
Uncertain Probabilistic Roadmaps with Observations

Richard Dearden
School of Computer Science
University of Birmingham
Birmingham, B15 2TT, UK

rwd@cs.bham.ac.uk

Michael Kneebone
School of Computer Science
University of Birmingham
Birmingham, B15 2TT, UK

mlk@cs.bham.ac.uk

Abstract

Probabilistic roadmaps (PRMs) are a commonly used ap-
proach to path planning in continuous spaces with obstacles.
We examine the case where the obstacle locations are not
known with certainty but can be observed during execution
of the plan. We abstract the problem to one of traversing a
graph where some edges (referred to as uncertain edges) may
or may not be present, and where noisy observations of these
edges can be made from some of the vertices of the graph.
We show that this problem can be represented as a POMDP,
and then use the structure in the problem to derive a num-
ber of MDP approximations to the POMDP. We show that
using these approximations we can solve larger PRMs effi-
ciently while producing policies that are close to optimal for
many problems, and that we can produce optimal solutions
for PRMs with smaller numbers of uncertain edges.

Introduction
Probabilistic Roadmaps (PRM) are a popular technique for
path planning in high dimensional spaces. They are applica-
ble to many situations including robot arm motion planning
and path planning for mobile agents. PRMs work by gen-
erating a random graph with vertices representing reachable
robot poses and edges representing motion from one pose
to another. This graph is then searched for a path from the
initial state to the goal. Their success is due to the fact that
they reduce search in a large continuous space into search
in a graph. One of the limitations of most PRM approaches
is that the planner must be aware of all obstacles in the en-
vironment prior to building the roadmap graph or plotting a
route. There are many instances where this is not the case.
Our approach allows the agent to be initially uncertain about
obstacle locations and hence about which graph edges may
be blocked. The system builds a plan to reach the goal that
makes observations of these uncertain edges to determine
which are blocked and which it can use.

We will assume that most edges in the graph can be tra-
versed with certainty, and that there are only a relatively
small number of these uncertain edges that have a non-zero
probability of being blocked. We can think of this as a
decision-theoretic model identification problem where there

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

arem uncertain edges, hence 2m possible models. The prob-
lem is to select actions that help identify which model is the
true one, at least for the edges we may wish to visit on the
way to the goal. The decision over which route to take is
then not only based on the agent’s belief about which edges
are usable, but also upon the value of being able to make
better observations about obstacles in the world.

In the next section we outline the basics of PRM graph
construction and introduce our representation of uncertainty
in PRMs. We then show how this can be represented as
a partially observable Markov decision process (POMDP)
where a series of observations alters the agent’s belief about
the true model of the world. Due to the complexity of the
POMDPs, this generates problems which are infeasible to
solve in reasonable time. We develop three Markov decision
problem (MDP) approximations to the POMDP model and
discuss methods for solving them efficiently. Finally, we
evaluate the effectiveness of these approaches and discuss
future research directions.

Probabilistic Roadmaps
Probabilistic Roadmaps (PRM) planners are built around the
idea of plotting paths for robotic agents by searching over a
graph of possible configurations for that agent. PRM-based
approaches have been shown to be scalable (Kavraki and
Latombe 1998) to agents featuring high dimensionality (i.e.
robots with large degrees of freedom (d.o.f.)). This is an
advantage over other deterministic path planners that, while
efficient in two or three dimension spaces, struggle to cope
with the exponential growth that occurs as the quantity of
dimensions increases. By sampling random values for each
d.o.f. of the agent to create a complete configuration, a
PRM planner is capable of ”exploring” the entire configu-
ration space (C-space) for a given agent. Not all configura-
tions in the space will be usable due to obstacles or self-
collisions, so the n-dimensional space is conceptually di-
vided into two non-contiguous areas named Cfree and Cobst

for free and obstructed configurations respectively. A PRM
graph is built in the preprocessing phase of the planner by
using a sampling algorithm which randomly generates con-
figurations (poses) for the agent according to some criteria
and then either accepts or rejects the generated poses. Each
accepted pose becomes a node on the graph. The simplest
sampler uniformly generates random poses for the agent and

accepts poses that exist completely in Cfree and reject poses
in Cobst; more complex samplers have been created that are
biased towards sampling in narrow corridors for instance
(Hsu et al. 2003). The graph is completed by taking each
sampled node and attempting to create k edges to neighbour-
ing nodes by checking for a collision-free route between the
two nodes. In the query phase of PRM, a completed graph
can then be searched rapidly for paths between two arbitrary
poses with standard graph searching algorithms.

