculative returns are zero, is not consistent with symmetric exchange
rate processes; it can only be the case that risk premia are jointly zero if foreign
exchange rates are deterministic. However, log exchange rates can simultaneously
satisfy a zero-risk-premium condition, which can be seen by applying Ito’s Lemma to
logXt and logYt:

dlogXt =

[

rd − rf + λXt −
1

2
σ2

X

]

dt + σXdZXt

dlogYt =

[

rf − rd + λY t −
1

2
σ2

X

]

dt − σXdZXt

When λXt = λY t = 1
2
σ2

X , UIP holds for log exchange rates. For this reason, I refer
to the long-run mean case, with positive currency risk premia for both foreign and
domestic investors, as the UIP case.

3.3.2 The Inference Problem

Theorem 12.7 from Liptser and Shiryayev (1978) provides the multidimensional
counterpart to Theorem 12.1. The investor’s optimal estimate of the risk premium
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is λ̂Xt with variance νt, and conditional Normality of the posterior distribution again
applies (assuming a Normal prior). The differential equations describing the laws of
motion for the first and second moments are:

dλ̂Xt =κλ

(

1

2
σ2

X − λ̂Xt

)

dt + [Σ′

λΣ
′

I
+ ν(t)M ′

1
] (3.25a)

× (Σ
I
Σ′

I
)
−1
[

dI t − (M0 + M1λ̂Xt)dt
]

dν(t)

dt
= − 2κλν(t) + Σ′

λΣλ + ω2
λ − [Σ′

λΣ
′

I
+ ν(t)M ′

1
] (3.25b)

× (Σ
I
Σ′

I
)
−1

[Σ′

λΣ
′

I
+ ν(t)M ′

1
]
′

To simplify the expression for the conditional mean, define a new Brownian motion
ẐI, which is observed by investors:

dẐI = Σ−1
I

[

dI t − (M0 + M1λ̂Xt)dt
]

= Σ−1
I

M1

(

λXt − λ̂Xt

)

dt + dZI.
(3.26)

Using this expression, rewrite the process for estimated risk premium as,

dλ̂Xt = κλ

(

1

2
σ2

X − λ̂Xt

)

dt +
[

Σλ + ν(t)Σ−1
I

M1

]

′

dẐI, (3.27)

and the information set as,

dI t =
[

M0 + M1λ̂Xt

]

dt + ΣIdẐI, (3.28)

which depend only on observable parameters. Furthermore, although markets are
incomplete, markets appear dynamically complete to investors since the estimated
risk premium is spanned by the information set.

As in the simple model, the conditional (or posterior) variance of the estimate,
ν(t), is a deterministic function of time, and satisfies a Ricatti ordinary differential
equation; the expression in (3.25) simplifies to:

dν(t)

dt
= ω2

λ − 2
(

κλ + Σ′

λΣ
−1
I

M1

)

ν(t) − M
′

1
(Σ

I
Σ′

I
)
−1

M1ν(t)2

= ω2
λ − 2

(

κλ +
ρXλ − ρXSρSλ

1 − ρ2
XS

σλ

σX

)

ν(t) −
(

1

1 − ρ2
XS

1

σ2
X

)

ν(t)2.

(3.29)

The ODE in (3.29) has a closed-form solution, discussed in the Appendix B. The
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variance declines monotonically in time, to a long-run (asymptotic) value. Heuris-
tically, the long-run value is found by setting the right-hand side of (3.29) equal to
zero. This steady-state value will in general be non-zero, implying that investors
never fully learn the true stochastic process of the risk premium. Therefore, the esti-
mator is generally inconsistent. The intuition behind this result is that investors are
trying to learn about a process which is itself stochastic and not perfectly spanned by
observable processes. As a result, investors are never able to perfectly filter the risk
premium, since each time they form an estimate, the true risk premium is moving in
a way they cannot observe.11

Figure 3.2 plots a sample solution to the variance ODE when all correlations are
zero, the prior variance is ν0 = .005, and the volatilities of the risk premium and
exchange rate are σλ = .05 and σX = .10.

3.3.3 The Portfolio Problem

As in the simple model, a risk-averse investor chooses an optimal portfolio of
foreign stocks and bonds to maximize expected utility over terminal wealth. The
domestic currency prices of foreign assets follow from Ito’s Lemma. As with the
information set, it is convenient to stack the prices into a vector, which I call dPt:

dPt =

[

dPXt

PXt
dPSt

PSt

]

= [rd1 + ΛP ] dt + ΣPdẐI, (3.30)

with

ΛP =

[

λ̂Xt

λ̂Xt + λS + σXσSρXS

]

, ΣP =

[

σX 0

σX + σSρXS σS

√

1 − ρ2
XS

]

.

The optimal allocation to foreign assets is the 2-by-1 vector α; the first element
(αX) is the allocation to foreign bonds, and the second element (αS) is the optimal
allocation to foreign equity. The optimal currency hedge is again given by −αX/αS,
and the allocation to domestic bonds is 1 − α

′1.
The optimization problem is

J(W, λ̂Xt, t) = max
α

E

[

W 1−γ

1 − γ

]

,

subject to the dynamic budget constraint,

dW

W
= [rd + α

′ΛP ] dt + α
′ΣPdẐI.

11Even when the stochastic process is perfectly spanned by the information set, the estimator may
be inconsistent. See Gennotte (1986) for a discussion.
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The Bellman equation for this problem is

0 = max
α

{

∂J

∂t
+ JW W [rd + α

′ΛP ] +
1

2
JWW W 2

α
′Σ

P
Σ′

P
α + κλ

(

1

2
σ2

X − λ̂Xt

)

Jλ̂

+
1

2

(

Σλ + ν(t)Σ−1
I

M1

)

′
(

Σλ + ν(t)Σ−1
I

M1

)

Jλ̂λ̂

+ Wα
′ΣP

(

Σλ + ν(t)Σ−1
I

M1

)

JWλ̂

}

.

