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Abstract The extreme values of wave climate data are of

great interest in a number of different applications, including

the design and operation of ships and offshore structures,

marine energy generation, aquaculture and coastal instal-

lations. Typically, the return values of certain met-ocean

parameters such as significant wave height are of particular

importance. In a climate change perspective, projections of

such return values to a future climate are of great importance

for risk management and adaptation purposes. However,

there are various ways of estimating the required return

values, which introduce additional uncertainties in extreme

weather and climate variables pertaining to both current and

future climates. Many of these approaches are investigated

in this paper by applying different methods to particular

data sets of significant wave height, corresponding to the

historic climate and two future projections of the climate

assuming different forcing scenarios. In this way, the uncer-

tainty due to the extreme value analysis can also be compared

to the uncertainty due to a changing climate. The different

approaches that are considered in this paper are the initial dis-

tribution approach, the block maxima approach, the peak over

threshold approach and the average conditional exceedance

rate method. Furthermore, the effect of different modelling

choices within each of the approaches will be explored. Thus,

a range of different return value estimates for the different

data sets is obtained. This exercise reveals that the uncertainty

due to the extreme value analysis method is notable and, as

expected, the variability of the estimates increases for higher

return periods. Moreover, even though the variability due to

the extreme value analysis is greater than the climate variabil-

ity, a shift towards higher extremes in a future wave climate
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can clearly be discerned in the particular datasets that have

been analysed.

Keywords Ocean and coastal engineering · Wave climate ·

Extreme value analysis · Climate change · Significant wave

height · Environmental loads

1 Introduction

Extreme value analysis of wave climate parameters is an

important part of ocean and coastal engineering where the

extreme loads from extreme environmental conditions need

to be taken into account. However, there are large uncer-

tainties associated with extreme value analyses, and the

uncertainties generally increase for higher return periods.

Ideally, time series that are long compared to the desired

return periods should be available to reliably extract return

values. In practice, however, the opposite is true and return

values corresponding to return periods much longer than the

length of recorded data are needed. Therefore, there is a need

to extrapolate to obtain estimates of the tail behaviour of

the underlying statistical distributions. Intuitively, the fur-

ther away from the data one has to extrapolate, the larger

the uncertainties of the resulting estimates will be. As a rule

of thumb, for example, the ISO standard ISO 19901-1 (ISO

2005) recommends to not use return periods more than a

factor of four beyond the length of the data set when deriv-

ing return values for design of offshore structures. Hence,

for the datasets analysed in this paper, covering a period of

30 years, the longest return periods that should be investi-

gated are 120 years. Adhering to this rule of thumb, return

values for 20- and 100-year return periods will be estimated

in this paper.
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There are a number of different approaches to extreme

value analysis and return value estimation, which all rely

on a set of assumptions. The initial distribution approach

fits a statistical model to all the data under the assumption

of independent and identically distributed (iid) observations

and estimate high return values by extrapolating the fitted

distribution to high quantiles corresponding to the desired

return periods. However, one fundamental problem with this

approach is that most of the data used to fit the model will

lie near the mode of the distribution and hence quite remote

from the tail area of interest. As a consequence, such mod-

els will typically often be able to capture the area close to

the mode of the distribution quite well, but may give poor

fit to the tail of the distribution. Another source of uncer-

tainty encountered with this approach, as indeed with all

statistical model fits, is the fitting procedures. Even after hav-

ing selected a parametric model to fit to the data, there are

several methods to estimate the model parameters, such as

the maximum likelihood, the method of moments, the least

squares method and other approaches. Some methods for

the initial distribution approach will be investigated in this

paper and compared to other means of estimating extreme

values.

Some of the classical approaches to extreme value analy-

sis rely on assumptions on the asymptotic behaviour of the

extremes as the number of observations approaches infin-

ity. These methods will typically also assume that the data

are iid, i.e. that the observations are realizations from the

same stationary process and can be construed as indepen-

dent samples drawn from the same probability distribution.

Two commonly used approaches to extreme value analysis

are the block maxima (BM) approach and the peaks over

threshold (POT) approach. An obvious drawback with these

approaches is that they are wasteful and only exploits a small

subset of all the data available. As will be demonstrated

in this study, this also significantly increases the statistical

uncertainty of the resulting return value estimates. An intro-

duction to these methods, along with a general introduction

to the theory behind extreme value analysis, can be found in

Coles (2001). Both the block maxima approach and the POT

method will be explored in this paper. Recent applications of

the POT approach to analyse the extremes of ocean waves

are presented in e.g. Caires and Sterl (2005) and Thevasiyani

and Perera (2014).

A more recent method for extreme value analysis that

allows for the assumptions of independence to be relaxed

is proposed in Naess and Gaidai (2009), i.e. the average

conditional exceedance rate method (ACER). It was initially

proposed only for the asymptotic Gumbel case, but was later

extended to apply in more general cases (Naess et al. 2013).

A further generalization to the bivariate case has also been

presented in Naess and Karpa (2013). In the study presented

in this paper, the univariate ACER approach will be applied

and compared to the other methods for estimating extreme

return values.

A full Bayesian approach to extreme value modelling is

set forth in Coles et al. (2003), and a Bayesian hierarchi-

cal model is presented in Oliver et al. (2014) for estimating

extremes from climate model output. A review of Bayesian

approaches to extreme value methods is given in Coles and

Powell (1996). An alternative approach to estimate return

values of significant wave height, referred to as the (modi-

fied) Rice method is proposed in Rychlik et al. (2011). See

also the review of extreme value modelling for marine design

in Jonathan and Ewans (2013). Possibly, results from these

and other approaches could be applied in future work and

compared to the results in this paper.

Several previous studies have discussed the bias and

uncertainty of extreme value prediction of metocean para-

meters, see, e.g. Gibson et al. (2009), Hagen (2009), and

Aarnes et al. (2012). Uncertainty of extreme value prediction

is divided into statistical uncertainty and modelling uncer-

tainty in Li et al. (2014) which also investigates the impact on

structural reliabilities. The uncertainty of design values from

extreme value analyses is also addressed in Harris (2001) and

different methods of extreme value estimation of wind speeds

are compared in An and Pandey (2005). Some fundamental

problems in extreme value analysis such as uncertainties due

to plotting position, the fitting method and due to the fact that

the asymptotic conditions are never fulfilled in practice are

discussed in Makkonen (2008). In design problems, joint dis-

tributions of several metocean parameters are often needed,

and the extremal dependence of those variables becomes very

important. This is addressed in Towe et al. (2013), but the

present study is limited to univariate extreme value analyses.

It is out of scope of this paper to provide a comprehensive lit-

erature survey of uncertainties in extreme value analysis, and

the references above are included simply to demonstrate that

this is an important issue that has been discussed at length

in the academic and technical literature without arriving at

final conclusions.

It is noted that there are several sources of uncertainties

of future climate projections that are not investigated in this

paper. The climate scenario is obviously important, and only

two future scenarios are considered in this study. However,

studies have demonstrated that the choice of climate model

might contribute more to the overall uncertainty of the future

wave climate than the climate scenarios themselves (Wang

and Swail 2006; Grabemann and Weisse 2008; Grabemann

et al. 2015; Wang et al. 2012, 2014; see also de Winter et al.

2013). Future projections of waves are typically obtained

using wind output from climate models as input to numer-

ical wave models, and also the choice of wave model, the

downscaling method and the model resolution will have a

big impact on the results. Hence, the uncertainties associ-

ated with future wave climate extremes are not restricted to
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the uncertainties due to the statistical extreme value analysis

which is the focus of this paper. Nevertheless, these uncer-

tainties remain important and will also be equally present in

the estimation of extremes in historical, present and future

climates.

In the following, several approaches to univariate extreme

value analysis are applied to wave climate data for a historical

period and for two future climate projections. First, the wave

data will be described and then the results from the differ-

ent extreme value analyses will be presented. The estimated

return values from the different methods are then compared

and the differences are discussed. Preliminary results from

this study will be presented at the OMAE 2015 conference

(Vanem 2015).