Uncertainty in PRM
The use of uncertainty in PRM has not received as much at-
tention as other issues surrounding motion planning. Mis-
siuro and Roy (2006) describe the use of uncertain maps
to allow robots to navigate through worlds without exact
knowledge of obstacle locations. They use sampling meth-
ods that incorporate the agent’s confidence in a sample be-
ing located in Cfree before accepting it as a point in the
roadmap. A minimum cost route planner with a bias to-
wards low risk routes is also described. Burns and Brock
(2006) also explore map uncertainty, but use(s) a lazy ap-
proach to roadmap construction which builds roadmaps as
queries are evaluated. Roadmap refinement techniques are
employed that increase the detail of sensing in tricky areas
if a generated route falls below a preset confidence thresh-
old. The idea of associating a “success probability” with
edges is used by several implementations and is similar to
the first stage of processing used in (Nielsen and Kavraki
2000). Lazy PRM (Bohlin and Kavraki 2000) is an approach
used by many PRM based planners when dealing with dy-
namic obstacles such as the one described by (Jaillet and
Simeon 2004) which utilises a lazy roadmap construction
algorithm including a local reconnection strategy. The lo-
cal planner reconnects points in the roadmap which become
broken when obstacles change position such as a door clos-
ing or opening. Dynamic and moving obstacles can be ac-
counted for in PRM by planning in the state × time space
as in (Hsu et al. 2000). Roadmaps are constructed lazily
and new points on the map are generated by altering robot
control inputs and using the configuration reached a short
interval of time later. Moving obstacles are planned around,
but the locations and trajectories must be known a priori.

Our approach is to generate a PRM graph in advance in
which some edges may intersect the uncertain obstacles.
We then to build a path plan that traverses the graph opti-
mally, given the fact that observations will be made as we get
closer to the obstacles that will allow us to determine which
edges are obstacle-free. This contrasts with the previous ap-
proaches because we explicitly reason about the information
we may receive while executing the plan. The benefit of is
demonstrated in the following section.

Model Formulation
To formulate this uncertain PRM in a tractable way, we rep-
resent the obstacle locations only in terms of their effect on
the uncertain edges, and consider the problem as one of ef-
ficiently traversing the PRM graph.

To look at solution methods for this problem, we now ab-
stract out a lot of the details. Since we’re looking at PRM for

path planning, we will assume we can reason directly about
the traversability of the PRM graph, so we abstract away de-
tails of the location of the obstacles and assume the problem
is as follows:

Let G = {V,E} be a graph where the vertices in the
graph, V = {v1, ..., vn} represent robot poses, and the edges
E = {e1, ...ek}, where ei = 〈v, v′〉, represent paths be-
tween poses (we assume that if there is a path 〈v, v′〉, then
there is a corresponding path 〈v′, v〉). We also identify loca-
tions vS and vG, the start and goal poses. Each edge e has
a cost ce of traversing the edge in either direction associated
with it.

Most existing PRM algorithms assume that the locations
of all the obstacles in the space are exactly known a priori. If
this isn’t the case (for example when the movement is over
long distances, or obstacles may be obscured behind others),
we may not know immediately which edges are collision-
free and which are not when creating the graph. However,
as the robot moves through the space, more information may
be obtained as obstacles become visible and their locations
can be measured more accurately.

When we visit a vertex of the graph, we make obser-
vations of all the uncertain edges from our new location,
and we receive information about whether the edges are
obstacle-free1. We will assume that for each edge ei we
observe either fi, meaning that we observe the edge to be
collision-free, or bi if the edge appears blocked. These
observations are uncertain, in that if the edge is collision-
free, we may still observe bi some of the time, and vice
versa. Assume there are m uncertain edges. We write
o =< o1, . . . , om > for an observation of each of the un-
certain edges, where oi is either fi or bi.

Although we can’t observe them, there is in fact a true
state of the world in which each edge is either collision-free
or blocked. Let W = {w1, . . . , w2m} be the set of all such
worlds. We write P(o|vi, wj) for the probability of making
observation o from location vi if the true state of the world
is wj . While we’ve abstracted away the obstacle locations
in this representation, the fact that the traversability of the
edges is based on obstacle locations is important because it
implies that for close edges, the probability that the edges are
blocked may not be independent. If the edges are indepen-
dent, then the likelihood that world w is the true state of the
world is simply the product of the likelihoods of each edge
being collision-free or blocked. If this is not true (for exam-
ple, where one obstacle is likely to intersect two edges), then
the edge probabilities are dependent, and the probability of
each world must be maintained separately in the belief state.

To find an optimal path in a PRM graph with no uncertain
edges, we can represent the problem as an MDP where the
state space S = V , the action space A = {goto-v : v ∈ V }
(note that not all actions in this model are applicable in every
state), and the reward and transition functions are given by:

R(s, goto-v) =
{
−ce if e = 〈s, v〉 and v 6= vG

−∞ otherwise

1If not all edges are visible, we assume we receive an observa-
tion that gives no information.

