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We present theoretical ground state energies and their uncertainties for p-shell
nuclei obtained from chiral effective field theory internucleon interactions as a
function of chiral order, fitted to two- and three-body data only. We apply a
Similary Renormalization Group transformation to improve the numerical
convergence of the many-body calculations, and discuss both the numerical
uncertainties arising from basis truncations and those from omitted induced
many-body forces, as well as chiral truncation uncertainties. With complete
Next-to-Next-to-Leading (N2LO) order two- and three-body interactions, we
find significant overbinding for the ground states in the upper p-shell, but using
higher-order two-body potentials, in combination with N2LO three-body forces,
our predictions agree with experiment throughout the p-shell to within our
combined estimated uncertainties. The uncertainties due to chiral order
truncation are noticeably larger than the numerical uncertainties, but they are
expected to become comparable to the numerical uncertainties at
complete N3LO.
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1 Introduction

An atomic nucleus, consisting of Z protons and N neutrons, is a self-bound quantum
many-body system with A = N + Z strongly interacting nucleons. The interactions between
these nucleons are in principle governed by QCD–but it is impractical to describe nuclei in
terms of quarks and gluons, except for the very lightest systems. Even a microscopic
description of nuclei using realistic two-body (NN), three-body (3N) and possibly higher n-
body interactions between point-like nucleons remains a formidable task, both in terms of
high-performance computing, and in terms of determining realistic nuclear interactions in
tractable terms. In order to confront such a description with experimental data, one needs
honest assessments of all uncertainties, both those arising from the numerical solution of a
many-body problem, and those arising from a necessarily approximate theory of the effective
interactions between nucleons.

Any ab initio theory of nuclei in terms of interacting nucleons requires a high-quality
NN potential providing an accurate description of NN scattering data. Highly accurate NN
potentials have been in existence for several decades now, all incorporating one-pion
exchange, and often inspired by one-boson-exchange (OBE) models, adjusted and
augmented by phenomenological terms as necessary to fit the available NN data, such as
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the Argonne [1], (CD)-Bonn [2, 3], and Nijmegen [4] potentials.
Although there exist highly accurate NN potentials in terms of
describing the NN phase-shift data, that at the same time accurately
describe the spectra of light nuclei [5], most realistic NN potentials
require more or less phenomenological 3N forces (3NFs) [6–8] for a
good description of nuclei in the p-shell and beyond. However, in
order to quantify any uncertainties associated with the choice of the
NN potential (and 3NFs), we need a more systematic method of
arriving at the potential.

Chiral Effective Field Theory (χEFT) allows us to derive nuclear
interactions in a systematic way, in terms of an expansion in the pion
mass (or the relevant nucleon momentum) over the hadronic or
breakdown scale [9–12]; and in principle, it also allows for a
quantification of the uncertainties arising from truncating this
expansion. However, this chiral expansion is by no means
unique, and different choices for e.g., the degrees of freedom to
include in the χEFT can lead to very different χEFT interactions,
with a different ordering of various types of diagrams, and indeed
different orders at which higher n-body forces have to be included.
Furthermore, different choices on e.g., how to regulate the various
expressions for loop integrals lead to different versions of the NN
potentials (and 3NFs) at any given order, even if the ordering of the
various diagrams is the same. Each of these different versions of
χEFT comes with its own parameters (Low-Energy Constants or
LECs) that need to be fitted to data (or, eventually, calculated from
e.g., lattice QCD), and with its own uncertainty quantification.

Just like there are different ways to obtain (effective) nuclear
interactions, there are different quantummany-body methods being
used for ab initio nuclear structure calculations. For up to four
nucleons, one can use the Faddeev–Yakubovsky method (the 3- and
4-body reformulation of the Schrödinger equation that permits the
incorporation of the appropriate boundary condition for 3- and 4-
body systems that are asymptotically clustered), but this has not
been extended to A = 6 or beyond. Broadly speaking, the
computational methods applicable to nuclei beyond 4He, fall into
one of three categories: Quantum Monte Carlo simulations (both
variational, VMC [13], and Green’s function, GFMC [13]), non-
relativistic lattice simulations with nucleons (Nuclear Lattice
Effective Field Theory, NLEFT [14, 15]), and Configuration
Interaction (CI) methods (No-Core Shell Model (NCSM) [16],
Coupled-Cluster (CC) [17], In-Medium Similarity
Renormalization Group (IM-SRG) [18]), which are based on an
expansion of the many-body wave-functions in terms of basis
functions (configurations). Each of these methods has their own
uncertainties: Monte Carlo simulations are typically dominated by
statistical uncertainties, though there is also a dependence on the
variational wave function; lattice simulations have both statistical
and systematic (lattice size and lattice spacing) uncertainties; and CI
methods are generally dominated by systematic uncertainties due to
the truncation of the many-body basis, though one can make use of
statistical sampling of the many-body basis [19]. Because each of
these methods have different sources of uncertainties, and they are
not always easy to identify and quantify, it is very valuable to use two
or more of these many-body methods for the same nucleus, using
the same interactions.

In this paper we use the NCSM to perform ab initio nuclear
structure calculations for the ground state energies of nearly all
stable p-shell nuclei (excluding mirror nuclei) from A = 4 to A = 16

using the χEFT interactions from Ref. [20]. We perform a systematic
set of order-by-order calculations in the chiral expansion to
determine the uncertainties associated with the truncation of the
chiral expansion; more details about the χEFT and how we estimate
the truncation uncertainty can be found in Section 2. In order to
assess the numerical uncertainties in our NCSM calculations, we
make a detailed comparison with Faddeev–Yakubovsky calculations
for 3H and 4He using the same interactions; this is described in
Section 3, together with details about the NCSM. Our results for the
binding energies of p-shell nuclei are presented in Section 4. Finally,
we give some concluding remarks in Section 5.

2 Nuclear interactions from chiral
effective field theory

In recent years two different formulations of χEFT have emerged
that are being used in ab initio nuclear structure calculations. The
most commonly used χEFT is based on only pions and nucleon
degrees of freedom [10, 11], for which the Leading Order (LO) and
Next-to-Leading Order (NLO) terms consists of just two-body
interactions; three-body interactions first appear at Next-to-Next-
to-Leading order (N2LO). Alternatively, one can include Δ degrees
of freedom into the EFT, in which case three-body interactions
appear already at NLO [21, 22]; see Refs. [23, 24] for nuclear
structure calculations with these NN plus 3N interactions. The
reordering of contributions possibly speeds up the convergence
of the chiral expansion.

Here we use the formulation of χEFT based on only pion and
nucleon degrees of freedom since high order potentials have already
been developed for this approach. This implies that we work with the
conventional power-counting scheme, and with only NN potentials
at LO and NLO, while 3N interactions arise at N2LO. Specifically,
within the Low-Energy Nuclear Physics International Collaboration
(LENPIC) we use the semilocal momentum-space (SMS) regulated
NN potentials from Ref. [20], which have been developed
completely up through N4LO; and the most accurate LENPIC-
SMS NN potential, referred to as N4LO+, including some
contributions from the 6th order in the chiral expansion. The
N4LO+ potential gives a near-perfect description of the mutually
compatible neutron-proton and proton-proton scattering data
below E lab = 300 MeV with a χ2datum � 1.01. At the moment, the
accompanying higher n-body forces have not yet been developed to
the same chiral order.

