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Abstract. Rice paddies are a major anthropogenic source

of the atmospheric methane. However, because of the high

spatial heterogeneity, making accurate estimations of the

methane emission from rice paddies is still a big chal-

lenge, even with complicated models. Data scarcity is one of

the substantial causes of the uncertainties in estimating the

methane emissions on regional scales. In the present study,

we discussed how data scarcity affected the uncertainties in

model estimations of rice paddy methane emissions, from

county/provincial scale up to national scale. The uncertain-

ties in methane emissions from the rice paddies of China

was calculated with a local-scale model and the Monte Carlo

simulation. The data scarcities in five of the most sensitive

model variables, field irrigation, organic matter application,

soil properties, rice variety and production were included

in the analysis. The result showed that in each individual

county, the within-cell standard deviation of methane flux,

as calculated via Monte Carlo methods, was 13.5–89.3 % of

the statistical mean. After spatial aggregation, the national

total methane emissions were estimated at 6.44–7.32 Tg, de-

pending on the base scale of the modeling and the reliability

of the input data. And with the given data availability, the

overall aggregated standard deviation was 16.3 % of the total

emissions, ranging from 18.3–28.0 % for early, late and mid-

dle rice ecosystems. The 95 % confidence interval of the es-

timation was 4.5–8.7 Tg by assuming a gamma distribution.

Improving the data availability of the model input variables is

expected to reduce the uncertainties significantly, especially

of those factors with high model sensitivities.

1 Introduction

Methane is not only an important greenhouse gas in the atmo-

sphere, but also an active reactor in many atmospheric chem-

istry processes. Rice cultivation has been recognized as the

major anthropogenic activity that accounted for the rapid in-

crease of the atmospheric methane concentration. However,

because of the high spatial heterogeneity in methane emis-

sions from rice paddies, huge uncertainty has long been the

big problem in making reliable estimations, even after com-

plicated models were developed and applied (Li et al., 2002;

Zhang et al., 2011; Harvey, 2000). The models used in re-

gional or global studies differ widely in terms of their spa-

tial scales. Many of these models are site-specific, describing

processes at local scales. Extrapolating a site-specific model

to a regional or global scale is usually referred to as “model

upscaling” (King et al., 1991; van Bodegom et al., 2000). A

common framework for this upscaling involves partitioning

a large region into smaller, individual areas and running the

model for each area (Matthews et al., 2000; Li et al., 2004;

Yu et al., 2012).

In model upscaling, the first problem modelers face is

how to make the spatial divisions (each division is called

a cell, hereafter). It is preferable to partition the region so

that the model inputs in the cells are as statistically indepen-

dent of each other as possible (King et al., 1991; Ogle et al.,

2003, 2010). When data are scarce, however, the criterion

of intercell independence may result in the partition of large

cells, leading to a reduced level of spatial details. An addi-

tional challenge is the great variability in the availability of
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data for the model inputs, which complicates the selection

of an appropriate cell size. A properly partitioned subject re-

gion should balance the differences in spatial data abundance

among model inputs. If the cell size is too large, substantial

spatial variation in the model input variables will be lost af-

ter within-cell averaging (van Bodegom et al., 2002; Verburg

et al., 2006). Scientists tend to use the finest spatial resolu-

tion possible to express details in spatial variation in their

modeling results. However, a finer spatial resolution requires

sufficient model input data; otherwise, data must be shared

among cells for at least some, if not all, the model inputs.

This type of intercell nonindependence among the cells (re-

sulting from data scarcity and requiring data sharing) compli-

cates the uncertainty analysis (Ogle et al., 2003) when finer

spatial resolutions are adopted.

To estimate regional/national methane emissions from rice

paddies, it is critical to obtain detailed information on organic

matter amendments, soil properties, rice varieties and field

irrigation in rice cultivation (Khalil et al., 2008; Peng et al.,

2007; van Bodegom et al., 2000; Wassmann et al., 1996).

Such data, however, are seldom available at a regional scale

(Zhang et al., 2011).

To analyze the uncertainty due to errors in model inputs in

each cell, the Monte Carlo simulation has been recognized as

an effective method (IPCC, 2000), and it has been applied in

many studies (Ogle et al., 2003, 2010; Yu et al., 2012). Based

on the probability distribution functions (PDFs) derived from

measurements and/or a priori knowledge of the model inputs,

the Monte Carlo method involves randomly and repeatedly

drawing values from the PDFs to drive the model and pro-

duce varying model estimates. After the Monte Carlo simu-

lation is performed for a within-cell uncertainty analysis in

each division, we face the problem of uncertainty upscal-

ing. In the case of “independent” partitioning of the entire

subject region, an independent random variable is assigned

to depict variations in the model estimate for each division

(IPCC, 2000; Ogle et al., 2010), the uncertainty upscaling

can be quite simple, as explained by the statistical “law of

large numbers”. As previously noted, however, a paucity of

data for some of the model variables and a small cell size

may result in data sharing among divisions, which is prob-

lematic for the model variables that lack sufficient data to

support fine-resolution partitioning. Upscaling the uncertain-

ties in the model outputs must deal appropriately with this

type of “dependency”.

The objective of the present study is to evaluate the im-

pacts of data scarcity on the uncertainty in regional estima-

tions of rice paddy methane emissions, and discuss how dif-

ferent spatial resolutions affect the regional estimation uncer-

tainties, given the same data availability for different spatial

division schemas.

2 Methods

2.1 Uncertainty assessment in model upscaling

Figure 1 presents a flowchart of model upscaling in the case

study. The solid arrows in Fig. 1 represent procedures for

estimating national methane emissions, and the hollow ar-

rows describe the uncertainty assessments accompanying the

model upscaling. Although many studies have demonstrated

how to upscale a model to make regional estimations from

various baseline scenarios (Matthews et al., 2000; Li et al.,

2004; Ogle et al., 2010), the primary focus of the present

study is the aggregation of the uncertainties in model estima-

tions due to data scarcity.

2.1.1 Within-cell variation in model estimates

When partitioning the large region under consideration into

spatially adjacent divisions, the within-cell variation must be

accounted for first (King et al., 1991; van Bodegom et al.,

2000; Ogle et al., 2003, 2010). The baseline model estimate

is usually established by running the model once in a cell.

Each model input variable will have one datum or one time

series of data, e.g., daily weather observations. If there are

multiple data available for a model input variable in a cell,

they are averaged before modeling. The within-cell hetero-

geneity of the model estimate will therefore be lost after av-

eraging, which will cause errors in the model’s estimation.

This type of error is referred to as the “fallacy of average”

(Verburg et al., 2006). In contrast, the within-cell PDF of the

variation in the model variable can also be established by sta-

tistical analysis of the data and/or expert estimation (Ogle et

al., 2010; IPCC, 2000). Monte Carlo simulation is consid-

ered an effective approach to evaluate within-cell variation

or uncertainty in model estimates due to errors in model in-

put variables and their interactions, and it is thus used in the

present study (Fig. 1).