S

A

B

C

G

2
1

2
2

2 5

2

Figure 1: A small example PRM graph. In this example
there are five vertices and one uncertain edge, which ini-
tially has P (blocked) = 0.5 (the dotted line indicates the
uncertain edge). The state of the edge can be observed with
certainty from vertices A and B.

P (si, goto-sj , sj) =
{

1 if 〈si, sj〉 ∈ E
0 otherwise

where vG is a goal node. Intuitively, the vertices correspond
to states, edges correspond to actions, all the transition prob-
abilities are 0 except for those that correspond to edges in the
graph, and rewards correspond to costs of traversing edges.
The objective is to find a minimal-cost path to the goal state,
so we assume the goal is an absorbing state, and we can
solve the problem as a finite- or infinite-horizon decision
problem. Note that this formulation is only valid if there
is no uncertainty about whether edges are collision-free.

If the PRM graph includes edges that are uncertain, the
planning problem is to find the shortest cost path from the
initial state to the goal given the uncertainty about which
edges are collision-free and the information we can gather
while moving through the graph. Figure 1 illustrates the
problem on a very small PRM with only one uncertain edge.
For this example we assume that points A and B are close
enough to the obstacle to observe with certainty if the edge
is blocked. If the edge is collision-free, the optimal path is
to move from S to A to G. If the edge is blocked, then S to
C to G is optimal, but if our current belief is that the edge is
blocked with p = 0.5, the optimal behaviour is to move to
B, observe the edge from there, and then move to A or C as
appropriate. The important observation is that the optimal
policy under uncertainty is different from the best policies
in each of the possible worlds. B only looks optimal if the
planner can reason about the information it will gain, other-
wise going to A or C appears a better choice.

We can think of this as a model identification problem.
It is a Markov decision problem in the sense that we select
actions to move from state to state, our movement depends
only on our current state, and we always know which state
we are in. However, the problem is that we don’t know ex-
actly which MDP we are moving in, and the challenge is
to select actions to maximise long-term reward, but this de-
pends on the model, so we must identify (some of) the model
in order to do this.

POMDP Representation
We represent the model identification problem as a
partially observable MDP. A POMDP is a tuple <

S1 S0

A1 A0

B1 B0

C1 C0

G1 G0

Observations: At S1, S0, observe S, similar for others
Additionally, at A1 and B1, observe ’ free’
At A0, B0, observe ’blocked’Figure 2: The POMDP model of the graph in Figure 1. The

states and actions are shown, the rewards are as before. At
each vertex, we observe the vertex (letter) we are at. We
additionally observe A→G as free at A1 and B1 and as
blocked at A0 and B0. Note that this makes S0 and S1
indistinguishable.

S,A,O, T,H,R > where S is the set of possible system
states, A is the set of possible actions, O is the set of pos-
sible observations, T = P(s, a, s′) is the transition function
that governs how an action changes the state of the system,
H = P(o|s, a, s′) is the observation function that governs
how likely each observation is given a state, action and re-
sulting state, and R = r(s, a) is the reward function which
specifies the immediate utility (or cost) of doing a particular
action in a state. This is an MDP model with the addition of
observations.

Intuitively, to translate our model identification problem
into a POMDP, we make a copy of the PRM graph for each
of the possible models (the set W above). For figure 1, the
two models are shown in figure 2. These models have no
uncertainty about their edges. The POMDP state space is
the union of the state spaces of all these MDPs, giving n2m

states. In the example,m = 1 and n = 5 giving the 10 states
shown. The action set consists of one action for each node:
5 in this case and the rewards and transition functions are the
unions of the set of MDPs.

We define the function valid(v, v′, w) to represent the fact
that there is a collision-free edge in world w between v and
v′. Formally, valid(v, v′, w) is true if ∃e ∈ E : e = 〈v, v′〉
and e is collision-free in w.

We can now formally define the model identification
POMDP as follows:

• S = V ×W as described above. Each state is a combined
〈v ∈ V,w ∈W 〉 pair.

• A = {goto-v : v ∈ V } as above (there are obviously
other ways to encode the actions which lead to smaller
POMDP formulations, but for clarity’s sake, we will use
this encoding here).

• O = P(o). Each observation consists of the vertex that
we are at, plus an observation of all the uncertain edges.
o = 〈o1, o2, . . . , om〉 where oi is an observation of uncer-
tain edge i.

• T is defined as follows:

P (〈v, w〉, goto-v′, 〈v′′, w′〉) ={
1 if w = w′, v′ = v′′, and valid(v, v′, w)
0 otherwise

T defines the probability of a transition from one state
to another. All transitions have probability zero except
transitions where the PRM states being moved between
are in the same world, and there is a collision-free edge in
that world between those two states.