2 The wave data

For the purpose of this study, a particular set of three datasets

generated by running the numerical wave model WAM (Reis-

tad et al. 2011) for an area in the North Atlantic with forcings

from the climate model GFDL-CM3 (Donner et al. 2011)

are analysed. One particular location is analysed, disregard-

ing the spatial variability, i.e. the location at 59.28◦N and

11.36◦W in the North Atlantic Ocean. The three datasets

correspond to a 30-year historical period from 1970 to 1999

and two future periods consistent with the RCP 4.5 and RCP

8.5 scenarios, respectively (Moss et al. 2010; van Vuuren

et al. 2011), from 2071 to 2100. The variable that will be

considered is the significant wave height, Hs, of the total

sea, i.e. including both the wind sea and the swell compo-

nent. The temporal resolution of the data is 3 h, resulting in

very long time series. A total of 87,599 data are included

in the historical dataset and the future projections contain

87,597 data points. Summary statistics from the datasets are

presented in Table 1. These summary statistics indicate that

the distributions for the different scenarios are different. An

interesting observation is that even though the extremes and

all quantiles higher than 95 % are higher in both the future

scenarios, the mean value and actually all quantiles up to at

least the median are higher for the historical period. However,

the data for the future climate scenarios have higher standard

deviation (larger spread), higher positive skewness (longer

upper tails) and higher kurtosis (fatter upper tails), which

would all contribute to give higher extreme values in a future

scenario.

3 Extreme value analyses of significant wave height

In the following, the datasets for significant wave height

presented above will be subject to different extreme value

analysis methods and it will be investigated how sensitive

the results are to the choice of method and different choices

within each method. Obviously, the actual results are condi-

tioned on this dataset, but it is believed that it will still give

a good indication of the modelling uncertainties in extreme

value analysis. The approaches that have been applied are

different variations of the initial distribution approach, the

block maxima approach, the peaks-over-threshold approach

and the ACER method.

Table 1 Summary statistics and
quantiles

Statistic Historic period
(1970–1999)

RCP 4.5
(2071–2100)

RCP 8.5
(2071–2100)

Number of data points (N) 87,599 87,597 87,597

Mean 3.232 3.158 3.122

Standard deviation 1.754 1.862 1.979

Skewness 1.216 1.395 1.413

Kurtosis 1.996 3.177 2.688

Minimum value 0.3 0.2 0.2

10 % quantile 1.4 1.2 1.1

25 % quantile 1.9 1.8 1.7

50 % quantile (median) 2.9 2.7 2.7

75 % quantile 4.1 4.1 4.1

90 % quantile 5.7 5.6 5.8

95 % quantile 6.6 6.7 7.0

99 % quantile 8.7 9.2 9.6

99.9 % quantile 11.5 12.6 12.8

99.99 % quantile 14.5 17.7 15.9

Maximum value 15.6 21.7 17.5
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3.1 Initial distribution approach

One approach to extreme value modelling is the initial distri-

bution approach, where all the data are used to fit a probability

density function and then the extremes are estimated from the

fitted distribution by extrapolation to higher return periods.

The obvious advantage of this method is that it exploits all the

available information, i.e. data. However, as most data will

lie close to the mode of the distribution, it might not give a

very good representation of the tail area of the distribution,

which is the interesting part for extreme value analysis.

Often, the Weibull distribution is assumed appropriate for

significant wave height, and in this paper the results of fitting

both the 2- and 3-parameter Weibull distributions to the data

by way of maximum likelihood are reported, in Tables 2, 3,

respectively. The 3-parameter Weibull distribution, some-

times referred to as the translated Weibull distribution, is a

generalization of the 2-parameter Weibull distribution where

an additional location parameter, µ, has been added. The

location parameter allows a lower limit for the support of the

distribution and the density function will be zero for values

less than this location parameter. The probability distribution

function of the 3-parameter Weibull distribution is defined

as follows, with location parameter γ , scale parameter α and

shape parameter β:

f (x) =
β

α

(

x − γ

α

)β−1

e−{(x−γ )/α}β x ≥ γ (1)

The shape and scale parameters need to take positive values;

α > 0, β > 0, and the location parameter can in principle

take any value, but f (x) = 0 for x ≤ γ . The 2-parameter

Weibull distribution function is easily obtained by letting the

location parameter be zero.

The results differ considerably and illustrate the sensitivity

due to the choice of distribution to use. Obviously, other

distributions could also have been assumed to give different

return value estimates. It is also observed that the extremes

tend to be underestimated by these models. In fact, except for

the RCP 8.5 data with the 3-parameter Weibull model, all the

100-year return value estimates are lower than the 99.99 %-

tile in the original data. For 3-hourly data, the 99.99 %-tile

corresponds to a return period of less than 3.5 years.

Even if the parametric model has been decided, there

are several fitting methods that can be employed that will

yield different parameter estimates and consequently differ-

ent return value estimates. In order to illustrate this, the results

of fitting the 3-parameter Weibull distribution to the data by

way of the method of moments (MoM), the method of L-

moments, minimization of the Cramer von Mises distance

and by minimizing the second order Anderson–Darling sta-

tistic, respectively. The results are presented in Tables 4, 5,

6 and 7.

The fits based on the second-order Anderson–Darling

statistic are found to consistently yield higher return value

estimates, and this statistic is known to give more weight on

the tail of the distribution. Hence, this might be the preferred

method in this case. Nevertheless, this study demonstrates

that there are large uncertainties associated with return value

estimates for high return periods, even with a single approach

(initial distribution approach) and with a single paramet-

ric model. The different fitted distributions are illustrated in

Table 2 Parameter and return
value estimates for 2-parameter
Weibull distributions fitted to all
the data by maximum likelihood

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.9670 1.8173 1.6955

Scale parameter (α) 3.6628 3.5720 3.5206

20-year return value 12.38 m [0.0395] 13.35 m [0.0451] 14.46 m [0.0534]

95 % CI (12.31, 12.46) (13.26, 13.44) (14.36, 14.56)

100-year return value 13.27 m [0.0444] 14.39 m [0.0512] 15.68 m [0.607]

95 % CI (13.19, 13.36) (14.29, 14.49) (15.57, 15.80)

Standard errors in brackets

Table 3 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to all the data
by maximum likelihood

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.7763 1.6965 1.5757

Scale parameter (α) 3.3098 3.3322 3.2732

Location parameter (µ) 0.2995 0.1995 0.1989

20-year return value 13.05 m [0.0458] 13.88 m [0.0499] 15.17 m [0.0613]

95 % CI (12.95, 13.14) (13.78, 13.97) (15.05, 15.30)

100-year return value 14.07 m [0.0520] 15.03 m [0.0569] 16. 53 m [0.0703]

95 % CI (13.96, 14.17) (14.91, 15.14) (16.39, 16.67)
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Table 4 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to all the data
by the method of moments
(MoM)

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.3875 1.2703 1.2597

Scale parameter (α) 2.6337 2.5311 2.6642

Location parameter (µ) 0.8283 0.8087 0.6453

20-year return value 15.63 m [0.109] 17.49 m [0.144] 18.49 m [0.154]

95 % CI (15.42, 15.85) (17.20, 17.76) (18.20, 18.81)

100-year return value 17.17 m [0.130] 19.39 m [0.174] 20.54 m [0.185]

95 % CI (16.91, 17.43) (19.04, 19.72) (20.18, 20.92)

Table 5 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to all the data
by the method of L-moments
(LM)

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.411 1.347 1.269

Scale parameter (α) 2.672 2.686 2.681

Location parameter (µ) 0.780 0.694 0.633

20-year return value 15.40 m [0.0840] 16.60 m [0.0929] 18.33 m [0.112]

95 % CI (15.23, 15.56) (16.41, 16.77) (18.11, 18.56)

100-year return value 16.89 m [0.0986] 18.30 m [0.110] 20.35 m [0.133]

95 % CI (16.68, 17.08) (18.07, 18.50) (20.08, 20.62)

Table 6 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to all the data
by minimizing the Cramer von
Mises distance

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.4383 1.3788 1.2960

Scale parameter (α) 2.6612 2.7020 2.6855

Location parameter (µ) 0.8042 0.6770 0.6262

20-year return value 14.88 m [0.0947] 16.03 m [0.110] 17.68 m [0.126]

95 % CI (14.68, 15.07) (15.80, 16.23) (17.43, 17.93)

100-year return value 16.28 m [0.111] 17.63 m [0.129] 19.58 m [0.149]

95 % CI (16.05, 16.51) (17.36, 17.86) (19.28, 19.88)

Table 7 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to all the data
by minimizing the second-order
Anderson–Darling statistic

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.3564 1.2012 1.2485

Scale parameter (α) 2.5522 2.3424 2.6301

Location parameter (µ) 0.9032 0.9783 0.6765

20-year return value 15.83 m [0.162] 18.19 m [0.194] 18.60 m [0.208]

95 % CI (15.49, 16.08) (17.74, 18.54) (18.10, 18.89)

100-year return value 17.41 m [0.197] 20.27 m [0.237] 20.67 m [0.255]

95 % CI (16.99, 17.71) (19.72, 20.69) (20.06, 21.02)

Fig. 1, which also includes a close-up of the tail areas. It is

observed that in spite of its theoretical advantages, the max-

imum likelihood estimates seem to yield the worst fit to the

data.