2.1.2 Spatial uncertainty aggregation in the case of data

scarcity

In each cell, the model estimation via Monte Carlo iter-

ation produces a numeric depiction of a random variable

Vi(mi , σi), where mi and σi are the statistical mean and

standard deviation (SD), respectively, of the random vari-

able Vi . Thereafter, the model upscaling involves the sum-

mation of the random variables V0 = V1 + V2 + . . . + VN .

The aggregation of uncertainty, represented by the sta-

tistical variance or standard deviation, is generalized as

Var(
N
∑

i=1

Xi) =
N
∑

i=1

N
∑

j=1

Cov(Xi,Xj ) (Ross, 2006), and it can

also be transformed into quadratic summation of the ele-

mentary variances via the standardized variance-covariance

matrix:

Geosci. Model Dev., 7, 1211–1224, 2014 www.geosci-model-dev.net/7/1211/2014/



W. Zhang et al.: Uncertainties in estimating regional methane emissions from rice paddies 1213

Figure 1. Flowchart of upscaling CH4MOD to estimate methane emission from rice paddies of China and the uncertainty aggregation. (a)

If cell i and j share data of the model input variable k, then Iij,k =1, otherwise Iij,k = 0. (b) The assumption of gamma distribution of the

national methane emission was based on the results in model sensitivity analysis in Appendix B.

σ 2
0 =

∑

i,j

σi × Cij × σj , (i = 1 . . .N,j = 1 . . .N), (1)

where σ 2
0 is the aggregated variance of the regional estima-

tion and σi and σj are the standard deviations of the within-

cell variations in cells i and j , respectively. The matrix C

is comprised of coefficients Cij , which stand for “correla-

tions” between individual cells. Here, the “correlation” is a

measure of how the model outputs in two cells vary coinci-

dently because they share common data and modeled pro-

cesses for the model inputs. If the estimation in cell i is

over-/underestimated, the estimation in cell j will most likely

be over-/underestimated as well because they share common

data, and vice versa. The aggregation of the model outputs

can be quite simple if the model estimate is made with in-

dependent data in each cell. In this case, the matrix C will

be an identity matrix in which the diagonal elements will be

1 and all the off-diagonal elements will be 0. The aggrega-

tion in Eq. (1) will thereafter indicate the arithmetic sum of

the within-cell variances, as addressed by the law of large

numbers. However, when there are not sufficient data to sup-

port independent calculation among cells, the off-diagonal

elements, Cij , of the matrix C will no longer be zero.
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Table 1. Lookup table of correlation coefficients of the model outputs in two cells due to data sharing.

Data sharing between cell i and j
Cij

Data sharing between cell i and j
Cij

Yield OM Sand WPtn VI Yield OM Sand WPtn VI

0∗ 0 0 0 1 0.069 1 0 0 0 1 0.136

0 0 0 1 0 0.347 1 0 0 1 0 0.430

0 0 0 1 1 0.413 1 0 0 1 1 0.520

0 0 1 0 0 0.295 1 0 1 0 0 0.343

0 0 1 0 1 0.375 1 0 1 0 1 0.478

0 0 1 1 0 0.674 1 0 1 1 0 0.776

0 0 1 1 1 0.796 1 0 1 1 1 0.900

0 1 0 0 0 0.082 1 1 0 0 0 0.170

0 1 0 0 1 0.167 1 1 0 0 1 0.225

0 1 0 1 0 0.436 1 1 0 1 0 0.481

0 1 0 1 1 0.519 1 1 0 1 1 0.616

0 1 1 0 0 0.396 1 1 1 0 0 0.458

0 1 1 0 1 0.499 1 1 1 0 1 0.575

0 1 1 1 0 0.760 1 1 1 1 0 0.849

0 1 1 1 1 0.878 1 1 1 1 1 1.000

1 0 0 0 0 0.066

∗ 1 means the two cells share data for the variable and 0 means they do not share data for the variable.

In the present study, Cij was empirically calculated via nu-

merical experiments. For different levels of data sharing be-

tween two cells (Table 1), the model estimations for the two

cells were iteratively calculated with CH4MOD. The model

inputs were randomly selected from the ranges of the vari-

ables (Table B1). When there was data sharing between the

two cells for a variable in Table 1, the value of the variable

was selected once for both cells; and for variables with no

data sharing, the value of the variable was selected sepa-

rately for the two cells. The correlation coefficients (Cij ) of

the model estimations in the two cells was statistically cal-

culated with a large number, 1000 iterations in the present

study, of paired model estimations for the two cells.

2.1.3 Indicators of data scarcity in model estimation

A common problem in making a model estimation for a large

region is that the available data for the model input vari-

ables differ greatly. To evaluate the overall data scarcity of

the model input variables, two indicators are defined:

Ids =







1
n

∑

i 6=j

Cij , n > 0

0, n = 0,
(2)

IR =
N

m

√

m
∏

k=1

Nk

, (3)

where Cij is the element of the DS (data sharing) matrix de-

fined in Eq. (1) and n is the total number of off-diagonal,

nonzero elements of the DS matrix. In Eq. (3), N is the to-

tal number of cells (divisions) that partition the entire region

under consideration and Nk is the number of data points for

the model variable k. When the off-diagonal elements of the

sharing matrix are all 0, indicating abundant data (no sharing)

among the cells for all the model input variables, Ids = 0 and

IR = 1. The other extreme, when the off-diagonal elements

of the DS matrix are all 1, indicates a severe data scarcity

and complete data sharing among the cells for every model

input variable, Ids =1 and IR = N .

Data scarcity refers to the abundance of data relative to

the spatial resolution, i.e., spatial details we intend to depict

via the model simulation. With all the model input data on

hand, we may expect more data scarcity, and a larger Ids,

when we choose a smaller cell size and vice versa. An Ids of

0 indicates a “perfect” data abundance for the chosen spatial

resolution. However, this “perfection” may, conversely, im-

ply that we have chosen too large of a cell size and that some

spatially varying details in the model inputs were lost, a se-

vere “fallacy of average”. The regional partitioning should,

in this case, adopt a finer spatial resolution to show more

heterogeneous details in the model estimation.

2.2 Uncertainty assessment of estimated methane

emissions from rice paddies in China

2.2.1 CH4MOD and input variables

In this case study, we used the model CH4MOD to estimate

methane emissions from rice paddies in China. CH4MOD

is a semi-empirical model that simulates methane production

and emissions from rice paddies under various environmental

conditions and agricultural practices (Huang et al., 1998a,

2004; Xie et al., 2010).
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Figure 2. Administration boundaries of China on different scales and data abundance of the CH4MOD input variables on different spatial

resolutions. A grand region (GR) is a cluster of provinces that are similar in crop rotations in rice paddies and climate condition: GR I

(Guangdong, Guangxi, Hainan, Fujian, Hunan and Jiangxi, double rice dominant and subtropical); GR II (Shanghai, Jiangsu, Zhejiang,

Anhui and Hubei, rice/upland-crop rotation dominant and warm temperate); GR III (Chongqing, Sichuan, Guizhou and Yunnan, rice/upland-

crop rotation and warm temperate); GR IV (Heilongjiang, Liaoning and Jilin, single rice and cool temperate) and GR V (other provinces,

scattered rice paddies). SP – soil property; RC – rice cultivation (yield and harvest area); OM – organic matter application; WR – water

regime of rice paddy irrigation; VI – rice variety index.

