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Marta Borowska-Stefańska 3 , Szymon Wiśniewski 3 and Maxim A. Dulebenets 1,*

1 Department of Civil & Environmental Engineering, College of Engineering, Florida A&M University-Florida
State University (FAMU-FSU), 2035 E Paul Dirac Dr., Sliger Building, Tallahassee, FL 32310, USA;
ze20a@my.fsu.edu (Z.E.); prashant1.singh@famu.edu (P.S.); vm21l@my.fsu.edu (V.K.M.)

2 Department of Aviation Security, Polish Air Force University, Dywizjonu 303 Street, No. 35,
08-521 Deblin, Poland; k.goniewicz@law.mil.pl

3 Faculty of Geographical Sciences, University of Lodz, 90-142 Łódź, Poland;
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Abstract: Each shipping line is expected to establish a reliable operating model, and the design of ship
schedules is a key operational consideration. Long-term profits for shipping lines can be expected
from a well-designed ship schedule. In today’s liner service design, managing the time factor is
critical. Shipping schedules are prone to different unexpected disruptions. Such disruptions would
necessitate a near-real-time analysis of port capacity and re-design of the original ship schedule
to offset the negative externalities. Ship schedule recovery strategies should be implemented to
mitigate the effects caused by disruptions at ports or at sea, which may include, but are not limited to,
ship sailing speed adjustment, handling rate adjustment at ports, port skipping, and port skipping
with container diversion. A proper selection of ship schedule recovery strategies is expected to
minimize deviations from the original ship schedule and reduce delays in the delivery of cargoes
to the destination ports. This article offers a thorough review of the current liner shipping research
primarily focusing on two major themes: (1) uncertainties in liner shipping operations; and (2) ship
schedule recovery in response to disruptive events. On the basis of a detailed review of the available
literature, the obtained results are carefully investigated, and limitations in the current state-of-the-art
are determined for every group of studies. Furthermore, representative mathematical models are
provided that could be further used in future research efforts dealing with uncertainties in liner
shipping and ship schedule recovery. Last but not least, a few prospective research avenues are
suggested for further investigation.

Keywords: liner shipping; uncertainties; ship schedules; schedule recovery; recovery strategies;
literature survey

1. Introduction
1.1. Background

Maritime transport outperforms other transportation modes in terms of the amount
of transported cargoes measured in ton-kilometers. The proportion of cargo moved by
sea varies from year to year, but in the recent years, waterborne trade in the United States
(USA) has represented between 22 and 24 percent of the total ton-kilometer cargo move-
ments, which is more than $1.5 trillion worth of goods [1]. Overall, this results in a yearly
economic output of $5.4 trillion. The maritime transportation system plays an important
role in Europe as well. According to the European Commission, waterborne trade between
nations (also known as short-sea shipping) accounts for nearly 41 percent of the freight
transport market in Europe [1]. Due to the lower cost of maritime transport in comparison
to other modes of shipping, such as air freight, international seaborne trade has increased
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by 67 percent in terms of weight between 1980 and 2007 [2]. Moreover, the international
waterborne trade volumes have been constantly growing since 2009 and reached approxi-
mately 11.0 billion tons in 2018, which is more than a 40% increase compared to 2009 (see
Figure 1). Nevertheless, in comparison to other modes of transportation, the sea freight
industry is facing unprecedented and chaotic conditions, such as port congestion, labor
strikes, severe weather conditions, shipping container shortages, and customs delays [3–6].
After the analysis of 5410 ship arrivals at ports, Drewry Shipping determined that approxi-
mately 21% of ships were one day behind the planned arrival, whereas 22% of ships were
delayed by two or more days [7].
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Weather can have a critical impact on ships carrying cargo. Given that transport is
an inherently logistical industry relying on the surrounding physical infrastructure, it is
constantly exposed to the whims of the natural environment. While most cargo ships can
withstand extreme inclement weather conditions, strong tropical cyclones (e.g., hurricanes,
typhoons) can make sailing and port operations too dangerous. Adverse weather conditions
may cause significant delays in ship arrivals at ports and result in substantial monetary
losses. As an example, about USD 12 billion worth of damage was incurred to the Japanese
maritime infrastructure during the 2011 Tohoku tsunami on Japan’s Pacific Coast [8]. The
Ports of Felixstowe and Southampton, which are considered some of the largest container
ports in the United Kingdom, experienced severe ship service disruptions as a result of
strong winds in January 2012 [9]. The Port of New York/New Jersey was shut down for
one week in November 2012 due to Hurricane Sandy. The 2019 North Atlantic hurricane
season recorded a total of 18 named storms, 6 hurricanes, and 3 major hurricanes [10]. As
a result of extreme weather events, the reliability of transpacific and transatlantic schedules
fell below 40% in 2019. Furthermore, the container terminals in Baton Rouge (LA, USA)
were completely shut down due to severe tropical storms in August 2020 [8].

As underlined by Notteboom [11], significant delays in liner shipping operations
could be endured due to maritime passage, port access, and marine terminal operations.
Channels play an important role in liner shipping operations, as they enable the passage of
ships to the designated locations. However, many channels impose limitations on the ship
size and may incur additional waiting time (especially, if certain ships do not follow the
previously negotiated arrival time). Certain ports around the world are subject to the tidal
effect, when the depth of access channels fluctuates throughout the day [12,13]. Oversized
ships have to wait during particular time periods to ensure that the depth of the access
channel will be safe to navigate. Safe ship navigation is critical, as navigational issues
may disrupt channel operations and cause substantial delays (e.g., the 6-day Suez Canal
obstruction caused by the large 20000-TEU ship “Ever Given” in 2021).

Considering increasing trade volumes and the existing terminal capacity constraints,
the berth availability and handling equipment may not be always guaranteed, especially
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when the previously negotiated arrival time windows have been missed by the approaching
ships. Ships that arrive outside the agreed time windows significantly disrupt marine
terminal operations and cause port congestion. Labor strikes could be another reason for
delays in container handling at marine terminals or even complete terminal shutdowns. As
an example, a total of ten marine container terminals were shut down at the Ports of Los
Angeles and Long Beach (USA) in November 2012 due to labor strikes [9]. The container
traffic at both ports experienced a standstill. Equipment failures at marine container
terminals are considered a rare event, but they do occur from time to time. The quay
crane failure at the DP World Port Botany terminal (Sydney, Australia) caused a sudden
disruption and unexpected slot cancellations in September 2013 [9].

The outbreak of COVID-19 is recognized as a major disruptive event for liner shipping
and maritime transportation [14–17]. As a result of the global economic crisis that was
caused by the COVID-19 pandemic, the international maritime trade volumes reduced by
4.1% in 2020 [14]. Marine terminal operators experienced significant challenges imposed by
the pandemic. In particular, certain terminal operators had to shut down their terminals and
quarantine their employees due to the fact that some of the employees tested positive for
the virus [17]. The closure of marine terminals caused substantial supply chain disruptions.
The ships loaded with import goods were queued in the vicinity of marine terminals
but could not be served due to the terminal closures. Ship operations were subjected to
national and municipal restrictions, which frequently resulted in port clearance delays [18].
Additional restrictions were imposed for the personnel embarking and disembarking,
cargo loading and discharge, and ship refueling. Tensions in international trade resulted
in trade pattern shifts and a search for alternative markets (e.g., a decrease in trade flows
from China and a transition to other markets—[14]). The USA increased the exports of its
merchandise to other countries, which assisted with the compensation for the decrease in
exports from China.

1.2. Existing Research Gaps and Contributions of This Study

A large number of the existing research efforts were dedicated to the planning of
different liner shipping operations, including fleet deployment [19–23], port service fre-
quency determination [24–27], ship sailing speed optimization [28–31], and ship schedule
design [32–41]. However, the existing research efforts generally do not account for potential
uncertainties in liner shipping operations and do not model any recovery options that could
be used to effectively respond to disruptions. Furthermore, a number of survey studies
were conducted in the past aiming to provide a holistic overview of the liner shipping
literature [42–48]. Nevertheless, there is still a lack of systematic literature surveys that
specifically concentrate on uncertainties in liner shipping operations and ship schedule
recovery. Considering the increase in the occurrence of disruptive events and their neg-
ative impacts on liner shipping operations, the present study aims to offer the following
contributions to the state-of-the-art:

3 A comprehensive up-to-date review of the liner shipping literature is conducted with
a specific emphasis on uncertainties in liner shipping operations and ship schedule recovery.

3 The collected studies are reviewed in a systematic way, capturing the main assump-
tions regarding sailing speed and port time modeling, objective(s) considered, key
components of objective functions(s) considered, uncertain elements modeled, ship
schedule recovery options modeled, solution approaches adopted, and certain specific
considerations adopted.

3 A representative mathematical formulation is presented for the ship scheduling prob-
lem with uncertainties, which can be used by shipping lines to assess the impacts of
uncertainties on liner shipping operations and design robust ship schedules. More-
over, the proposed mathematical formulation can serve as a foundation for future
efforts that concentrate on uncertainties in liner shipping operations.

3 A set of representative mathematical formulations are presented for the ship sched-
ule recovery problem with various recovery options (i.e., sailing speed adjustment,
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handling rate adjustment, port skipping, and port skipping with container diversion),
which can be used by shipping lines to select the appropriate ship schedule recov-
ery option(s). Furthermore, the proposed mathematical formulations can serve as
a foundation for future efforts that concentrate on ship schedule recovery.

3 Research gaps in previous and contemporary studies on uncertainties in liner shipping
operations and ship schedule recovery are clearly identified, and future research areas
that should be considered in the following years are specifically underlined.

The outcomes from this research are expected to assist the relevant stakeholders in-
volved in liner shipping operations with improvements in the reliability of their schedules
and selection of the appropriate recovery options in response to major disruptive events.
Reliable ship schedules and appropriate recovery options will further decrease cargo deliv-
ery delays, improve customer service, and enhance the overall sustainability of maritime
transport. The next sections of the manuscript contain the following information. Section 2
provides a detailed description of how the literature search was performed, aiming to
capture the most relevant studies on uncertainties in liner shipping operations and ship
schedule recovery. Section 3 presents a detailed description of the ship scheduling problem
with uncertainties, a formulation of the supporting mathematical model, a review of the
relevant studies, a literature summary, and future research needs in the area of uncertainties
in liner shipping operations. After that, Section 4 presents a detailed description of the ship
schedule recovery problem, formulations of the supporting mathematical models, a review
of the relevant studies, a literature summary, and future research needs in the area of ship
schedule recovery. The main study conclusions are provided in Section 5.

2. Literature Search

A thorough literature search is essential in order to perform a comprehensive survey
study. As a part of this research effort, a detailed literature search was conducted by
means of the content analysis method [49]. The following keywords and their combinations
were used to guide the search process: “liner shipping”, “shipping lines”, “liner shipping
companies”, “ship schedule design”, “vessel schedule design”, “ship timetable design”,
“vessel timetable design”, “uncertainties”, “ship schedule recovery”, “vessel schedule
recovery”, “recovery strategies”, and “recovery options”. The following search engines
were used during the search process: Science Direct, IEEE Explore, Web of Science, Scopus,
Springer Link, and Google Scholar. Hundreds of studies were identified after the initial
search. Books, book chapters, journal papers, and conference papers written in English were
considered. After a review of the collected studies, it was found that a total of 43 studies
were closely related to the theme of the present literature survey, directly focusing on
uncertainties in liner shipping operations and ship schedule recovery. Figure 2 depicts
the distribution of selected studies by subject category and year of publication, whereas
Figure 3 depicts the distribution of collected studies by publisher.