Included in the tables are also bootstrap estimates of the

standard errors (in brackets) and the 95 % confidence inter-

vals of the return value estimates. These are obtained by

parametric bootstrap with B = 1000 bootstrap samples and

are conditioned on the estimated model. It is observed that the

statistical uncertainty conditioned on the established models

is quite small. This is due to the quite large datasets that are

available for the initial distribution approach. The confidence

intervals for the historical period are mostly not overlapping

with the corresponding confidence intervals for the future

scenarios. This indicates that there is a statistically signifi-

cant trend, at the 5 % confidence level, in the extreme wave

climate described by these particular datasets. However, the

different results from the different fitting methods illustrate
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Fig. 1 The alternative fitted Weibull densities for the historical data (left), RCP 4.5 (middle) and RCP 8.5 (right). The upper row shows the
complete distributions and the lower row shows a close-up on the tail areas

that the unconditional uncertainty is quite large due to the

problem of accurately fitting the tail area of the distribution.

3.2 The block maxima approach

One common approach to extreme value analysis is to fit

a parametric model such as the generalized extreme value

(GEV) model to block maxima (Coles 2001). Block sizes of

one year is typical, but the results might be sensitive to the

block size. In this paper, different block sizes are tried out

to investigate this. Furthermore, it is implicitly assumed that

the maxima are independent and identically distributed (iid).

Within a climate change perspective, this approach needs

to assume that the extremes can be considered stationary

within each of the time intervals, i.e. that the extremes are

stationary during the 30-year reference period and the 30-

year projection period. If the effect of any long-term trend is

small compared to the other variability, this might not be a

very unrealistic approximation.

The density function of the GEV distribution is as follows,

with location parameter µ ∈ R, scale parameter σ > 0 and

shape parameter ξ ∈ R:

g (x;µ, σ, ξ)=
1

σ

[

1+ξ

(

x−µ

σ

)]−1/ξ−1

e
−

[

1+ξ
(

x−µ
σ

)]−1/ξ

for 1 + ξ

(

x − µ

σ

)

> 0 (2)

In the following, different GEV-models will be fitted to each

data set, with block sizes corresponding to 1 year, 2 years

and 6 months, respectively. The different block sizes give

different subsets of the data for fitting; small block sizes give

a larger sample to fit to the model, but the iid assumption

becomes less obvious. For example, using the semiannual

maxima over the 30-year periods gives 60 samples and

assumes that the distributions of wave heights are the same

for the first 6 months of the year as for the last 6 months.

Using the biennial maxima, on the other hand, reduces the

sample size to 15.

This exercise yields a total of 9 different estimated GEV-

distributions, and the model parameters are presented in

Table 8 together with the corresponding 20-year and 100-year

return periods. Again, standard error and 95 % confidence

intervals for the return values are estimated by parametric

bootstrap. Note that the parameter estimates for the different
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Table 8 Estimated GEV-models and associated return value estimates for different block sizes

Historical period RCP 4.5 RCP 8.5

Block size 12 m 24 m 6 m 12 m 24 m 6 m 12 m 24 m 6 m

Shape (ξ ) −0.0377 −0.595 −0.0629 0.272 −0.0472 0.142 −0.0711 −0.393 −0.219

Scale (σ ) 1.420 1.950 1.520 1.717 2.324 1.717 1.533 1.766 1.977

Location (µ) 11.341 12.619 10.210 11.821 13.699 10.563 12.633 13.946 11.403

20-Year return value 15.33 m [0.867] 15.04 m [0.353] 15.20 m [0.811] 19.66 m [3.068] 18.66 m [1.489] 18.85 m [1.866] 16.74 m [0.844] 16.58 m [0.468] 16.67 m [0.585]

95 % CI (13.60, 16.88) (14.60, 16.02) (13.55, 16.80) (12.05, 23.54) (15.70, 16.75) (14.56, 21.85) (15.03, 18.34) (15.93, 17.76) (15.58, 17.89)

100-Year return value 17.34 m [2.311] 15.58 m [0.538] 17.05 m [1.552] 27.55 m [12.617] 21.98 m [6.365] 24.11 m [4.634] 18.65 m [1.850] 17.47 m [0.938] 17.94 m [0.962]

95 % CI (12.57, 20.15) (15.12, 16.75) (13.67, 19.57) (−5.69, 36.99) (8.86, 27.17) (12.92, 30.45) (14.35, 21.57) (16.05, 19.12) (16.02, 19.77)

Table 9 Estimated Gumbel models and associated return value estimates for different block sizes

Historical period RCP 4.5 RCP 8.5

Block size 12 m 24 m 6 m 12 m 24 m 6 m 12 m 24 m 6 m

Scale (σ ) 1.399 1.655 1.494 1.977 2.291 1.827 1.491 1.646 1.977

Location (µ) 11.312 12.078 10.160 12.093 13.640 10.698 12.576 13.595 11.167

20-Year return value 15.47 m [0.741] 15.80 m [0.972] 15.65 m [0.639] 17.96 m [1.037] 18.80 m [1.335] 17.41 m [0.794] 17.00 m [0.763] 17.30 m [0.972] 18.43 m [0.860]

95 % CI (14.01, 16.92) (13.91, 17.73) (14.37, 16.85) (15.97, 20.08) (16.26, 21.51) (15.77, 18.86) (15.47, 18.54) (15.44, 19.18) (16.67, 20.09)

100-Year return value 17.75 m [1.061] 18.53 m [1.481] 18.07 m [0.873] 21.19 m [1.478] 22.58 m [2.028] 20.37 m [1.082] 19.43 m [1.087] 20.02 m [1.491] 21.64 m [1.173]

95 % CI (15.73, 19.84) (15.64, 21.56) (16.34, 19.74) (18.32, 24.26) (18.88, 26.77) (18.17, 22.36) (17.31, 21.63) (17.08, 23.02) (19.33, 23.88)

models are not comparable since the data sets are differ-

ent, but the resulting return values should in principle be

comparable—they are different estimates of the same quan-

tity. All the fits are obtained by the maximum likelihood

method.

These results indicate that the block size has an influence

on the estimated distributions and hence on the estimated

return values. It is observed that using the 1-year extremes

to fit a GEV-model gives generally higher return values. It

is interesting to observe that the statistical uncertainty of the

return value estimates are much higher for the block maxima

approach compared to the initial distribution approach. This

is natural since the number of data samples is much lower.

Whereas the initial datasets had almost 90,000 samples, the

annual maxima data, for example, contain only 30 yearly

maxima. It is also observed that the estimates pertaining to the

RCP 4.5 data are particularly uncertain. Indeed, the 100-year

return value 95 % confidence interval for this dataset ranges

from negative values to almost 37 m. The confidence intervals

for the return value estimates in the historical data overlap

with the confidence intervals for the future projections and,

therefore, the block maxima approach is in fact not able to

detect any statistically significant shift due to climate change.

This is in contrast to the initial distribution approach, where

the climatic shifts were found to be statistically significant.