• H is defined as follows:

P (o|〈v, w〉, goto-v′, 〈v′, w〉) ={
P(o|v′, w) if valid(v, v′, w)

0 otherwise

For brevity we have relaxed the notation compared to the
definition of T . H is the probability of an observation
given a state, action, and resulting state, and in this case
is defined solely by the resulting state. Whenever we per-
form an action in the POMDP, we get an observation of
whether each uncertain edge is collision-free or blocked.

• R is defined as in the MDP model above by:

R(〈v, w〉, goto-v′) ={ −ce if e = 〈v, v′〉, valid(v, v′, w)
and v′ 6= vG

−∞ otherwise

The belief state is only a distribution over the possible
worlds, so we can represent the fact that e.g. two edges
always are in the same state (collision-free or blocked) by
making all worlds in which one is blocked and the other is
not have prior probability zero. The agent is then forced
to believe those worlds are impossible. If the probabilities
that two edges are blocked are not independent, this is rep-
resented in the POMDP model using the belief state. If two
edges are independent, then the belief state should be such
that the probability of the model(s) in which both edges are
blocked is the product of the probabilities that each edge is
blocked. Dependencies are encoded in the belief state, so
the choice of initial belief state is crucial — it specifies the
edge dependencies to the agent in the world. We use vari-
ous initial belief states for the experiments to setup edges as
being dependent or not as appropriate.

We can now solve this POMDP to find an optimal policy
under our uncertainty about which model we are in. All the
reachable belief states when executing this (or any other)
policy will consist of non-zero probabilities for (some of)
the 2m POMDP states corresponding to the current graph
vertex, and zero probability for all other states. The non-
zero probabilities indicate the probability, given the actions
and observations so far, for each of the possible models. The
optimal policy for the problem in 1 is shown in Figure 3
where the possible belief states are shown as circles with
the PRM node and the belief that the edge from A to G is
collision-free. The optimal policy is shown by the arrows,
and is to go to B, discover whether the edge is blocked, and
then to go to either A if it is collision-free, or C otherwise.

A Continuous MDP Model
Solving even very small POMDPs is computationally hard.
In this case, there is a lot of structure in the POMDP, in
particular in the kinds of belief states that are possible. We

C
0.5

G
0.5

S
0.5

B
0

A
0

B
1

A
1

S
0

S
1

C
0

C
10

G G
1

Figure 3: The optimal policy for the example graph in Figure
1. The policy shown is for starting from S with a probability
of 0.5 that the uncertain edge is blocked. The split arrow
from S indicates that the resulting state is unknown.

would like to find ways to exploit this structure to more ef-
ficiently solve the problem. There are a number of general
POMDP solvers that exploit structure in the belief space, for
example point based value iteration (Pineau, Gordon, and
Thrun 2003) or belief compression (Roy, Gordon, and Thrun
2005). We would expect that these approaches could exploit
the structure we see, but since these are general approaches
(they can exploit many kinds of structure in belief states), we
should be able to do significantly better by using algorithms
specific to the type of structure present.

In the case of our domain, the only belief states that are
possible are ones that are certain about which graph vertex
they are in, but have probabilities over the which of the 2m

possible worlds is the true one. We now develop an approx-
imate MDP model that explicitly represents this structure.

Consider a problem such as the one in Figures 1 and 2
in which there is only a single uncertain edge. In this case,
every possible belief state consists of an underlying MDP
state plus a single probability of being in the obstacle-free
world. Thus we can solve this problem using an MDP solver
for continuous states (or approximately by discretising the
continuous variable). When we generalise this approach to
higher numbers of uncertain edges, since the edge proba-
bilities could be dependent on one another, the m uncertain
edges produce 2m possible worlds, leading to an MDP with
states with 2m − 1 continuous variables.

To formulate this model as an MDP, we discretise the
belief space over each continuous variable (the probability
of each model). Since zero and one are important to dis-
tinguish in these problems as they lead to smaller branch-
ing factors in the MDP, we discretise into d + 1 values
as follows: D = {0, 1/d, 2/d, . . . , (d − 1)/d, 1} where
every value in the range [i/d − 1/(2d), i/d + 1/(2d)) is
discretised to i/d, and 0 and 1 correspond to the ranges
[0, 1/(2d)) and [1 − 1/(2d), 1] respectively. Given such a
discretisation, and a set of 2m possible worlds, let P̃(wi)
be the probability of world i, discretised according to D.
Let P̃W = {P̃(w1), . . . , P̃(w2m)} such that

∑
i P̃(wi) = 1

be a discretised assignment of probability to every possible
world. Let P̃ = P(P̃W) be the set of all such assignments.

We can now define the discretised MDP formulation of

the problem as follows:

• S = V × P̃ is the set of states. It represents the cross
product of the set of vertices in the PRM graph with the
set of all possible discretised beliefs about which model
is the true one.