The CH4MOD model runs with a daily step and is driven

by air temperature. The main input variables include the soil

sand percentage (SAND), organic matter amendments (OM),

rice grain yield (GY), water management pattern (Wptn) and

rice cultivar index (VI). Appendix A describes CH4MOD

and the compilation of the model inputs. More detailed infor-

mation regarding the model development, validation and ap-

plication has been provided elsewhere by the authors (Huang

et al., 2004, 2006; Zhang et al., 2011).

2.2.2 PDFs of the model input variables

Many studies (Khalil and Butenhoff, 2008; Li et al., 2004;

Matthews et al, 2000; Van Bodegom et al., 2002) have

suggested that a significant proportion of the uncertainty

in regional rice paddy methane emissions arises from data

scarcity, especially with regard to SAND, OM, GY, Wptn and

VI. The CH4MOD sensitivity analysis similarly indicates the

importance of these five factors in methane emissions (Ta-

ble B1 in Appendix B). Figure 2 illustrates the data abun-

dance of the five model variables. The data for soil sand con-

tent is a 10 km by 10 km raster data set constructed from soil

profiles via spatial interpolation (Oberthür et al., 1999; Shi

et al., 2004, 2006). Although a certain proportion of the im-

mense spatial variation in soil properties may be lost after

spatial interpolation (Goovaerts, 2001; van Bodegom et al.,

2002), the gridded soil data are still the most detailed of the

five model inputs. In descending order of data abundance, the

other four factors are GY, OM, Wptn and VI. Assuming a nor-

mal distribution, the PDFs of four factors (all except Wptn)

were parameterized by statistical analysis of their data.

With a specific spatial resolution, e.g., using administra-

tive counties as divisions, the PDF of SAND in a division

was calculated with the grid data within the division. Be-

cause every county has only one datum for GY, no PDF was

assumed for GY when counties were adopted as divisions.

Although the yield of rice grain is not the same at every lo-

cation throughout a county, we have no more detailed data

on grain yield that would allow us to make PDFs of the GY

variable.

The data on the other two variables, OM and Wptn, were

collected and statistically analyzed to produce PDFs (Ta-

bles 2, 3) at provincial and grand region scales (Fig. 2b).

Rice paddy methane emissions vary notably with rice vari-

ety (Singh et al., 1997). The variety index (VI), which ac-

counts for the methane emission differences between rice va-

rieties (Huang et al., 1998a, 2004), ranges from 0.5 to 1.5,

and it typically has a value close to 1.0 for most rice varieties

(Huang et al., 1997, 2004). We assumed that the 95 % confi-

dence interval (CI) for VI was 0.5 to 1.5 and that it exhibited

a normal distribution. In the case of partitioning the entire

nation into counties, the counties included within a province

and/or grand region must share data and PDFs for the vari-

ables OM, Wptn and VI.

The PDFs in the case study of rice paddy methane emis-

sions did not encompass all sources of uncertainties for the

five variables. Careful planning in building PDFs of the

model variables will improve the reliability of the uncertainty

assessment. At present, we are focused on uncertainty aggre-

gation in model upscaling when facing data scarcity.

www.geosci-model-dev.net/7/1211/2014/ Geosci. Model Dev., 7, 1211–1224, 2014
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Table 2. Fraction of straw incorporation and farm manure application in rice cultivationa.

Province Fraction of straw
Farm manure

Province Fraction of straw
Farm manure

incorporationb (kg OM ha−1)c

incorporation
(kg OM ha−1)

Mean Range Mean Range

Beijing 0.41 821.6 321.6–1321.6 Henan 0.56 1539.2 776.2–2302.1

Tianjin 0.29 927.4 123.1–1731.6 Hubei 0.20 2101.3 981.1–3221.6

Hebei 0.62 1519.3 959.5–2079.1 Hunan 0.34 1836.9 846.7–2827.2

Shanxi 0.44 1824.8 1195.5–2454.2 Guangdong 0.23 1243.2 634.5–1851.8

Inner Mon. 0.12 1837.5 1042.4–2632.7 Guangxi 0.27 1384.7 645.4–2124.1

Liaoning 0.03 1108.5 657.8–1559.3 Hainan 0.22 1408.5 964.8–1852.1

Jilin 0.03 1308.4 421.5–2195.4 Chongqing 0.17 1608.7 801.5–2415.8

Heilongjiang 0.23 1800.8 836.0–2765.6 Sichuan 0.18 1922.7 940.7–2904.7

Jiangsu 0.23 1263.5 605.6–1921.4 Guizhou 0.09 1793.2 740.2–2546.1

Zhejiang 0.35 1276.2 734.1–1818.3 Yunnan 0.10 1802.3 853.1–2751.5

Anhui 0.19 1507.5 424.3–2590.7 Shaanxi 0.34 1769.6 555.3–2983.9

Fujian 0.32 1123.1 852.6–1393.6 Gansu 0.03 1923.0 375.9–3470.1

Jiangxi 0.38 1612.2 842.3–2382.1 Ningxia 0.15 1448.6 515.5–2381.7

Shandong 0.55 1032.8 530.8–1534.7 Xinjiang 0.45 1612.0 407.7–2816.3

a No data of farm manure application is available for Shanghai and Tibet. The data of Jiangsu and Guizhou was adopted for them, respectively. b Statistics of the first national

pollution source census conducted by the Ministry of Environmental Protection of China (CFPC, 2011); but no variation range provided in the publication. c Statistics of the

data from the investigation of the organic manure application in crop cultivation made by the Institute of Atmospheric Physics, Chinese Academy of Sciences. Green manure

was not included in the present study because it accounts for a minor proportion in total organic matter application in rice cultivation.

Table 3. Proportions of different water irrigation patternsa in each

grand region.

Grand Baseline Uncertainty

region fraction fraction

I 3: 0.92; 4: 0.08b 1: 0.31; 2: 0.31; 3: 0.30; 4: 0.08

II 2: 0.95; 4: 0.05 1: 0.32; 2: 0.32; 3: 0.31; 4: 0.05

III 2: 0.82; 4: 0.18 1: 0.27; 2: 0.28; 3: 0.27; 4: 0.18

IV 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33

V 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33

a Refer to Huang et al. (2004) for the definition of water irrigation patterns. b

Means the water irrigation pattern 3 was applied in 92 % of the rice cultivation area

in grand region I (Fig. 2a), and the remaining 8 % of rice area was continuously

flooded (water irrigation pattern 4).