It can be observed that the total number of research studies on uncertainties in liner
shipping operations and ship schedule recovery comprised 25 and 18, respectively. Both
study groups started receiving more and more attention from the scientific community after
the year 2015. Such a pattern can be justified by an increase in the number of disruptive
occurrences in liner shipping operations and the urgent need for effective ship schedule
recovery strategies. It was found that the collected studies were produced by a variety
of different publishers, including Elsevier, Springer, IEEE, INFORMS, TRB, MDPI, and
Taylor & Francis. Elsevier and Springer produced the majority of studies on uncertainties
in liner shipping operations and ship schedule recovery with a total of 21 and 8 studies,
respectively. IEEE and INFORMS published a total of five and three relevant studies,
respectively. Furthermore, TRB, MDPI, and Taylor & Francis each published two papers. As
a result of the conducted analysis, it was found that the majority of studies were published
in Transportation Research Part E: Logistics and Transportation Review (with a total of six
studies) and European Journal of Operational Research (with a total of four studies).
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3. Uncertainties in Liner Shipping Operations

This section of the manuscript provides a detailed evaluation of the state-of-the-art in
the area of modeling uncertainties in liner shipping operations with a primary focus on the
following aspects. First, a description of a general ship scheduling problem with uncertain
ship waiting and handing times at ports is presented. Second, the base mathematical model
for the ship scheduling problem with uncertainties is formulated. Third, a detailed review
of the relevant studies is provided. Fourth, a concise state-of-the-art summary is outlined,
and critical research gaps in the area of modeling uncertainties in liner shipping operations
are underlined.

3.1. Problem Description
3.1.1. Liner Shipping Route and Ship Voyage

Liner shipping routes (or port rotations) are used by shipping lines to transfer con-
tainers from one port to another. A set of ports for a given liner shipping route will be
denoted as P =

{
1, . . . , n1} in this study. A liner shipping route can be managed by a single

shipping line or several shipping lines (in other words, by a shipping alliance). Each liner
shipping route is associated with a pre-determined service frequency, where ships have to
visit each port and load/offload containers after a certain number of days. The number
of ships that should be allocated for service of a shipping route is proportional to the port
service frequency, i.e., more ships should be allocated to the routes that have higher port
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service frequency (see Section 3.1.4 for more details). After making a round-trip voyage,
each ship should return to the first port of call, where the voyage originated. Figure 4 dis-
plays a possible liner shipping network with four port rotations. Port rotation “1” includes
three ports, port rotation “2” includes five ports, whereas port rotations “3” and “4” are
represented by four ports each. In case of port rotation “3”, each ship begins its voyage
at port “5”, then visits ports “8”, “9”, “10”, and returns again to port “5” to complete its
voyage. Ships sail between consecutive ports along voyage legs (i.e., voyage leg p is used
to connect ports p and p + 1). In case of port rotation “3”, the allocated ships are assumed
to sail along voyage leg “8” to reach port “9” from port “8”. Ships may visit a given port
more than once during a given voyage.
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3.1.2. Ship Service at Ports

Ports of each liner shipping route are generally visited with a particular frequency.
Weekly and bi-weekly port visits are viewed as common in the liner shipping indus-
try [32,33,50,51]. Each shipping line has a public schedule of port visits. Service of ships at
ports of call is associated with various operations, including the following: (1) transfer of
arrived ships to dedicated berthing positions by tug boats; (2) mooring of ships at berthing
positions; (3) loading of export containers and offloading of import containers by quay
cranes; and (4) transfer of containers between the seaside and the marshaling yard of
a marine container terminal. Ships are expected to arrive within a particular time widow
(TW) at each port. The arrival TWs are negotiated between the shipping line and each
terminal operator. Note that some terminal operators may offer multiple TWs for the arrival
of ships, depending on the available ship handling resources and berthing availability [52].
Two attributes are associated with each TW, including the start of the arrival TW at port
p (τst

p , p ∈ P—hours) and the end of the arrival TW at port p (τend
p , p ∈ P—hours).
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There are two types of arrival TWs that have been used in the liner shipping litera-
ture [53]: (a) hard (or strict) arrival TWs and (b) soft arrival TWs. In case of hard arrival
TWs, ships are mandated to arrive within the previously negotiated TWs. In the case of
soft TWs, ships are allowed to arrive outside the previously negotiated TWs; however,
additional inconvenience costs will be imposed on the shipping line for TW violation. This
study assumes TWs to be soft, and a late ship arrival cost (κlate

p , p ∈ P USD/hour) will be
imposed for the ships arriving after the end of the negotiated TW. For the ships arriving
before the start of the negotiated TW, no penalties will be imposed. However, the ships will
have to wait until the start of the negotiated TW. As a part of tactical-level planning of liner
shipping operations, along with ship arrival TWs, handling rates have to be negotiated
for ships between the shipping line and each terminal operator as well. The handling
productivity (measured in number of TEUs loaded/offloaded per hour) is proportional
to the handling rate. Let κhand

p , p ∈ P represent the unit cost associated with container
handling at port p (USD/TEU). As stated in the introduction section of this manuscript,
marine terminal operators often experience unexpected disruptive events that cause port
congestion, which further affects ship waiting and handling times at ports. Therefore, the

ship waiting and handling times, denoted as τ̃wait
p , p ∈ P (hours) and τ̃hand

p , p ∈ P (hours),
respectively, are assumed to be uncertain in this study.

3.1.3. Fuel Consumption Estimation

The fuel cost may comprise a significant portion of the total shipping route service
cost. For instance, Ronen [54] reports that the fuel cost can be higher than 75% of the total
ship operational costs. Therefore, the amount of fuel required by ships should be accurately
estimated for cost-effective ship schedule design. This study assumes that the shipping
route will be served by homogeneous ships (i.e., the ships that have similar technical
characteristics, including fuel consumption rates). Such an assumption can be viewed as
common among the studies on liner shipping operations and ship scheduling [47]. The
ship sailing speed and payload are recognized as the major two predictors that dictate the
amount of fuel required by ships [15,55,56]. Indeed, ships sailing at higher speeds will
require more fuel compared to ships sailing at lower speeds. Furthermore, fully-loaded
ships will require more fuel compared to partially-loaded ships. Taking into account
the aforementioned considerations, the amount of fuel to be consumed on voyage leg p
by the main ship engines (ϕp, p ∈ P—tons/nmi) can be computed using the following
mathematical relationship:

ϕp =
γ
(
sp
)α−1

24
·
(

δsea
p ·ω + δempty

δcap + δempty

) 2
3

∀p ∈ P (1)

where: α, γ—coefficients associated with the fuel consumption function; sp, p ∈ P—sailing
speed of ships on voyage leg p (knots); δsea

p , p ∈ P—number of containers to be carried
on voyage leg p (TEUs); ω—average cargo weight within a standard TEU (tons); δempty

—weight of a ship without containers (tons); δcap—maximum weight of containers that
could be loaded on a ship (tons).

Note that fuel consumption coefficients α and γ depend on the ship type. However,
the amount of consumed fuel is generally much higher for larger ships that are fully loaded
and sail at higher speeds. When selecting the ship sailing speed on each voyage leg of the
shipping route, the shipping line has to keep in mind that the maximum ship sailing speed
(smax—knots) will be dictated by the engine capacity of deployed ships. Moreover, selection
of low sailing speeds (i.e., the phenomenon known as “slow steaming”) would reduce fuel
consumption and the total fuel cost. However, there is also a minimum sailing speed that
could be set for deployed ships (smin—knots), as ships sailing at extremely low speeds pose
the risk of main engine deterioration [47,55]. Note that Equation (1) is applicable for the
fuel consumption by the main ship engines, whereas the fuel consumption by the auxiliary
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ship engines typically remains constant during the voyage and is accounted for in the ship
operational cost.

3.1.4. Port Service Frequency Determination

Determination of the port service frequency is viewed as a tactical-level liner shipping
planning decision [43,47]. The port service frequency is set considering the existing demand
for export and import containers and is generally set to meet the target profit margins. The
shipping line must ensure that the following mathematical relationship is adhered to in
order to maintain the port service frequency established [32,33,47]:

24·φ·qtot = ∑
p∈P

τsail
p + ∑

p∈P
τ̃wait

p + ∑
p∈P

τ̃hand
p (2)

where: “24”—number of hours for a one-day time interval; φ—agreed frequency of port
service (days); qtot—number of ships to be deployed (ships); τsail

p , p ∈ P—sailing time

of ships on voyage leg p (hours); τ̃wait
p , p ∈ P—expected waiting time of ships at port p

(hours); τ̃hand
p , p ∈ P—expected handling time of ships at port p (hours).

The left-hand side of Equation (2) is the product of the total number of hours for
a one-day time interval, the agreed frequency of port service, and the total number of ships
to be deployed. The right-hand side of Equation (2) represents the overall turnaround time
of ships, which is estimated as a summation of the overall sailing time of ships, overall
expected waiting time of ships at ports, and overall expected handling time of ships at
ports. In case the shipping line does not have enough own ships for deployment, additional
ships can be charted from other shipping lines in order to ensure the agreed frequency
of port service. The following mathematical relationships should be considered by the
shipping line when assigning ships for service of a given shipping route:

qtot = qown + qchar (3)

qown ≤ qown−max (4)

qchar ≤ qchar−max (5)

where: qtot—number of ships to be deployed (ships); qownnumber of own ships to be deployed
(ships); qchar—number of chartered ships to be deployed (ships); qown−max—maximum num-
ber of own ships that could be deployed (ships); qchar−max—maximum number of chartered
ships that could be deployed (ships).

Chartering of ships from other shipping lines incurs an additional ship chartering
cost (κcharUSD/day), which is typically higher than the cost associated with operating
own ships (κoper—USD/day). To prevent excessive ship chartering costs, the shipping line
may decide to increase the ship sailing speed, which will reduce the total ship turnaround
time and require fewer ships for deployment. An example of the shipping route service is
presented in Figure 5, where a total of four ships are deployed to visit the ports of call. The
ships provide weekly port service frequency (i.e., each port is visited every one week or
168 h; φ = 7 days).
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3.1.5. Container Inventory Considerations

Sailing speed reduction can assist shipping lines by decreasing the total amount of
fuel required for the deployed ships and the total fuel cost as well [57–61]. However, ship
sailing speed reduction has certain negative externalities as well. In particular, sailing
speed reduction increases the ship transit time and the amount of time containers spend on
the ships, which negatively influences the efficiency of liner shipping operations. Therefore,
ship schedules should be designed directly taking into consideration container inventory
and associated costs. The total cost associated with container inventory (Kinv—USD) can
be computed using the following mathematical relationship [26,32]:

Kinv = κinv ∑
p∈P

δsea
p ·τsail

p (6)

where: κinv—unit cost associated with container inventory (USD/hour); δsea
p , p ∈ P—number

of containers to be carried on voyage leg p (TEUs); τsail
p , p ∈ P—sailing time of a ship on

voyage leg p (hours).