(3.31)

The investor’s optimal asset allocation strategy follows from the first-order condition
with respect to α,

α =

[

αX

αS

]

= − JW

JWW W
(Σ

P
Σ′

P
)
−1

ΛP − JWλ̂

JWW W
(Σ′

P
)
−1

Σλ

− JWλ̂

JWW W
(Σ′

P
)
−1

Σ−1
I

M1ν(t).

(3.32)

The first term on the right hand side is the investor’s myopic portfolio demand, which
is determined by the mean-variance tradeoff for foreign stocks and bonds. The second
and third terms describe the intertemporal hedging demand due to the stochastic risk
premium. This portfolio has two components: The first component hedges against
variation in the investment opportunity set due to the stochastic properties of the
unobserved risk premium; it is zero when the unobserved risk premium is constant (no
need to hedge), when all the correlations are zero (no ability to hedge), and when JWλ̂

is zero (no motive to hedge). The second component is due to parameter uncertainty
and learning; it is zero when JWλ̂ is zero, when there is no parameter uncertainty
(ν(t) = 0), and when there is no learning.

3.3.4 Value Function

The value function for the general problem takes the same form as in the simple
problem,

J(W, λ̂Xt, t) =
W 1−γ

1 − γ
e(1−γ)(A(t)+B(t)λ̂Xt+

1
2
C(t)λ̂2

Xt)

where A(t), B(t), and C(t) satisfy a system of ordinary differential equations given
in Appendix B. Using this solution, the optimal portfolio rule is

α =
1

γ
(Σ

P
Σ′

P
)
−1

ΛP −
(

1 − 1

γ

)

(Σ′

P
)
−1 (

Σλ + ν(t)Σ−1
I

M1

)

(

B(t) + C(t)λ̂Xt

)

(3.33)



83

where the first term is the myopic portfolio demand and the second term is the
intertemporal hedging demand.

The optimal currency hedge is again given by the ratio of foreign bonds to foreign
stock. When all correlations are equal to zero, the hedge ratio reduces to,

−αX

αS

= 1 − λ̂Xtσ
2
S

λSσ2
X

[

1 − (γ − 1)C(t)ν(t)

]

− (1 − γ)
σ2

S

λSσ2
X

B(t)ν(t). (3.34)

It is generally not possible to reduce the hedge ratio further, since the functions B(t)
and C(t) will be available in closed form only in certain cases. However, they are
easily solved numerically.

3.4 Numerical Analysis

In the absence of parameter uncertainty, a time-varying risk premium leads to
substantial market timing in the optimal hedge. When the risk premium is positive,
investors will reduce their hedge ratio below 1 in response to the positive expected
return to currency speculation. Likewise, when the risk premium is negative, the
optimal speculative policy will be to short foreign currency, so the hedge ratio will be
greater than 1. This is also true for myopic investors.

However, as Figure 3.3 shows, estimation risk considerably dampens the specula-
tive component for an investor with a five year investment horizon. The optimal cur-
rency hedge much closer to a complete one, especially for values of the risk premium
close to zero. The parameter values are identical to the simple model; in addition,
the rate of mean reversion is .25, the volatility of the unobserved risk premium is .05,
and all correlations are set to zero.12

As with the simple model presented earlier, there is a strong horizon effect at
work. Figure 3.4 plots the optimal hedge ratio as a function of investment horizon for
four values of risk aversion. I use γ = 1.1 as the first value to again show the policy
of an investor who is close to myopic.

As with the simple case, the hedging policy is converging towards a long-run value
as the horizon increases, and the value is closer to 1 as risk aversion increases. Notice
however that the long-run hedge does not in general converge towards a complete
hedge; this is due to the third term in (3.34), which does not depend on the value of
the estimated risk premium. Whereas in the simple model, increasing time horizon
and prior variance lead an investor to act as if their estimate of the risk premium
is zero (in which case the optimal hedge is a complete one), this is not true in the

12As is apparent from (3.34), the optimal hedging rule is linear in the risk premium when all
stochastic processes are uncorrelated. When processes are correlated, the hedging rule will still be
a monotonic function of the risk premium; however, the function may either be convex or concave
depending on the signs of the correlations.
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general model.

3.5 The Cost of Suboptimal Hedging

Given that, in a world of parameter uncertain, optimal hedge ratios approach
a complete hedge as the investment horizon increases, a natural question to ask
deals with the economic importance of estimation risk. In particular, what is the
opportunity cost of following a suboptimal strategy, in terms of certainty equivalence?
How much extra wealth would an investor require to follow a suboptimal strategy such
as a complete hedge?

3.5.1 Expected Utility of Terminal Wealth

In this section I return to the simple model of portfolio choice in Section 3.2, but
I make use of the vector notation introduced in Section 3.3. The analysis closely
follows that of Larsen and Munk (2010). To begin, consider any portfolio strategy α̂.
The dynamic budget constraint is

dW

W
= [rd + α̂

′ΛP ] dt + α̂
′ΣPdẐI

so that total wealth at time T is given by

WT = Wt exp

{∫ T

t

[

rd + α̂
′ΛP − 1

2
α̂

′ΣPΣ′

P
α̂

]

ds +

∫ T

t

α̂
′ΣPdẐI

}

. (3.35)

Then expected utility of terminal wealth is given by

J(W, λ̂Xt, t) = Et

[

W 1−γ
t

1 − γ

]

H(λ̂Xt, t) (3.36)

with

H(λ̂Xt, t) =Et

[

exp

{

(1 − γ)

∫ T

t

[

rd + α̂
′ΛP − 1

2
α̂

′ΣPΣ′

P
α̂

]

ds

+ (1 − γ)

∫ T

t

α̂
′ΣPdẐI

}]

.