2.2.3 Uncertainty calculation and aggregation

To evaluate how the adoption of cell sizes influences the un-

certainty of regional estimations, we used three partitioning

schema – S1, S2 and S3 – to estimate the methane emissions

in China with the same previously described data sets. The

counties, provinces and grand regions of China were used as

the spatial divisions in the three scenarios, respectively. In S2

and S3, PDFs of the rice grain yield were calculated based on

a statistical analysis of census data. The Monte Carlo itera-

tion was performed 500 times in each cell to calculate the

within-cell uncertainty.

For each of the three scenarios, the elements of the DS ma-

trix were valued by referencing the correlation coefficients

(Cij ) in Table 1 based on the state of data sharing illus-

trated in Fig. 2b. With the within-cell variations in methane

emissions calculated via the Monte Carlo approach, the ag-

gregation of the model estimates was then performed via

Eq. (1) for early, late and middle rice. When combining the

estimation results for the three rice ecosystems, Eq. (1) was

again utilized for the OM and VI data shared by the three rice

ecosystems.

After aggregation, the confidence interval, e.g., 95 % CI

of the national methane emission, was derived via the pa-

rameterized PDF of the aggregated estimate. Assuming a

gamma distribution (Fig. B1 in Appendix B), the two param-

eters of the PDF, shape (α) and scale (β), were calculated

by the momentum method, where β = variance/average and

α = average/β (Ross, 2006).

3 Results and discussion

3.1 Methane emissions from rice paddies in China and

their uncertainties

In 2010, the total rice harvest area of China was 29.9 M ha.

The national total methane emissions were 6.44–7.32 Tg de-

pending on the spatial resolution used for modeling (Table 4).

In each individual county, the within-cell standard deviation

of methane flux, seasonal methane emissions per unit area,

as calculated via Monte Carlo methods, was 13.5–89.3 % of

the statistical mean. Because no errors were considered in the

area from which rice was harvested, the relative uncertainty

for methane emissions was the same as in the methane flux

estimation. In the case of errors being present in the rice har-

vest area, the uncertainty of methane emissions in each cell

Geosci. Model Dev., 7, 1211–1224, 2014 www.geosci-model-dev.net/7/1211/2014/
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Table 4. Estimated methane emissions from rice paddies of China and their uncertainties.

Scenario Spatial CH4 SD of the 95 % CIa Ids IR

resolution emission (Tg) estimation (Tg) (Tg)

Middle rice

S1 County 4.03 0.74 (18.3 %) 2.7–5.6 0.147 30.3

S2 Province 4.37 0.94 (21.4 %) 2.7–6.4 0.153 2.7

S3 GRb 4.13 1.53 (37.1 %) 1.7–7.6 0.069 1.4

Early rice

S1 County 1.02 0.28 (28.0 %) 0.5–1.6 0.157 27.6

S2 Province 1.40 0.44 (31.4 %) 0.7–2.4 0.117 1.9

S3 GR 1.34 0.60 (44.6 %) 0.4–2.7 0.069 1.2

Late rice

S1 County 1.39 0.30 (21.6 %) 0.9–2.0 0.157 28.4

S2 Province 1.56 0.45 (28.7 %) 0.8–2.5 0.118 2.0

S3 GR 1.73 0.79 (45.3 %) 0.6–3.6 0.069 1.2

All rice

S1 County 6.44 1.05 (16.3 %) 4.5–8.7 – –

S2 Province 7.32 1.43 (19.5 %) 4.8–10.4 – –

S3 GR 7.20 2.29 (31.8 %) 3.4–12.3 – –

a 95 % CI of the estimation was calculated from the gamma distribution. The shape and scale parameters of the gamma

distribution were estimated by the emission estimation and the corresponding SD. b GRs from Fig. 2a.

can be calculated with rule B of the IPCC (Intergovernmental

Panel on Climate Change; 2000) before aggregation.

When data sharing between counties was not accounted

for, the falsely aggregated standard deviation was approxi-

mately 1.7–2.2 % of the national emissions according to the

law of large numbers. However, when the correlation of the

model estimations for cells was considered (Table 1), the

overall aggregated standard deviation was 16.3 % of the to-

tal emissions, ranging from 18.3 to 28.0 % for early, late and

middle rice ecosystems (Table 4). This finding implies that

intensifying data quantities significantly reduces uncertain-

ties in regional estimations by reducing data sharing and the

correlations in the DS matrix. Assuming a gamma distribu-

tion (Fig. B1 in Appendix B), the 95 % confidence interval

(CI) of the national total methane emissions, calculated via

the moment-matching approach with m0 and σ0, was 4.5–

8.7 Tg at the S1 spatial resolution (Table 4).

The national methane emissions from rice paddies in

China have been estimated in many previous studies. Ta-

ble 5 lists those studies that included uncertainty assess-

ments. With the exception of the results from Huang et

al. (1998b), in which higher emissions were produced be-

cause of the continuous flooding used for rice cultivation in

the study, the uncertainties in all other studies largely over-

lapped with those of the present study, although significance

levels for the uncertainties were not explicitly provided. The

results of other studies (not listed in Table 5), e.g., Ren et

al. (2011), Li et al. (2002) and Yao et al. (1996), also fell

within the ranges listed in Table 4. Most of these previ-

ous studies focused on organic matter application and water

regimes in their estimations of uncertainty (Table 5) because

of data scarcity in these two factors. Taking into considera-

tion the tremendous spatial heterogeneity of soil characteris-

tics, Li et al. (2004) believed that these were the most sensi-

tive factors accounting for uncertainties, and that the uncer-

tainty was between 2.3–10.5 Tg yr−1 (1.7–7.9 Tg yr−1 C) for

mid-season drainage irrigation and 8.5–16.0 Tg yr−1 (6.4–

12.0 Tg yr−1 C) when continuous flooding was applied.

Uncertainties of regional estimations come from many

sources, including the model imperfections due to inaccu-

racy of parameters and structural fallacy of the model (e.g.,

Kennedy and O’Hagan, 2001), as well as the data errors and

poor availability of the model inputs. A comprehensive un-

certainty analysis should synthetically include all major un-

certainty sources (IPCC, 2000; van Bodegom et al., 2002). In

the present study, the within-cell variances of the five most

sensitive factors, i.e., SAND, GR, OM, Wptn and VI, were

parameterized and included in the Monte Carlo simulations,

but there are also other factors that may contribute to uncer-

tainties (van Bodegom et al., 2002). Moreover, there may be

covariance between the input parameters. For example, the

rice variety (VI) and/or soil texture (SAND) may have im-

pacts on the irrigation applied (Wptn). With sufficient data,

we may quantify the correlations between the input param-

eters and then build a joint/Bayesian PDF of the input pa-

rameters (Kennedy and O’Hagan, 2001). Incorporation of
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Table 5. Uncertainties in methane emission from rice paddies of China via various methods.