3.2. Base Mathematical Model

The base mathematical model for the ship scheduling problem with uncertainties
(SSP-U) can be formulated using the objective function (7) and constraints (8) through (26).
Note that for a detailed description of all the notations used in the mathematical models
presented in this manuscript, interested readers can refer to Appendix A that accompanies
this manuscript. The bold notations are used for decision variables, auxiliary variables, and
uncertain/stochastic parameters within the mathematical models, whereas the standard
font is used for constant parameters. The proposed SSP-U mathematical model assumes
that the ship waiting and handling times are uncertain. The SSP-U objective function (7)
aims to maximize the total profit (Π—USD) that will be accumulated by the shipping line
from the provided liner shipping service, which is estimated as a difference between the
total revenue (R—USD) and the total cost associated with the service of the considered
shipping route.

max Π =
[
R−

(
Khand + Klate + K f uel + Koper + Kchar + Kinv

)]
(7)
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The total cost associated with the service of the considered shipping route includes the
following elements: (1) total cost associated with container handling at ports (Khand—USD);
(2) total cost associated with late ship arrivals (Klate—USD); (3) total cost associated
with fuel consumption (K f uel—USD); (4) total cost associated with basic ship operations
(Koper—USD); (5) total cost associated with chartering of ships (Kchar—USD); and (6) total
cost associated with container inventory (Kinv—USD). The SSP-U model includes a total
of four groups of constraint sets. The first constraint group, represented by constraints (8)
through (11), estimates the sailing time of ships, taking into account the established speed
bounds, and the consumption of fuel by the main engines of ships on voyage legs of the
considered shipping route. In particular, constraints (8) and (9) assure that the sailing speed
of ships remains within the established speed bounds on each voyage leg. Constraints (10)
compute the sailing time of ships on each voyage leg based on the voyage leg length and
the sailing speed of ships. On the other hand, the consumption of fuel by the main engines
of ships on each voyage is computed by constraints (11) based on the sailing speed of ships,
coefficients associated with the fuel consumption function, and ship payload.

sp ≤ smax ∀p ∈ P (8)

sp ≥ smin ∀p ∈ P (9)

τsail
p =

lp

sp
∀p ∈ P (10)

ϕp =
γ
(
sp
)α−1

24
·
(

δsea
p ·ω + δempty

δcap + δempty

) 2
3

∀p ∈ P (11)

The second constraint group, represented by constraints (12) through (15), estimates
the main time components associated with port operations for the considered shipping
route. These time components include the following: (1) arrival time of ships at ports
(constraints (12) and (13)); (2) late arrival hours of ships at ports (constraints (14)); and
(3) departure time of ships from ports (constraints (15)).

τarr
p+1 = τ

dep
p + τsail

p ∀p ∈ P, p < n1 (12)

τarr
1 = τ

dep
p + τsail

p − 24·φ·qtot ∀p ∈ P, p = n1 (13)

τlate
p ≥ τarr

p − τend
p ∀p ∈ P (14)

τ
dep
p = τarr

p + τ̃wait
p + τ̃hand

p ∀p ∈ P (15)

The third constraint group, represented by constraints (16) through (19), assures that
the established frequency of port service will be maintained for the considered shipping
route. In particular, constraints (16) assure that the number of ships to be deployed
is sufficient for maintaining the established frequency of port service. Constraints (17)
compute the number of ships to be deployed based on the number of own ships to be
deployed and the number of chartered ships to be deployed. Constraints (18) assure that
the number of own ships to be deployed does not exceed the maximum number of own
ships that could be deployed for the considered shipping route. Constraints (19) assure
that the number of chartered ships to be deployed does not exceed the maximum number
of chartered ships that could be deployed for the considered shipping route.

24·φ·qtot = ∑
p∈P

τsail
p + ∑

p∈P
τ̃wait

p + ∑
p∈P

τ̃hand
p (16)

qtot = qown + qchar (17)

qown ≤ qown−max (18)
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qchar ≤ qchar−max (19)

The fourth and the last constraint group, represented by constraints (20) through (26),
estimates all the individual cost elements that are required for calculation of the SSP-U
objective function (7).

R = ∑
p∈P

κrev
p ·δ

port
p (20)

Khand = ∑
p∈P

κhand
p ·δport

p (21)

Klate = ∑
p∈P

κlate
p ·τlate

p (22)

K f uel = κ f uel ∑
p∈P

lp·ϕp (23)

Koper = κoper·φ·qown (24)

Kchar = κchar·φ·qchar (25)

Kinv = κinv ∑
p∈P

δsea
p ·τsail

p (26)

3.3. Review of the Relevant Studies

With regard to ship scheduling, shipping lines must deal with a key challenge—managing
timely liner shipping operations. Customers may face increased logistics costs as a result of
lengthier waiting periods and delays because of unreliable ship schedules. Notteboom [11]
aimed to understand the causes of unreliability in liner shipping services along with the
measures that could be taken to improve the reliability of liner shipping services, such as
increasing ship size, rearranging the order of ports, port skipping, and adjusting the sailing
speed. Vernimmen et al. [62] explored the reasons for the unreliability of liner schedules
and the effects they have on the various stakeholders in the supply chain, such as shipping
lines, inland transport operators, terminal operators, and shippers. An example case study
showed that a manufacturer’s capacity to source replacement components from overseas
may be affected by the level of schedule unreliability. Previous research on the planning and
scheduling of container ship routes assumed an acute market demand, which is not a viable
assumption in the actual world. To address this gap in the state-of-the-art, Chuang et al. [63]
suggested a planning model for container ship routes that takes into consideration uncertain
market demand, shipping time, and berthing time. Using the fuzzy set theory, the article
developed a genetic algorithm as a decision support system in which the fitness degree of
a shipping route was generated from the fuzzy total profit.

Meng and Wang [64] investigated a short-term ship fleet planning problem in liner
shipping for a single shipping line, taking container demand uncertainty into account.
The problem was addressed using an integer linear mathematical programming model
with chance constraints. The objective was to minimize the total route service cost. The
developed chance-constraint programming model was solved with CPLEX. A number
of research efforts have been dedicated towards a decrease in bunker consumption (and
the associated ship emissions). Nonetheless, the studies on ship routing and scheduling
have failed to account for the system’s stochastic nature. Qi and Song [65] attempted
to fill this gap by developing a mathematical model to reduce fuel consumption while
focusing on port time uncertainty. A stochastic approximation strategy based on simulation
was used to solve the model. The study also found that reducing the level of service on
shorter voyage legs could save fuel consumption. Wang and Meng [7] sought to create
a plan that accounts for port operations uncertainties, such as unpredictable waiting times
due to port congestion and unknown cargo handling times. The proposed schedule was
resilient since it accounted for intrinsic uncertainty in port operations as well as schedule
recovery via rapid steaming. In order to address the problem, a mixed-integer stochastic
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nonlinear programming model was created. The model was then solved using a method
that combined a sample average approximation approach, linearization approaches, and
a decomposition methodology.

Wang and Meng [66] developed a mixed-integer stochastic nonlinear programming
model to maintain the total transit time while minimizing the overall cost. The study
explicitly modeled ship fuel consumption, port time uncertainty, and sea contingency. The
efficiency of the proposed exact cutting plane-based solution algorithm was validated by
extensive computational experiments using realistic data. Di Francesco et al. [67] studied
the issue of empty container repositioning in sea transportation networks, taking into
account potential uncertainties in port times (e.g., due to various disruptive events). The
authors introduced a stochastic programming method that was based on a multi-scenario
mathematical model. The provided multi-scenario mathematical approach sought to reduce
the total cost. CPLEX was adopted as a solution method. Disruptions are common not just
for container shipping, but also for shipping of liquid and dry bulk cargoes. Halvorsen-
Weare et al. [68] investigated a real-world liquefied natural gas (LNG) ship scheduling
problem, in which the goal was to design robust routes and timetables capturing potential
changes in weather circumstances. The study created and tested a solution strategy as
well as alternative robustness approaches for scenarios with time horizons ranging from
3 to 12 months. The obtained solutions were evaluated by means of a simulation model in
conjunction with a recourse optimization process.

According to Du et al. [69], unexpected severe weather circumstances can have an impact
on the voyage of any container ship. Inclement weather, in particular, can have an impact
on ship speed and fuel consumption. As a result, the study designed a robust optimization
model for the fuel budgeting decision problem, taking into account the influence of severe
weather on fuel consumption. To solve the developed mathematical model, a polynomial-time
solution methodology was developed. Kepaptsoglou et al. [70] developed a stochastic model
to predict the optimum routes for a group of homogeneous container vessels, taking into
account sailing time uncertainty caused by severe weather. A chance-constraint formulation
was utilized to minimize the total route service cost. A genetic algorithm-based metaheuristic
approach was used for the solution. The results of the performed experiments showed that
the deployment of a small-size ship fleet was sufficient to provide liner shipping services,
even in the presence of small operational delays.

Slow steaming has been widely adopted as an operating approach by shipping lines,
since it has proved the efficiency in terms of fuel expense savings. According to the study by
Lee et al. [71], slow steaming has certain negative effects as well, primarily increased transit
time and unpredictability during the ship voyage. The authors provided a mathematical
model for analyzing the links between three important shipping attributes: total bunker
cost, shipping time, and cargo delivery reliability. Because of the use of slow steaming, the
port time was modeled to be uncertain. Uncertainty in container shipping demand was
indicated to be one of the primary concerns that must be accounted for. Ng [72] investigated
a container ship deployment problem with stochastic dependencies in container shipping
demand, where the variance and mean of the maximum container demand were required
to be known. The objective function attempted to minimize the total route service cost.
CPLEX was used to solve the mathematical formulation.

Uncertain port service and sailing times owing to bad weather could have a significant
impact on ship timetables, particularly during the winter season. Norlund et al. [73]
suggested a simulation-optimization-based framework for weekly supply ship scheduling
that takes into account the cost, emission, and robustness factors. The goal was to reduce the
overall route service cost. It was demonstrated that a greater emphasis on robustness was
predicted to result in higher costs and emissions during the winter season. Song et al. [74]
focused on liner shipping scheduling under port time uncertainty. The tactical problem
aimed to optimize the shipping emission, service reliability, and planned cost. A non-
dominated sorting genetic algorithm II (NSGA-II) was applied to solve the model. Based
on the numerical results, the deployment of larger ships could be an effective approach to
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address the uncertain demand. However, it could be an expensive choice because larger
ships have higher operational costs.

Wang [75] stated that a series of container ships may not have the same capacity. As
a result, the order in which ships arrive affects the number of stacked and delayed containers
at ports. The study thus tried to identify the sequence of ships in a string in order to
minimize the overall container delay. Experiments revealed that improving ship sequences
might save the world’s liner services $6 million per year. Aydin et al. [76] investigated a liner
shipping speed optimization and bunkering problem characterized by uncertain port times,
with the goal of minimizing fuel consumption while maintaining schedule consistency. The
study formulated a dynamic programming model for the decision problem considered.
Numerical experiments using real-world data revealed a considerable reduction in fuel
consumption when compared to the state-of-the-art approaches. Song et al. [77] aimed to
optimize service scheduling, ship sailing speed, and ship deployment in a liner shipping
service with port and sea uncertainty. Three service-reliability key performance indicators
(KPIs) and two cost-related KPIs were defined. The two cost KPIs represented the shipper
and the carrier, whereas the three reliability KPIs represented the terminal operator, the
shipper, and the carrier. To solve the provided multi-objective mathematical model, a multi-
objective metaheuristic algorithm was used in the study.