(3.37)

Next, define ητ such that

ητ = exp

{

(1 − γ)

∫ τ

t

α̂
′ΣPdẐI − 1

2
(1 − γ)2

∫ τ

t

α̂
′ΣPΣ′

P
α̂ds

}

. (3.38)
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Using Girsanov’s Theorem, this allows us to rewrite (3.37) as

H(λ̂Xt, t) =Et

[

ηT exp

{

(1 − γ)

∫ T

t

[

rd + α̂
′ΛP − γ

2
α̂

′ΣPΣ′

P
α̂

]

ds

}]

=EQ
t

[

exp

{

(1 − γ)

∫ T

t

[

rd + α̂
′ΛP − γ

2
α̂

′ΣPΣ′

P
α̂

]

ds

}]

,

(3.39)

where Q is an equivalent probability measure and dẐ
Q
I

= dẐI − (1 − γ)Σ′

P
α̂dt is a

standard Brownian motion under Q.
Under the measure Q, the estimated risk premium has dynamics,

dλ̂Xt = ν(t)(1 − γ)α̂′Σ
P
Σ−1

I
M1dt + ν(t)

(

Σ−1
I

M1

)

′

dẐ
Q
I
. (3.40)

Therefore, by use of the Feynman-Kac Theorem, the function H must satisfy the
partial differential equation

0 =
∂H

∂t
+
[

(1 − γ)
(

rd + α̂
′ΛP − γ

2
α̂

′ΣPΣ′

P
α̂

)]

H(λ̂Xt, t)

+
[

ν(t)(1 − γ)α̂′Σ
P
Σ−1

I
M1

]

Hλ +
1

2
ν(t)2

M
′

1
(Σ

I
Σ′

I
)
−1

M1Hλλ.

(3.41)

with H(λ̂Xt, T ) = 1. Using the scalar notation of Section 3.2, we can rewrite the
differential equation as

0 =
∂H

∂t
+ [(1 − γ)ν(t)(αX + αs)] Hλ +

1

2

ν(t)2

σ2
X

Hλλ

[

(1 − γ)
(

rd + αX λ̂Xt + αs(λ̂Xt + λS)

−γ

2

(

α2
Sσ2

S + (αS + αX)2σ2
X

)

)]

H(λ̂Xt, t)

(3.42)

This differential equation must hold for any portfolio choice αX and αS. When
portfolios are chosen optimally, the solution is given in equation (3.14),

H(λ̂Xt, t) = exp

{

(1 − γ)

(

A(t) +
1

2
C(t)λ̂2

Xt

)}

(3.43)
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3.5.2 The Cost of Complete Hedging

Suppose that, instead of following the optimal portfolio rule, an investor chooses
to completely hedge her foreign currency exposure. That is, she chooses portfolios

αX = −1

γ

λS

σ2
S

(3.44a)

αS =
1

γ

λS

σ2
S

. (3.44b)

In this case, the differential equation in (3.42) simplifies to

0 =
∂H

∂t
+

[

(1 − γ)

(

rd +
1

2γ

λ2
S

σ2
S

)]

H(λ̂Xt, t) +
1

2

ν(t)2

σ2
X

Hλλ. (3.45)

It is straightforward to verify that the solution in this case is given by

H(λ̂Xt, t) = exp {(1 − γ)B(t)}

B(t) = (T − t)

[

rd +
1

2γ

λ2
S

σ2
S

]

(3.46)

so that expected utility over terminal wealth is

J(W, λ̂Xt, t) =
W 1−γ

t

1 − γ
exp {(1 − γ)B(t)} (3.47)

As shown in Section 3.2, a complete currency hedge is suboptimal, though less
so for investors with long horizons. Define L as the percentage of initial wealth an
investor must receive in order to be indifferent between following the optimal strategy
with initial wealth W0, or a suboptimal complete hedging strategy with initial wealth
(1 + L)W0. The investor is indifferent between the two strategies if they yield the
same expected utility, i.e.

[(1 + L)W0]
1−γ

1 − γ
exp {(1 − γ)B(t)} =

W 1−γ
0

1 − γ
exp

{

(1 − γ)

(

A(t) +
1

2
C(t)λ̂2

Xt

)}

.

(3.48)
Since L is the additional wealth necessary to set the expected utility from follow-

ing a suboptimal strategy equal to the expected utility from following the optimal
strategy, we can think of L as the utility loss, or opportunity cost, of following a sub-
optimal strategy. Solving for L, the opportunity cost of following a complete hedging
strategy is given by

L = exp

{

A(t) − B(t) +
1

2
C(t)λ̂2

Xt

}

(3.49)
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Figure 3.5 plots the opportunity cost of complete hedging for up to a horizon of
10 years, for three levels of risk aversion. The top figure gives the loss as a percentage
of initial wealth, while the bottom figure converts the loss into an annuity stream.
Intuitively, we can think of the annuity stream as an annualized opportunity cost, or
the annual increase in wealth an investor would need to receive to make her indifferent
between complete hedging and optimal hedging.13

The figures reveal two insights. First, even though optimal currency hedges ap-
proach a complete hedge as the investment horizon increases, utility losses increase
with the horizon. The reason for this is that, by engaging in a complete hedge, the
investor is ignoring the benefits of learning. As time evolves and the investor learns
about the true value of the risk premium, her optimal hedge will gradually move away
from a complete hedge as long as the true risk premium is non-zero. By ignoring the
dynamic effects of learning, utility losses can grow with the investment horizon.

However, the bottom figure reveals that annualized utility losses can both increase
and decrease with the investment horizon. For low enough levels of risk aversion or
very precise beliefs (not shown on the graph), this will typically not be the case. But
for high levels of risk aversion, or if estimation risk is high, the annualized utility loss
may actually decrease with the investment horizon.