Method Uncertainty range Reference

IPCC Tier 2/statistical analysis on measured methane fluxesa 8.1 ± 3.7 (1993)b Cai et al. (1997)

Simplified CH4MOD model/model input scenarios 7.2–13.6 (1993)c Huang et al. (1998b)

MERES model/organic matter scenarios 3.4–8.6 (1993) Matthews et al. (2000)

IPCC Tier 2/organic matter amendment and irrigation scenarios 5.8–9.6 (1995) Yan et al. (2003)

DNDC model/most sensitive factors 2.3–10.5 (1990) Li et al. (2004)

CH4MOD model/Monte Carlo 4.2–9.1 (2010) This study

a Method with which the uncertainty assessment was made; b the number in parentheses indicates the year when the estimation of methane

emission was made; c assuming continuous flooding in rice cultivation.

correlations between the input parameters will improve the

estimation of the within-cell variances. However, facing the

difficulty of data scarcity, it is necessary to parameterize the

within-cell variance of each input parameter separately at

present. Apart from data scarcity, model imperfections due to

a poor understanding of the complexity of the ecosystem are

also a primary source of estimation bias. A model comprises

functions and equations that describe the physical processes

of interest, but it cannot include every detail. Model inac-

curacies may bias the estimation away from the true value,

which is usually evaluated by model validation (Huang et al.,

2004). In the present study, however, we did not incorporate

the error of model inaccuracy in the uncertainty assessment.

3.2 Data scarcity, spatial resolution and the

uncertainties in regional estimation

The uncertainty in regional methane emissions in Table 4 is

primarily caused by errors and a scarcity of model input data

(Fig. 2). Even if the data abundance of the model variables

differs significantly (Fig. 2), modeling at a finer spatial res-

olution does help to reduce the estimation uncertainty (Ta-

ble 4). We made the model estimations at three scales (S1,

S2 and S3 in Table 4). At each scale, S1 for instance, the

finer input (data of SAND, 10 km × 10 km raster data set)

was aggregated to create input of SAND at the scale of S1.

But to run the model at a specific scale, the data of the other

model variables, i.e., OM, Wptn and VI, must be shared be-

tween neighboring grid cells because they are coarser than

the specific grid size of S1. Table 4 shows the scale effects

of the model estimations and the impacts of decreased vari-

ability of input on the model output. At each of the specific

scales (S1, S2 or S3), the direct model output is of the varia-

tion in each of the grid cells (in a county at S1, a province at

S2 or a GR at S3). In Table 4, the 95 % CI was 3.4–12.3 Tg

when modeling was performed at a coarser resolution (S3).

At the provincial scale (scenario S2), however, the 95 % CI

narrowed to 4.8–10.4 Tg, and the aggregated standard devi-

ation was 19.5 % of the national total emissions. However,

without sufficient data support (Fig. 2), upscaling a model at

an over-fine resolution makes no substantial difference, as in

Table 4 for S1. Although the uncertainty was reduced further

when the spatial resolution was at the county level, this ap-

proach is not cost-effective, and the indicator IR rises rapidly

from up to 3 at the provincial scale to more than 27 at the

county scale (Table 4). The IR indicates the redundant cost;

a higher IR indicates more redundant processing.

In Table 1, sharing data for the higher-sensitivity variable,

e.g., SAND vs. yield in Table B1, may result in a larger cor-

relation coefficient Cij . Although Cij in Table 1 is computa-

tion intensive, needing a large number of modeling iterations,

a rough estimation (Eq. 4) of Cij may be meaningful in find-

ing the proper spatial resolution before the model upscaling

is conducted:

Cij =

m
∑

k=1

Iij,k × sk

m
∑

k=1

sk

, (4)

where sk is the sensitivity index of the model parameter k

(e.g., Table B1 in Appendix B) and m is the number of model

input variables under consideration. Iij,k is a binary variable

taking a value of 1 or 0. If cells i and j share data for the

model input variable k, Iij,k is assigned a value of 1; other-

wise, it is 0. The sensitivity index sk reflects the difference

in the importance of the model input variables to the model

output. Figure 3 presents the comparison of the correlation

coefficients calculated in two ways. Though the rough esti-

mation of Cij via Eq. (4) differs to some extent from those

in Table 1, the values exhibit the same trend in reflecting the

impacts of data sharing on correlations of the model outputs

between cells.

In general, the aggregation procedure is usually divided

into two phases by which the modeling is carried out: the

premodeling aggregation (the aggregation of the model input

data) and the postmodeling aggregation (the aggregation of

the model outputs). An example of the premodeling aggre-

gation in the present study is the averaging of the soil data in

each county. When no premodeling aggregation is applied,

where Ids has a value close to 1, the modeling is carried out

at the finest spatial resolution of the available data. It is ob-

viously computationally heavy. At the other extreme, when

much of the aggregation is performed before the modeling,
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Figure 3. Comparison of the correlation coefficients Cij calculated

by two methods.

which yields a value of Ids close to 0, the modeling is carried

out at the coarsest resolution of the available data. When fac-

ing remarkably diverse data abundance in model input vari-

ables, as in the case of rice paddy methane emissions (Fig. 2),

determining where to place the modeling on the pathway of

spatial aggregation is a balance between the model variables

with respect to data scarcity and the corresponding sensitiv-

ities. The indicators Ids and IR could be of help in finding

the right position at which the premodeling aggregation stops

and the modeling is carried out (Table 4). A value of 0 or 1

for Ids, all premodeling or all postmodeling aggregation, is

not a good choice. Ids should be a value between 0 and 1 to

indicate a compromise between data scarcity of model vari-

ables when the IR does not increase rapidly.

4 Conclusions

Data scarcity is a significant challenge in making regional

estimates of greenhouse gas emissions. We developed a data

sharing matrix to estimate the aggregated uncertainties in

China’s rice paddy methane emission introduced by data

scarcity. Based on the data sharing matrix, we estimated that

data scarcity in the five most sensitive factors introduced an

aggregated uncertainty to the estimates ranging from 4.5 to

8.7 Tg with a 95 % confidence interval. Aggregated uncer-

tainty may vary with the spatial resolution for a given data

set, and the indicator Ids is useful for identifying an appropri-

ate spatial resolution. An appropriate spatial resolution cor-

responds to a value between 0 and 1 for the Ids, which rep-

resents a compromise between the data scarcity of different

model variables. Improving the data abundance of model in-

puts is expected to reduce the uncertainties in estimating ter-

restrial greenhouse gas emissions, in which the sensitivity of

the model inputs also plays a key role.
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Appendix A: Description of CH4MOD and the

compilation of model inputs

CH4MOD is an semi-empirical model that simulates

methane production and emissions from rice paddies un-

der various environmental conditions and agricultural prac-

tices (Huang et al., 1998a, 2004; Xie et al., 2010). This

model calculates the production of methanogenic substrates

from the rice plant’s root exudates and added organic mat-

ter (OM) decomposition. Both OM decomposition and rice-

plant-induced substrate production are significantly influ-

enced by environmental factors, including soil texture and

temperature. Soil moisture controls the fraction of the sub-

strates transformed into methane. There are two major paths

by which the methane produced in rice paddy soils is emitted

into the atmosphere. One path is the aerenchyma system of

the rice plants, and the other is methane bubbles. Both path-

ways of methane emissions are formulated in the model.