Right now, consistent N2LO 3NFs exist, implying that the
regularization of the 3N interactions is consistent with that of the
NN potential, all relevant symmetries are respected, and the same
LEC values are used in the NN and 3N interactions. The strength of
the 2π exchange in the N2LO 3NFs (c1, c3, and c4) has been
determined from πN scattering, see Table 1 of Ref. [20]. (Note
that, for the 3NF, these values need to be shifted as given in Eq. (2.8)
of Ref. [25]). We have not taken uncertainties of these ci’s into
account; this should be part of the N3LO uncertainty estimate given
below. These 3NFs have already been used for nucleon-deuteron
scattering [26], as well as select light nuclei [27, 28]. Consistent
N3LO 3NFs are being developed and tested, and are expected to be
available for use in many-body calculations soon; similarly,
consistent electroweak operators are also under development.
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The 3NFs at N2LO depend on two LECs, generally referred to as
cD and cE; these two LECs have been determined in Ref. [28] by
fitting the 3H binding energy (using the Faddeev approach), as well
as the experimental proton-deuteron scattering data [29] for the
differential cross-section minimum at the proton beam energy of E =
70 MeV. Note that for the determination of cD and cE it is important
to identify observables that a) provide sufficiently independent
constraints, i.e., are sensitive to the 3NFs and are sufficiently
uncorrelated; b) can be predicted accurately at N2LO; and c) are
measured experimentally with sufficiently high accuracy. This can
be achieved by e.g., incorporating properties of 4He (and other
nuclei), in addition to A = 3 observables, in the fitting of cD and cE
[30]. However, here we prefer to only use A = 3 data for the
determination of cD and cE in order to obtain parameter-free
predictions for A > 3, and to avoid interference of 4N (and
higher-body) interactions at N3LO and higher. In Ref. [31], it has
been observed that the triton binding energy and the proton-
deuteron scattering cross section minimum at 70 MeV are
fulfilling these requirements.

Note that we keep all LECs in the NN potentials fixed at their
values determined from NN scattering; and we do not propagate
any uncertainties in these LECs through the many-body
calculations. Similarly, we have not explicitly propagated
uncertainties in the LECs cD and cE for the 3NFs through the
many-body calculations. In Ref. [31] we did vary cD and cE while
keeping the 3H binding energy fixed with the LENPIC Semilocal
Coordinate Space interaction at N2LO, and the resulting
variation in the 4He and 12C binding energies, while not
negligible and in opposite directions, stayed within the chiral
truncation uncertainty estimate for a variation of cD between
6 and 8, the preferred range based on Nd scattering data for that
interaction. Furthermore, in Ref. [32] it was shown that the
uncertainties in many-body observables of 4He and 16O due to
propagation of the uncertainties in determining the LECs at
N2LO are much smaller than the chiral truncation errors in
those many-body observables at N2LO. We therefore assume
here that any variation of the LECs of the NN and 3N interaction
is an effect that is of higher order than N2LO and thus those
uncertainties are included in the uncertainty due to missing
higher chiral orders.

2.1 Chiral truncation uncertainty estimates

Assuming that the chiral expansion of the nuclear interactions
translates into a similar expansion for the physical observables, one
expects that an observable X follows a similar expansion pattern.
Consider therefore an observable X, and write it as

X � X 0( ) + ΔX 2( ) + ΔX 3( ) + . . . , (1)
whereX(0) is the LO term,ΔX(2) =X(2) −X(0) andΔX(3) =X(3) −X(2) are
the NLO and N2LO correction terms, respectively, and the dots
represent higher-order corrections. If this observable indeed follows
the same expansion pattern as the nuclear interaction itself, then the
correction terms ΔX(i) behave like Qi for increasing i, where Q =
max(p, Mπ)/ΛB is the chiral expansion parameter (typically the
maximum of the relevant momentum p and the pion mass Mπ over

the breakdown scale ΛB). Note that there is no term linear in Q in
this expansion: the first correction, at NLO, is quadratic in the
expansion parameter Q, at least for observables governed solely by
the strong interaction. For electroweak observables, the power-
counting is different.

For the purpose of a Bayesian analysis, it is more convenient to
rewrite this in terms of dimensionless expansion coefficient ci, with
the scale set by an overall reference value Xref. Thus we can rewrite
the expansion for X as

X � Xref c0 + c2Q
2 + c3Q

3 + . . .( ). (2)
Now we can use Bayesian analysis on the coefficients ci to estimate
the chiral truncation uncertainties. Here we follow the Bayesian
model of Ref. [33] for pointwise truncation errors with
hyperparameters ]0 = 1.5 and τ0 = 1.5 [28]. We apply this to the
ground state energy of the p-shell nuclei, with the experimental value
as our reference value Xref. Furthermore, we use an effective pion
mass of M eff

π ≈ 200 MeV and a breakdown scale of ΛB ≈ 650 MeV
[27, 28], and therefore a dimensionless expansion parameter Q ≈
0.31. Note that in Ref. [34] it was observed that the average
momentum of the nucleons inside a nucleus increases with A,
and one might therefore have to increase Q with A as well; but
up to 16O this average momentum remains below 200 MeV so we use
the same value for Q throughout the p-shell. Nevertheless, a
Bayesian analysis of correlated uncertainties for ground states
and excited states of a subset of p-shell nuclei does suggest a
slightly larger value of Q for the upper p-shell [25].

Finally, although we use the LENPIC-SMS NN potentials from
LO up to N4LO+, we only have the corresponding 3NFs at N2LO.We
therefore perform our chiral truncation uncertainty analysis for the
N2LO through N4LO+ NN potentials, all in combination with the
N2LO 3NFs, as if they were all N2LO interactions; that is, we include
only the coefficients c0, c2, and c3 in Eq. 2 (and again, there is no term
linear in Q).

3 No-core shell model

3.1 Numerical method

In the No-Core Shell Model (NCSM) [16], the wavefunction Ψ
of a nucleus consisting of Z protons andN neutrons is expanded in a
finite A = Z + N-body basis of Slater determinants Φk of single-
particle wavefunctions ϕnljm( �r)

Ψ �r1, . . . , �rA( ) � ∑ akΦk
�r1, . . . , �rA( ). (3)

With such an expansion, the many-body Schrödinger equation

Ĥ Ψ �r1, . . . , �rA( ) � E Ψ �r1, . . . , �rA( ) (4)
becomes an eigenvalue problem

Hik ak � E ai, (5)
for the coefficients ak of the expansion in Eq. 3. The matrixHik consists
of matrix elementsΦiĤΦk (where integration over all spatial degrees of
freedom is understood) of the many-body hamiltonian

Ĥ � T̂ rel + V̂NN + V̂3N +/ (6)
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consisting of the relative kinetic-energy operator, a two-body
potential, and, in general three-body and higher n-body
interaction terms. If the interaction is limited to n-body terms,
the matrix Hik for a nucleus with A > n becomes a sparse matrix; in
practice, the NCSM is generally applied with up to three-body
interactions, and the corresponding Hamiltonian matrices are
extremely sparse for A ≥ 6. For any finite basis expansion, the
obtained eigenvalue E gives a strict upper bound for the energy in the
complete (though infinitely large) basis, at least for the lowest states
of a given Z, N, and spin-parity quantum numbers JP; and the
corresponding eigenvector �a gives an approximation to the A-body
wavefunction Ψ( �r1, . . . , �rA). As one increases the basis size, the
obtained eigenvalues E of the matrix Hik approach the exact
eigenvalues for a given Hamiltonian Ĥ.

In the conventional NCSM one uses a harmonic oscillator (HO)
basis for the single-particle wavefunctions ϕnljm( �r), characterised by
its scale parameter Zω. One particular advantage of a HO basis is
that one can treat the center-of-mass motion exactly: the
Talmi–Moshinksy brackets [35, 36] can be used to convert
between HO matrix elements in single-particle coordinates and
relative plus center-of-mass coordinates; furthermore, with a
many-body truncation on the total number of oscillator quanta
in themany-body basis, the obtained wavefunctions factorize exactly
into a center-of-mass wavefunction and a relative wavefunction [37,
38]. The single-particle wavefunctions ϕnljm( �r) are labelled by their
radial quantum number n, orbital motion quantum number l, total
single-particle spin j � l ± 1

2, and magnetic projection m which
satisfies −j ≤ m ≤ j. In a HO basis, the combination (2n + l)
gives the number of HO quanta for each state; thus, in a HO
basis with a truncation on ∑i(2ni + li) over all A nucleons, the
factorization of the center-of-mass wavefunction is guaranteed. We
add a Lagrange multiplier acting on the center-of-mass coordinates
of the many-body system to the Hamiltonian Ĥ to remove center-of-
mass excited states from the low-lying spectrum [37, 38]; thus all
low-lying states will have a 0s HO center-of-mass wavefunction.
Note that this does not alter the eigenvalues nor the eigenvectors for
these states, it merely separates the center-of-mass excited states
from the states with the lowest center-of-mass motion.