3.6 Concluding Remarks

In this chapter I have studied the optimal currency hedge for an international
investor who is concerned with estimation risk. Increasing estimation risk and invest-
ment horizon reduce the speculative demand for holding foreign currency, as well as
the market timing motives generated by a time-varying risk premium; the optimal
currency hedge is much closer to a complete hedge.

While the hedging policy of a long-run investor looks similar to a complete hedge,
an important question deals with the economic importance of estimation risk. An-
alytical results suggest that, despite the effect of estimation risk on the hedging
strategy, the opportunity cost of engaging in a complete hedge grows with the in-
vestment horizon, due to the effects of dynamic learning. As posterior beliefs about
the risk premium become more precise, foreign currency becomes a more attractive
investment. An investor who commits to ignoring the benefits of foreign currency
will suffer utility losses today, even when there is a lot of uncertainty about the risk
premium.

13To convert the opportunity cost into an annuity stream, define the annualized cost LA as

LA =
L × rd

1 − exp{−rd × T}
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3.7 Figures

Figure 3.1: Optimal currency hedge ratios as a function of investment horizon, mea-
sured in years. The value of the estimated currency risk premium is 0.005, the
exchange rate and equity volatilities are 0.10 and 0.15, respectively, and the prior
variance is 0.005.
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Figure 3.2: Posterior variance as a function of time. The prior estimate is 0.005, the
volatilities of the risk premium and exchange rate are 0.05 and 0.10, respectively, and
the rate of mean reversion is 0.25. All correlations are zero.
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Figure 3.3: Optimal hedge ratio as a function of the estimated risk premium. The
prior variance is 0.005, and the volatilies of the exchange rate, exchange rate risk
premium, and foreign stock are 0.10, 0.05, and 0.15, respectively. The time horizon
is 5 years.
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Figure 3.4: Optimal currency hedge ratios as a function of investment horizon, mea-
sured in months. The value of the estimated currency risk premium is 0.005, equal
to the long-run mean, and the variance of the estimate is 0.005.
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Figure 3.5: Opportunity cost of following a complete currency hedge, measured as the
percentage increase in initial wealth necessary to make an investor indifferent between
the complete hedging strategy and the optimal hedging strategy, as a function of
investment horizon. The top figure presents the total opportunity cost at t = 0, while
the bottom figure presents the opportunity cost as an annuity stream. The value
of the estimated currency risk premium is 0.005, and the variance of the estimate is
0.05.
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Appendix A

Appendix to Chapter 1

A.1 The Filtering Equations

Consider the observable processes Y and s, which follow the system of stochastic
differential equations,

dY (t)

Y (t)
= µ(θ, t)dt + σdZY (A.1.1a)

ds(t) = θ(t)dt + ηρdZY + η
√

1 − ρ2dZs, (A.1.1b)

where ZY and Zs are standard, orthogonal Brownian motions. θ(t) ∈ {θl, θh} is a
state variable controlling the drifts of Y and s and follows a two-state Markov process
with transition matrix

Λ =

(

λll λlh

λhl λhh

)

=

(

−λlh λlh

λhl −λhl

)

. (A.1.2)

Optimal filtering equations make use of two key assumptions:

Assumption 1. The signals Y and s are observable, but the Brownian motions ZY

and Zs are unobservable.

Assumption 2. θ follows a hidden Markov process. The parameters of the process

(θl, θh, Λ) are known, but the current state θ(t) is unknown.

The filtering problem boils down to finding estimates for θ(t) and µ(θ, t) based on
observations of Y and s. The optimal estimates minimize mean-squared error, and
are given by

θ̂(π, t) = E [θ(t)|π(t)] = π(t)θh + (1 − π(t))θl (A.1.3a)

µ̂(π, t) = E [µ(θ, t)|π(t)] = π(t)µ(θh) + (1 − π(t))µ(θl) (A.1.3b)
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where
π(t) = Prob (θ(t) = θh|F(t)) (A.1.4)

is the posterior probability. Formally, F(t) is the filtration generated by Y and s,
which describes how information is revealed over time.

Case 1 - One Signal

Suppose that only the signal Y is observed. Optimal filtering equations follow
from Theorem 9.1 of Liptser and Shiryaev (2001), which I state as the following
Lemma:

Lemma 1. Given Assumptions 1 and 2, the posterior belief π satisfies the stochastic

differential equation

dπ(t) = κ (π̄ − π(t)) dt + π(t)(1 − π(t))
µ(θh) − µ(θl)

σ2

[

dY (t)

Y (t)
− µ̂(π, t)dt

]

(A.1.5)

with

κ = λlh + λhl

π̄ =
λlh

λlh + λhl

.

While equation (A.1.5) fully characterizes the learning process, the stochastic
equations for Y and π are still written in terms of unobservable parameters and shocks,
specifically θ(t) and dZY (t). The next step is to transform the incomplete information
system into a complete information system. To do so, rewrite the bracketed expression
in (A.1.5) as

dY (t)

Y (t)
− µ̂(π, t) = [µ(θ, t) − µ̂(π, t)] dt + σdZY (t)

= σ

[

µ(θ, t) − µ̂(π, t)

σ
dt + dZY (t)

]

= σdẐY (t)

where

ẐY (t) =
µ(θ, t) − µ̂(π, t)

σ
t + ZY (t)

is a Brownian motion adapted to the filtration F(t), i.e. an observable Brownian
motion. Substitution of dẐY into the processes for Y and π delivers the complete
information system of stochastic equations.