• A = {goto-v : v ∈ V } as before.
• R, the reward function, is defined as follows:

R(〈v, P̃W 〉, goto-v′) =
∑
w

P̃(w)R(〈v, w〉, goto-v′) (1)

whereR(〈v, w〉, goto-v′) is defined as in the POMDP for-
mulation above. Intuitively, the reward for doing a partic-
ular action in a belief distribution over the worlds is the
expected reward for the action in the POMDP where the
expectation is over the belief distribution, because it de-
pends on the state that results from the action.

• T , the transition function, is somewhat complex to de-
fine as we have to specify both the transition probabili-
ties, and the states that result. When we make a transition
in the POMDP formulation above, the actual transition
is deterministic in the underlying states, but the observa-
tion (which is stochastic) moves us from one belief state
to another. In the MDP formulation, the transitions with
non-zero probability correspond to all the possible obser-
vations that could be made, and the resulting states are
the discretised belief states that would result from making
each observation. This is expressed formally as follows:

P(〈v, P̃W 〉, goto-v′, 〈v′, P̃
′
W 〉) = p

We first consider the cases where p is non-zero. For this
to be true, 〈v, v′〉 ∈ E. Suppose we make an observation
o, then the belief state we move to is:

P̃ ′W = {Pv′(w1|o, P̃W), . . . ,Pv′(w2m |o, P̃W)}

where Pv′(wi|o, P̃W) is the new probability of being in
model i after observing o, which is:

Pv′(wi|o, P̃W) = P(o|v′,wi)P(wi)

P(o|v′,P̃W)

= P(o|v′,wi)P(wi)∑
j P(o|v′,wj)P(wj)

(2)

Where P(o|v, w) is defined in the PRM graph (it is the
probability of seeing observation o from vertex v if the
true world is w), and P(w) given by the prior world prob-
abilities from P̃W . We now discretise Pv′(wi|o, P̃W) to
produce the new belief state after the action.
It only remains to compute p, the probability of reaching
these belief states, and this is given by:

p = P(o|v′, P̃W)
=

∑
j P̃(wj)P(o|v′, wj)

(3)

For all states other than those identified above, p = 0.
As before, if two uncertain edges are correlated, this is re-

flected in the belief state over the possible worlds, so affects
only the initial state in the MDP.

Having defined the MDP, we can now solve it to get an
optimal (modulo the discretisation) policy for the POMDP,
and hence for the original PRM problem. We will refer to
this MDP formulation as the dependent MDP as it allows us
to represent belief states where there are arbitrary dependen-
cies between the probabilities that edges are collision-free.
The dependent MDP formulation is significantly quicker to
solve than the POMDP formulation of the problem.

Belief State Reachability
As was mentioned in the foregoing discussion, there is a lot
of structure in the belief space. This structure is exploited
by the MDP but more information is available that is not
utilised. The start state specifies the agent’s prior belief over
which world is the correct one, yet the MDP computes a pol-
icy for all states. Many MDP states are never visited from
the starting state under any sensible policy. An obvious im-
provement therefore, is to only consider the value of states
reachable from the start state. Several methods for this exist
such as RTDP (Barto, Bradtke, and Singh 1993) or enve-
lope methods (Dean et al. 1995). Since the MDPs we are
solving represent stochastic shortest path problems, which,
barring uncertainty, are optimally solved by the classic A*
search algorithm, it seems natural to use LAO* (Hansen and
Zilberstein 2001), a generalisation of AO* tree search algo-
rithm (Nilsson 1986) for AND/OR trees with loops. LAO*
is a heuristic search algorithm which builds a graph from
the start state and expands leaf nodes according to a heuris-
tic akin to how A* explores a graph. A “best partial solu-
tion” graph is maintained which consists of the states reach-
able from the start state according to the current best policy.
Value iteration updates (backups) are applied to those states
in the best partial solution graph. LAO* terminates when
there are no remaining unexpanded nodes in the best solu-
tion graph (BSG) and all nodes in the BSG have converged
values under value iteration.

We apply LAO* to our problem to achieve substantially
increased efficiency in finding the optimal policy. Our prob-
lem domain allows admissible heuristics to be easily devised
for the algorithm. We use the shortest-path cost to the goal
assuming all edges are free as the basis for the heuristic.
This is efficiently computed using Dijkstra’s algorithm on
the PRM graph. Using the same MDP model formulation
as before and applying it to LAO* we have an effective al-
gorithm for solving problems on a realistic scale. LAO*
exhibits large gains in performance compared to a standard
MDP solver that uses value iteration over the full state space.