Ng and Lin [78] addressed the ship fleet deployment problem in liner shipping,
highlighting that only conditional information on container shipping demand could be
available. A mathematical formulation was devised with the objective of minimizing the
total route service cost. CPLEX was used to solve the developed mathematical formulation.
In contrast to road and rail transportation, inland shipping is gaining popularity as a more
environmentally friendly and sustainable means of transportation. However, in order to
compete in the shipping industry, an inland shipping company must provide a rapid, stable,
and cost-effective service. Nonetheless, varying stream flow speeds between ports and
uncertain transit times induced by dam lock operations could make the inland ship schedule
design difficult. Tan et al. [79] devised a joint ship schedule and speed optimization problem
while accounting for uncertainty in dam transit time. A bi-objective chance constraint
programming model was then created, with the goal of minimizing both fuel consumption
and ship total travel time.

Gurel and Shadmand [80] investigated a liner ship scheduling problem with a hetero-
geneous fleet while accounting for port handling and waiting time uncertainty in order to
minimize fuel consumption. A chance-constrained nonlinear mixed-integer programming
model was used to solve the problem. The experimental results indicated that assigning
various service levels to port–ship type pairs was more efficient than assigning equal service
levels to all pairs. In order to develop new mathematical models for liner shipping service
design, Tierney et al. [81] used empirical ship travel time data from a real liner shipping
network. In particular, the study proposed three mathematical models, including the follow-
ing: (1) the design speed model; (2) the optimized speed model; and (3) the optimal speed
with maximum transit time model. The models used a buffer time to meet the desired level
of service for customers. The proposed models were the first to integrate the support for
variable ship speeds in the service design. Using the model for tactical decision support, the
researchers showed that it could be used not only for service design but also in negotiations
with customers concerning maximum demand transit times and costs.

The study by Liu et al. [82] focused on liner ship speed optimization and bunkering
under uncertain container demand. This problem was approached using nonlinear pro-
gramming and a two-stage stochastic model. The complex bunker consumption function
was approximated using piecewise linear functions to reduce the problem’s complexity.
The resulting model was then solved using an L-shaped approach, a sample average ap-
proximation based on scenario reduction, and a classic sample average approximation. The
L-shape technique was found to be more advantageous in terms of both solution quality
and computation time. Ding and Xie [83] suggested a two-stage stochastic nonlinear integer
programming approach for liner ship scheduling and routing with unexpected shipping
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delays. The combination of schedule-sensitive shipping demand and unpredictable arrival
time factors resulted in a nonlinear model formulation. Nominal delay variables were
introduced to the model to produce a comparable linear integer programming counterpart.
A Bender’s decomposition method was utilized to solve the linearized problem.

Liu et al. [84] introduced a ship scheduling technique with full voyage constraints to
increase the efficiency of operating out-wharf and in-wharf ships at seaports, while taking
into account the characteristics of uncertain ship speeds. The study was able to simplify the
mathematical model with the use of multi-time restrictions by selecting the minimal safe
time intervals. To propose a method for determining the passable time window, the time
window concept was linked with the tide height and ship drafts. Additionally, nonlinear
global constraints were discretely converted into linear constraints. The developed genetic
algorithm sought to reduce the average waiting time for the modified vessel scheduling
problem. According to the findings, the reformulated and simplified mathematical model
had a lower relative error than conventional priority scheduling rules and could be utilized
to successfully boost ship scheduling efficiency while still ensuring traffic safety.

3.4. Literature Summary and Research Gaps
3.4.1. Summary of Findings

A detailed summary of the reviewed studies on uncertainties in liner shipping opera-
tions is presented in Table 1 focusing on the following information: (1) authors; (2) sailing
speed assumptions; (3) port time assumptions; (4) objective function adopted; (5) compo-
nents of the objective function adopted; (6) uncertain elements considered; (7) solution
approach deployed; and (8) particular notes along with important study considerations.
Furthermore, Figure 6 provides a distribution of the reviewed studies by model objective,
objective components, uncertain elements, and solution approach. After a thorough review
of the literature on uncertainties in liner shipping operations, it can be concluded that
a substantial number of studies assumed the ship sailing speed to be uncertain (a total of
44.0%). On the other hand, 68% of studies modeled uncertain port times, mostly focusing
on the port handling time uncertainty (see Table 1).
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Table 1. Summary of the reviewed studies on uncertainties in liner shipping operations.

a/a Authors Sailing
Speed Port Time Objective Objective

Components
Uncertain
Elements Solution Approach Notes/Important

Considerations

1 Notteboom (2006)
[11] N/A N/A

Assess the causes that might
influence the reliability of
shipping services between

Northern Europe and
East Asia

N/A N/A Case Study Reliability of
ship schedules

2 Vernimmen et al.
(2007) [62] N/A N/A

Assess the causes of liner
schedule unreliability and

how these causes could
impact supply chain players

N/A N/A Case Study Reliability of
ship schedules

3 Chuang et al. (2010)
[63] U U Total profit maximization REV; TFC;

TOC; TPC

Handling time;
Sailing time;

Container demand
Metaheuristic

Proposing a fuzzy Genetic
Algorithm for liner
shipping planning

4 Meng and Wang
(2010) [64] F U Total route service

cost minimization MSC; REV; TOC Container demand CPLEX
Ship fleet planning with
uncertainty in container

demand

5 Qi and Song (2012)
[65] V U Total route service

cost minimization TFC; TVC Handling time

Iterative
Optimization

Algorithm;
Sample Average
Approximation

Minimizing the total
expected fuel consumption

(and emissions)

6 Wang and Meng
(2012) [7] V U Total route service

cost minimization TFC; TOC; TVC Waiting time;
Handling time

Iterative
Optimization

Algorithm

Consideration of waiting
time and handling time

uncertainties due to
port congestion

7 Wang and Meng
(2012) [66] U U Total route service

cost minimization TFC; TOC
Waiting time;

Handling time;
Sailing time

Iterative
Optimization

Algorithm

Sea contingency time and
uncertainty in port time

8 Di Francesco et al.
(2013) [67] V U Total route service

cost minimization
MSC; TIC; TFC;
TOC; TPC; TVC

Waiting time;
Handling time;

Container demand
CPLEX

Consideration of uncertain
port service times and

empty
container repositioning

9
Halvorsen-

Weare et al. (2013)
[68]

U U Total route service cost
minimization

MSC; TIC; TFC;
TOC; TPC; TVC

Sailing time;
Demand Xpress-IVE Considered changing

weather conditions

10 Du et al. (2015) [69] U F Total fuel consumption
minimization MSC Fuel consumption

Iterative
Optimization

Algorithm

Considering the impacts of
adverse weather on the
total fuel consumption
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Table 1. Cont.

a/a Authors Sailing
Speed Port Time Objective Objective

Components
Uncertain
Elements Solution Approach Notes/Important

Considerations

11 Kepaptsoglou et al.
(2015) [70] U F Total route service cost

minimization TFC; TOC; TPC Sailing time Metaheuristic
Consideration of potential
impacts of severe weather

on ship sailing times

12 Lee et al. (2015) [71] V U

Analyze the relationship
amongst shipping time,
bunker cost, and cargo

delivery reliability

TFC Waiting time;
Handling time Analytical Method

Proposed a methodology
for ship scheduling with
guaranteed reliability of

cargo delivery

13 Ng (2015) [72] F U Total route service
cost minimization MSC; REV; TOC Container demand CPLEX

Consideration of uncertain
shipping demand in ship

fleet deployment

14 Norlund et al. (2015)
[73] U U Total route service

cost minimization TFC; TOC
Waiting time;

Handling time;
Sailing time

Simulation-
Optimization

Acceptable levels of
emissions and costs could

be achieved with the
adequate robustness level

15 Song et al. (2015) [74] V U

Total route service cost
minimization; Average
schedule unreliability

minimization;
Annual total CO2 emission

minimization

MSC; TEC; TFC;
TOC; TPC; TVC

Waiting time;
Handling time Metaheuristic

Developing a method to
optimize the multiple

objectives simultaneously

16 Wang (2015) [75] F U Total delay minimization N/A Container demand Heuristic

Consideration of
heterogeneous fleet and

container demand
uncertainty

17 Aydin et al. (2017)
[76] V U Total route service cost

minimization TFC; TVC Waiting time;
Handling time

Dynamic
Programming

Speed bunkering and
optimization under port

time uncertainty

18 Song et al. (2017) [77] U U
Total route service cost

minimization;
Reliability maximization

MSC; TFC; TIC;
TOC; TVC

Waiting time;
Handling time;

Sailing time
Metaheuristic

A multi-objective model
consisted of three

service-reliability KPIs and
two cost-related KPIs

19 Ng and Lin (2018)
[78] F U Total route service cost

minimization MSC; REV; TOC Container demand CPLEX
Conditional information

was assumed to be
available for

container demand
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Table 1. Cont.

a/a Authors Sailing
Speed Port Time Objective Objective

Components
Uncertain
Elements Solution Approach Notes/Important

Considerations

20 Tan et al. (2018) [79] U F
Total fuel consumption cost

minimization;
Total ship turnaround time

minimization
TFC; TOC Sailing time Analytical Method

Joint service schedule
design and ship sailing

speed optimization
problem for

inland shipping

21 Gurel and Shadmand
(2019) [80] V U Total route service cost

minimization TFC Waiting time;
Handling time CPLEX Heterogeneous ship

fleet considerations

22 Tierney et al. (2019)
[81] U V Total route service cost

minimization TFC; TOC Sailing time GUROBI
Ship journey times were
examined for a real-life
liner shipping network

23 Liu et al. (2020) [82] V U Total route service
cost minimization TFC; TIC; TOC Container demand

Iterative
Optimization
Algorithms

Solving liner ship
bunkering and speed
optimization problem

24 Ding and Xie (2021)
[83] U V Total profit maximization REV; TFC;

TOC; TVC Sailing time
Iterative

Optimization
Algorithm

Balancing chances of
unexpected delays and

tight timelines

25 Liu et al. (2021) [84] U V Average waiting
time minimization N/A Sailing time Metaheuristic

Introduced the notion of a
minimum safety time

interval (MSTI) in order to
decrease the number of

constraints

Notes: Sailing Speed and Port Time [V—Variable; F—Fixed; U—Uncertain]; Objective Components [MSC—Miscellaneous Costs; REV—Total Revenue; TEC—Total Ship Emission Cost;
TFC—Total Fuel Consumption Cost; TIC—Total Container Inventory Cost; TOC—Total Ship Operational Cost; TPC—Total Port Handling Cost; TVC—Total Cost Associated with
Violation of Port Time Windows].
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As for the objective functions adopted, the majority of studies (more than 50%) aimed
to minimize the total cost of route service, mainly considering fuel consumption cost,
ship operational cost, and port TW violation cost (see Figure 6). Only two studies fo-
cused on the total profit maximization [63,83]. The analysis of the reviewed studies also
shows that single-objective mathematical formulations were common (see Table 1). Only
Song et al. [74], Song et al. [77], and Tan et al. [79] presented multi-objective mathematical
formulations. In particular, the study by Song et al. [74] aimed to minimize the total cost of
route service, average schedule unreliability, and annual CO2 emissions. Song et al. [77] de-
veloped a multi-objective optimization model, where the first objective minimized the total
cost of route service, whereas the second one aimed to maximize the schedule reliability.