CH4MOD runs on a daily time step, and it is driven by

daily air temperature. Its input parameters include soil sand

percentage (SAND), organic matter amendment (OM), rice

grain yield (GY), water management pattern (Wptn) and rice

cultivar index (VI).

A1 Rice harvest area and grain production

Data on rice production and the harvest area of each province

in 2010 were extracted for early, late and middle rice from

the nation’s statistical yearbook (EBCAY, 2011). The county-

level rice production census was obtained from the Chinese

Academy of Agricultural Sciences. Although the county-

level data do not record fractions of early, late or single rice

cultivation, the rotation type in each county was represented

using the approach of Frolking et al. (2002) by referring to

the climatic zonification of the cropping system in China

(Han et al., 1987).

Many studies have indicated that methane emissions differ

notably among rice varieties (Singh et al., 1997; Wang et al.,

1997). In CH4MOD, the impact of rice variety on methane

emissions was parameterized as the VI (Huang et al., 1998a,

2004). The VI ranges from 0.5 to 1.5 and typically has a value

of approximately 1.0 for most rice varieties (Huang et al.,

1997, 2004).

A2 Climate data and rice phenology

Daily mean air temperature is the only meteorological data

required to drive the CH4MOD model. Observations of air

temperature at 678 Chinese meteorological stations in 2010

were acquired from the National Meteorological Informa-

tion Center (NMIC), China Meteorological Administration

(CMA) (http://cdc.cma.gov.cn/). For counties without a me-

teorological station, the air temperatures at the nearest neigh-

boring station were used.

The rice phenology, including transplanting and harvest-

ing dates, controls the start and end of CH4MOD’s run in

simulating methane emissions. The available data regarding

rice phenology were originally isoline maps, edited by Zhang

et al. (1987), in the Atlas of Agricultural Climate in China.

The transplanting and harvesting dates for each grid were

spatially interpolated from the isolines via the TIN (triangu-

lar irregular network) technique (Aumann et al., 1991) and

assigned to each county.

A3 Soil properties

The spatial database of SAND is one of the databases devel-

oped by the Institute of Soil Sciences, Chinese Academy of

Sciences, from the samples of soil profiles obtained during

the Program of the Second Soil Survey of China and subse-

quent surveys. The database comprises 10 km × 10 km raster

data sets of soil properties at 10 cm depth intervals from the

surface down. The spatial resolution of the soil data is the

finest among the CH4MOD input parameters (Fig. 2).

A4 Organic matter amendment in rice paddies

The organic matter amended into rice fields includes various

types of farm manure (green manure, animal manure etc.)

and crop straw as well as dead roots and stubble from pre-

vious crops. Roots remaining in the soil can be accounted

for using the root / shoot ratio (Huang et al., 2007). Stub-

ble was assumed to represent one-tenth of the aboveground

straw biomass. The fraction of straw incorporation and farm

manure application, however, is not well known, and lim-

ited data are available. In the First National Census of Pol-

lution Sources conducted by the Ministry of Environmental

Protection of China (EPFNCPS, 2011), straw application in

croplands was summarized at a provincial level with the cen-

sus data (Table 2). The straw application in Table 2 is not

rice-specific but, rather, incorporates all the crops in each

province. The bias may not be significant in provinces where

rice dominates crop cultivation. In addition to crop straw, the

incorporated crop residues include dead crop roots and stub-

ble. According to Zhao and Li (2001), stubble accounts for

approximately 13 % of the total straw in dry weight.

Until now, no regular statistical data or comprehensive

census data have been available concerning the application

of manure in rice cultivation. In this study, the investigation

of how much OM amended into rice cultivation was made

during the compilation of the national inventory of methane

emission from rice cultivation of China. We delivered inves-

tigation papers to farmers in all the typical rice cultivation re-

gions of China and summarized the returned data. The details

of the data collection and the quality control can be found in

the Supporting Information to a previously published paper

(Zhang et al., 2011). The amount of farmyard manure applied

in each province (Table 2) was part of the investigation’s re-

sults.
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Figure B1. Frequency distribution of the modeled methane fluxes

in the sensitivity analysis. The filled bars are the CH4MOD outputs,

and the filled circles are outputs of the gamma distribution. The

shape and scale parameters of the gamma distribution were calcu-

lated with the statistical average (avg.) and standard deviation (SD)

of the CH4MOD outputs: β = (SD)2/(avg.) and α = (avg.)/β.

Appendix B: Sensitivity analysis of CH4MOD

Data on an environmental factor are usually expressed as

M±e, where M represents the measurement and e represents

the error. When used as model inputs, imprecise data can re-

sult in uncertainties in the model outputs with diverse magni-

tudes depending not only on the data imprecision but also on

the model sensitivity. Model sensitivity represents the vari-

ability of the model output in response to variations in model

inputs. Usually, an individual variable sensitivity analysis is

performed by varying one variable at a time. In contrast to

the individual variable sensitivity analysis, a regional sensi-

tivity analysis is performed in the present study, and simulta-

neous variations of the model inputs account for interactions

of the variables in the model. The Monte Carlo method is

commonly applied to simultaneously produce variations of

model inputs.

To scale the model input variation, the e/M is adopted for

each of the variables to make them comparable to each other,

and all the CH4MOD input parameters have positive values.

In differential form, the expression e/M can be expressed

generally as dx
x

or d(lnx). The purpose of the model sensi-

tivity analysis in the present study is to explore the modeled

methane flux variability to variations of the model input pa-

rameters as in Eq. (B1):

dy

y
∝ sk ×

dxk

xk

or d(lny) ∝ sk × d(lnxk), (B1)

where k is used to identify each model parameter and y repre-

sents the seasonal methane emissions flux (g CH4 m−2) cal-

culated by CH4MOD with xk as input. Sk is the sensitivity

index of the model variable k, and it is defined as the linear

coefficient for the relationship between methane flux and the

model input variables in terms of fractal variation.

Table B1. Sensitivity indexes of CH4MOD parameters.

Parameters
Value range

Sensitivity index

Min. Max.

Grain yield (kg ha−1) 1000 9000 0.35

Soil sand content (%) 6 90 0.63

OM amendment (kg ha−1)∗ 200 6500 0.47

Rice cultivar index 0.5 1.5 0.51

Water regime 1, 2, 3, 4, 5 0.67

∗ The fraction of OMN and OMS in the amended organic matters varies harmoniously

between 0.45 and 0.55 to reflect differences in OM types.

The Monte Carlo approach was adopted as the first step

to randomly select values of the model input parameters

from their value domains (Table B1), at which point the

methane flux was calculated with CH4MOD. This picking-

and-calculating procedure iterates for 20 000 cycles. After

logarithmic transformation of the model inputs and outputs,

a simple variable linear regression was performed, and the

sensitivity index was defined as the slope coefficient of the

regression equation.