All NCSM calculations presented here were performed using the
code Many-Fermion Dynamics–nuclear physics [39–41]. It solves
the eigenvalue problem Eq. (5) for the lowest eigenvalues, starting
from two- and three-body matrix elements in a HO basis. MFDn is a
platform-independent Fortran 90 code using a hybrid
MPI+OpenMP programming model. The actual calculations have
been performed on Theta at the Argonne Leadership Computing
Facility (ALCF) and Cori at the National Energy Research Scientific
Computing center (NERSC). For each nucleus and interaction, we
performed a series of calculations, using a range of different values of
Zω and the truncation parameter Nmax, which is defined as the
number of HO quanta above the minimal number of HO quanta in
the many-body basis for that nucleus. That is, an Nmax = 0
calculation corresponds to a calculation in the lowest oscillator
configuration. Here we are only interested in the normal or
natural parity states (the parity of the Nmax = 0 space), and we
increase Nmax in steps of 2 starting from Nmax = 0 up to at least
Nmax = 8. Some of the largest calculations for this study were for 14N
and 15N at Nmax = 8, both with dimensions of over one billion, and
about 76 × 1012 nonzero matrix elements, i.e., less than 1 in

10,000 matrix elements is nonzero with three-body interactions
for these largest computations.

Of course, for two- and three-body systems it is more
efficient and straightforward to work with wavefunctions in
relative coordinates, rather than in single-particle
wavefunctions. However, beyond four nucleons, the necessary
anti-symmetrization becomes increasingly cumbersome in
relative coordinates, whereas the NCSM in single-particle
coordinates is straightforward to implement for an arbitrarily
large number of nucleons; however, the size of the matrix does
grow dramatically with the number of nucleons. Nevertheless, in
recent years the NCSM has been implemented in Jacobi
coordinates (J-NCSM) [42] and applied to (hyper)nuclei with
up to eight (hyper)nucleons [43]. The codes MFDn and J-NCSM
have been benchmarked against each other, and generally agree
to within 10–20 keV for A = 3 and 4, and to within about 30 keV
for A = 6, i.e., to within 0.1% of the obtained eigenvalues. The
differences of up to about 0.1% have been attributed to
differences in the implementations of transforming the three-
body forces from their momentum-space expressions to HO
matrix elements, including differences in the implementations
of the Similarity Renormalization Group (SRG) transformations
discussed next.

3.2 Convergence and similarity
renormalization group evolution

In the left panel of Figure 1 we show the obtained ground state
energy of 4He at NLO and N2LO for two different values of the
regulator Λ as a function of Nmax at Zω = 24 MeV; as illustration of
the effect of the 3NFs, we also include results using only the NN
potential at N2LO, without the 3NFs (while at NLO, there are no
3NFs, so there is only the NN potential). Even at Nmax = 16, the
NCSM results are still several MeV above the corresponding
Yakubovsky results, and far from being converged with Nmax;
and for the upper half of the p-shell nuclei, for A ≥ 10 we are
restricted to Nmax = 8 in the presence of 3NFs due to computational
limitations. Clearly, we have to improve the numerical convergence
while keeping the computational needs under control in order to
obtain meaningful results for the ground state energies and other
observables. There are several methods to do so, which generally fall
into four categories (and of course one can also use a combination of
these techniques!)

• modify the underlying single-particle wavefunctions to
improve the numerical convergence, e.g., start with a
Hartree–Fock basis, and/or use natural orbitals [44–46];

• modify the truncation scheme, e.g., select only the most
important basis states at each step in Nmax (importance-
truncated NCSM) [47], or use symmetries to reduce the
number of basis states as Nmax increases (symmetry-
adapted NCSM) [48–50];

• reduce the 3N interaction to an effective NN interaction by
normal-ordering the 3N interaction, which typically gains one
step in Nmax in terms of computational needs [51, 52];

• apply a unitary transformation on the Hamiltonian to improve
the convergence at (relatively) small values of Nmax [53, 54].
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Each of these methods has its advantages and drawbacks; and
each of them is likely to obfuscate any uncertainty quantification of
the numerical results; furthermore, with the first two methods listed
above one might lose the exact factorization of the center-of-mass
motion. Here we choose to improve the numerical convergence in
finite bases by applying a suitable SRG transformation on the
Hamiltonian.

The SRG approach [54–57] provides a robust framework for
consistently evolving (softening) the Hamiltonian, including three-
body terms [58–61], as well as operators for other observables, by
applying a unitary transformation on the operator(s) of interest.
This unitary transformation is formulated in terms of a flow
equation

d

dα
Ĥα � ηα, Ĥα[ ], (7)

with a continuous flow parameter α. The physics of the SRG
evolution is governed by the anti-hermitian generator ηα. A
specific form widely used in nuclear physics [54] is given by

ηα � m2
N T̂rel, Ĥα[ ], (8)

where mN is the (average) nucleon mass and T̂rel is the relative
kinetic-energy operator. This generator drives the Hamiltonian
towards a diagonal form in a basis of eigenstates of the intrinsic
kinetic energy, i.e., towards a diagonal in momentum space. The
initial (or ‘bare’) Hamiltonian provides the initial condition at α = 0
for this flow equation; at NLO, this is just an NN-potential, but at
N2LO (and higher orders) it also includes the explicit 3NFs. The
width of the diagonal of the potential matrix elements in momentum
space is proportional to λ SRG = 1/α4 [62]. For a typical value of α =
0.04 fm4, λ SRG ≈ 2.24 fm−1, which can be considered as an effective
cutoff in momentum space; lowering this cutoff improves the
convergence of NCSM calculations.

Along with a decoupling of low-momentum and high-
momentum components, this SRG induces many-body operators
beyond the rank of the initial Hamiltonian. In principle, all induced
terms up to the A-body level should be retained to ensure that the
transformation is a unitary transformation, such that the spectrum
of the Hamiltonian is independent of the flow parameter α. In
practice however, one has to truncate these many-body forces
induced by the SRG evolution; here we follow the common
practice of truncating the SRG evolution at the 3N level, omitting
induced four-nucleon (and higher) induced interactions. Of course,
this violates unitarity, and therefore introduces a fictitious
dependence on the SRG parameter α for A ≥ 4 which we have to
monitor, and include in our uncertainty budget. Unfortunately, it is
as of yet unclear how to identify an expansion parameter that allows
for an estimate of uncertainties due to missing higher-body induced
interactions in A ≥ 4 nuclei.

The flow equation for the three-nucleon system is solved
numerically using a HO basis in Jacobi-coordinates [60] at a
fixed HO basis parameter of Zω = 36 MeV. The intermediate
sums in this three-body Jacobi basis are truncated at Nmax = 40
for channels with J < 9/2, Nmax = 38 for J = 9/2, and Nmax = 36 for all
J > 9/2. (Note that the flow equation at the two-nucleon level is
solved numerically to a much higher numerical accuracy.) The SRG
evolution and transformations first from Zω = 36 MeV to the desired

Zω value in the range from 14 to 32 MeV, and subsequently from
Jacobi coordinates to single-particle coordinates, were all performed
on a single multicore CPU node using an efficient OpenMP
parallelized code.

In the right panel of Figure 1 we show the ground state energy
of 4He for the same initial interactions, and the same Zω = 24 MeV,
as in the left panel, but after first performing an SRG evolution of
the Hamiltonian to α = 0.04 fm4, and including induced 3N
interactions, but omitting any induced 4N interactions.
Comparing these two panels it is immediately evident that the
SRG evolution has indeed dramatically improved the convergence:
after the SRG evolution to α = 0.04 fm4, the obtained ground state
energies at Nmax = 4 are already closer to the Yakubovsky results
than the ground states energies at Nmax = 16 without any SRG
evolution, and at Nmax = 14 they appear to be almost converged
and in agreement with the Yakubovsky results to within a fraction
of an MeV. Empirically, α in the range of 0.04 ≤ α ≤ 0.08 fm4

appears to be a good compromise between the convergence of the
NCSM calculations and minimizing the contributions of the SRG-
induced four- and higher-body forces.