On the other hand, Tan et al. [79] proposed a bi-objective model, minimizing the total
fuel consumption cost and the total turnaround time of ships. The studies conducted by
Notteboom [11] and Vernimmen et al. [62] did not propose any mathematical formulations for
modeling uncertainties in liner shipping operations and solely focused on the review of factors
that could potentially influence the reliability of liner shipping services. As for the solution
methods adopted, iterative optimization algorithms were identified to be the most popular
methods for the studies on uncertainties in liner shipping operations (see Figure 6). A total
of 20% of studies relied on metaheuristic algorithms. Furthermore, a significant number of
research efforts deployed exact optimization solvers (e.g., CPLEX, GUROBI, and Xpress-IVE).
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3.4.2. Limitations and Future Research Needs

The research gaps and a number of shortcomings in the existing studies on uncertain-
ties in liner shipping operations have been identified. These shortcomings and the future
research that is required to bridge these gaps are as follows:

â More detailed and accurate historical data for liner shipping operations are required
to model uncertainties associated with the main liner shipping processes and assess
various mitigation strategies. The collected historical data can be further used in the
development of statistical distributions for uncertain container demand, port time,
and sailing time [68,81].

â Future studies should concentrate on more detailed modeling of uncertain compo-
nents in liner shipping operations [74]. For instance, the port time component can
be disaggregated into various sub-components (e.g., port waiting time, handling
time associated with offloading import containers, handling time associated with
loading export containers). The effects of uncertainties can be further assessed for
each sub-component.

â A detailed evaluation of the existing studies on uncertainties in liner shipping opera-
tions indicates that many studies strictly concentrate on one source of uncertainties
(i.e., uncertainty in demand or uncertainty in sailing time or uncertainty in port han-
dling time or uncertainty in port waiting time). Holistic models that emulate multiples
sources of uncertainties at the same time should be further explored by future studies.

â Reliability of liner shipping services can be affected by a variety of factors [11,62],
including geographical characteristics, the average age of deployed ships, previous
maintenance activities of deployed ships, available handling resources of terminal
operators and inland operations, and others. Future research should continue inves-
tigating the effects of these factors on liner shipping services and directly consider
them for planning purposes.

â Innovative policies should be explored to offset the effects of uncertainties in liner
shipping operations. Dynamic decision-making policies can be promising [71]. As
an example, delays due to uncertainties in sailing time could be mitigated by adjusting
the ship sailing speed on consecutive voyage legs of a shipping route. However, the
ship sailing speed adjustment decision should be made by taking into account other
important operational factors (e.g., the number of remaining ports to be visited in
a round voyage; increasing fuel cost due to speeding up the ships).

â One of the common limitations in the existing liner shipping studies consists in
the fact that the impacts of weather conditions are not directly accounted for when
planning ship sailing speed decisions [76]. Future research efforts must focus on
the development of models that directly capture the expected weather conditions on
voyage legs when making ship sailing speed decisions.

â Time-dependent port waiting and handling times should be taken into account in
future studies. Waiting and handling times vary significantly at the ports depending
on the day of the week and the time of day [80]. Ship arrivals should be planned for
the time periods with a lower risk of congestion and port time delays.

â Future studies should investigate various alternatives for mitigating the effects of
significant delays during a ship voyage. In some instances, port skipping or partial
loading/offloading of ships might be a promising decision in order to prevent the
propagation of delays throughout the entire liner shipping network [81].

â Strict port arrival TWs may not be feasible for shipping routes that often encounter un-
certainties. Therefore, explicit modeling of soft arrival TWs, where ships are allowed
to arrive outside the previously negotiated TW but penalized for TW violations, could
be studied more as a part of future research [81].

â It is known that fuel prices fluctuate regularly, and different ships need different
types of fuel (e.g., ships sailing inside emission control areas must use low-sulfur
fuel—[85–89]). Furthermore, ship sailing speed and fuel consumption are often
subject to uncertainties [69]. Therefore, future studies should develop more compre-
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hensive liner shipping operations planning models, which directly capture fuel price
fluctuations, ship sailing speed uncertainty (and the associated fuel consumption
uncertainty), fuel switching, and effective refueling policies.

4. Ship Schedule Recovery

For many years, operations research (OR) methods have been widely employed in
the aviation industry [90–92]. Initially, OR was utilized exclusively during the planning
phase. However, during the last two decades, OR became popular within the disruption
management tools to be used in real time and ensure that the intended airline schedule
is executed [92,93]. There are evident parallels between the airline and liner shipping
industries [2,94]. Many airline and liner shipping services adopt the hub-and-spoke model
for their operations. The operations are planned aiming to minimize the total delays in
the delivery of cargo (or passengers in case of planning passenger aircraft operations).
A variety of recovery strategies can be used in the airline industry to offset the negative
impacts of disruptions, including flight cancellations, adding arcs to discourage deviations
from aircraft routing, incorporation of delays, and aircraft flying speed adjustments [95–98].
Some of the recovery strategies used in the airline industry can be applied in the liner
shipping industry as well to effectively respond to disruptive events [99].

This section of the manuscript provides a detailed evaluation of the state-of-the-art in
the area of ship schedule recovery. First, a description of a general ship schedule recovery
problem is presented. Second, the base mathematical models for the ship schedule recovery
problem with various recovery options are formulated (including sailing speed adjustment,
handling rate adjustment, port skipping, and port skipping with container diversion).
Third, a detailed review of the relevant studies is provided. Fourth, a concise state-of-the-
art summary is outlined, and critical research gaps in the area of ship schedule recovery
are underlined.

4.1. Problem Description

Unlike the ship schedule design problem, which is viewed as a tactical-level decision
problem, the ship schedule recovery problem is an operational level (often real-time)
decision problem [43,47]. Therefore, certain components in the ship schedule recovery
problem are treated as parameters, not variables that are used in the tactical-level planning
models. These components include the following: (1) arrival time of ships at ports for the
original ship schedule (τarr

p , p ∈ P—hours); (2) number of own ships to be deployed for
the original ship schedule (qown—ships); (3) number of chartered ships to be deployed for
the original ship schedule (qchar—ships); (4) number of containers to be handled at ports

(δ
port
p , p ∈ P—TEUs); (5) sailing speed of ships on voyage legs for the original ship schedule

(sp, p ∈ P—knots); and (6) total profit that was expected to be accumulated by the shipping
line for the original ship schedule (Π0—USD).

Disruptions can occur on voyage legs of the shipping route and/or at ports of call. Let

τ̃
d−port
p , p ∈ P (hours) and σ̃d−sea

p , p ∈ P (knots) be the expected duration for a disruption
at port p and the expected change in sailing speed of ships due to a disruption on voyage
leg p, respectively. In order to offset the effects of disruptions on the ship schedule, the
shipping line is assumed to be able to adopt the following ship schedule recovery strategies
(see Figure 7): (a) sailing speed adjustment; (b) handling rate adjustment; (c) port skipping;
and (d) port skipping and container diversion. An illustrative example of the sailing speed
adjustment strategy is showcased in Figure 7a, where a disruptive event happened on the
voyage leg connecting ports “2” and “3”. In order to compensate for the delays due to
a disruption at sea, the shipping line increased the ship sailing speed on the voyage leg
connecting ports “3” and “4” from 18 knots to 24 knots. Moreover, the ship sailing speed
was increased from 17 knots to 23 knots on the voyage leg connecting ports “4” and “1” as
well. Ship sailing speed adjustment is generally viewed as an effective recovery option to
offset small to moderate delays during the voyage but incurs additional fuel costs.
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An illustrative example of the handling rate adjustment strategy is showcased in
Figure 7b, where a disruptive event happened on the voyage leg connecting ports “1” and
“2”. This disruptive event caused a late arrival at port “2”. In order to compensate for
the delays due to a disruption at sea, the shipping line requested a handling rate with
a higher handling productivity (when compared to the originally negotiated handling
rate). Such a recovery option allowed the ship to leave port “2” in a timely manner and
sail to port 3” following the original schedule. Handling rate adjustment is generally
viewed as an effective recovery option to offset small to moderate delays during the
voyage but incurs additional port handling costs (κhand

ph , p ∈ P, h ∈ Hp—USD/TEU, where

Hp =
{

1, . . . , n2
p

}
, p ∈ P is a set of handling rates that can be requested by the shipping line

at port p). Moreover, selection of this recovery option depends on the handling equipment
availability at ports (e.g., some terminal operators may not be able to provide higher
handling productivity).

An illustrative example of the port skipping strategy without container diversion is
showcased in Figure 7c, where a disruptive event happened at port “4”. The ship was directed
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to sail from port “3” directly to port “1” without stopping at port “4”, which experienced
a disruption. Port skipping is generally viewed as an effective recovery option to offset large
delays during the voyage but incurs additional costs due to previously reserved handling
equipment (κskip

p , p ∈ P—USD) and misconnected cargo (κmis
p , p ∈ P—USD/TEU).

An illustrative example of the port skipping strategy with container diversion is
showcased in Figure 7d, where a disruptive event happened at port “4”. The ship was
directed to sail from port “3” directly to port “1” without stopping at port “4”, which
experienced a disruption. However, the export containers that had to be loaded at port “4”
are diverted to port “1” via the intermodal network. Furthermore, the import containers
that had to be offloaded at port “4” can be offloaded at port “1” and delivered to the
intended customers via the intermodal network as well. Similar to port skipping, port
skipping with container diversion is generally viewed as an effective recovery option to
offset large delays during the voyage but incurs additional costs due to previously reserved
handling equipment and misconnected cargo. Moreover, the port where the containers
will be diverted should have adequate container terminal capacity (δterm

p , p ∈ P—TEUs)
and inland transport capacity (δland

p , p ∈ P—TEUs) to ensure that the diverted container
demand will be effectively accommodated. Nevertheless, unlike the port skipping strategy,
the port skipping strategy with container diversion allows delivery of containers to the
intended customers despite port skipping.

4.2. Base Mathematical Models

This section presents the base mathematical models for ship schedule recovery with
the following recovery strategies: (a) sailing speed adjustment; (b) handling rate adjustment;
(c) port skipping; and (d) port skipping and container diversion.