The Gumbel distribution is a special case of the GEV-

distribution where the shape parameter, ξ , is 0. It can be

seen from the table above that in fact ξ is not significantly

different from 0 in some cases. Hence, one could assume

ξ = 0 and fit a Gumbel distribution to the extremes and

compare the results with the full GEV-model. The resulting

parameter estimates and return value estimates are presented

in Table 9, with standard error estimates of the return val-

ues included in brackets. In practice, the effect of assuming

a Gumbel distribution will be that for GEV-models with a

positive shape parameter, the return values will be reduced,

whereas the GEV-models with negative shape parameters

will get increasing return values by enforcing ξ = 0. The

uncertainties associated with this choice illustrate additional

model uncertainties that contribute to the overall uncertainty

when modelling the extremes. However, other choices than

the Gumbel model are available, so the difference between

the fitted GEV-model and the Gumbel model does not reflect

the overall extreme value model uncertainty. It is also noted

that some researchers have warned against applying the Gum-

bel reduction, even in cases where the data support such a

model reduction, as this generally tends to overestimate the

precision (the uncertainty in the ξ -parameter is essentially

eliminated) which may lead to anti-conservative results, see,

e.g. Coles et al. (2003). On the other hand, if the data really

belong to the Gumbel domain of attraction, as they seem to do

in this case, the Gumbel distribution will be the appropriate

asymptotic extreme value distribution.

The estimated uncertainty of the return values is based

on parametric bootstrap and it is observed that the statisti-

cal uncertainty of the return value estimates is considerably

large, even if conditioned on the fitted models. However,

the estimates are more precise than those obtained by the
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Fig. 2 Fitted extreme value distributions to the historic and projected block maximum data; annual maxima (left), biennial maxima (centre) and
semiannual maxima (right). Solid lines represent full GEV models and dashed lines represent Gumbel models (assuming ξ=0)

Table 10 Estimated parameters
and return values for
2-parameter Weibull
distributions fitted to annual
maxima

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 7.4206 4.6562 7.7574

Scale parameter (α) 12.8938 14.4703 14.2489

20-Year return value 14.95 m [0.408] 18.32 m [0.804] 16.41 m [0.437]

95 % CI (14.27, 15.90) (16.79, 19.91) (15.66, 17.39)

100-Year return value 15.84 m [0.500] 20.09 m [1.031] 17.35 m [0.538]

95 % CI (14.99, 16.99) (18.19, 22.12) (16.40, 18.55)

Table 11 Estimated parameters
and return values for
3-parameter Weibull
distributions fitted to annual
maxima

Historical period RCP 4.5 RCP 8.5

Shape parameter (β) 1.7322 1.0932 1.661

Scale parameter (α) 3.2699 3.3722 3.3446

Location parameter (µ) 9.2102 10.05 10.4397

20-Year return value 15.37 m [0.940] 19.25 m [11.86] 16.91 m [1.022]

95 % CI (13.00, 16.81) (−23.26, 24.22) (14.47, 18.52)

100-Year return value 17.11 m [1.675] 23.68 m [24.308] 17.35 m [1.808]

95 % CI (12.38, 19.19) (−63.80, 32.92) (14.14, 21.21)

more flexible GEV model, most notably for the RCP 4.5 data.

However, this can be explained by the stronger assumptions

associated with the Gumbel reduction, which camouflages

some of the uncertainties. Nevertheless, also the confidence

intervals of the return value estimates based on the Gum-

bel model are overlapping, and the climatic shifts that are

detected are not statistically significant. By comparing the

full GEV models with the reduced Gumbel model, it is

observed that the full GEV model yields higher return values

if using annual extremes and that the Gumbel model gives

higher return values if using biennial extremes. Hence, it is

not straightforward to assign a particular bias for this model

and block size uncertainty.

The fitted extreme value distributions are shown in Fig. 2.

The figure to the left shows fitted distributions to the annual

maxima (a total of 30 data points); in the middle are the

fitted distributions for the biennial maxima (a total of 15 data

points) and to the right the semiannual maxima (a total of 60

data points). The solid lines represent the full GEV models

whereas the dashed lines are the Gumbel models. All the

models were obtained by maximum likelihood fitting, but

obviously other fitting methods are available as well. See

Wang et al. (2013) for a discussion on uncertainties related

to different estimators for the GEV models.

Another modelling option is to assume that the extremes

are Weibull distributed and fit a (2- or 3-parameter) Weibull

distribution to the annual maxima. The results from fitting the

annual maxima (the same data that were used in fitting the

GEV-models above) to Weibull distributions by maximum

likelihood are presented in Tables 10 and 11, respectively,

including model parameters and return value estimates. The

uncertainty estimates of the return values are again calcu-
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Fig. 3 Fitted Weibull distributions to the annual maxima for the historic period and future projections; 2-parameter (left) and 3-parameter (right)
distributions

lated by parametric bootstrap. It is interesting to observe that

assuming 2-parameter Weibull distributions yields a statis-

tically significant increase in the return values for the RCP

4.5 scenario but not for RCP 8.5. Assuming the 3-parameter

Weibull, on the other hand, yields much wider confidence

intervals and no statistically significant trend. The fitted den-

sity functions are shown in Fig. 3. Compared to the fitted full

GEV-models, it is observed that the similar general results

are obtained, i.e. that there will be an expected increase in

the return value estimates for future climates and that the

increase is higher for RCP 4.5 than for RCP 8.5. It is also

observed that the estimated return values using a 2-parameter

Weibull distribution are lower than the estimates from the full

GEV model, whereas that the estimates from a 3-parameter

distribution are comparable.

It is noted that for the RCP 4.5 data, there was a need to

specify an upper limit for the location parameter in order

for the optimization procedure to converge, and the esti-

mated location parameter would take this value when fitting

the 3-parameter Weibull distribution. Hence, there might be

additional numerical uncertainties in these estimates. This

is confirmed by the uncertainty estimates of the return val-

ues obtained by bootstrapping, which are very large for

the RCP 4.5 data. Indeed, the 95 % confidence intervals

are very wide and do not make much sense. It is empha-

sized, however, that it might be artificial to try to fit the

data for the RCP 4.5 scenario to a 3-parameter Weibull dis-

tribution. The Weibull distribution is a special case of the

GEV-model for negative shape parameters ξ < 0, and the fit-

ted shape parameter for these data was indeed positive (see

Table 8). Hence, one would expectedly run into problems

Table 12 Estimated parameters and return values for the Fréchet dis-
tribution fitted to annual maxima of the RCP 4.5 data

RCP 4.5

Location parameter 5.5019

Scale parameter 6.3190

Shape parameter 3.6816

20-Year return value 19.66 m [1.897]

95 % CI (15.89, 23.37)

100-Year return value 27.55 m [4.415]

95 % CI (18.88, 35.97)

when trying to fit a Weibull distribution to data that do not

support such an assumption. Therefore, this particular data

set will be tried to be fitted to another special case of the

GEV-distribution, i.e. the Fréchet distribution. The results

are presented in Table 12 and it is observed that this model

yields the same return value estimates as the full GEV model.

In fact, the fitted Fréchet distribution is nearly identical to

the estimated GEV-model and the density function is not

shown.