99

Corollary 1. The incomplete information system defined in (A.1.1), (A.1.2), and

(A.1.5), can be characterized by the complete information system

dY (t)

Y (t)
= µ̂(π, t)dt + σdẐY (t) (A.1.7a)

dπ(t) = κ (π̄ − π(t)) dt + π(t)(1 − π(t))
µ(θh) − µ(θl)

σ
dẐY (t) (A.1.7b)

This is a complete information system because the stochastic processes for Y and π
are written in terms of the observable parameter µ̂(π, t) and the observable Brownian
motion ẐY .

Finally, an application of Ito’s Lemma µ̂ gives the stochastic differential equation
for the conditional expectation of µ,

dµ̂(π, t) = κ (µ̄ − µ̂(π, t)) dt + π(t)(1 − π(t))
(µ(θh) − µ(θ0))

2

σ
dẐY (A.1.8)

with

µ̄ =
λlh

λlh + λhl

µ(θh) +
λhl

λlh + λhl

µ(θl) (A.1.9)

Case 2 - Two Signals

Now suppose that both signals Y and s are observed. To derive the stochastic
process for π in the two-variable case, it is convenient to stack the observable signals
into a vector S:

[

dY (t)
ds(t)

]

=

[

µ(θ, t)Y (t)
θ(t)

]

dt +

[

σY (t) 0

ηρ η
√

1 − ρ2

] [

dZY (t)
dZs(t)

]

.

Or, in vector notation,

dS(t) =

[

dY (t)
ds(t)

]

= Γ(θ, S)dt + Σ(S)dZS(t). (A.1.10)

Lemma 1 from Veronesi (2000) generalizes Theorem 9.1 from Liptser and Shiryaev
(2001) to multiple signals.

Lemma 2. Given Assumptions 1 and 2, the posterior belief π satisfies the stochastic
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process

dπ(t) =κ (π̄ − π(t)) dt+
(

π(t)(1 − π(t))

× (Γ(θh, S) − Γ(θl, S))′ (Σ(S)Σ(S)′)
−1
[

dS(t) − Γ̂(π, S)dt
]

)

(A.1.11)

with

Γ̂(π, S) = π(t)Γ(θh, S) + (1 − π(t))Γ(θl, S)

κ = λlh + λhl

π̄ =
λlh

λlh + λhl

.

Written in scalar form, equation (A.1.11) is

dπ(t) = κ(π̄ − π(t))dt

+ π(t)(1 − π(t))

(

µ(θh) − µ(θl)

σ2(1 − ρ2)
− θh − θl

ησ

ρ

1 − ρ2

)(

dY (t)

Y (t)
− µ̂(π, t)

)

+ π(t)(1 − π(t))

(

θh − θl

η2(1 − ρ2)
− µ(θh) − µ(θl)

ησ

ρ

1 − ρ2

)

(

ds(t) − θ̂(π, t)
)

(A.1.13)

As with the scalar case, by making the appropriate substitutions, the stochastic
differential equations describing the evolution of S and π have a complete information
representation. Again, begin by rewriting the bracketed expression in (A.1.11) as

dS(t) − Γ̂(π, S)dt =
(

Γ(θ, S) − Γ̂(π, S)
)

dt + Σ(S)dZ
S
(t)

= Σ(S)
[

Σ(S)−1
(

Γ(θ, S) − Γ̂(π, S)
)

dt + dZ
S
(t)
]

= Σ(S)dẐS(t)

where
ẐS(t) = Σ(S)−1

(

Γ(θ, S) − Γ̂(π, S)
)

t + Z
S
(t)

is a two-dimensional vector Brownian motion adapted to the filtration F(t), i.e. an
observable Brownian motion. Following the same steps as in the scalar case, substi-
tution of dẐS(t) into the processes for S and π delivers the complete information
system of stochastic differential equations, where the signal vector S and posterior
belief π are written in terms of the observable processes Γ̂ and ẐS.
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Corollary 2. The incomplete information system defined in (A.1.2), (A.1.10), and

(A.1.11), can be characterized by the complete information system

dS(t) =Γ̂(π, S)dt + Σ(S)dẐ
S
(t) (A.1.14a)

dπ(t) =κ (π̄ − π(t)) dt + π(t)(1 − π(t)) (A.1.14b)

×
[

Σ(S)−1 (Γ(θh, S) − Γ(θl, S))
]

′

dẐ
S
(t).

While the equations in (A.1.14) fully characterize the complete information sys-
tem, it is helpful to have the equations for Y , s, and π in scalar form. From the
definition of ẐS,

dẐS(t) = Σ(S)−1
(

Γ(θ, S) − Γ̂(π, S)
)

dt + dZ
S
(t)

=

[ µ(θ,t)−µ̂(π,t)
σ

θ(t)−θ̂(π,t)

η
√

1−ρ2
− µ(θ,t)−µ̂(π,t)

σ
ρ√
1−ρ2

]

dt +

[

dZY (t)
dZs(t)

]

=

[

dẐY (t)

dẐs(t)

]

.

Then the processes for Y and s are

dY (t)

Y (t)
= µ̂(π, t)dt + σdẐY (t) (A.1.15a)

ds(t) = θ̂(π, t)dt + η
(

ρdẐY (t) +
√

1 − ρ2dẐs(t)
)

. (A.1.15b)

where ẐY and Ẑs are orthogonal Brownian motions adapted to F(t). Next, define
Σπ = Σ(S)−1 (Γ(θh, S) − Γ(θl, S)). Then multiplying through,

Σπ =

[ µ(θ,t)−µ̂(π,t)
σ

θ(t)−θ̂(π,t)

η
√

1−ρ2
− µ(θ,t)−µ̂(π,t)

σ
ρ√
1−ρ2

]

Finally, using Σπ, re-write the stochastic process for π in scalar form,

dπ(t) =κ(π̄ − π(t))dt + π(t)(1 − π(t))Σ′

πdẐS(t)

=κ(π̄ − π(t))dt + π(t)(1 − π(t))

(

µ(θh) − µ(θl)