3.3 Extrapolating to the complete basis

Although the right-hand panel of Figure 1 looks converged to
well within 100 keV, it is not completely converged; furthermore, in
the upper half of the p-shell we are limited to at most Nmax = 8, at
which point the results are clearly not yet converged. However, the
approach to convergence appears to be smooth, and if we plot the
difference between our results at successive Nmax values, at fixed Zω

values near the variational minimum in the largest basis, see
Figure 2, it is evident that these differences decrease almost
exponentially with increasing Nmax. Inspired by this behavior, we
therefore use exponential extrapolation in Nmax at fixed Zω,

EZω Nmax( )≈EZω
∞ + a e −bNmax( ) (9)

based on three consecutive values of Nmax at or slightly above the
variational minimum in Zω to extract binding energies in the
complete (but infinitely large) basis. Indeed, such an empirical
exponential has been widely used for a range of different
interactions [63–65], and appears to be reasonably reliable and
accurate, at least for true bound states. Furthermore, an
exponential approach to convergence for the binding energy is
also suggested by various analytic investigations into the
asymptotic behavior [66–69]. Insights into the approach to
convergence allows one to improve the extrapolation [70], but
these analytic expressions generally depend on the underlying
structure of the state. Here, we restrict ourselves to the simple
ansatz Eq. (9) since it works well for all ground state energies
considered, without the need to adapt the extrapolation to the
specific structure of each nucleus.

Following Refs. [25, 28, 34], we take as our best estimate for E∞
in the complete basis the value of EZω

∞ near the variational minimum
in Zω for which |EZω

∞ − EZω(Nmax)| is minimal. Of course, this
extrapolation is not exact, and will depend (slightly) on the Zω

value; furthermore, we have to include an extrapolation uncertainty
in our uncertainty budget. Again, we resort to an empirical estimate
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FIGURE 1
Convergence of NCSM calculations for 4He without (A) and with (B) SRG evolution of the interactions. Induced 3NFs are included in the calculations
in the right-hand panel; for comparison results obtained with Yakubovsky calculations in momentum space are shown for the same interactions as well.

TABLE 1 SRG dependence of ground state energies in MeV for A = 3 and 4, compared to Faddeev–Yakubovsky calculations [25]. Explicit N2LO 3NFs are included in
the N2LO through N4LO+ calculations. Quoted uncertainties are the estimated NCSM extrapolation uncertainties only.

NLO N2LO N3LO N4LO N4LO+

3H Λ = 450 MeV

Faddeev −8.515(.001) −8.483(.001) −8.483(.001) −8.483(.001) −8.483(.001)

α = 0.04 fm4 −8.54(.04) −8.51(.06) −8.50(.05) −8.51(.06) −8.50(.05)

α = 0.08 fm4 −8.517(.008) −8.489(.017) −8.483(.010) −8.484(.010) −8.488(.016)

3H Λ = 500 MeV

Faddeev −8.325(.001) −8.482(.001) −8.483(.001) −8.483(.001) −8.484(.001)

α = 0.04 fm4 −8.39(.10) −8.52(.08) −8.51(.06) −8.51(.06) −8.51(.06)

α = 0.08 fm4 −8.327(.012) −8.489(.019) −8.485(.013) −8.485(.011) −8.491(.020)

4He Λ = 450 MeV

Yakubovsky −29.36(.01) −28.61(.01) −28.35(.01) −28.29(.01) −28.31(.01)

α = 0.04 fm4 −29.339(.003) −28.447(.004) −28.284(.006) −28.190(.004) −28.195(.004)

α = 0.08 fm4 −29.365(.001) −28.527(.001) −28.376(.002) −28.285(.002) −28.289(.002)

|E(α = 0.04) − E(0)| 0.02 0.16 0.07 0.10 0.12

|E(α = 0.08) − E(0)| 0.01 0.08 0.03 0.01 0.02

|E(0.04) − E(0.08)| 0.01 0.08 0.04 0.09 0.10

4He Λ = 500 MeV

Yakubovsky −28.15(.01) −28.71(.01) −28.56(.01) −28.48(.01) −28.52(.01)

α = 0.04 fm4 −28.087(.003) −28.585(.005) −28.365(.003) −28.236(.003) −28.227(.003)

α = 0.08 fm4 −28.122(.001) −28.631(.003) −28.447(.002) −28.312(.002) −28.301(.002)

|E(α = 0.04) − E(0)| 0.06 0.13 0.20 0.24 0.29

|E(α = 0.08) − E(0)| 0.03 0.08 0.11 0.17 0.22

|E(0.04) − E(0.08)| 0.03 0.05 0.08 0.07 0.07
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of this uncertainty based on the variation with Zω andNmax, and our
estimate of the corresponding extrapolation uncertainty is the
maximum of

• the difference in EZω
∞ for two successive extrapolations using

data for (Nmax − 6, Nmax − 4, Nmax − 2) and (Nmax − 4, Nmax −
2, Nmax) respectively;

• half the variation in EZω
∞ over a 8 MeV interval in Zω around

the variational minimum;
• 20% of |EZω

∞ − EZω(Nmax)|.

Note that this empirical uncertainty estimate is a conservative
estimate, based on calculations with several different interactions
[65, 71], and has been shown to give decreasing uncertainties with
increasing Nmax, with the higher-Nmax results generally within the
uncertainty estimates of the lower-Nmax results. However, these
uncertainty estimates cannot be interpreted statistically; for that
one should use e.g., the Bayesian analysis of [72].

3.4 Combined numerical uncertainties

In Table 1 we give our extrapolated NCSM ground state energies
for 3H and 4He, with our extrapolation uncertainty estimates,
together with results obtained in momentum space with the
Faddeev–Yakubovsky equations [25]. For 3H the NCSM and
Faddeev results agree very well, comfortably within the estimated
extrapolation uncertainties of the NCSM calculations; and the
results obtained with SRG α = 0.08 fm4 are more precise than
those obtained with α = 0.04 fm4, judging by their smaller
uncertainties. For the ground state energy of 4He we do see
differences between the NCSM results and the Yakubovsky
calculations, beyond the 10 keV uncertainty in the Yakubovsky
calculations and the estimated NCSM uncertainties. These
differences can be attributed to the omitted induced 4NFs. They
are generally larger with the Λ = 500 MeV regulator than with the

Λ = 450 MeV regulator, as one might expect, given that the Λ =
500 MeV interactions are converging slower than the Λ = 450 MeV
interactions (see Figure 1); and it may be counter-intuitive that the
effects of omitted 4NFs are larger for α = 0.04 fm4 than for α =
0.08 fm4, but this accidental, as can be seen from Figure 3. This figure
also shows good agreement between the Yakubovsky and NCSM
calculations.

For A ≥ 6 we do not have any calculations without SRG
evolution for comparisons–or rather, NCSM calculations for
these interactions without SRG evolution are so far from
convergence for A ≥ 6 that they are not very useful for
comparison. However, we can gain insight in effects of omitted
induced many-body forces by comparing results obtained with
different values for the SRG parameter α, see Tables 2, 3. Table 2
shows a differences of about 0.2 MeV in the binding energies due to
the two different SRG parameters α, both for 6He and 6Li, and almost
independent of the chiral order of the NN potential; though at NLO
the difference is somewhat smaller, probably due to the lack of an
explicit 3N interaction at NLO. However, this difference of about
0.2 MeV is the same order of magnitude as our estimated
extrapolation uncertainties at α = 0.04 fm4, which prevents one
from making firm conclusions.

Note that the extrapolation uncertainties for 6He and 6Li at α =
0.08 fm4 are a factor of two to three smaller than those obtained with
α = 0.04 fm 4, clearly indicating the improved convergence as the
interaction is further evolved with SRG. The exception are the results
for A = 6 at NLO; this is most likely caused by the fact that the
obtained binding energies at NLO are actually above threshold for
6He, and right around threshold for 6Li, as was already observed in
Ref. [28]. Indeed, for states above threshold, the simple exponential
extrapolation may not be very reliable since neglected continuum
effects could be significant.