4.2.1. Sailing Speed Adjustment

The base mathematical model for the ship schedule recovery with sailing speed
adjustment (SSR-SSA) can be formulated using the objective function (27) and constraints
(28) through (48). The SSR-SSA objective function (27) aims to minimize the total loss of
profit that will be endured by the shipping line as a result of disruptions at the considered
shipping route. The total profit loss is estimated as a difference between the total profit
that was expected to be accumulated by the shipping line for the original ship schedule
(Π0—USD) and the total profit that will be accumulated by the shipping line for the
recovered schedule of ships (Π—USD).

min
[
Π0 −Π

]
(27)

The SSR-SSA model includes a total of three groups of constraint sets. The first con-
straint group, represented by constraints (28) through (32), estimates the recovered sailing
time of ships, considering potential sailing speed adjustment to compensate for the effects
of disruptions, and the recovered consumption of fuel by the main engines of ships on
voyage legs of the considered shipping route. In particular, constraints (28) compute the
recovered sailing speed of ships on each voyage leg, considering the expected change in
sailing speed of ships due to a disruption and potential ship sailing speed adjustment.
Note that constraints (28) assume that the ship sailing speed adjustment strategy could
not be implemented on the voyage leg that experienced a disruption. Constraints (29) and
(30) assure that the recovered sailing speed of ships remains within the established speed
bounds on each voyage leg. Constraints (31) compute the recovered sailing time of ships
on each voyage leg based on the voyage leg length and the recovered sailing speed of ships.
Constraints (32) calculate the recovered consumption of fuel by the main engines of ships
on each voyage based on the recovered sailing speed of ships, coefficients associated with
the fuel consumption function, and ship payload.

sp ≤ sp + σ̃d−sea
p ·z̃sea

p + σsea
p ·
(

1− z̃sea
p

)
∀p ∈ P (28)
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sp ≤ smax ∀p ∈ P (29)

sp ≥ smin + σ̃d−sea
p ·z̃sea

p ∀p ∈ P (30)

τsail
p =

lp

sp
∀p ∈ P (31)

ϕp =
γ
(
sp
)α−1

24
·
(

δsea
p ·ω + δempty

δcap + δempty

) 2
3

∀p ∈ P (32)

The second group of constraints, which is represented by constraints (33) through
(40), estimates the main time components associated with port operations that include the
following: (1) recovered arrival time of ships at ports (constraints (33) and (34)); (2) recov-
ered handling time of ships at ports (constraints (35)), considering the expected duration of
disruptions; (3) recovered waiting time of ships at ports (constraints (36) and (37)); (4) re-
covered late arrival hours of ships at ports (constraints (38)); (5) recovered departure time
of ships from ports (constraints (39)); and (6) turnaround time of ships for the recovered
ship schedule (constraints (40)).

τarr
p+1 = τ

dep
p + τsail

p ∀p ∈ P, p < n1 (33)

τarr
1 = τ

dep
p + τsail

p − τstt ∀p ∈ P, p = n1 (34)

τhand
p =

δ
port
p

χp
+ τ̃

d−port
p ·z̃port

p ∀p ∈ P (35)

τwait
p+1 ≥ τst

p+1 − τ
dep
p − τsail

p ∀p ∈ P, p < n1 (36)

τwait
1 ≥ τst

1 − τ
dep
p − τsail

p + τstt ∀p ∈ P, p = n1 (37)

τlate
p ≥ τarr

p − τarr
p ∀p ∈ P (38)

τ
dep
p = τarr

p + τwait
p + τhand

p ∀p ∈ P (39)

τstt = ∑
p∈P

τsail
p + ∑

p∈P
τwait

p + ∑
p∈P

τhand
p (40)

The third and the last constraint group, represented by constraints (41) through (48),
estimates all the individual cost elements of the recovered schedule of ships that are
required for calculation of the SSR-SSA objective function (27), including the following:
(1) total revenue that will be accumulated by the shipping line (R—USD); (2) total cost
associated with container handling at ports (Khand—USD); (3) total cost associated with late
ship arrivals (Klate—USD); (4) total cost associated with fuel consumption (K f uel—USD);
(5) total cost associated with basic ship operations (Koper—USD); (6); total cost associated
with chartering of ships (Kchar—USD); (7) total cost associated with container inventory
(Kinv—USD); and (8) total profit that will be accumulated by the shipping line (Π—USD).

R = ∑
p∈P

κrev
p ·δ

port
p (41)

Khand = ∑
p∈P

κhand
p ·δport

p (42)

Klate = ∑
p∈P

κlate
p ·τlate

p (43)
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K f uel = c f uel ∑
p∈P

lp·ϕp (44)

Koper = κoper·φ·qown (45)

Kchar = κchar·φ·qchar (46)

Kinv = κinv ∑
p∈P

δsea
p ·τsail

p (47)

Π =
[

R−
(

Khand + Klate + K f uel + Koper + Kchar + Kinv
)]

(48)

4.2.2. Handling Rate Adjustment

The base mathematical model for the ship schedule recovery with handling rate
adjustment (SSR-HRA) can be formulated using the objective function (49) and constraints
(29)–(34), (36)–(41), (43)–(47), and (50)–(54). Similar to the SSR-SSA mathematical model,
the SSR-HRA objective function (49) aims to minimize the total loss of profit that will be
endured by the shipping line as a result of disruptions at the considered shipping route.
The total profit loss is estimated as a difference between the total profit that was expected
to be accumulated by the shipping line for the original ship schedule (Π0—USD) and the
total profit that will be accumulated by the shipping line for the recovered schedule of
ships (Π—USD).

min
[
Π0 −Π

]
(49)

Constraints (50) compute the recovered sailing speed of ships on each voyage leg,
considering the expected change in sailing speed of ships due to a disruption. Constraints
(51) assure that only one handling rate will be chosen at each port to serve the arriving ships.
Constraints (52) calculate the recovered handling time of ships at ports, considering the
expected duration of disruptions and potential handling rate adjustment to compensate for
the effects of disruptions. Constraints (53) estimate the total cost associated with container
handling at ports for the recovered schedule of ships, considering potential handling rate
adjustments at ports. Constraints (54) calculate the total profit that will be accumulated by
the shipping line for the recovered schedule of ships, considering potential handling rate
adjustments at ports.

sp ≤ sp + σ̃d−sea
p ·z̃sea

p ∀p ∈ P (50)

∑
h∈Hp

xph = 1 ∀p ∈ P (51)

τhand
p = ∑

h∈Hp

 δ
port
p

χph

·xph + τ̃
d−port
p ·z̃port

p ∀p ∈ P (52)

Khand = ∑
p∈P

∑
h∈Hp

κhand
ph ·xph·δ

port
p (53)

Π =
[

R−
(

Khand + Klate + K f uel + Koper + Kchar + Kinv
)]

(54)

4.2.3. Port Skipping

The base mathematical model for the ship schedule recovery with port skipping
(SSR-PS) can be formulated using the objective function (55) and constraints (29)–(34),
(36)–(40), (43)–(47), and (56)–(62). Similar to the SSR-SSA mathematical model, the SSR-PS
objective function (55) aims to minimize the total loss of profit that will be endured by the
shipping line as a result of disruptions at the considered shipping route. The total profit loss
is estimated as a difference between the total profit that was expected to be accumulated by
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the shipping line for the original ship schedule (Π0—USD) and the total profit that will be
accumulated by the shipping line for the recovered schedule of ships (Π—USD).

min
[
Π0 −Π

]
(55)

Constraints (56) compute the recovered sailing speed of ships on each voyage leg, con-
sidering the expected change in sailing speed of ships due to a disruption. Constraints (57)
assure that a port could be potentially skipped by the shipping line if and only if a dis-
ruption happened at that port. Constraints (58) assure that a port could be potentially
skipped by the shipping line if and only if the port skipping strategy would be a feasible
option for that port. Constraints (59) calculate the recovered handling time of ships at
ports, considering the expected duration of disruptions and potential port skipping to
compensate for the effects of disruptions. Constraints (60) estimate the total revenue that
will be accumulated by the shipping line for the recovered schedule of ships, considering
potential port skipping. Constraints (61) compute the total cost associated with container
handling at ports for the recovered schedule of ships, considering potential port skipping.
Constraints (62) calculate the total profit that will be accumulated by the shipping line for
the recovered schedule of ships, considering potential port skipping.

sp ≤ sp + σ̃d−sea
p ·z̃sea

p ∀p ∈ P (56)

xskip
p ≤ z̃port

p ∀p ∈ P (57)

xskip
p ≤ zskip

p ∀p ∈ P (58)

τhand
p =

 δ
port
p

χp
+ τ̃

d−port
p ·z̃port

p

·(1− xskip
p

)
∀p ∈ P (59)

R = ∑
p∈P

κrev
p ·δ

port
p ·

(
1− xskip

p

)
(60)

Khand = ∑
p∈P

κhand
p ·δport

p + ∑
p∈P

(
κ

skip
p + κmis

p ·δ
port
p

)
·xskip

p (61)

Π =
[
R−

(
Khand + Klate + K f uel + Koper + Kchar + Kinv

)]
(62)

4.2.4. Port Skipping and Container Diversion

The base mathematical model for the ship schedule recovery with port skipping and
container diversion (SSR-PSCD) can be formulated using the objective function (63) and
constraints (29)–(34), (36)–(40), (43)–(47), (56)–(58), and (64)–(74). Similar to the SSR-SSA
mathematical model, the SSR-PSCD objective function (63) aims to minimize the total
loss of profit that will be endured by the shipping line as a result of disruptions on the
considered shipping route. The total profit loss is estimated as a difference between the
total profit that was expected to be accumulated by the shipping line for the original ship
schedule (Π0—USD) and the total profit that will be accumulated by the shipping line for
the recovered schedule of ships (Π—USD).

min
[
Π0 −Π

]
(63)

Constraints (64) assure that containers could be diverted to alternative ports only
from the skipped ports for the considered shipping route. Constraints (65) assure that
containers could be diverted from a given port to an alternative port if and only if such
a diversion option is feasible. Constraints (66) determine the ports that will handle diverted
containers. Constraints (67) compute the number of containers diverted from a given
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port to an alternative port. Constraints (68) assure that the available container terminal
capacity at the alternative port is sufficient for accommodating the containers diverted.
Constraints (69) assure that the available inland transport capacity at the alternative port
is sufficient for accommodating the containers diverted. Constraints (70) calculate the
recovered handling time of ships at ports, considering the expected duration of disruptions
and potential port skipping with container diversion to compensate for the effects of
disruptions. Constraints (71) estimate the total revenue that will be accumulated by the
shipping line for the recovered schedule of ships, considering potential port skipping and
container diversion. Constraints (72) compute the total cost associated with container
handling at ports for the recovered schedule of ships, considering potential port skipping
and container diversion. Constraints (73) calculate the total cost associated with container
diversion for the recovered schedule of ships. Constraints (74) calculate the total profit that
will be accumulated by the shipping line for the recovered schedule of ships, considering
potential port skipping and container diversion.

xdiv
pp∗ ≤ xskip

p ∀p, p∗ ∈ P, p 6= p∗ (64)

xdiv
pp∗ ≤ zdiv

pp∗ ∀p, p∗ ∈ P, p 6= p∗ (65)

xdd
p∗ ≤ ∑

p∈P:p 6=p∗
xdiv

pp∗ ∀p∗ ∈ P (66)

δdiv
pp∗ = δ

port
p ·xdiv

pp∗ ∀p, p∗ ∈ P, p 6= p∗ (67)

∑
p∈P:p 6=p∗

δdiv
pp∗ ≤ δterm

p∗ ·xdd
p∗ ∀p∗ ∈ P (68)

∑
p∈P:p 6=p∗

δdiv
pp∗ ≤ δland

p∗ ·xdd
p∗ ∀p∗ ∈ P (69)

τhand
p∗ =


(

δ
port
p∗ + ∑p∈P:p 6=p∗ δdiv

pp∗

)
χp∗

+ τ̃
d−port
p∗ ·z̃port

p∗

·(1− xskip
p∗

)
∀p∗ ∈ P (70)