σ

)

dẐY (t)

+ π(t)(1 − π(t))

(

θh − θl

η
√

1 − ρ2
− µ(θh) − µ(θl)

σ

ρ
√

1 − ρ2

)

dẐs(t)

(A.1.16)
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A.2 Properties of the Learning Process

A.2.1 Conditional Moments

Two features of the learning process are worth pointing out. The first is that beliefs
mean revert to π̄ at rate κ. Indeed, given a prior π(0), the conditional expectation of
the posterior probability is given by

E [π(t)|π(0)] = π(0)e−κt + π̄
(

1 − e−κt
)

= π(0)e−(λ
lh

+λhl)t +

(

λlh

λlh + λhl

)

(

1 − e−[λlh
+λ

hl]t
) (A.2.1)

with
lim
t→∞

E [π(t)|π(0)] = π̄,

a weighted average of the prior and the long-run mean. This is the familiar form for
mean-reverting stochastic processes.

To derive this expectation, first write the stochastic differential equation for π in
integral form,

π(t) − π(0) =

∫ t

0

κ (π̄ − π(u)) du +

∫ t

0

π(u)(1 − π(u))ΣπdẐ
S
(u). (A.2.2)

Next, define m(t) = E [π(t)|π(0)] and take expectations, noting that the expectation
of a stochastic integral is zero:

m(t) = E [π(t)|π(0)] = π(0) +

∫ t

0

κ (π̄ − E [π(u)|π(0)]) du

= π(0) + κπ̄t − κ

∫ t

0

m(u)du.

Taking derivatives yields an ordinary differential equation describing the evolution of
the conditional mean,

m′(t) = κπ̄ − κm(t),

with general solution
m(t) = π̄ + e−κtC, (A.2.3)

where C is an arbitrary constant of integration. The initial condition m(0) = π(0)
pins down C = π(0) − π̄; substitution into (A.2.3) delivers the solution in (A.2.1).

The second property is that one statistic, π, characterizes both means and vari-
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ances, which are given by

θ̂(π) = E [θ|π] = πθ1 + (1 − π)θ0 (A.2.4a)

µ̂(π, X) = E [µ(θ, X)|π] = πµ(θ1, X) + (1 − π)µ(θ0, X) (A.2.4b)

and

Var(θ) = E
[

(θ − θ̂)2|π
]

= π(1 − π) (θh − θl)
2 (A.2.5a)

Var(µ(θ, X)) = E
[

(µ(θ, X) − µ̂)2|π
]

= π(1 − π) (µ(θh, X) − µ(θl, X))2 . (A.2.5b)

Intuition for this result comes from the diffusion term in equation (A.1.7). When π
is close to zero or one, the diffusion term, which is proportional to π(1− π), is small;
beliefs, and therefore estimates of θ and µ(θ, X), are precise. However, when beliefs
are close to π = 1

2
, there is a large amount of uncertainty about the state variable,

and estimates are relatively imprecise.

A.3 Bellman Equation

Conditional on an amount of invested capital K, the present value of future cash
flows at time t is given by equation (1.19) in Section 1.2,

V (Y, π; K, t) = Et

[∫

∞

t

e−r(u−t)Y (u)F (K)1− 1
γ du

]

. (A.3.1)

The value of the cash flows, V (Y, π; K, t) satisfies the Bellman equation given in
(1.20),

rV dt = Y F (K)1− 1
γ dt + E[dV ], (A.3.2)

which relates the total return from a perpetual stream of cash flows (dividend yield
plus capital gain) to the risk-free return. To derive this relationship, rewrite (A.3.1)
as the sum of two components,

V (Y, π; K, t) =Et

[∫ τ

t

e−r(u−t)Y (u)F (K)1− 1
γ du

+ e−r(τ−t)

∫

∞

τ

e−r(u−τ)Y (u)F (K)1− 1
γ du

]

=Et

[∫ τ

t

e−r(u−t)Y (u)F (K)1− 1
γ du + e−r(τ−t)V (Y, π; K, τ)

]

.

(A.3.3)
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Subtracting V (Y, π; K, t) from both sides gives

0 =Et

[∫ τ

t

e−r(u−t)Y (u)F (K)1− 1
γ du

+ e−r(τ−t)V (Y, π; K, τ) − V (Y, π; K, t)
]

.

(A.3.4)

Next, define X(t) = e−rtV (Y, π; K, t). Substitution into (A.3.4) gives

0 = Et

[∫ τ

t

e−r(u−t)Y (u)F (K)1− 1
γ du + ert(X(τ) − X(t))

]

. (A.3.5)

Taking limits,

0 = lim
τ→t

Et

[∫ τ

t

e−r(u−t)Y (u)F (K)1− 1
γ du + ert(X(τ) − X(t))

]

=Y (t)F (K)1− 1
γ dt + ertEt [dX] .

(A.3.6)

Applying Ito’s Lemma to X gives dX = e−rtdV − re−rtV dt. Direct substitution into
(A.3.6) delivers the Bellman equation in (A.3.2).