3.3 The peaks-over-threshold approach

A different approach to extreme value analysis is to fit statis-

tical models to any data points above a specified threshold,

the so-called peaks-over-threshold (POT) approach (Coles

2001). One of the benefits of the peaks-over threshold

method compared to the block maxima method is that the

amount of data available for fitting the model will gen-
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Table 13 Estimated GPD-models and associated return value estimates for the threshold exceedances with u = 10 m for different cluster distances

Historical period RCP 4.5 RCP 8.5

No clusters 2-day clusters 4-day clusters No clusters 2-day clusters 4-day clusters No clusters 2-day clusters 4-day clusters

Threshold (u) 10 10 10 10 10 10 10 10 10

Scale (σ ) 1.460 1.428 1.510 1.509 1.684 1.748 1.673 2.466 2.620

Shape (ξ ) −0.097 −0.0189 −0.491 0.0841 0.112 0.109 −0.127 −0.258 −0.285

20-Year return value 18.76 m [0.542] 15.28 m [0.886] 15.18 m [0.824] 21.14 m [1.280] 18.80 m [1.718] 18.89 m [1.805] 17.12 m [0.470] 16.51 m [0.482] 16.52 m [0.482]

95 % CI (14.93, 17.04) (13.44, 16.94) (13.55, 16.81) (18.29, 23.51) (14.92, 21.77) (14.96, 21.93) (16.16, 18.05) (15.74, 17.57) (15.79, 17.61)

100-Year return value 17.27 m [0.889] 17.38 m [1.946] 17.12 m [1.682] 25.36 m [2.445] 23.51 m [4.178] 23.67 m [4.527] 18.24 m [0.696] 17.55 m [0.726] 17.50 m [0.717]

95 % CI (15.50, 18.91) (12.84, 20.36) (13.35, 20.12) (19.48, 29.56) (13.05, 29.50) (12.56, 29.88) (16.86, 19.60) (16.35, 19.12) (16.32, 19.10)

Table 14 Estimated GPD-models and associated return value estimates for the threshold exceedances with u = 12 m for different cluster distances

Historical period RCP 4.5 RCP 8.5

No clusters 2-day clusters 4-day clusters No clusters 2-day clusters 4-day clusters No clusters 2-day clusters 4-day clusters

Threshold (u) 12 12 12 12 12 12 12 12 12

Scale (σ ) 1.887 2.924 3.171 2.112 2.711 2.711 1.669 2.112 2.189

Shape (ξ ) −0.489 −0.795 −0.871 −0.0364 −0.110 −0.110 −0.196 −0.294 −0.313

20-Year return value 15.24 m [0.182] 15.14 m [0.270] 15.18 m [0.264] 20.57 m [1.171] 18.71 m [1.181] 18.71 m [1.180] 17.12 m [0.413] 16.56 m [0.481] 16.57 m [0.461]

95 % CI (15.02, 15.73) (14.90, 15.93) (14.95, 15.97) (18.21, 22.94) (16.48, 21.32) (16.56, 21.11) (16.42, 18.03) (15.81, 17.73) (15.93, 17.71)

100-Year return value 15.58 m [0.235] 15.53 m [0.266] 15.53 m [0.257] 23.39 m [2.260] 21.62 m [2.707] 21.62 m [2.560] 18.04 m [0.649] 17.54 m [0.758] 17.53 m [0.729]

95 % CI (15.34, 16.20) (15.45, 16.44) (15.47, 16.43) (18.68, 27.46) (16.60, 26.34) (16.79, 26.23) (16.84, 19.38) (16.35, 19.33) (16.47, 19.29)

erally increase—one is allowed to include more than the

maximum from each block. However, the results are known

to be sensitive to the selection of threshold, adding addi-

tional uncertainties, and one should also take care to avoid

dependent data, for example, using two extremes from one

and the same storm. This can be ensured by adequately

applying de-clustering techniques, where the duration of a

cluster must be specified. Having selected an exceedance

threshold and a minimum cluster separation, the cluster max-

ima can be modelled according to the Generalized Pareto

Distribution (GPD) by estimating the scale and shape para-

meters.

The density function of the GPD is defined as follows,

with location µ ∈ R, scale σ > 0 and shape ξ ∈ R:

g(x; σ, ξ) =
1

σ

[

1 + ξ(
x − µ

σ
)

]−1/ξ−1

for 1 + ξ

(

x − µ

σ

)

> 0 (3)

In the following, the results from applying the peaks-over-

threshold analysis to the significant wave height data will be

reported, where different values of both the threshold and the

cluster separation distance have been applied. Again, only the

maximum likelihood method has been used for the fitting. It

is noted that the exponential distribution emerges as a special

case of the GPD when the shape parameter ξ → 0. However,

this model reduction has not been applied in this study, and

only the full GPD has been assumed.

Two different threshold values, u = 10 m and u = 12 m,

and three cluster separation distances, corresponding to 2-

day and 4-day cluster separation and no de-clustering, have

been applied. Results for even longer clusters of 10 days are

presented in Vanem (2015). This yields different datasets to

be fitted to the GPD-model; when applying a 10 m threshold

value and no clustering the average number of events per year

were 8.9, 15.6 and 22.5 for the historic, RCP 4.5 and RCP

8.5 data, respectively, which represents a significant increase

in sample size compared to the block maxima approach. The

sample sizes decrease when the threshold value is increased

and when a minimum cluster separation distance is intro-

duced, but on the other hand this makes the iid assumption

more realistic.

In order to complete the description of the POT models,

a model for the frequency of extreme events, i.e. threshold

excesses, must be specified. Often, a Poisson process with

rate parameter λ is assumed for such models, but in this

study the annual frequency of extreme events has simply

been estimated as the average annual number of excesses in

the data. The results from the POT-modelling are presented

in Tables 13 and 14 and the fitted distributions for the two

threshold values and the two cluster distances are shown in

Fig. 4. It is observed that the fitted densities for the historical

data looks strange for u = 12 m but this can be explained by

the very low number of cluster maxima in this case, indicat-
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Fig. 4 Estimated POT models for the historic period and future projections for different thresholds [u = 10 m (left) and u = 12 m (right)] and
different clustering distances. Solid lines correspond to a clustering of 2 days and the dotted lines correspond to clustering of 4 days

ing that a threshold of 12 m is probably a bit too high for this

particular dataset.

In summary, it is clear that the selection of threshold

value influences the resulting model fits and the correspond-

ing return value estimates. Differences of up to 2 m can

be observed for the 100-year return value when changing

the threshold value from 10 to 12 m (RCP 4.5 data). Also

the length of the cluster separation distance influences the

results somewhat, but the biggest difference is between mod-

els fitted with some clustering and models without clustering

(Tables 13, 14). Nevertheless, both the threshold and the clus-

tering distance are parameters that need to be specified and

that introduce uncertainties in the results.

Even though the value estimates are different, the POT

analyses are in general agreement with the block maxima

approach in that the expected return values will be increas-

ing in a future wave climate. However, the uncertainties

are large and confidence intervals obtained by paramet-

ric bootstrapping indicate that the expected increases are

statistically significant at the 5 % level for most mod-

els with u = 12 m, whereas the results from using

u = 10 m mostly indicate non-significant trends. The

results also suggest that there is less variability between

the different POT return value estimates compared to the

block maxima method, indicating that the POT approach

might be more accurate. However, it cannot be established

whether it is in fact more correct without much longer time

series.

3.3.1 Threshold selection with the POT-approach

In the POT analyses above, the same thresholds have been

assumed for all three datasets, but it is not obvious that this

is appropriate. The choice of threshold is a trade-off between

having a large enough sample to get stable fits (reduce the

variance) of the statistical model and being far enough out

in the tail to ensure that only tail observations are included

(reduce the bias). There are different methods for aiding the

selection of thresholds and there are, for example, different

graphical tools available. However, a more straightforward

way to select threshold is to simply use a specified high per-

centile of the empirical distribution.

The threshold of 10 m used above corresponds to the 99.7-

percentile in the historical dataset, the 99.5-percentile of the

RCP 4.5 data and the 99.2-percentile of the RCP 8.5 data. The

slightly higher threshold of 12 m corresponds to the 99.9-,

99.9- and 99.8-percentiles of the data, respectively. However,

rather than selecting a threshold value directly, one could

select an appropriate percentile and calculate the threshold

in each dataset accordingly. Again, it is not obvious which

percentile to use, but it should arguably be a high quantile.

Selecting, for example, the 97-percentile would yield thresh-

olds of 7.3, 7.5 and 7.9 m for the historical, RCP 4.5 and RCP

8.5 data, respectively. Increasing this to the 99.5-percentile

would give thresholds at 9.5, 10.1 and 10.8 m, respectively.

This is close to the initially chosen threshold of 10 m, which

could still be a bit low for the data at hand. At any rate,
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Fig. 5 Mean residual life plots; historical data (left), scenario RCP 4.5 (centre) and scenario RCP 8.5 (right)

merely selecting a high percentile is as arbitrary as selecting

a threshold directly and there is no universal guidance as to

what percentiles are adequate.