R = ∑
p∈P

κrev
p ·δ

port
p ·

(
1− xskip

p

)
+ ∑

p∈P
∑

p∗∈P
κrev

p ·ddiv
pp∗ (71)

Khand = ∑
p∈P

κhand
p ·δport

p + ∑
p∈P

(
κ

skip
p + κmis

p ·δ
port
p

)
·xskip

p (72)

Kdiv = ∑
p∈P

∑
p∗∈P

(
κd−term

pp∗ + κd−land
pp∗

)
·ddiv

pp∗ (73)

Π =
[
R−

(
Khand + Klate + K f uel + Koper + Kchar + Kinv + Kdiv

)]
(74)

4.3. Review of the Relevant Studies

The impacts of diverse disruptions in the port network were analyzed by Paul and
Maloni [100], and a real-time analysis was undertaken to adapt to dynamically updated
port operations. To reduce port and inventory expenses, the network overall capacity
was optimized while taking into account the ocean and inland transit operations. The
suggested decision support system could dynamically analyze cargo processing time and
port capacity while constantly updating the algorithm using regression-based parametric
meta-models. Jones et al. [101] created a modeling tool that could be used to simulate
container movements in the USA (both imports and exports) under various disruptive
scenarios, such as lengthy delays caused by security checks and port disruptions. The
system for import/export routing and recovery analysis (SIERRA) development model
simulated container movements between 46 nations and the USA. The model sought to



J. Mar. Sci. Eng. 2022, 10, 563 27 of 42

reduce total transportation costs. A series of case studies were provided for a number of
disruptive scenarios. The developed methodology was found to be efficient and might
serve as a useful planning tool for the stakeholders.

Brouer et al. [99] suggested an optimization-based vessel schedule recovery problem
(VSRP). The article showed that the planned VSRP is nondeterministic polynomial time
hard (NP-hard). The study investigated four schedule recovery options: (a) adjusting
the ship’s sailing speed; (b) integrating sailing and port times; (c) skipping a port where
a disruptive incident occurred; and (d) modifying the order of port visits. The model’s
performance was evaluated by applying numerous recovery scenarios to four real-life
situations using an MIP solver, CPLEX. When compared to real-world recovery strategies,
the proposed model was able to provide comparable or even superior solution quality.
Li et al. [102] developed an operational recovery approach while taking uncertainty factors
into account. Port swapping and port skipping were considered in a dynamic program-
ming framework for major disruptions with longer delays. However, if the disruption
was minor, the problem was formulated using nonlinear programming, where the only
operational strategy taken was speeding up. Computational experiments were carried out
to demonstrate the efficacy of the solution methodology, and the relative errors due to
discretizing time units were calculated.

Qi [103] summarized the liner shipping disruption management problem. In the study,
two models for recovering ship schedules were presented. The first model was designed to
recover a single ship’s schedule, whereas the second model was designed to recover the
schedules of multiple ships. The goal was to reduce the total cost of fuel and the total cost
of a late ship arrival to a minimum. The following operational actions were considered
for ship schedule recovery: (a) adjusting the vessel’s sailing speed; (b) port skipping;
and (c) port switching. A solution method based on dynamic programming was then
proposed. Fischer et al. [104] focused on dealing with ship fleet deployment disruptions
in roll-on roll-off liner shipping. The objective was to minimize the entire route service
cost, which included total ship operational costs, total fuel consumption costs, total delay
costs, total chartering costs, and total costs due to non-provided service. The following
disruption methods were proposed: (1) sailing time increase; (2) early arrival awards; and
(3) penalization of risky voyage start timings. As a part of the research, a rolling horizon
heuristic algorithm was developed for solving the mathematical model. According to the
findings, an inclusion of robustness might significantly cut down shipping costs as well as
the associated voyage delays.

Li et al. [9] were the first to suggest a real-time schedule recovery policy that took into
consideration regular and irregular uncertainties. The recovery model was designed as
a multi-stage stochastic control problem to minimize the delay penalty and fuel cost. Using
the backward value iteration, an optimal control policy was found. The optimal control
policy attributes were established for both types of uncertainty with and without the earliest
handling time constraint. Despite the superiority of the suggested real-time schedule
recovery policy in computation, calculating the distribution of disruption events for a given
planning horizon in practice still remains challenging. The automatic identification system
(AIS) data could be used for planning liner shipping operations. Cheraghchi et al. [94]
adopted the AIS data to mine and aggregate ship speeds. A speed-based VSRP was
developed to minimize the ship schedule disruption. A multi-objective optimization
problem was presented, and Pareto-optimal solutions were found using metaheuristic
optimization methods. The three objectives of the study were minimizing the overall delays,
reducing financial losses, and increasing the average speed conformity with historical
values. The study used three evolutionary multi-objective optimizers (EMOO) to find
Pareto-optimal solutions.

Ship schedule recovery and ship delays were the focus of the study by Hasheminia and
Jiang [105]. Throughout the research, logistic and probit regression models were utilized
to determine whether ship delays were random. The data obtained showed that a ship
was less likely to be delayed at the terminal if more activities were scheduled in a short
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period of time (i.e., up to 3 days) after the ship berthing time window. The study also
found that larger cargo ships had a lower chance of terminal delays. Smaller ports with
less handling capacity face more uncertainty. The authors emphasized that increasing
sailing speed is frequently seen as an unfavorable recovery approach due to significant
increases in fuel costs. Liner shipping companies use various techniques to recover from
disruptions, such as speeding up the ship to arrive at ports within specific time frames.
However, increasing the ship’s speed will cause a higher fuel cost, resulting in conflicting
objectives. Cheraghchi et al. [106] proposed a multi-objective optimization problem (and
corresponding multi-objective evolutionary algorithms) to address these conflicts. As
a result, the calculated Pareto set was used to generate ship route-based speed profiles,
allowing the stakeholder to make a flexible tradeoff between the total delay and financial
losses. Furthermore, the results of the experiments conducted demonstrated the superiority
of the NSGA-II metaheuristic.

Emission control areas, often referred to as “ECAs”, have been established by the
International Maritime Organization (IMO), which restricts the types of fuel that ships can
use in ECAs and the amounts of emissions they can produce. These IMO regulations com-
plicate the VSRP and were not considered in previous studies. Abioye et al. [107] developed
a new mixed-integer nonlinear mathematical model to reduce financial losses for ships
passing through emission control zones. The piecewise linear approximation was applied
to the mathematical model, and the linearized model was solved by CPLEX. Port skipping
and ship speed adjustments were considered as recovery options. Numerical experiments
demonstrated that the suggested methodology could reduce the total loss while increasing
energy efficiency and environmental sustainability. Mulder and Dekker [108] proposed
a framework for determining optimal recovery policies and buffer allocations. Three recov-
ery actions were considered: increasing sailing speed, skipping ports, and taking extreme
measures (e.g., a “cut-and-go” action at ports). A mixed-integer programming model and
a Markov decision process were used in the study. Due to the commercial solver’s runtime
limitations and the dimensionality curse that could occur in larger problems, four various
heuristics were used to solve the problem in a limited time frame. The findings indicated
that optimizing buffer time allocation reduced the costs by 28.9%.

Shipping companies use buffer time and speed adjustments to ensure that their timeta-
bles are reliable despite delays. Mulder et al. [109] developed a method that combined
timetable planning and execution. The execution of the timetable was modeled using
a stochastic dynamic program (SDP). Two options for recovery were considered: (1) increas-
ing sailing speed; and (2) extreme recovery action. Given the need for efficient timetable
execution, the study’s approach sought SDPs with the lowest average long-term costs.
A case study was provided based on the Maersk data. When compared to the current
timetable, the ideal timetable saved between $4 million and $10 million per route each year.
To address the VSRP, Xing and Wang [110] employed disruption management to balance
service requirements and recovery costs. The study used three schedule recovery strategies:
(1) speeding up and reducing port time; (2) swapping port calls; and (3) skipping a port
call. According to the potential impact on customers, the priority of the recovery option
tiers decreased sequentially. The study presented a service–cost balance model, which
was classified as an MINLP model. The container flow recovery problem (CFRP) was also
included in the mathematical model, with the assumption that containers could be moved
to the next port call if a given port was skipped. No previous research integrated the VSRP
and CFRP. The model was solved using LINGO. The optimal solution was found through
computational studies, and the model was solved in minutes for a real-life scenario.

The granulated speed-based vessel schedule recovery problem (G-S-VSRP) is con-
sidered a big-data-enabled VSRP. The AIS data can be used to create a multi-objective
optimization problem by geo-hashing the route between the ports. The G-S-VSRP aimed
to reduce delays and financial losses while increasing speed conformity with historical
navigational patterns. Geo-hash mining could analyze thousands of speed variables in
the G-S-VSRP, creating a large-scale optimization problem. Traditional multi-objective
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evolutionary algorithms (MOEAs) would be unable to keep up with the problem’s com-
plexity. A divide-and-conquer method was used by Cheraghchi et al. [111] to improve the
MOEA’s performance in large-scale optimization problems. As a result of the research,
a novel distributed multiplicative cooperative co-evolutionary algorithm was created.
Abioye et al. [112] presented a VSRP that, unlike previous models, took into account var-
ious types of recovery actions, such as port skipping with/without container diversion,
sailing speed adjustment, and handling rate adjustment. The BARON solver was used
to solve the given nonlinear mathematical VSRP model. Several numerical experiments
with various disruption events were conducted for the Middle East/Pakistan/India-West
Mediterranean route. The results of the analysis provided liner shipping companies with
managerial insights into designing more efficient ship schedule recovery plans.

De et al. [113] proposed a novel mathematical model to maximize the overall profit
while addressing bunkering port selection, ship scheduling decisions, container operations,
and determining the amount of oil to be bunkered at each port. To deal with weather-
related delays, various recovery strategies, such as re-routing the ship and port swapping,
were considered. The impact of fuel prices and the carbon tax on shipping operations
was investigated in terms of the overall operating costs. The study provided important
policy insights for shipping company executives in terms of having alternate ship route
options in the event of normal or disrupted scenarios. Based on the study by Du et al. [114],
a tactical liner shipping schedule design problem was examined under sail and port time
uncertainty. Ships could lose speed due to weather conditions, delaying their scheduled
arrival times. As an alternative, increasing the ship’s speed-adjustment capability, while
increasing fuel consumption, could reduce compensation for late arrivals. The study
developed a machine learning-based model to address the above-mentioned constraints
on speed adjustment measures. A machine learning-based methodology included speed
adjustment, reinforcement learning, and neural network training. The effectiveness of
machine learning approaches in shipping optimization was demonstrated by numerical
studies, which validated the findings and provided a set of managerial insights.