A.4 Maximum Likelihood Estimation

The parameter vector is

Θ =
[

µh µl σ λhl λlh

]

′

(A.4.1)

and the log-likelihood function is

L(Θ) =
T
∑

t=1

log f(y(t)) (A.4.2)

with

f(y(t)) =(1 − λhl)πt−1fh + λhlπt−1fl

+ λlh(1 − πt−1)fh + (1 − λlh)(1 − πt−1)fl.
(A.4.3)
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and

fh =f(y(t)|θ(t) = θh) =
1√

2πσ2
exp

{

−1

2

(

y(t) − µh + 1
2
σ2

σ

)2
}

(A.4.4a)

fl =f(y(t)|θ(t) = θl) =
1√

2πσ2
exp

{

−1

2

(

y(t) − µl + 1
2
σ2

σ

)2
}

. (A.4.4b)

Calculating standard errors for the parameter estimates relies on a sample estimate
of the information matrix, given by

Î =
1

T

T
∑

t=1

∂ log f(Θ̂)

∂Θ

∂ log f(Θ̂)′

∂Θ
(A.4.5)

The relevant derivatives are

∂ log f

∂µh

=
(1 − λhl)πt−1 + λlh(1 − πt−1)

f(y(t))

∂fh

∂µh

∂ log f

∂µl

=
(1 − λlh)(1 − πt−1) + λhlπt−1

f(y(t))

∂fl

∂µl

∂ log f

∂σ
=

1

f(y(t))

[

((1 − λhl)πt−1 + λlh(1 − πt−1))
∂fh

∂σ

+ ((1 − λlh)(1 − πt−1) + λhlπt−1)
∂fl

∂σ

]

∂ log f

∂λhl

=
πt−1(fh − fl)

f(y(t))

∂ log f

∂λlh

=
(1 − πt−1)(fl − fh)

f(y(t))

(A.4.6)

with

∂fh

∂µh

= fh

(

y(t) − µh + 1
2
σ2

σ2

)

∂fl

∂µl

= fl

(

y(t) − µl + 1
2
σ2

σ2

)

∂fh

∂σ
= fh

(

(y(t) − µh)
2

σ3
− σ

4
− 1

σ

)

∂fl

∂σ
= fl

(

(y(t) − µl)
2

σ3
− σ

4
− 1

σ

)

.

(A.4.7)
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A.5 Numerical Solution to the PDE

Due to the free boundary problem, the partial differential equation in (1.27)
requires a numerical solution. I approximate the solution using a finite difference
scheme. To solve the PDE, it is convenient to assume the investment option is finite,
but with a very long horizon (i.e. 40 years). The finite-horizon PDE is,

∂G

∂t
+ LY G + LπG + LY πG = 0 (A.5.1)

where

LY G = [πµh + (1 − π)µl] Y GY +
1

2
σ2Y 2GY Y − rG (A.5.2a)

LπG = κ(π̄ − π)Gπ +
1

2
π2(1 − π)2

(

ω2
Y + ω2

s

)

Gππ (A.5.2b)

LY πG = π(1 − π) (µh − µl) Y GY π. (A.5.2c)

The next step is to replace LY and Lπ with implicit finite difference approximations,
and LY π with an explicit finite difference approximation:

Gi,j,k+1 − Gi,j,k

∆t
+ LY Gi,j,k + LπGi,j,k + LY πGi,j,k+1 (A.5.3)

where i indexes Y , j indexes π, and k indexes time. Rearranging,

(1 − ∆t [LY + Lπ]) Gi,j,k = (1 + ∆tLY π) Gi,j,k+1 (A.5.4)

While this system of equations is sparse, it is not tri-diagonal; numerical analysis is
possible, though inefficient for small ∆Y and ∆π. However, using

(1 − ∆tLY ) (1 − ∆tLπ) = 1 − ∆t [LY + Lπ] + O(∆t2) (A.5.5)

we can approximate (A.5.4) with

(1 − ∆tLY ) (1 − ∆tLπ) Gi,j,k = (1 + ∆tLY π) Gi,j,k+1 (A.5.6)

which is tri-diagonal. We proceed in two steps:

(1 − ∆tLY ) Gi,j,k+ 1
2

= (1 + ∆tLY π) Gi,j,k+1 (A.5.7a)

(1 − ∆tLπ) Gi,j,k = Gi,j,k+1/2 (A.5.7b)

where each step contains a tri-diagonal matrix on the left-hand side, and known values
on the right-hand side. This method is known as the ‘operator-splitting’ method
and is unconditionally stable. For the grid, I set Ymin = 0 with G(0, π) = 0, and
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Ymax = 1 with G(1, π) = V (1, π; K∗) − K∗. The lower and upper boundaries for
π are 0 and 1. Because Gππ and GY π cancel from the PDE at π = 0 and π = 1,
I impose no boundary conditions for π; instead, I approximate Lπ with a one-sided
finite difference approximation at the boundaries for π.
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Appendix B

Appendix to Chapter 3

B.1 ODE for the Posterior Variance

In the general model of portfolio choice presented in Chapter 3, the conditional
variance of the estimated currency risk premium, ν(t), satisfies the ordinary differen-
tial equation

dν(t)

dt
= ω2

λ − 2

(

κλ +
ρXλ − ρXSρSλ

1 − ρ2
XS

σλ

σX

)

ν(t) −
(

1

1 − ρ2
XS

1

σ2
X

)

ν(t)2 (B.1.1)

with initial condition ν(0) = ν0. This is a Riccati differential equation with constant
coefficients, and the solution is given in Nawalkha et al. (2007).

To solve the differential equation, rewrite the equation as

dν(t)

dt
= P + Qν(t) + Rν(t)2 (B.1.2)

with

P = ω2
λ (B.1.3a)

Q = −2

(

κλ +
ρXλ − ρXSρSλ

1 − ρ2
XS

σλ

σX

)

(B.1.3b)

R = −
(

1

1 − ρ2
XS

1

σ2
X

)

. (B.1.3c)

Then the solution is

ν(t) = − b

R





a
b

(

b+Rν0

a+Rν0

)

e(a−b)t − 1
(

b+Rν0

a+Rν0

)

e(a−b)t − 1



 (B.1.4)
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with

a =
Q +

√

Q2 − 4PR

2

b =
Q −

√

Q2 − 4PR

2
.