The mean residual life plot plots the threshold u against

the mean excess above that threshold. Such plots should be

linear above the threshold for which the GPD model becomes

appropriate. The mean residual life plots for the three datasets

are shown in Fig. 5 for the original data without de-clustering.

The thresholds used in the analyses above, i.e. u = 10 m and

u = 12 m are indicated in the figures. It can be observed that

even though a threshold of 12 m might be appropriate for the

historical data, higher threshold would be more adequate for

the future projections. For the RCP 4.5 data, a threshold as

high as 16 m would be required to get approximately linear

behaviour of the plot, whereas a threshold of 13 m seems ade-

quate for the RCP 8.5 data. If these thresholds were selected

for the data without clustering, one would have n = 64 data

points for the modelling of the historical data, n = 14 for the

RCP 4.5 data and n = 81 for the RCP 8.5 data. However,

n = 14 is obviously too few to get a stable fit for the RCP

4.5 data, so the threshold selection is particularly challenging

for this dataset. Taking the rather wide confidence bands of

the RCP 4.5 plot into account, however, a threshold of 12 m

could not have been rejected even for this dataset.

Using all the data above a certain threshold without clus-

tering results in dependent data and is not appropriate. Hence,

de-clustering should be performed to reduce the sample size.

For example, applying a 2-day cluster length would effec-

tively reduce the samples sizes of the excesses to n = 17,

n = 3 and n = 25, respectively, for the historical, RCP

4.5 and RCP 8.5 data with the above thresholds. This is

quite low and renders too few samples to get a stable fit.

It was also observed that u = 12 m might be too high thresh-

old for the historical data. At any rate, if GPD models are

fitted to excesses above 13 m and with a 2-day clustering,

the estimated 20-year return values would be 15.20, 18.88

and 16.65 m, and the 100-year return value estimates would
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Fig. 6 Mean residual life plot for the three datasets on de-clustered
(independent) data with cluster separation of 2 days and cluster maxima
above 3 m

be 15.52, 21.45 and 17.41 m, respectively, for the historical,

RCP 4.5 and RCP 8.5 data. This is some centimetres dif-

ferent from the estimates obtained by u = 12 m and again

illustrates that the results are sensitive to this choice.

Figure 6 shows the mean residual life plot for applied

to de-clustered data, where all cluster maxima with separa-

tion distance greater than 2 days for excesses above 3 m are

included. The confidence bands are not included, but it can be

seen that thresholds of 12 and 13 m for the historical data and

the RCP 8.5 data still look reasonable but that it is different

to read a reasonable threshold for the RCP 4.5 data.

Another tool for threshold selection is the threshold choice

plots or tc-plots, sometimes also referred to as parame-

ter stability plots. These plot the modified scale and the
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Fig. 7 Threshold choice plots; historical data (left), scenario RCP 4.5 (centre) and scenario RCP 8.5 (right)

shape parameter for different thresholds and these should

be constant for any values above the correct threshold value.

Figure 7 shows tc-plots for the three datasets analysed in this

report. Unfortunately, these plots are not very helpful in this

case and there are no values for when the plots level out.

This might indicate that there are no thresholds for which

the GPD distribution is suitable, possibly due to violation of

the iid assumption. Notwithstanding, taking the confidence

intervals into account, these plot would not reject thresholds

above approximately 12 m for the historical and RCP 8.5

data, although a threshold above 15 m would be needed for

the RECP 4.5 data. Such a high threshold would, however,

render very few points for model fitting, as seen above.

Finally, the dispersion index plot plots values of the dis-

persion index, i.e. the ratio of the variance to the mean, for

different threshold. For the Poisson distribution, which is

often associated with the probability of threshold exceedance

in a GPD model, this ration should be 1 and the appropriate

threshold should correspond to a dispersion index not too

far from this value. The dispersion index is plotted for each

of the datasets in Fig. 8. The shaded area corresponds to the

confidence interval and it can be seen that no threshold above

a value of about 5 m would be rejected. However, the plots

indicate that the dispersion index is very close to 1 for all

thresholds above approximately 10 m for all datasets. Hence,

from these plots a threshold of about 10 m would be selected.

Some useful graphical tools for threshold selection are

reviewed above, and it has been seen that they could all be

used to guide in the selection of a proper threshold. However,

the methods are not exact, and the exact value of an optimal

threshold is not straightforward. Indeed, the different meth-

ods would suggest different thresholds. When one takes into

account that the final results are very sensitive to the choice

of threshold, this obviously adds uncertainty in the analyses.

Notwithstanding, it can be concluded that the thresholds at

10 and 12 m used in the analysis are not unreasonable, and is

supported by different threshold selection approaches.
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Fig. 8 Dispersion index plots for the three datasets on de-clustered
(independent) data with cluster separation of 2 days and cluster maxima
above 3 m; historical data (left), RCP 4.5 (centre) and RCP 8.5 (right)

3.4 The ACER method

A final approach to analysing the extreme values on the data

that was tried out in this study is the average conditional

exceedance rate method or the ACER method (Naess and

Gaidai 2009; Naess et al. 2013). The ACER method relaxes

the independent data assumptions and accounts for the depen-

dence by conditioning on previous data points in the time

series, where k is a parameter to be chosen reflecting the (k-

1)-step memory of the data. A value of k = 1 corresponds to

independent data, k = 2 corresponds to conditioning on the

preceding value only (1-step memory) and a value of k = 3
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Fig. 9 Estimated ACER functions for different k-step memory assumptions; historical data (top), scenario RCP 4.5 (middle) and scenarios RCP
8.5 (bottom). The x-axis corresponds to significant wave height and the y-axis is the estimated ACER functions

corresponds to conditioning on the two preceding values (2-

step memory) and so on. Typically k ≥ 2 will be assumed.

One of the first tasks in an ACER analysis is to determine

the value of k. Different values of k will give different empir-

ical estimations of the average conditional exceedance rates

(ACER). Initial empirical estimates of the ACER-functions

of different orders k are shown in Fig. 9, for the historical

time series and for the future projections. The leftmost figures

show estimated ACER functions for k-values ranging from 1

to 8, corresponding to modelling the dependence conditional

on 0, 1, …, 7 preceding values. The estimated functions are

very different for k = 1 and the others, but there is not much

difference between k = 2 and k > 2. This indicates that

the dependence structure is well approximated by a one-step

memory process. The time series investigated in this analysis

have a temporal resolution of 3 h, meaning that 8 observations

correspond to 1 day. However, in climate-related data, there

can be expected to be diurnal or seasonal dependence struc-

tures, and it will be necessary to investigate whether higher

values of k are appropriate. Hence, the middle column of plots

in Fig. 9 shows the estimated ACER-functions for k-values

up to 80, corresponding to a memory of up to 10 days and
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a b c

Fig. 10 The estimated ACER functions for k = 2 with 95 % confidence bands; historic period (left), RCP 4.5 (middle) and RCP 8.5 (right)

the right column shows the ACER functions for k-values cor-

responding to about 1 month to 1 year memory. This shows

somewhat larger differences between the estimated ACER-

functions, indicating that the dependence is not completely

captured by an ACER function of order 2. However, for the

larger η-values, the estimated ACER functions behave rather

similarly. It is, therefore, assumed that a value of k = 2 is suf-

ficient for the ACER analysis, and this value will be adopted

in the following. The estimated ACER functions with k = 2

are shown in Fig. 10, including the 95 % confidence intervals.

In order to estimate return values for high return peri-

ods, there is a need to extrapolate the tail behaviour, and a

nonlinear function is fitted to the estimated empirical ACER

functions, parameterized by the parameters q, a, b, c(see

(Naess et al. 2013) for details). In order to do this, there is a

need to specify a tail marker for when the tail of the distrib-

ution begins. In this paper, analyses for tail markers at 8, 10

and 12 m are presented. The fitted ACER functions for the

different data sets are shown in Fig. 11. The estimated para-

meters of the nonlinear function and the resulting return value

estimates are presented in Table 15. Even if there are large

uncertainties in the estimated return value estimates, and the

wide confidence intervals suggest that the climatic trends are

not statistically significant, there seems to be a fairly consis-

tent positive trend in the future projections compared to the

historical data.