Water management in rice cultivation is a key factor that

impacts methane emissions from rice paddies. In CH4MOD,

the diverse water management strategies in Chinese rice cul-

tivation are grouped into five irrigation patterns and include

flooding, drainage and intermittent irrigation (Huang et al.,

2004). In the case of this nominal variable, the sensitivity in-

dex was calculated as follows:

sw =
1

N
×

∑

k 6=l

|yl − yk|

y0
, k, l ∈ W , (B2)

where W = (1,2,3,4,5) in Eq. (B2) is the code set of the

irrigation water patterns (Table B1). N is the total number

of (j,k) pairs, and yl , yk and yo represent the mean methane

flux for the irrigation water pattern l, k and all water patterns,

respectively.

To run the CH4MOD simulation, daily air temperatures

must be available for the duration of rice growth from the

dates of transplanting to the harvest. In the model sensitiv-

ity analysis, the temperature data are virtually created by the

following equations:

T
(t)
air = T max − |t − Smax| × DT + R(−0.5,0.5), (B3)

DT =

{

(T max − T min)/(Smax − Ss), T ≤ Smax

(T max − T min)/(Se − Smax), T > Smax,
(B4)

Smax = R(Ss,Se), (B5)

T max = R(25.0,35.0), (B6)

T min = R(10.0,20.0), (B7)

where the function R(v1, v2) returns a random number be-

tween v1 and v2. Ss and Se represent the transplanting and

harvesting dates, respectively, and Smax is the day on which

the air temperature reaches its maximum for the rice season.
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The time variable t (Ss ≤ t ≤ Se) represents days after trans-

planting.

The results indicated that methane emissions are most sen-

sitive to field irrigation, with a sensitivity index of 0.67 (Ta-

ble B1). The soil texture, rice variety and organic matter ap-

plication rank lower, with sensitivity indices of 0.63, 0.51

and 0.47, respectively.

Geosci. Model Dev., 7, 1211–1224, 2014 www.geosci-model-dev.net/7/1211/2014/



W. Zhang et al.: Uncertainties in estimating regional methane emissions from rice paddies 1223

Author Contribution

W. Zhang and Y. Huang pondered the rationale of the

method. T. T. Li and Q. Zhang developed the model code

and performed the simulations. J. Y. Bian and P. F. Han made

the data collection and processing. W. Zhang, Q. Zhang and

T. T. Li prepared the manuscript with contributions from all

coauthors.

Acknowledgements. The study was jointly supported by the Na-

tional Natural Science Foundation of China (grant no. 41175132,

41075107, 41321064) and the National Key Basic Research

Development Foundation of China (grant no. 2010CB950603). We

thank the Resources and Environmental Scientific Data Center of

the Chinese Academy of Sciences and the National Meteorological

Information Center of the Chinese Meteorological Administration

for their support by providing the data. We are grateful to professor

Heikki Järvinen and professor Timo Vesala at the University of

Helsinki and the three anonymous reviewers for their helpful

comments and suggestions to the manuscript.

Edited by: M. Kawamiya

References

Aumann, G., Ebner, H., and Tang, L.: Automatic derivation of

skeleton lines from digitized contours. J. Photogr. Remote Sens.,

46, 259–268, 1991.

Cai, Z. C.: A category for estimate of CH4 emission from rice paddy

fields in China, Nutr. Cycl. Agroecosys., 49, 171–179, 1997.

Commission of The First National Pollution Source Census Data

Compilation of China (CFPC): Datasets of China Pollution

Source Census, China Environmental Science Press, Beijing,

China, 2011.

Editorial Board of China Agriculture Yearbook (EBCAY): China

Agriculture Yearbook, China Agriculture Press, Beijing, China,

2011.

Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y.,

Li, C., and Qin, X.: Combining remote sensing and ground

census data to develop new maps of the distribution of rice

agriculture in China, Global Biogeochem. Cy., 16, 1091,

doi:10.1029/2001GB001425, 2002.

Goovaerts, P.: Geostatistical modelling of uncertainty in soil sci-

ences, Geoderma, 103, 3–26, 2001.

Han, X., Liu, X., Gao, L., and Li, L.: Climatic zonification of crop-

ping system in China, in: Multiple cropping systems in China,

edited by: Han, X. and Liu, X., China Agriculture University

Press, Beijing, 28–46, 1987 (in Chinese).

Harvey, L. D. D.: Up scaling in global change research, Clim.

Change., 44, 225–263, 2000.

Huang, Y., Sass, R. L., and Fisher, F. M.: Methane emission from

Texas rice paddy soils1 Quantitative multi-year dependence of

CH4 emission on soil, cultivar and grain yield, Glob. Change

Biol., 3, 479–489, 1997.

Huang, Y., Sass, R. L., and Fisher, F. M.: A semi−empirical model

of methane emission from flooded rice paddy soils, Glob. Change

Biol., 4, 247–268, 1998a.

Huang, Y., Sass, R. L., and Fisher, F. M.: Model estimates of

methane emission from irrigated rice cultivation of China, Glob.

Change Biol., 4, 809–821, 1998b.

Huang, Y., Zhang, W., Zheng, X., Li, J., and Yu, Y.:

Modeling methane emission from rice paddies with vari-

ous agricultural practices, J. Geophys. Res., 109, D08113,

doi:10.1029/2003JD004401, 2004.

Huang, Y., Zhang, W., Zheng, X., Han, S., and Yu, Y.: Estimates of

methane emissions from Chinese rice paddies by linking a model

to GIS database, Acta Ecol. Sinica, 26, 980–987, 2006.

Huang, Y., Zhang, W., Sun, W., and Zheng, X.: Net primary pro-

duction of Chinese croplands from 1955 to 1999, Ecol. Appl.,

17, 692–701, 2007.

IPCC (Intergovernmental Panel on Climate Change): IPCC

Good Practice Guidance and Uncertainty Management in

National Greenhouse Gas Inventories, edited by: Penman,

J., Habetsion, S., Abel, K., Eggleston, S., and Pullus, T.,

IPCC/OECD/IEA/IGES, Hayama, Japan, 2000.

Kennedy, M. C. and O’Hagan, A.: Bayesian calibration of computer

models, J. R. Stat. Soc. B., 63, 425–464, 2011.

Khalil, M. A. K. and Butenhoff, C. L.: Spatial variabil-

ity of methane emission from rice fields and implications

for experimental design, J. Geophys. Res., 113, G00A09,

doi:10.1029/2007JG000517, 2008.

King, A. W., Johnson, A. R., and O’Neill, R. V.: Transmutation and

functional representation of heterogeneous landscapes, Land-

scape Ecol., 5, 239–253, 1991.