For small problems, we can compare value iteration to
LAO* directly. On the problem in figure 4 a discretisation
of d = 0.1 creates an MDP of 7,986 states. The MDP solver
took 205.8 seconds to generate the optimal policy, while
LAO* produced a solution in 1.5 seconds from a start state
where all three uncertain edges were blocked with probabil-
ity 0.5 and generated a state graph of just 376 nodes. To
evaluate the policy LAO* found, we implemented a simula-
tor which randomly samples ‘true’ world states according to
the initial belief distribution and executes the policy in each
one. The total incurred cost is recorded when the goal is
reached or a maximum number of actions have been taken.

4
4

4
1
1

1 3

3

4

x

y

z

A

B

C

Figure 4: A PRM graph with dependent edges. The un-
certain edges are marked with dotted lines, and the top two
could be blocked by a single obstacle (shown in grey), so
are dependent, while the bottom edge is independent of the
other two.

State Space Reduction
Although the MDP approach is significantly faster than the
POMDP solver applied to the same problem, the MDPs it
produces are too large to be practically applied to many
problems. The problem is the size of the state space: for
a PRM graph with n vertices, m uncertain edges, and a dis-
cretisation into d discrete values, the total number of valid
(belief distributions summing to one) MDP states is:

n
(d+ 2m − 2)!

(d− 1)!(2m − 1)!
(4)

For a problem with 20 vertices in the graph, four uncertain
edges, and a discretisation of only 0.1 (11 values), this re-
sults in around 65 million states.

Examining Equation 4, we see that the major contributors
to the number of states are the discretisation and the num-
ber of worlds. We can reduce the discretisation to make the
MDP smaller, but this produces insufficient discretisation to
represent the probabilities accurately. At coarse levels, small
changes in the discretisation can lead to large changes in
agent behaviour. A better approach is to reduce the number
of continuous variables needed to represent the belief state.
The easiest way to do this is to assume that the likelihood of
each edge being blocked is independent of all others. With
this assumption, we don’t need to maintain a belief distribu-
tion over all the possible worlds, but instead we keep inde-
pendent distributions for each edge. This reduces the num-
ber of states from that given in Equation 4 to ndm, so our
example above can be represented using under 300 thousand
discrete states.

The changes that need to be made to the MDP formulation
for this independent model are to redefine the set of discre-
tised belief states, P̃. Rather than being the set of possible
probability distributions over all possible worlds, this is now
the set of products of individual distributions for each edge,
so P̃ = P(P̃E) where P̃E = {P̃(e1), . . . , P̃(em)} where
{e1, . . . em} is the set of uncertain edges. This then changes
the definition of the states space S, the reward function R,
and the transition function.

For the reward function and transition function, the
change that needs to be made is in the definition of P̃(w)

for a world w. This is now defined (by a slight abuse of
notation) as:

P̃(w) =
∏
e∈w

P̃(e)
∏
e 6∈w

(1− P̃(e)) (5)

where by e ∈ w we mean all the uncertain edges that are
collision-free in w. The rest of the MDP definition remains
the same, with Equation 5 substituted into Equations 1, 2,
and 3.

While the independent MDP formulation has a very sig-
nificant advantage in terms of the number of states and hence
the size of problems that can be solved, the policies it pro-
duces can be significantly worse than the general MDP for-
mulation. Consider a problem such as that shown in Fig-
ure 4 where two of the uncertain edges are precisely corre-
lated so that worlds in which only one of the two is blocked
are impossible. We assume we get a reliable observation of
edge B from point Y, but no observation of A. Consider
what would happen if the initial belief state was uninformed
about A or B, and then reached point Y and observed that
B was blocked. The dependent MDP would reason that A
would also be blocked and would move to Z. The indepen-
dent MDP might choose to move towards X, expecting there
to be a probability of 0.5 that A was collision-free.

Clustering Edges
In the PRM formulation of the problem, the obstacles cause
the edges to be blocked. This means that if two edges are
very close to one another in the PRM graph and are close to
the same obstacle, it is very likely that their probabilities of
being blocked are dependent. On the other hand, two edges
that are far apart in the PRM graph are almost certainly in-
dependent. This observation leads us to a second approach
to state space reduction that tries to minimise the error in the
discovered policy. The idea is to cluster together edges that
are close to one another, while leaving far away edges inde-
pendent. Intuitively this makes the space of possible worlds
the cross product of a set of smaller clusters of edges.

As an example, consider again the graph in Figure 4.
There are three uncertain edges, but A and B are influenced
by a single obstacle, while C is influenced by a different
one. If we cluster A and B together independently of C, we
can represent the graph with three continuous variables for
the top two edges, plus one more for the bottom edge, pro-
ducing an MDP with 18,876 states when discretised at 0.1.
This compares with the dependent MDP, which has 116,688
states, and the independent MDP, which has 7,986. If the top
two edges are truly independent of the bottom edge, then the
clustered MDP will find exactly the same policy for these
states as the dependent MDP, but value iteration runs on this
problem in 474 seconds on average, compared with 2,703
seconds for the dependent MDP, and 206 seconds for the
independent MDP.