It appears that the results are quite sensitive to the chosen

value of the tail marker, and this is somewhat troublesome.

The estimated return values are different and it can be seen in

Fig. 11 that the curvature of the estimated ACER functions

are indeed different depending on the tail marker. The choice

of tail marker would be a trade-off between making sure that

the estimated nonlinear function is indeed fitted to the tail

area (the value of the tail marker should be sufficiently high)

and having enough samples to get a stable fit (the value of

the tail marker should not be too high). It is noted that the

sensitivity due to the parameter k has not been evaluated;

only k = 2 has been applied. Presumably, the results would

display some variability for different values of this parameter

as well.

4 Comparison of results

To summarize this investigation on the uncertainty related to

the estimation of extreme values, conditioned on a particular

data-set, the different return value estimates are repeated in

Tables 16 and 17. The first table shows the different results

from the initial distribution method, i.e. fitting a model to all

the data and estimating return values by extrapolation, and

the second table includes the various estimates from dedi-

cated extreme value analyses. Some additional results from

analyses not covered in this paper are also included, i.e. using

10-day clusters in the POT approach and increasing the tail

marker to 14 m for the ACER method. Included in the tables

are also the minimum and maximum estimates for each return

value as well as the arithmetic mean and the standard error of

the various estimates. The minimum and maximum estimates

for each dataset are presented in bold in the tables to clearly

demonstrate which models give the highest and lowest esti-

mates. It is easily observed that the uncertainties of the return

value estimates are considerable. As could be expected, the

variability of the estimates is higher for the 100-year return

value estimates than for the 20-year return values.

First, it is noted that there are large variabilities depend-

ing on which approach to extreme value analysis is chosen.

It is interesting to observe that there are no systematic

biases regarding the methods. For the historical data, the

ACER method seems to give the highest return value esti-

mates, for the RCP 4.5 scenario both the POT and the

GEV models give the highest return value estimates and

for the RCP 8.5, the Gumbel model gives the highest esti-

mates. However, for some data sets and some return values

(20- or 100-years), the POT-, the ACER and the Weibull-
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Fig. 11 Fitted nonlinear ACER-functions for different values of the tail marker; 8 m (top row), 10 m (second row) and 12 m (bottom row); historical
period (left), RCP 4.5 (middle) and RCP 8.5 (right)

models yield the lowest return value estimates. Hence,

it is difficult to associate particular bias with particular

approaches. For the various initial distribution models it

seems clear that the 2-parameter Weibull distribution consis-

tently gives the lowest return values, whereas the distribution

fitted by means of the Anderson–Darling statistic gives

the highest estimates. At any rate, the bottom line is that

there is great variability according to which approach is

adopted.

Considering the block maxima approach, it is seen that

the return value estimates are sensitive to the block-size. The

variability due to the block size appears larger if one assumes

a Gumbel model compared to the full GEV model and is

again larger for the 100-year return value than for the 20-

year return value. For the 100-year return value estimate for

the RCP 4.5 data, the different block sizes give rise to quite

significant differences of up to 3.5 m. Furthermore, whether

one uses the full GEV model or the reduced Gumbel model

appears to have a notable influence on the estimates, even

with the same block size. Most extreme is again the RCP 4.5

data set, where a reduction from the full GEV model to the

Gumbel model for annual maximum data yields a reduction
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Table 15 Estimated parameters for the nonlinear fit to the ACER functions and associated return value estimates with different values for the tail
markers

Historical period RCP 4.5 RCP 8.5

Tail marker 8 m 10 m 12 m 8 m 10 m 12 m 8 m 10 m 12 m

q 0.6896 0.3814 0.0083 0.4926 0.8352 0.0007 0.0045 0.0027 0.1299

b 3.6151 3.3060 2.7906 2.9829 5.3405 3.9721 7.9730 8.7995 1.1569

a 1.8375 1.5061 0.1102 1.6129 3.3229 0.0025 0.4234 0.3698 0.3555

c 0.6937 0.7381 1.5642 0.6760 0.4433 2.7708 1.1375 1.2226 1.1470

20-year return value 16.09 m 16.28 m 15.88 m 18.38 m 19.53 m 17.83 m 17.57 m 17.26 m 17.74 m

95 % CI (13.73, 17.97) (13.70, 17.69) (13.75, 17.47) (15.38, 20.88) (15.68, 20.92) (15.67, 19.30) (15.58, 18.70) (15.22, 18.63) (15.43, 19.20)

100-year return value 18.95 m 19.23 m 18.01 m 22.14 m 24.84 m 19.78 m 20.01 m 19.45 m 20.36 m

95 % CI (15.13, 21.99) (14.77, 21.06) (14.44, 20.23) (17.26, 26.21) (17.71, 26.07) (17.03, 21.53) (17.07, 21.44) (16.37, 21.25) (16.67, 22.24)

Table 16 Summary of estimated return values (m) from initial distribution methods

Model Historical period RCP 4.5 RCP 8.5

20-year
return value

100-year return
value

20-year return
value

100-year return
value

20-year return
value

100-year return
value

2p Weibull 12.38 13.28 13.35 14.40 14.46 15.58

3p Weibull (ML) 13.05 14.07 13.88 15.03 15.17 16.53

3p Weibull (MoM) 15.63 17.17 17.49 19.40 18.49 20.54

3p Weibull (LM) 15.39 16.89 16.59 18.30 18.33 20.35

3p Weibull (CvM) 14.88 16.28 16.03 17.63 17.68 19.58

3p Weibull (AD) 15.83 17.41 18.19 20.27 18.60 20.67

Minimum 12.38 13.28 13.35 14.40 14.46 15.58

Average 14.53 15.85 15.92 17.51 17.12 18.88

Maximum 15.83 17.41 18.19 20.27 18.60 20.67

Standard error 1.45 1.74 1.94 2.35 1.83 2.24

in the 20-year return value estimate of 1.7 m and a reduction

of almost 6.4 m for the 100-year return value. It should be

noted, however, that the data did not support the Gumbel

reduction in this case.

Regarding the POT-approach, variations related to the

threshold value and the clustering separation were consid-

ered. It is observed that the estimates are quite sensitive to

the threshold selection, with differences up to more than 2 m

for different thresholds (RCP 4.5 data). Furthermore, whether

a de-clustering technique is applied or not leads to quite dif-

ferent results. Again, the largest difference is for the RCP

4.5 data, with estimates differing up to 2.4 m depending on

whether clustering has been considered or not. Assuming

that de-clustering is included, different cluster separation

distances also give different results even though the sen-

sitivity to the exact choice of cluster separation distance

seems to be smaller than the sensitivity to the threshold

value.

Finally, the ACER method is found to be sensitive to the

choice of value for the tail marker. For some of the esti-

mates, a low value of the tail marker gives higher return

value estimates and for some of the estimates it is oppo-

site. Again, the variability is greatest for the RCP 4.5 data

set, with differences up to 3 m for the 20-year return value

and 7.6 m for the 100-year return value for different val-

ues of the tail marker. The variability due to the parameter

k has not been evaluated, and the results would presum-

ably also display some variability for different values of this

parameter.

An interesting observation regarding the future scenar-

ios is that whether one analyses all the data or only the

extremes, i.e. block maxima or values above a certain thresh-

old, influences the relative trends in the two scenarios. By

comparing the estimated return periods in Tables 16 and 17

it is observed that based on all the data, the estimated increase

in return values is largest for the RCP 8.5 scenario. However,

if only the extreme data are considered, the RCP 4.5 sce-

nario is ascribed the largest increase in the return values.