In Table 3 we show the ground state energies for selected stable
nuclei with 6 < A < 16 using the N2LO interaction (including
3NFs), SRG evolved to α = 0.04 fm4 and α = 0.08 fm4. As is the
case for A = 6, the convergence improves with the SRG evolution:

FIGURE 2
Convergence of NCSM calculations for 4He (A) and 6Li (B): Difference in obtained ground energies for successive Nmax values for different SRG
evolution parameters α.
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the extrapolation uncertainty estimates are a factor of 3–8 smaller
at α = 0.08 fm4 than at α = 0.04 fm4. This effect of improved
convergence becomes more pronounced as A increases, and is
consistent with what we saw for A = 6 in Table 2. Furthermore, at

α = 0.04 fm4, starting from A = 10, the Λ = 450 MeV interaction
converges noticeably better than the Λ = 500 MeV interaction; in
qualitative agreement with the picture for 4He (see Figure 2);
however, at α = 0.08 fm4 this difference has washed away, and

FIGURE 3
SRG depenence of the ground state energy of 4He, with the N4LO+ NN potentials plus the N2LO 3NFs and Λ = 450 MeV.

TABLE 2 SRG dependence for A = 6 ground state energies in MeV for SRG parameter α = 0.04 fm4 and α = 0.08 fm4, together with their difference. Quoted
uncertainties are the estimated NCSM extrapolation uncertainties only.

NLO N2LO N3LO N4LO N4LO+

6He Λ = 450 MeV

α = 0.04 fm4 −28.73(.16) −28.84(.17) −28.16(.16) −28.06(.16) −28.11(.16)

α = 0.08 fm4 −28.86(.14) −29.05(.06) −28.39(.07) −28.28(.07) −28.33(.07)

Δ 0.13 0.21 0.23 0.22 0.22

6He Λ = 500 MeV

α = 0.04 fm4 −27.27(.15) −29.08(.17) −28.35(.17) −28.19(.17) −28.23(.16)

α = 0.08 fm4 −27.39(.10) −29.21(.06) −28.54(.06) −28.37(.06) −28.41(.07)

Δ 0.12 0.13 0.23 0.22 0.22

6Li Λ = 450 MeV

α = 0.04 fm4 −31.79(.11) −31.85(.15) −31.18(.14) −31.07(.14) −31.10(.14)

α = 0.08 fm4 −31.93(.09) −32.04(.05) −31.41(.06) −31.28(.06) −31.32(.06)

Δ 0.14 0.19 0.23 0.21 0.22

6Li Λ = 500 MeV

α = 0.04 fm4 −30.33(.12) −32.17(.16) −31.42(.15) −31.24(.15) −31.26(.15)

α = 0.08 fm4 −30.45(.06) −32.29(.05) −31.60(.06) −31.41(.05) −31.43(.05)

Δ 0.12 0.12 0.18 0.17 0.17

Frontiers in Physics frontiersin.org08

Maris et al. 10.3389/fphy.2023.1098262

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1098262


both regulators give a similar level of convergence for the ground
state energies.

Somewhat surprisingly, the difference in ground state energies
between the two SRG values, α = 0.04 fm4 and α = 0.08 fm4, remains
almost constant, at around 0.5 MeV, from A = 10 to A = 15, at least
for the nuclei considered in Table 3, with only a slight tendency to
increase with A, and with similar tendencies for both regulator
values. Furthermore, this difference is similar to the estimated
NCSM uncertainty at α = 0.08 fm4 (which also increases slowly
with A), but a factor of 3–8 smaller than the NCSM uncertainty at
α = 0.04 fm4, which makes it hard to draw a firm conclusion.
Nevertheless, based on these observations, we conclude that, for
the calculations described here, it is realistic to include an SRG
uncertainty that is equal to the NCSM extrapolation uncertainty
estimate for stable A = 10 to A = 16 p-shell nuclei.

On the other hand, for A = 6 and 8Li the difference in ground
state energies between the two SRG values is noticeably larger than
the NCSM extrapolation uncertainty for α = 0.08 fm4: for 8Li it is a
factor of two larger; and for A = 6 it is approximately a factor of three
larger. Note that this coincides with a larger Nmax value used for the
lower half of the p-shell: for A = 6 and 7 we can perform our
calculations up toNmax = 12 (and are in fact limited by the size of the
input files with three-body HO matrix elements) and the
calculations for A = 8 and 9 extend up to Nmax = 10, whereas for
A ≥ 10 we are limited to Nmax = 8. Of course this upper limit in Nmax

also determines the level of numerical convergence that can be
achieved, and hence the order of magnitude of the NCSM
extrapolation uncertainty. Again, based on these observations we
estimate the SRG uncertainty in the binding energy to be about
0.2 MeV for A = 6 and 7, and about 0.3 MeV for A = 8 and 9.

4 Ground state energies of p-shell
nuclei

In Tables 4–8 we present our results for the ground state energies
of most stable p-shell nuclei, excluding mirror nuclei. We also
include 8Be, despite it being above the 2α threshold. All
calculations were done in the NCSM approach, extrapolated to
the (infinitely-large) complete basis, using NN (and 3N) potentials,
SRG evolved to α = 0.08 fm4, including induced 3N interactions, but

omitting higher-body induced interactions. The first set of
uncertainties in these tables is our estimate of the combined
numerical uncertainties; the second is our estimate of the chiral
truncation uncertainty; both as described in the previous section.
The numerical uncertainty is estimated strictly based on the
numerical convergence pattern and the SRG dependence, and
cannot be interpreted statistically. The chiral truncation
uncertainty is based on a Bayesian model. We give here the 68%
degree of belief (DoB) values.

The NCSM calculations for the nuclei presented in Table 4 were
performed up to Nmax = 14 for 4He, and up to Nmax = 12 for A = 6
and 7, which is generally sufficient to reach convergence for the
ground state energies to within 0.1% (or even better) for a given set
of input HO two- and three-body matrix elements, thanks to the
interaction being SRG evolved to α = 0.08 fm4. Therefore, the
numerical uncertainties (the first set of quoted uncertainties in
Table 4) are dominated by the uncertainties in the SRG
evolution, which is mostly coming from the omission of induced
4-body forces (as well as higher-body forces for A > 4), as well as
from the numerical implementation of the SRG evolution and
transformations from momentum space expressions to HO
matrix elements.

The exceptions are the A = 6 and 7 ground state energies at LO,
because it turns out that at LO, these states are not bound, as
indicated by the * in the tables: they are all above threshold for
decays into α plus two neutrons, or plus a deuteron or a triton,
respectively. Hence the numerical convergence of the NCSM
calculations is poor (at best it would converge to a quasi-bound
state), and neither the extrapolation to the complete basis (nor its
uncertainty estimate) is likely to be accurate, which is why the
extrapolation uncertainties at LO are noticeably higher than at
higher chiral orders. Since we only include the LO results to
improve our estimate of the chiral truncation uncertainties, an
approximate bound state, or rather, resonance energy is sufficient
for our purpose. Similarly, 6He appears to be unbound at NLO; but
again, for estimating the chiral uncertainty at N2LO that is not a real
problem.

The estimated chiral truncation uncertainties are significantly
larger than any of the numerical uncertainty estimates. At NLO,
these uncertainties are too large to draw any meaningful
conclusions, but at N2LO they are, as expected, more than a

TABLE 3 SRG dependence for select 6 < A < 16 ground state energies inMeV at N2LO for SRG parameter α = 0.04 fm4 and α = 0.08 fm4, together with their difference.
Quoted uncertainties are the estimated NCSM extrapolation uncertainties only.