The clustered formulation allows the agent to infer infor-
mation about edges it hasn’t directly received an observation
about via dependence in the belief state, but still to benefit
from the computational advantages of ignoring dependen-
cies for independent edges. With clustering, the quality of

the policy doesn’t suffer to the same extent as with an as-
sumption of total independence between edges.

For brevity, we omit the definition of the clustered MDP
here, but intuitively, it is analogous with the independent
case above. For each cluster of n uncertain edges, there is a
continuous variable for each of the 2n worlds, but these are
independent of the other clusters.
Theorem 1. The optimal policy for the dependent MDP is
at least as good as the optimal policy for the clustered and
independent MDPs (neglecting any effects of the discretisa-
tion).

We prove this by observing that since every state in the
independent (or clustered) MDP is also represented in the
dependent MDP, and since the action space is the same, if
a state in the independent MDP has a better action than the
corresponding state in the dependent MDP, that action would
also be available in the dependent MDP. For it to be better
in the independent MDP, it must have higher value, but then
it would have a higher value in the dependent MDP than the
optimal action, which is a contradiction.
Corollary 1. The optimal policy for the clustered MDP is
at least as good as the optimal policy for the independent
MDP.

Experiments
To demonstrate the power of the MDP approximation, we
first solve the POMDP version of the problem using Cas-
sandra’s POMDP-solve software2, and the MDP formula-
tions using a standard implementation of value iteration, in
both cases using discounting over an infinite horizon. To
compare running times, we run both the POMDP and de-
pendent MDP solvers on the small example in Figure 1 and
a slightly larger problem with six vertices in the PRM graph
and two uncertain edges. For the graph in Figure 1, with
five vertices and one uncertain edge, the POMDP has ten
states and five actions and is solved by incremental pruning
in 299ms, while the MDP model at a discretisation of 0.1
has 55 states and is solved by value iteration in 8ms. For the
two-uncertain edge problem, the POMDP formulation has
24 states and six actions while the dependent MDP formula-
tion has 1716 states. The POMDP is solved by incremental
pruning in 63 minutes, and by a grid-based belief compres-
sion algorithm in 47 seconds while the full space MDP is
solved by value iteration in 158ms. All approaches produce
the same policies for the discretised states in the MDP. For
larger problems, the POMDP solver cannot be run, and even
value iteration soon struggles simply to hold the full MDP
in memory, so we can only apply LAO* to these problems.

To investigate the effectiveness of the clustered and in-
dependent MDP approximations, we generated five random
PRM graphs with 40 vertices and a maximum of four edges
per vertex using the standard PRM algorithm. Each graph
had five uncertain edges, and since all edges were generated
to be outside the mean positions of the obstacles, the prior
probabilities of the uncertain edges were always at least 0.5.
Figure 5 shows an example of one of these graphs. Unlike

2Available from http://www.cs.brown.edu/research/ai/pomdp/

Figure 5: Example of randomly generated PRM graph.

in many other applications, here random graphs are good
indicators of real world performance because the PRM al-
gorithm works with random graphs. Unfortunately, the ran-
domness (in this case mostly due to the random positioning
of obstacles) leads to widely varying performance, making
a statistical analysis of performance difficult.

LAO* was used to compare the dependent, clustered and
independent MDP representations on the random graphs.
Each graph had a number of edges where the blocked prob-
abilities were correlated, and the clustering was chosen so
that not all correlated edges were clustered together (oth-
erwise the clustered and dependent MDPs would certainly
have produced the same optimal policy). The first table be-
low shows the policy generation times (averaged over five
runs) on each random graph and the second shows the per-
formance of the policies (cost to reach the goal).

MDP Repn. Ex 1 Ex 2 Ex 3 Ex 4 Ex 5
Independent 127 91 209 65 342

Clustered 12867 95 9257 56 3083
Dependent - 1372 - 465 -

MDP Ex 1 Ex 2 Ex 3 Ex 4 Ex 5
Independent 1055 1475 983 1184 1502

Clustered 1019 1477 912 1184 1428
Dependent Fail 1470 Fail 1183 Fail

All experiments were run on a 3GHz Pentium IV with
500M of memory allocated to the process, and with d =
1 × 10−5 and discount factor γ = 0.999. Costs were av-
eraged over 50,000 simulated executions of the policy. As
the results show, there is considerable difference between
the graphs. On Examples 2 and 4, the execution times were
very similar for the clustered and independent MDPs and
the solution qualities were almost identical for all methods
(the difference between the independent and clustered costs
in the second table are within the error margin of the simula-
tor). This appears to be because the optimal policies didn’t

need to use the information about edge dependencies as ei-
ther the dependent edges weren’t used, or the optimal policy
visited vertices that gave information about both uncertain
edges. In the other three examples we see that there is a
significant advantage to being able to reason about the cor-
related edges, but that the reachable state space of the de-
pendent MDP is so much larger that the solver ran out of
memory before finding a solution.