Li, C., Qiu, J., Frolking, S., Xiao, X., Salas, W., Moore, B.,

Boles, S., Huang, Y., and Sass, R.: Reduced methane emis-

sions from large-scale changes in water management of China’s

rice paddies during 1980–2000, Geophys. Res. Lett., 29, 1972,

doi:10.1029/2002GL015370, 2002.

Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y.,

Tsuruta, H., Boonjawat, J., and Lantin, R.: Modeling green-

house gas emissions from rice-based production systems: Sen-

sitivity and up scaling, Global Biogeochem. Cy., 18, GB1043,

doi:10.1029/2003GB002045, 2004.

Matthews, R. B., Wassmann, R., Knox, J. W., and Buendia, L. V.:

Using a Crop/Soil Simulation Model and GIS Techniques to As-

sess Methane Emissions from Rice Fields in Asia, IV, Upscaling

to National Levels, Nutr. Cycl. Agroecosys., 58, 210–217, 2000.

Oberthür, T., Goovaerts, P., and Dobermann, A.: mapping soil tex-

ture classes using field texturing, particle size distribution and lo-

cal knowledge by both conventional and geostatistical methods,

Eur. J. Soil Sci., 50, 457–479, 1999.

Ogle, S., Breidt, F., Eve, M., and Paustian, K.: Uncertainty in esti-

mating land use and management impacts on soil organic carbon

storage for US agricultural lands between 1982 and 1997, Glob.

Change Biol., 9, 1521–1542, 2003.

Ogle, S., Breidt, F., Easter, M., Williams, S., Killian, K., and Paus-

tian, K.: Scale and uncertainty in modeled soil organic carbon

stock changes for US croplands using a process-based model,

Glob. Change Biol., 16, 810–822, 2010.

Peng, S., Li, D., Xu, J., Ding, J., He, Y., and Yu, J.: Effect of Water-

Saving Irrigation on the Law of CH4 Emission from Paddy Field,

Environ. Sci., 28, 9–13, 2007.

Ren, W., Tian, H., Xu, X., Liu, M., Lu, C., Chen, G., Melillo, J.,

Reilly, J., and Liu, J.: Spatial and temporal patterns of CO2 and

CH4 fluxes in China’s croplands in response to multifactor envi-

www.geosci-model-dev.net/7/1211/2014/ Geosci. Model Dev., 7, 1211–1224, 2014

http://dx.doi.org/10.1029/2001GB001425
http://dx.doi.org/10.1029/2003JD004401
http://dx.doi.org/10.1029/2007JG000517
http://dx.doi.org/10.1029/2002GL015370
http://dx.doi.org/10.1029/2003GB002045


1224 W. Zhang et al.: Uncertainties in estimating regional methane emissions from rice paddies

ronmental changes, Tellus B, 63, 222–240, doi:10.1111/j.1600-

0889.2010.00522.x, 2011.

Ross, S. M.: A First Course in Probability, 7th Edn., Pearson Edu-

cation Inc. Prentice Hall, 355–358, 2006.

Shi, X., Yu, D., Warner, E. D., Pan, X., Peterson, G. W., Gong, Z.,

and Weindorf, D. C.: Soil database of 1:1,000,000 digital soil

survey and reference system of the Chinese genetic soil classifi-

cation system, Soil Survey Horizons, 45, 129–136, 2004.

Shi, X., Yu, D., Yang, G., Wang, H., Sun, W., Guo, H., and Gong, Z.:

Cross-reference benchmarks for translating the genetic soil clas-

sification of China into the Chinese soil taxonomy. Pedosphere,

16, 147–153, 2006.

Singh, S., Kumar, S., and Jain, M. C.: Methane emission from

two India soil planted with different rice cultivars, Biol. Fertil-

ity Soil., 25, 285–289, 1997.

van Bodegom, P. M., Leffelaar, P. A., Stams, A. J. M., and Wass-

mann, R.: Modeling methane emissions from rice fields: Vari-

ability, uncertainty, and sensitivity analysis of processes in-

volved, Nutr. Cyc. Agroecosys., 58, 231–248, 2000.

van Bodegom, P. M., Verburg, P. H., Stein, A., Adiningsih, S., and

Denier van der Gon, H. A. C.: Effects of interpolation and data

resolution on methane emission estimation from rice paddies,

Environ. Ecol. Stat., 9, 5–26, 2002.

Verburg, P. H., van Bodegom, P. M., Denier van der Gon, H. A.

C., Bergsma, A., and van Breemen, N.: Upscaling regional emis-

sions of greenhouse gases from rice cultivation: methods and

sources of uncertainty, Plant Ecol., 182, 89–106, 2006.

Wang, B., Neue, H. U., and Sanmote, H. P.: Effect of cultivar dif-

ference, “IR72”, “IR69958” and “Dular”) on methane emission,

Agr. Ecosys. Environ. 62, 31–40, 1997.

Wassmann, R., Neue, H. U., Alberto, M. C. R., Lantin, R. S., Bueno,

C., Llenaresas, D., Arah, J. R. M., Papen, H., Rennenberg, H.,

and Seiler, W.: Flux and pools of methane in wetland rice soils

with varying organic inputs, Environ. Monit. Assess., 42, 163–

173, 1996.

Xie, B., Zhou, Z., Zheng, X., Zhang, W., and Zhu, J.: Modeling

methane emissions from paddy rice fields under elevated atmo-

spheric carbon dioxide conditions, Adv. Atmos. Sci., 27, 100–

114, 2010.

Yan, X., Cai, Z., Ohara, T., and Akimoto, H.: Methane emis-

sion from rice fields in mainland China: Amount and sea-

sonal and spatial distribution, J. Geophys. Res., 108, 4505,

doi:10.1029/2002JD003182, 2003.

Yao, H., Huang, Y., and Chen, Z.: Estimation of methane from rice

paddies in mainland China, Global Biogeochem. Cy., 10, 641–

649, 1996.

Yu, Y., Huang, Y., and Zhang, W.: Modelling soil organic car-

bon change in croplands of China, 1980–2009, Global Planet.

Change, 82–83, 115–128, 2012.

Zhang, F., Wang, D., and Qiu, B.: Map of Agro-Climate in China,

Science Press, Beijing, China, 1987 (in Chinese).

Zhang, W., Yu, Y., Huang, Y., Li, T., and Wang, P.: Modeling

methane emissions from irrigated rice cultivation in China from

1960 to 2050, Glob. Change Biol., 17, 3511–3523, 2011.

Zhao, Q. and Li, Q.: Presents and prospects of crop straw applica-

tion in southern China, in: Mechanism and Techniques in Straw

Application, edited by: Liu, X., Gao, W., and Zhu, W., China

Agricultural Science and Technology Press, Beijing, China, 138–

146, 2001 (in Chinese).

Geosci. Model Dev., 7, 1211–1224, 2014 www.geosci-model-dev.net/7/1211/2014/

http://dx.doi.org/10.1111/j.1600-0889.2010.00522.x
http://dx.doi.org/10.1111/j.1600-0889.2010.00522.x
http://dx.doi.org/10.1029/2002JD003182