This could be an effect of a few extreme outliers in the RCP

4.5 dataset, which may have a much stronger influence on

the fits based on the reduced dataset of extremes compared

to the full dataset. Whether it is correct or not to put a strong
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Table 17 Summary of estimated return values (m) from extreme value analysis methods

Model Historical period RCP 4.5 RCP 8.5

20-year
return value

100-year
return value

20-year
return value

100-year
return value

20-year
return value

100-year
return value

GEV (annual) 15.33 17.34 19.66 27.55 16.74 18.65

GEV (biennial) 15.04 15.58 18.66 21.98 16.58 17.47

GEV (semi-annual) 15.20 17.05 18.85 24.11 16.67 17.94

Gumbel (annual) 15.47 17.75 17.96 21.19 17.00 19.43

Gumbel (biennial) 15.80 18.53 18.80 22.58 17.30 20.02

Gumbel (semi-annual) 15.65 18.07 17.41 20.37 18.43 21.64

Weibull (2-par) 14.95 15.84 18.32 20.09 16.41 17.35

Weibull (3-par) 15.37 17.11 19.25 23.68 16.91 18.83

Fréchet 19.66 27.55

POT, u = 10 m, 10-day cluster 15.13 16.88 18.76 23.13 16.54 17.45

POT, u = 12 m, 10-day cluster 15.18 15.53 18.72 21.66 16.56 17.51

POT, u = 10 m, 4-day cluster 15.18 17.12 18.89 23.67 16.52 17.50

POT, u = 12 m, 4-day cluster 15.18 15.53 18.71 21.62 16.57 17.53

POT, u = 10 m, 2-day cluster 15.28 17.38 18.80 23.51 16.51 17.55

POT, u = 12 m, 2-day cluster 15.14 15.53 18.71 21.62 16.56 17.54

POT, u = 10 m, no cluster 15.95 17.27 21.14 25.36 17.12 18.24

POT, u = 12 m, no cluster 15.24 15.58 20.57 23.39 17.12 18.04

ACER, η = 10 m 16.28 19.23 19.53 24.84 17.26 19.45

ACER, η = 12 m 15.88 18.01 17.83 19.78 17.74 20.36

ACER, η = 8 m 16.09 18.95 18.38 22.14 17.57 20.01

ACER, η = 14 m 16.36 18.80 16.48 17.21 16.88 18.38

Minimum 14.95 15.53 16.48 17.21 16.41 17.35

Average 15.49 17.15 18.77 22.47 16.95 18.54

Maximum 16.36 19.23 21.14 27.55 18.43 21.64

Standard error 0.43 1.23 1.01 2.26 0.51 1.23

weight on these extreme observations is not straightforward

to determine without knowing more about how the data are

obtained.

It is also noted that the statistical uncertainty of the

return value estimates generally increases significantly for

the extreme value analyses techniques compared to the

initial distribution approach. This can be seen from the

various parametric bootstrap estimates of the uncertain-

ties. This is presumably due to the notable decrease in

sample size when only using the extreme data points and

should, therefore, be expected; see also the discussion on

uncertainties as a function of sample size in Wang et al.

(2013). However, one implication of this is that the cli-

mate change signal in the return values are statistically

significant at the 5 % level for estimates obtained from

all the data (initial distribution approach) but ceases to

be so for most of the dedicated extreme value analysis

approaches. This makes it even more difficult to conclude

on whether there is a statistically significant increase in

high return values of significant wave height in a future

scenario.

It may be illustrative to plot the range of point estimates for

the 20- and 100-year return values from the different meth-

ods, and this is shown in Fig. 12. As can be seen, there are

quite large spreads of the different estimates, and the vari-

ability is larger for the 100-year return values than for the

20-year return values. Interestingly, for the 20-year return

value estimates there is little overlap between the historical

period and the future projections, and even though there are

large modelling uncertainties with regard to the actual return

values, there seem to be higher 20-year return values in a

future climate. This trend is also evident for the 100-year

return value, although there is much more variability associ-

ated with these estimates and the estimates for future climates

are partly overlapping with estimates for the historical (cur-

rent) climate. Moreover, the return value estimates for the

RCP 4.5 scenario has more variability than the estimates for

the RCP 8.5 scenario and the historical period.

123



J. Ocean Eng. Mar. Energy (2015) 1:339–359 357

Fig. 12 Range of estimates for
the different return values from
the different extreme value
analysis methods

15 20 25

Range of return value estimates
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5 Discussion

According to this study, there are large uncertainties involved

when extreme values corresponding to high return periods are

extracted from a finite set of data. In the most extreme case,

estimates of the same return value using the very same set of

data differed by as much as 13.15 m (100-year return value

for the RCP 4.5 data). This is troublesome and it is deemed

difficult to establish which estimates are most accurate with-

out much longer data records. Indeed, many of the extreme

value methods are only valid asymptotically and hence only

approximately for finite time series. Moreover, the statistical

uncertainty of return value estimates is much larger for the

methods that only utilize the extreme data points since the

sample size is drastically reduced compared to the methods

that use all the data.

Another important issue is that many of the methods

assume that the data, or at least the extremes, are iid. In

particular, for the initial distribution approach this assump-

tion is clearly unrealistic. Moreover, assuming that there are

long-term trends in the wave climate due to climate change

this may no longer be the case also for the extremes and

the strong theoretical foundation of the extreme value theo-

ries falls apart. This suggests that non-stationary modelling

would be more appropriate, see, e.g. Wang et al. (2004,

2013), and Vanem (2013). Nevertheless, often these changes

are assumed to be negligible over limited time periods and

standard extreme value analysis methods are still applied.

In this paper it is tacitly assumed that the effect of climate

change is negligible within the individual 30-year periods

of data that have been analysed, even though it might not

be negligible over longer time periods. If the effect of the

long-term trend is small compared to the other variability,

this might not be an overly unrealistic approximation but it

should be mentioned that assuming a stationary model might

influence the results.

It should be noted that some of the spread in the return

value estimates presented in this paper might be artificial

and that some of the estimates might have been eliminated

by further scrutiny and inspection of the model fits.

This paper is only concerned with the extremes of sig-

nificant wave height, which is a parameter describing a

short-term sea state rather than individual waves. In many

applications, one would also need to know the extreme val-

ues of individual waves or wave crests, and this adds further

uncertainty to the return value estimates. One often assume

that the sea surface can be considered a stationary process

over a limited period of time, say from 20 min to a few

hours, and apply a statistical model for the individual wave

or crest heights conditioned on the sea state, for example,

the Rayleigh distribution (Rydén 2006). One could then use

a certain quantile of this distribution to estimate extreme

individual wave heights. However, it is not obvious which

quantile to use and the fact that the most extreme individual

wave might not appear in the most extreme sea state should be

accounted for. Indeed, the probability distribution of extreme

individual waves will typically have contributions from a

range of different sea states. This has not been considered in

this study, but would presumably add to the uncertainty of

the extreme value estimation. See, e.g. Forristall (2008) for

discussions on how short-term variability can be included in

extreme value estimates.

In many marine engineering applications there will be sev-

eral environmental parameters that need to be taken into

account jointly (Bitner-Gregersen 2015) and estimates of

multivariate extremes associated with long return periods

will be needed. Obviously, this would complicate the pic-

ture even more, and there are even different ways of defining
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what is meant by a multivariate extreme. Hence, uncertainties

would presumably increase as the complexity increases with

the dimensions of the multivariate extreme value problem.

Finally, it is emphasized that the results presented in this

paper are conditioned on a particular dataset for a particular

location in the North Atlantic. Hence, the identified trends in

the extreme wave climate must be verified by other datasets

before conclusions can be made. In particular, it has been

demonstrated in previous studies that the effect of climate

change on the wave climate is highly location dependent

(Vanem 2014; Wang et al. 2014). Therefore, the results from

one arbitrary location cannot be used to confidently inform

about climatic trends. The aim of this paper, however, was to

highlight the uncertainty in estimating weather and climate

extremes associated with long return periods from a finite

dataset by applying different methods to the same dataset of

historical data and future projections.

6 Summary and conclusions

This paper has revealed that there are large uncertainties asso-

ciated with the estimation of return values for high return

periods in weather and climate data. It is difficult to single

out one method or approach that is best overall, and this is

out of scope for the current study. Presumably, longer data

records would be needed to investigate this.

In spite of the large variability of the different return value

estimates, there seems to be evidence in the data for a notable

increase in the extreme wave heights for both of the future

scenarios that have been considered compared to the histor-

ical period. Hence, these data indicate that there will be a

general trend towards more extreme wave events in a future

climate. Obviously, this result is conditioned on the particular

dataset that has been analysed and for a particular location

in the North Atlantic Ocean. Further studies are needed to

confirm or refute these trends.
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