The solution quality table illustrates the advantages of the
clustered model over the independent. Being able to repre-
sent knowledge of edge dependencies in the former model
enables the creation of better policies. The dependent model
is even closer to optimal, but as our results show, even with
five uncertain edges the reachable state space is too large to
solve reliably. We have been able to solve larger dependent
problems by using heuristic weighting (Pearl 1984, section
3.2). This allows us to solve all five example PRM graphs,
but at a significant cost in optimality (we can solve Example
1 in only 20ms, but the policy found has an expected cost of
1034). We are currently investigating the costs and benefits
of this approach.

The overall conclusion we draw from the experiments
is that the dependent and clustered representations are fre-
quently quite close in terms of performance to the depen-
dent MDP, and are generally significantly faster to compute.
The advantage of the clustered representation is that it can
be customised to the particular graph—if there are uncertain
edges where a significant benefit could be gained by treating
them as correlated, they can be clustered while the others
can be left independent. One area of future work is to look
at how this decision could be made automatically without
having to compute the policies.

Conclusions
We have shown that the problem of planning in PRM graphs
with uncertain obstacle locations can be thought of as a
model identification problem, and can be represented as
a POMDP. We have shown that this POMDP has a very
structured belief space and that it can be represented and
solved efficiently using an MDP approximation. To solve
the POMDP efficiently, we developed three MDP approx-
imations. The dependent MDP produces policies that only
differ from the POMDP due to the discretisation of the belief
space. Using a clustered approach retains the advantages of
a fully dependent model while being more scalable to more
complex examples. When dependencies between edges are
weak, the dependent policy doesn’t gain much advantage
since there is no benefit to representing the additional states.

At present the algorithm appears to behave in two differ-
ent ways on different PRM graphs. We are currently doing
more experiments to try to understand this better. As well
as the work on weighted heuristics mentioned above, we are
looking at other ways of scaling the approach to larger prob-
lems. One approach is to take advantage of the fact that the
agent’s belief about the uncertain edges only changes when
it visits a graph vertex that allows an observation.

The approach we have discussed here fixes the PRM
graph and then explores what can be done in that particu-
lar graph structure. Another approach we are looking at is

to use a Monte-Carlo sampling approach for the object lo-
cations to allow the agent to obtain distributions over object
positions as opposed to world models.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1993. Learn-
ing to act using real-time dynamic programming. Technical
Report UM-CS-1993-002, University of Massachusetts,
Amherst MA 01003.
Bohlin, R., and Kavraki, L. 2000. Path planning using lazy
PRM. In Proceedings of the International Conference on
Robotics and Automation, volume 1, 521–528.
Burns, B., and Brock, O. 2006. Sampling-based mo-
tion planning using uncertain knowledge. Technical report,
University of Massachusetts Amherst.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76(1–2):35–74.
Hansen, E. A., and Zilberstein, S. 2001. LAO * : A heuris-
tic search algorithm that finds solutions with loops. Artifi-
cial Intelligence 129(1-2):35–62.
Hsu, D.; Kindel, R.; Latombe, J.; and Rock, S. 2000. Ran-
domized kinodynamic motion planning with moving ob-
stacles. In Workshop on the Algorithmic Foundations of
Robotics.
Hsu, D.; Jiang, T.; Reif, J.; and Sun, Z. 2003. The
bridge test for sampling narrow passages with probabilistic
roadmap planners. In IEEE International Conference on
Robotics and Automation, 4420–4426.
Jaillet, L., and Simeon, T. 2004. A PRM-based motion
planner for dynamically changing environments environ-
ments. In IEEE International Conference on Intelligent
Robots and Systems (IROS).
Kavraki, L., and Latombe, J. 1998. Probabilistic roadmaps
for robot path planning. John Wiley, West Sussex, Eng-
land. 33–53.
Missiuro, P., and Roy, N. 2006. Adapting probabilistic
roadmaps to handle uncertain maps. In Proceedings 2006
IEEE International Conference on Robotics and Automa-
tion, 1261–1267.
Nielsen, C., and Kavraki, L. 2000. A two level fuzzy PRM
for manipulation planning. Technical Report TR2000365,
Rice University.
Nilsson, N. J. 1986. Principles of Artificial Intelligence.
Morgan Kaufmann Publishers, Inc. San Francisco, Califor-
nia.
Pearl, J. 1984. Heuristics: Intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 1025 – 1032.
Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding approxi-
mate pomdp solutions through belief compression. Journal
of Artificial Intelligence Research 23:1–40.