8Li 10Be 11B 12C 14C 15N

α Λ = 450 MeV

0.04 −40.9(0.4) −66.1(1.2) −79.3(1.1) −98.3(1.8) −119.9(1.9) −134.4(2.4)

0.08 −41.23(0.16) −66.5(0.5) −79.8(0.4) −98.7(0.4) −120.1(0.4) −135.1(0.5)

Δ 0.3 0.4 0.5 0.4 0.2 0.7

α Λ = 500 MeV

0.04 −41.6(0.4) −67.0(1.5) −82.1(2.0) −101.8(2.8) −123.3(2.5) −138.3(4.2)

0.08 −41.85(0.15) −67.5(0.4) −82.3(0.4) −101.9(0.4) −123.9(0.4) −138.9(0.5)

Δ 0.3 0.5 0.2 0.1 0.6 0.6
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factor of three smaller. Remember that we use N2LO 3NFs in
combination with the higher-order NN potentials, and we
therefore apply the N2LO power-counting rules for estimating

the chiral uncertainties for these higher-order NN potentials. It
should therefore not be surprising that the obtained chiral
uncertainty estimates are the same at these higher order as those

TABLE 4 Ground state energies in MeV of 4He, 6He, 6Li, and 7Li, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical uncertainties (first set of uncertainties) and chiral truncation uncertainty estimates (second set of
uncertainties, not available for LO) are given. Entries with an * indicate energies above threshold, indicating a resonance, rather than a bound state.

VNN 4He(0+) 6He(0+) 6Li(1+) 7Li(12−)
Λ = 450 MeV

LO −49.73(0.20)(−) −46.7*(0.4)(−) −50.4*(0.4)(−) −61.35*(0.25)(−)

NLO −29.37(0.20)(4.3) −28.86*(0.24)(3.9) −31.93(0.22)(4.0) −38.72(0.22)(4.9)

N2LO −28.53(0.20)(1.2) −29.04(0.21)(1.0) −32.04(0.21)(1.1) −39.39(0.21)(1.3)

N3LO −28.38(0.20)(1.2) −28.39(0.21)(1.0) −31.41(0.21)(1.1) −38.43(0.21)(1.3)

N4LO −28.29(0.20)(1.2) −28.28*(0.21)(1.0) −31.28(0.21)(1.1) −38.25(0.21)(1.3)

N4LO+ −28.29(0.20)(1.2) −28.33(0.21)(1.0) −31.32(0.21)(1.1) −38.28(0.21)(1.3)

Λ = 500 MeV

LO −51.17(0.20)(−) −47.6*(0.5)(−) −51.1*(0.4)(−) −62.1*(0.3)(−)

NLO −28.12(0.20)(4.9) −27.39*(0.21)(4.3) −31.45(0.21)(4.2) −36.82(0.23)(5.4)

N2LO −28.63(0.20)(1.3) −29.21(0.21)(1.2) −32.29(0.20)(1.1) −39.73(0.21)(1.5)

N3LO −28.45(0.20)(1.3) −28.54(0.21)(1.2) −31.61(0.21)(1.1) −38.72(0.21)(1.5)

N4LO −28.31(0.20)(1.3) −28.37(0.21)(1.2) −31.41(0.21)(1.1) −38.42(0.21)(1.5)

N4LO+ −28.30(0.20)(1.3) −28.41(0.21)(1.2) −31.43(0.21)(1.1) −38.43(0.21)(1.5)

Expt. −28.30 −29.27 −31.99 −39.24

TABLE 5 Ground state energies in MeV of A = 8 and 9Li, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV (top) and
Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with energies
above threshold.

VNN 8He(0+) 8Li(2+) 8Be(0+) 9Li(32−)
Λ = 450 MeV

LO −41.6*(0.9)(−) −59.5*(0.4)(−) −95.7*(0.7)(−) −60.0*(0.4)(−)

NLO −28.2*(0.7)(3.0) −39.44(0.36)(4.5) −56.70*(0.36)(8.3) −41.55(0.45)(4.2)

N2LO −30.42(0.36)(0.9) −41.23(0.34)(1.2) −56.48*(0.38)(2.2) −45.14(0.34)(1.3)

N3LO −28.69(0.38)(0.8) −39.62(0.34)(1.2) −55.31*(0.42)(2.2) −42.27(0.37)(1.1)

N4LO −28.62(0.38)(0.8) −39.45(0.34)(1.2) −54.95*(0.42)(2.2) −42.11(0.36)(1.1)

N4LO+ −28.75(0.38)(0.8) −39.53(0.34)(1.2) −54.98*(0.42)(2.2) −42.24(0.37)(1.1)

Λ = 500 MeV

LO −41.6*(1.0)(−) −59.6*(0.4)(−) −97.7*(0.7)(−) −59.8*(0.5)(−)

NLO −26.3*(0.6)(3.4) −37.24(0.34)(4.9) −53.77*(0.36)(9.4) −38.94(0.38)(4.7)

N2LO −30.92(0.34)(1.2) −41.85(0.34)(1.5) −56.96*(0.37)(2.5) −46.18(0.33)(1.8)

N3LO −29.06(0.36)(1.0) −39.94(0.36)(1.4) −55.70*(0.38)(2.5) −43.06(0.36)(1.4)

N4LO −28.91(0.35)(1.0) −39.65(0.36)(1.4) −55.10*(0.38)(2.5) −42.80(0.36)(1.4)

N4LO+ −29.04(0.34)(1.0) −39.72(0.36)(1.4) −55.09*(0.42)(2.5) −42.91(0.36)(1.4)

Expt. −31.41 −41.28 −56.50 −45.32
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with the N2LO NN potential. The central values however do change:
all of the A = 4, 6, and 7 nuclei become less bound when using NN
potentials beyond N2LO in combination with the N2LO 3NFs. This
brings the ground state energy of 4He in closer agreement with
experiment, whereas the ground state energies of 6He, 6Li, and 7Li
are reasonably close to experiment with the N2LO NN potential, and
move away from their experimental values when including higher-
order for the NN potential, to the point that 6He appears to be barely
bound, or maybe even slightly unbound, with these higher-order
NN potentials. However, they all still agree with their corresponding
experimental values, to within our combined numerical and chiral
uncertainty estimates, and it is therefore too early to draw firm
conclusions.

Finally, it is interesting to note that the estimated chiral
truncation uncertainties are very similar for each of the four
nuclei in Table 4. This can be easily understood in terms of their
structure: 6He, 6Li, and 7Li can be described as bound states of an α

plus two neutrons, an α plus a deuteron, and an α plus a triton,
respectively. It is therefore not surprising that the chiral
uncertainties of these states follow that of the 4He ground state
energy (remember, the deuteron binding energy is fitted exactly, and
the triton binding energies is fitted at N2LO and up). However, there
are subtle but important details that can make a difference: whereas
the ground state energy of 4He changes only by about 150–200 keV
going from the N2LO to the N3LO NN potential, the difference
between these two potentials for the A = 6 ground state energies is
about 600–700 keV, and that for the 7Li ground state is about 1 MeV,
for both regulators.

In Table 5 we give our results the ground state energies of 8He,
8Li, 8Be, and 9Li. The NCSM calculations for these nuclei were
performed up to Nmax = 10, making the extrapolation uncertainties

for these nuclei somewhat larger than those in Table 4, and they
become of the same order as the estimated numerical uncertainties
coming from the SRG evolution. This increased numerical
uncertainty is reflected in the first set of error estimates in
Table 5. And just as for the A = 6 and 7 nuclei, at LO none of
these nuclei are actually bound–leading to larger extrapolation
uncertainties. Again, the main purpose for the LO calculations is
to set the scale for the estimate of the chiral truncation uncertainties;
and for that purpose, an approximate ground state energy is
sufficient. Furthermore, 8Be is unbound at all chiral orders
considered here, in agreement with experiment.

As for the A = 4, 6, and 7 nuclei, the estimated chiral
truncation uncertainties for these A = 8 and 9 nuclei is
significantly larger than the estimated numerical uncertainties.
Again, at NLO, these uncertainties are too large to draw any
meaningful conclusions, but at N2LO they are about a factor of
three smaller. The agreement with experiment is best with the
N2LO NN plus 3N interaction; moving to higher orders for the
NN potential while retaining the N2LO 3NFs leads to significant
underbinding for 8He, 8Li, and 9Li, with the experimental values
outside combined numerical and chiral uncertainty estimates for
the N3LO and higher NN potentials. It will be very interesting to
see whether or not consistent 3NFs at N3LO can restore or
improve on the level of agreement for these ground state
energies obtained with N2LO NN plus 3N interactions.