(B.1.5)

To find the steady-state value of ν(t), take the limit as t approaches ∞:

lim
t→∞

ν(t) = − a

R
=

Q +
√

Q2 − 4PR

2R
(B.1.6)

Notice that the long-run variance is also one of the roots of the quadratic equation
that results when setting dν(t)/dt = P + Qν(t) + Rν(t)2 = 0:

f(x) = P + Qx + Rx2 = 0

⇒ x =
−Q ±

√

Q2 − 4PR

2R

=

{

− b

R
,− a

R

}

(B.1.7)

B.2 Value Function in the General Model

The Bellman equation for the general portfolio choice, given by equation (3.31),
is

0 = max
α

{

∂J

∂t
+ JW W [rd + α

′ΛP ] +
1

2
JWW W 2

α
′Σ

P
Σ′

P
α + κλ

(

1

2
σ2

X − λ̂Xt

)

Jλ̂

+
1

2

(

Σλ + ν(t)Σ−1
I

M1

)

′
(

Σλ + ν(t)Σ−1
I

M1

)

Jλ̂λ̂

+ Wα
′ΣP

(

Σλ + ν(t)Σ−1
I

M1

)

JWλ̂

}

(B.2.1)

and the associated optimal portfolio rule is

α = − JW

JWW W
(Σ

P
Σ′

P
)
−1

ΛP − JWλ̂

JWW W
(Σ′

P
)
−1

Σλ

− JWλ̂

JWW W
(Σ′

P
)
−1

Σ−1
I

M1ν(t).

(B.2.2)

To solve the problem, conjecture that the value function J(W, λ̂Xt, t) takes the
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form

J(W, λ̂Xt, t) =
W 1−γ

t

1 − γ
F [λ̂Xt, t]

γ (B.2.3)

so that the optimal portfolio rule is given by

α =
1

γ
(Σ

P
Σ′

P
)
−1

ΛP +
Fλ

F
(Σ′

P
)
−1

Σλ +
Fλ

F
(Σ′

P
)
−1

Σ−1
I

M1ν(t). (B.2.4)

Substituting the conjecture and the portfolio rule into the Bellman equation and
simplifying leads to a partial differential equation for F (λ̂Xt, t),

0 =

{

∂F

∂t
+

[(

1

γ
− 1

)(

rd +
1

2γ
Λ′

P
(Σ

P
Σ′

P
)
−1

ΛP

)]

F (λ̂Xt, t)

+

[

κλ

(

1

2
σ2

X − λ̂Xt

)

+

(

1

γ
− 1

)

[

Σλ + ν(t)Σ−1
I

M1

]

′

(Σ′

P
)
−1

ΛP

]

Fλ

+
1

2

[

Σλ + ν(t)Σ−1
I

M1

]

′
[

Σλ + ν(t)Σ−1
I

M1

]

Fλλ,

(B.2.5)

with boundary condition F (λXt, T ) = 1. The solution to the differential equation is

F (λ̂Xt, t) = exp

{(

1

γ
− 1

)(

A(t) + B(t)λ̂Xt +
1

2
C(t)λ̂2

Xt

)}

(B.2.6)

where A(t), B(t), and C(t) are deterministic functions of time, with A(T ) = B(T ) =
C(T ) = 0.

To verify that the solution in (B.2.6) satisfies the partial differential equation in
(B.2.5), it is convenient to split the risk premium vector ΛP into two components:

ΛP =

[

λXt

λXt + λS + σXσsρXS

]

=

[

0
λS + σXσSρXS

]

+

[

1
1

]

λXt

= L0 + L1λXt.

(B.2.7)

Substituting (B.2.6) into (B.2.5) and simplifying leads to an equation that is quadratic
in λXt, i.e. it takes the form

0 = f(t) + g(t)λXt + h(t)λ2
Xt. (B.2.8)

This equation must hold for any value of λXt. Setting the coefficients equal to zero
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leads to a system of ordinary differential equations,

dC

dt
= − 1

γ
L

′

1
(Σ

P
Σ′

P
)
−1

L1 (B.2.9a)

+ 2

[

κλ −
(

1

γ
− 1

)(

Σ′

λΣ
−1
P

L1 + M
′

1
(ΣPΣI)−1

L1ν(t)

)]

C(t)

−
(

1

γ
− 1

)

[

Σλ + ν(t)Σ−1
I

M1

]

′
[

Σλ + ν(t)Σ−1
I

M1

]

C(t)2

dB

dt
= − 1

γ
L

′

0
(Σ

P
Σ′

P
)
−1

L1 (B.2.9b)

+

[

κλ −
(

1

γ
− 1

)(

Σ′

λΣ
−1
P

L1 + M
′

1
(ΣPΣI)−1

L1ν(t)

)]

B(t)

−
[

1

2
κλσ

2
X +

(

1

γ
− 1

)(

Σ′

λΣ
−1
P

L0 + M
′

1
(ΣPΣI)−1

L0ν(t)

)]

C(t)

−
(

1

γ
− 1

)

[

Σλ + ν(t)Σ−1
I

M1

]

′
[

Σλ + ν(t)Σ−1
I

M1

]

B(t)C(t)

dA

dt
= −rd −

1

γ
L

′

0
(Σ

P
Σ′

P
)
−1

L0 (B.2.9c)

−
[

1

2
κλσ

2
X +

(

1

γ
− 1

)(

Σ′

λΣ
−1
P

L0 + M
′

1
(ΣPΣI)−1

L0ν(t)

)]

B(t)

− 1

2

(

1

γ
− 1

)

[

Σλ + ν(t)Σ−1
I

M1

]

′
[

Σλ + ν(t)Σ−1
I

M1

]

B(t)2

− 1

2

[

Σλ + ν(t)Σ−1
I

M1

]

′
[

Σλ + ν(t)Σ−1
I

M1

]

.

Together with (B.1.1), the equations in (B.2.9) describe a system of ordinary differ-
ential equations that can be solved sequentially. I solve the system numerically using
the fourth-order Runge-Kutta method.