Beryllium-8 remains unbound according to our calculations,
for all of these interactions, in qualitative agreement with
experiment; and the extracted ground state energies may
therefore be not as precise as for the other three nuclei in
Table 5. Still, given the combined numerical and chiral
uncertainty estimates, our results for the 8Be ground state

TABLE 6 Ground state energies in MeV of 9Be, 10Be, 10B, and 11B, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with
energies above threshold.

VNN 9Be(32−) 10Be(0+) 10B(3+) 11B(32−)
Λ = 450 MeV

LO −91.83*(0.8)(−) −97.7*(2.1)(−) −92.8*(2.3)(−) −112.6(1.7)(−)

NLO −56.97*(0.36)(7.5) −61.9(0.8)(7.8) −61.1(0.8)(7.0) −72.2(0.8)(8.9)

N2LO −58.82(0.37)(2.0) −66.5(0.7)(2.2) −66.4(0.6)(2.1) −79.8(0.6)(2.7)

N3LO −56.50*(0.40)(2.0) −62.4(0.8)(2.1) −62.5(0.7)(1.9) −73.8(0.8)(2.4)

N4LO −56.12*(0.41)(2.0) −62.0(0.8)(2.1) −62.1(0.7)(1.9) −73.4(0.8)(2.3)

N4LO+ −56.18*(0.41)(2.0) −62.1(0.8)(2.1) −62.2(0.8)(1.9) −73.4(0.8)(2.3)

Λ = 500 MeV

LO −93.00*(0.7)(−) −98.1*(2.4)(−) −92.5*(2.8)(−) −112.0*(2.1)(−)

NLO −53.68*(0.37)(8.4) −57.9(0.8)(8.6) −57.0*(0.7)(7.7) −67.2(0.8)(9.7)

N2LO −59.73(0.36)(2.4) −67.5(0.6)(2.8) −68.4(0.6)(2.8) −82.3(0.6)(3.6)

N3LO −57.20(0.40)(2.3) −63.6(0.8)(2.5) −64.1(0.7)(2.4) −75.8(0.8)(3.0)

N4LO −56.59*(0.40)(2.3) −62.9(0.8)(2.4) −63.4(0.8)(2.3) −74.7(0.7)(2.9)

N4LO+ −56.61(0.40)(2.3) −63.0(0.8)(2.4) −63.4(0.8)(2.3) −74.6(0.8)(2.9)

Expt. −58.16 −64.98 −64.75 −76.21
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energy are in good agreement with experiment. Furthermore it is
interesting to note that the chiral uncertainty estimates for 8Be
are approximately twice that of 4He, whereas the other three
nuclei have chiral uncertainty estimates that are quite similar to
those in Table 4. This can be easily understood by realizing that

8Be is a loosely bound state, or rather, slightly unbound state, of
two α particles, so the uncertainty is simply twice that of one α

particle. It may be more surprising that the chiral uncertainties of
8Li and 9Li, neither of which are α-cluster states, are qualitatively
similar to that of the A = 4, 6, and 7; and it is also surprising that

TABLE 8 Ground state energies in MeV of 14C, 14N, 15N, and 16O, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO through N4LO+, for Λ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given.

VNN 14C(0+) 14N(1+) 15N(12−) 16O(0+)

Λ = 450 MeV

LO −160.2(0.7)(−) −160.1(0.8)(−) −182.1(0.6)(−) −218.3(0.3)(−)

NLO −104.9(0.8)(12.2) −104.2(0.6)(12.3) −119.4(0.8)(13.8) −135.1(0.8)(17.9)

N2LO −120.1(0.6)(4.1) −121.4(0.6)(4.4) −135.1(0.5)(4.5) −149.1(1.0)(5.3)

N3LO −106.3(0.8)(3.2) −106.9(0.7)(3.3) −118.8(0.8)(3.6) −131.7(1.3)(4.8)

N4LO −105.5(0.8)(3.2) −106.2(0.8)(3.3) −117.8(0.8)(3.6) −130.2(1.3)(4.8)

N4LO+ −105.7(0.8)(3.2) −106.4(0.8)(3.3) −118.0(0.8)(3.6) −130.4(1.3)(4.8)

Λ = 500 MeV

LO −156.1(1.1)(−) −155.4(1.3)(−) −175.5(0.8)(−) −209.2(0.6)(−)

NLO −96.2(0.7)(13.0) −95.5(0.6)(13.0) −109.3(1.0)(14.4) −123.5(1.0)(18.3)

N2LO −123.9(0.6)(5.9) −125.6(0.6)(6.2) −138.9(0.7)(6.3) −153.2(1.4)(7.0)

N3LO −109.8(0.8)(4.1) −110.8(0.8)(4.3) −122.5(1.0)(4.4) −135.4(1.4)(5.2)

N4LO −108.5(0.8)(4.0) −109.5(0.8)(4.2) −120.8(1.0)(4.3) −133.0(1.7)(5.1)

N4LO+ −108.5(0.8)(4.0) −109.4(0.8)(4.2) −120.7(1.0)(4.3) −132.8(1.8)(5.1)

Expt. −105.28 −104.66 −115.49 −127.62

TABLE 7 Ground state energies inMeV of A = 12 and A = 13 nuclei, for LO through N4LO+ NN potentials, with 3NFs at N2LO, for N2LO throughN4LO+, forΛ = 450 MeV
(top) and Λ = 500 MeV (bottom). Both our estimated numerical (first) and chiral truncation (second) uncertainties are given; and an * indicates ground states with
energies above threshold.

VNN 12B(1+) 12C(0+) 13B(32−) 13C(12−)
Λ = 450 MeV

LO −113.7(1.8)(−) −145.0*(1.3)(−) −120.8*(1.7)(−) −146.4*(1.1)(−)

NLO −76.0(1.0)(8.4) −89.7(0.7)(12.0) −82.5(1.3)(8.6) −94.3(0.7)(11.4)

N2LO −84.8(0.6)(2.7) −98.7(0.6)(3.5) −93.2(0.8)(2.9) −108.3(0.6)(3.9)

N3LO −77.3(0.8)(2.2) −90.6(0.8)(3.2) −83.2(1.0)(2.3) −96.7(0.8)(3.0)

N4LO −76.8(0.8)(2.2) −89.9(0.8)(3.2) −82.6(1.0)(2.3) −96.2(0.8)(3.0)

N4LO+ −77.0(1.0)(2.2) −90.0(1.0)(3.2) −82.7(1.0)(2.3) −96.3(0.8)(3.0)

Λ = 500 MeV

LO −111.7*(2.3)(−) −144.6*(1.8)(−) −117.4*(2.1)(−) −143.8*(1.6)(−)

NLO −70.4(0.8)(9.1) −83.3*(0.7)(13.1) −76.1(1.1)(9.1) −87.0(0.7)(12.3)

N2LO −87.5(0.6)(3.8) −101.8(0.6)(4.7) −95.8(1.0)(4.2) −112.2(0.6)(5.4)

N3LO −79.5(0.8)(2.9) −92.7(0.8)(3.8) −85.5(1.0)(2.9) −99.8(0.7)(3.9)

N4LO −78.8(0.8)(2.8) −91.6(0.8)(3.7) −84.6(1.0)(2.8) −98.8(0.7)(3.8)

N4LO+ −78.8(1.0)(2.9) −91.5(0.8)(3.7) −84.6(1.0)(2.8) −98.7(0.7)(3.8)

Expt. −79.58 −92.16 −84.45 −97.11
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the estimated chiral uncertainties of 8He is smaller than that of
any of the other p-shell nuclei.

Moving to the middle of the p-shell, in Table 6 we have our results
for the ground state energies of 9He, 10Be, 10B, and 11B. Starting from A =
10, the NCSM calculations are limited to Nmax = 8, and therefore the
extrapolation uncertainties become a significant factor in the uncertainty
budget. Nevertheless, qualitatively, the overall picture remains the same:
at LO all nuclei are unbound, but at NLO and beyond, they are generally
bound, with the exception of 9Be. Also, the estimated chiral truncation
uncertainties for these nuclei remains significantly larger than the
estimated numerical uncertainties; at NLO, these uncertainties are too
large to draw anymeaningful conclusions, but at N2LO and beyond they
are about a factor of three smaller. Here, we also start to see significant
differences between the chiral uncertainties with the N2LO NN plus 3N
interaction, vs. using an NN potential at N3LO or higher in combination
with the N2LO 3NFs (and remember, we are using the N2LO counting
rules for all these calculations with higher-order NN potential)—the
effect of the higher-order NN potentials is becoming more pronounced
with increasing A, and more so with Λ = 500MeV than with Λ =
450MeV. (This trend is already noticeable for e.g., 9Li, see Table 5.).

Around A = 10, the agreement with experiment is no longer
uniformly better with the N2LO NN plus 3N interaction than with
the higher-order NN potentials. The N2LO NN plus 3N interaction
is the only combination for which 9Be is truly bound with respect to
two α particles plus a neutron, for both regulator values, whereas
with the higher-order NN potentials 9Be becomes unbound or right
at threshold in contrast with experiment where it is bound by about
1.6 MeV. Within the combined uncertainty estimates however, it is
still in agreement with experiment for all of these interactions. For
the A = 10 ground state energies the situation is different: at Λ =
450 MeV, the N2LO NN plus 3N interaction gives slightly better
agreement with experiment than the higher-order NN potentials,
but at Λ = 500 MeV, it is the N3LO NN plus N2LO 3N interaction
that gives the best agreement with experiment. In fact, the 10B
ground state energy with the N2LO NN plus 3N potential is just
outside the combined uncertainty estimates. Furthermore, the N2LO
NN potential plus 3NFs give a ground state energy for 11B that is just
outside the combined uncertainty estimates with both the Λ =
450 MeV and Λ = 500 MeV regulators.

This trend becomesmore pronounced forA≥ 12, see Tables 7, 8. At
LO, the ground states are still unbound, except for 12B at Λ = 450MeV;
at NLO they are bound and in agreement with experiment, given the
(granted, rather large) uncertainty estimates; and at N2LO they are all
significantly overbound, with the experimental values outside the
combined numerical and chiral uncertainty estimates. Increasing the
chiral order of the NN potential improves the agreement with
experiment again: for A = 12 and 13 our results with the N3LO and
higher NN potentials, in combination with the N2LO 3NFs, agree with
experiment, well within our uncertainty estimates, with both the Λ =
450MeV and Λ = 500MeV regulators. For A = 14 this is also the case
with Λ = 450MeV, but Λ = 500MeV leads to modest overbinding,
though still within our uncertainty estimates. Also for 15N and 16O the
ground state energies agree with experiment with Λ = 450MeV, but
with Λ = 500MeV there is significant overbinding, with the
experimental values just at the edge of our uncertainty intervals.

We have visually summarized our findings in Figure 4, which
clearly shows that with the N2LO NN plus 3N interaction one finds
good agreement with experiment for the ground state energies of

nuclei up to about A = 9, but significant overbinding starting from
about A = 11, more than the estimated uncertainties for A = 13 and
beyond. On the other hand, using higher-order NN potentials, in
combination with N2LO 3NFs, reduces this overbinding in the upper
half of the p-shell, while maintaining reasonable agreement, taking
into account both numerical and chiral truncation uncertainties, in
the lower half of the p-shell, with only a few exceptions, out of the
20 nuclei considered here.

Clearly, for A > 12 our uncertainty estimates for the N2LO NN plus
3N interaction are noticeably smaller than the deviation from both the
experimental data and from the calculations with higher-order NN
potentials. We speculate that this may be caused by the N2LO fit to the
NN scattering data not being sufficiently accurate, and that discrepancies
between the N2LO fit and NN data should be taken into account as
uncertainties in the LECs, whereas at higher orders in the NN potential,
the NN scattering data are described much more accurately, and this is
therefore not necessary. (Note that the N2LO NN potential was fitted
only up to Elab = 125MeV, whereas the N4LO+ potential was fitted to
260MeV in Ref. [20].) Of course, one should then also incorporate the
uncertainties in the 3NFs, cD and cE [30], and propagate all these
uncertainties through the many-body bound state calculations [32, 72].

Another possible explanation could be that NN (and 3N) systems
cannot sufficiently constrain the LECs–in which case one necessarily
has to include properties of A ≥ 4 nuclei for fitting some (or even all) of

FIGURE 4
Comparison of ground state energies of p-shell nuclei between
chiral EFT calculations at N2LO and N4LO+, each for two values of the
regulator Λ, and experiment. Both numerical uncertainty estimates
(dark colored) and chiral truncation uncertainties (light colored,
corresponding to 68% DoB) are shown.
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the LECs. Indeed, impressive progress has been made in recent years
along this way, extending ab initio calculations all the way to 208Pb [73],
but one loses some of the predictive power of χEFT by incorporating
select many-body observables in the fitting procedures, and the results
will depend on exactly which observables are included in the fitting. Yet
another cause could be that the actual expansion parameter increases
with A, as suggested in Ref. [34]. Calculations with consistent 3NFs at
N3LO, propagation of the uncertainties in the LECs through the many-
body calculations, and Bayesian inference for both the chiral truncation
uncertainties and the numerical uncertainties should help to resolve this
issue.

Besides this general trend of increasing deviations with increasingA
at N2LO, 8He and 9Li clearly stand out among the N4LO+ results in
Figure 4; and also our predictions for 8Li do not agree, to within their
estimated uncertainties, with experiment. Interestingly, 8He and 9Li are
two of the most neutron-rich nuclei, out of the 20 nuclei shown in
Figure 4, with N − Z = 4 and 3, respectively; and also 8Li is a neutron-
rich nucleus. This could be an indication of some deficiencies in the
neutron-neutron (or three-neutron) part of the interactions.
Unfortunately, there are no accurate neutron-neutron data, let alone
three-neutron data, to constrain the LECs; the LECs of the interactions
were all fitted to 2- and 3-body data involving at least one proton.

5 Concluding remarks and outlook

We have performed systematic calculations for the binding
energies of p-shell nuclei using LENPIC-SMS χEFT NN and 3N
interactions complete up through N2LO, and with NN potentials
up to N4LO+ in combination with N2LO 3NFs. We have made a
careful analysis of all sources of uncertainties, and incorporated
our best estimates of these uncertainties in our comprehensive
tables with order-by-order results and in Figure 4. Note that all
LECs in the χEFT had been fitted to A = 2 and A = 3 data prior to
these many-body calculations, and the obtained binding energies
are therefore parameter-free predictions. Although our results
with the N2LO NN plus 3N interaction do not agree with the
experimental binding energies for the upper p-shell, our results
with the N4LO+ NN potential plus N2LO 3NFs do agree with
experiment throughout the p-shell within the combined
numerical uncertainty estimates and the chiral truncation
uncertainty estimates at the 68% DoB.

In future work we plan to extend these calculations to include
consistent N3LO 3NFs, which should bring the chiral truncation
uncertainties down, and they may become comparable to the
estimated numerical uncertainties. We therefore also intend to
further reduce our numerical uncertainties; promising new
developments include, among others, the use of Artificial Neural
Networks [74–76] and Bayesian inference [72] for extrapolating
NCSM binding energies to the complete basis. The latter is
particularly interesting, since with Bayesian methods for both the
numerical and the chiral truncation uncertainties one can consider
correlated uncertainties of different states. This naturally leads to
reduced uncertainties for excitation energies (compared to the
uncertainties on the binding energies themselves), as well as e.g.,
neutron separation energies and various cluster thresholds.

Last but not least, we plan to use the obtained wavefunctions, in
combination with consistent χEFT operators, to evaluate other

observables, in particular radii, charge densities, magnetic and
quadrupole moments, and electroweak transitions.
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