4.4. Literature Summary and Research Gaps
4.4.1. Summary of Findings

A detailed summary of the reviewed studies on ship schedule recovery is presented in
Table 2 focusing on the following information: (1) authors; (2) sailing speed assumptions;
(3) port time assumptions; (4) objective function adopted; (5) components of the objective
function adopted; (6) recovery strategies considered; (7) solution approach deployed; and
(8) particular notes along with important study considerations. Furthermore, Figure 8
provides a distribution of the reviewed studies by model objective, objective components,
recovery strategies, and solution approach. After a thorough review of the literature on
ship schedule recovery, it can be concluded that the majority of studies assumed the ship
sailing speed to be variable (a total of 94.4%). The study by Paul and Maloni [100] mostly
focused on modeling disruptions at ports and did not explicitly consider sailing speed
adjustment. On the other hand, 66.7% of studies modeled variable port times (see Table 2).
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Table 2. Summary of the reviewed studies on ship schedule recovery.

a/a Authors Sailing
Speed Port Time Objective Objective

Components Recovery Strategies Solution
Approach

Notes/Important
Considerations

1 Paul and Maloni
(2010) [100] F V Total route service cost

minimization
MSC; TFC;
TOC; TPC Ship re-routing Heuristic Disruptive event modeling

at ports

2 Jones et al. (2011)
[101] V V Total cost minimization MSC

Ship re-routing; Port
skipping; Port skipping

with container
diversion

Heuristic

Proposed a decision support tool
to emulate disruptions affecting

the USA freight
intermodal network

3 Brouer et al. (2013)
[99] V V Total route service cost

minimization
MSC; TFC; TOC;

TPC; TVC
Speed adjustment; Port

skipping; Port swapping CPLEX Proving the VSRP to be
NP-complete

4 Li et al. (2015) [102] V V Total route service cost
minimization TFC; TVC Speed adjustment; Port

skipping; Port swapping
Dynamic

Programming
Finding a suitable delay penalty

function

5 Qi (2015) [103] V V Total route service cost
minimization TFC; TVC Speed adjustment; Port

skipping; Port swapping
Dynamic

Programming

Introduction of two major
models, one for a single ship and

another one for multiple ships
in one

network

6 Fischer et al. (2016)
[104] V F Total route service cost

minimization
MSC; TFC;
TOC; TVC

Speed adjustment;
Rewards for early

arrivals; Penalization of
risky voyage start times

Heuristic

Addressing disruptions in the
fleet deployment for roll-on

roll-off
shipping

7 Li et al. (2016) [9] V V Total route service cost
minimization

MSC; TFC;
TPC; TVC

Speed adjustment;
Handling rate

adjustment;
Port skipping

Dynamic
Programming

Considering both regular and
unexpected uncertain events

8 Cheraghchi et al.
(2017) [94] V F

Total monetary loss
minimization; Total
delay minimization;

Average speed
compliance

maximization

MSC; TFC; TVC Speed adjustment Metaheuristics
Ship schedule delays were

analyzed using the historical
AIS data

9 Hasheminia and
Jiang (2017) [105] V U Total delay minimization N/A N/A Analytical Method

Ships with a larger number of
containers had a lower risk of

delays at the terminal

10 Cheraghchi et al.
(2018) [106] V F

Total monetary loss
minimization; Total
delay minimization

TFC; TVC Speed adjustment Metaheuristics

Problem evaluation in three
scenarios (i.e., scalability

analysis, ship steaming policies,
and voyage distance analysis)



J. Mar. Sci. Eng. 2022, 10, 563 31 of 42

Table 2. Cont.

a/a Authors Sailing
Speed Port Time Objective Objective

Components Recovery Strategies Solution
Approach

Notes/Important
Considerations

11 Abioye et al. (2019)
[107] V V Total monetary

loss minimization
REV; TFC; TIC;
TOC; TPC; TVC

Speed adjustment;
Port skipping CPLEX Capturing enforced regulations

within emission control areas

12 Mudler and
Dekker (2019) [108] V V Total route service cost

minimization TFC; TVC
Speed adjustment; Port

skipping; Extreme
recovery actions

Heuristic Allocation of buffer times

13 Mulder et al. (2019)
[109] V V Total route service cost

minimization MSC; TFC; TVC Speed adjustment;
Extreme recovery actions

Iterative
Optimization

Algorithm

Proposing a method for the
integrated development of ship

timetables; allocation of
buffer times

14 Xing and Wang
(2019) [110] V V Total route service cost

minimization
MSC; TFC;
TPC; TVC

Speed adjustment;
Handling rate

adjustment; Port
swapping; Port skipping

without container
diversion; Port skipping
with container diversion

LINGO
The proposed ship schedule

recovery options were
categorized into three tiers

15 Cheraghchi et al.
(2020) [111] V F

Total monetary loss
minimization; Total
delay minimization;

Average speed
compliance

maximization

MSC; TFC; TVC Speed adjustment Metaheuristics

A multi-objective optimization
model was developed using the
Automatic Identification System

(AIS) data

16 Abioye et al. (2021)
[112] V V Total monetary

loss minimization
MSC; REV; TFC;
TOC; TPC; TVC

Speed adjustment;
Handling rate

adjustment; Port
skipping without

container diversion; Port
skipping with

container diversion

BARON Capturing various realistic
scenarios of disruptions

17 De et al. (2021)
[113] V V Total profit maximization REV; TEC;

TFC; TPC
Ship re-routing;
Port swapping Heuristic

Deciding on ship scheduling
actions and container operations;

deciding on the location and
amount of marine diesel oil and

heavy fuel oil to be bunkered

18 Du et al. (2021)
[114] V U Total route service cost

minimization TFC; TOC; TVC Speed adjustment Heuristic Development of a machine
learning-based model

Notes: Sailing Speed and Port Time [V—Variable; F—Fixed; U—Uncertain]; Objective Components [MSC—Miscellaneous Costs; REV—Total Revenue; TEC—Total Ship Emission Cost;
TFC—Total Fuel Consumption Cost; TIC—Total Container Inventory Cost; TOC—Total Ship Operational Cost; TPC—Total Port Handling Cost; TVC—Total Cost Associated with
Violation of Port Time Windows].
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As for the objective functions adopted, the majority of studies (more than 60%) aimed
to minimize the total cost of route service, mainly considering fuel consumption cost,
port TW violation cost, and port handling cost (see Figure 8). A significant portion of
the mathematical models included miscellaneous cost components (e.g., costs incurred
due to container diversion, costs due to misconnected cargo as a result of port skipping,
costs due to accelerated ship handling at ports). Only one study focused on the total profit
maximization [113]. Hasheminia and Jiang [105] investigated the effects of different factors
on delays at marine container terminals, aiming to ensure the timely service of ships.

The analysis of the reviewed studies also shows that single-objective mathematical for-
mulations were common (see Table 2). Only Cheraghchi et al. [94], Cheraghchi et al. [106],
and Cheraghchi et al. [111] presented multi-objective mathematical formulations. In partic-
ular, the studies by Cheraghchi et al. [94] and Cheraghchi et al. [111] aimed to minimize
the total monetary losses, minimize the total delay, and maximize the average speed com-
pliance. On the other hand, Cheraghchi et al. [106] presented a bi-objective mathematical
model, where the first objective function minimized the total monetary losses, whereas
the second objective aimed to minimize the total delay. Sailing speed adjustment and port
skipping without container diversion were found to be the most common recovery strate-
gies that were used by the reviewed studies. Extreme recovery actions (e.g., “cut-and-go”
when a ship can leave a given port without completing its service) were considered only by
two studies, as these actions are not very common in practice. As for the solution methods
adopted, heuristics and metaheuristics were found to be the most popular methods for the
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studies on ship schedule recovery. Furthermore, a significant number of research efforts
deployed exact optimization solvers (e.g., CPLEX, LINGO, and BARON).

4.4.2. Limitations and Future Research Needs

The research gaps and a number of shortcomings in the existing studies on ship
schedule recovery have been identified. These shortcomings and the future research that is
required to bridge these gaps are as follows:

â Ship schedule recovery is associated with conflicting decisions. In particular, sailing
speed adjustment may allow for partially compensating delays during the voyage
and maintaining adequate service levels for customers. However, such a recovery
option will increase the amount of required fuel and fuel costs. There is a lack of
multi-objective mathematical formulations for ship schedule recovery that are able to
assist with the analysis of conflicting objectives [94,106,111]. Future research should
focus more on multi-objective ship schedule recovery.

â Future studies should concentrate on the development of innovative forecasting meth-
ods that could predict the occurrence of disruptive events and their duration [110]. The
outcomes from these methods could be further used by shipping lines in the selection
of the appropriate recovery strategies and offset the effects of disruptive events.

â The shipping industry has been facing many challenges in recent years (e.g., COVID-19),
and the cost of ship schedule recovery would add additional pressure on shipping
lines. Risk-sharing mechanisms between carriers and shippers should be investigated
further in future studies to alleviate the pressure on shipping lines and enable them to
maintain a high level of customer service [110].

â Sailing speed adjustment can serve as an effective recovery option but incurs addi-
tional fuel costs. The fuel consumption of ships depends on some other attributes
as well, including previous maintenance activities, ship payload, ship age, and ship
geometric characteristics [15,107]. Future research on ship schedule recovery should
account for the aforementioned attributes and accurately quantify the amount of
required fuel for the recovered ship schedules.

â Decentralized decision-making with several shipping lines should be studied more
in depth. A freight forwarder, for example, may arrange transshipment between the
ships of two different shipping lines. These two shipping lines would coordinate their
ship recovery schedules for transshipment in an ideal world. Nevertheless, since each
shipping line must minimize its cost function, centralized and optimized scheduling
would be difficult to execute in practice. Game-theoretic models for ship schedule
recovery in decentralized settings would be suitable in such scenarios [103].

â Sailing speed adjustment was identified as the most popular ship schedule recovery
strategy. However, sailing speed adjustment alone may not be able to fully offset the
effects of a disruptive event. Therefore, future studies should focus on the develop-
ment of more advanced mathematical models and solution methods that consider
a simultaneous implementation of various recovery strategies (e.g., sailing speed
adjustment + port skipping or port swapping—[106]).

â Certain extreme ship schedule recovery options (e.g., “cut-and-go” when a ship can
leave a given port without completing its service) should be better explored by future
research efforts to determine the scenarios when these options might be viable and
reduce potential monetary losses due to disruptive events.

â The effects of disruptions at ports and sea may influence not only shipping lines but
other major supply chain players as well, including marine terminal operators, logis-
tics companies, and inland operators [47]. Future mathematical models should evalu-
ate various recovery strategies, considering the entire intermodal network effects—not
just ship schedules.

â Drones have been widely used for monitoring various assets, including the assessment
of infrastructure damages as a result of disruptive events [115–119]. The deployment
of drones for the assessment of disruptive events in liner shipping operations should
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be investigated as a part of future research. Drones can be used to accurately deter-
mine the effects of damages to the port infrastructure and the expected duration of
port closures.

5. Concluding Remarks

Maritime transportation has been a popular mode of transportation (especially, for the
transfer of bulk and containerized cargoes) but often faces different types of disruptions,
such as port congestion, labor strikes, severe weather conditions, shipping container short-
ages, and customs delays. The outbreak of COVID-19 is recognized as a major disruptive
event for liner shipping and maritime transportation, which resulted in the closure of cer-
tain marine terminals and substantial supply chain disruptions. A large number of studies
were dedicated to the planning of different liner shipping operations. Furthermore, a num-
ber of survey studies were conducted in the past aiming to provide a holistic overview
of the liner shipping literature. Nevertheless, there is still a lack of systematic literature
surveys that specifically concentrate on uncertainties in liner shipping operations and ship
schedule recovery. Therefore, the present research conducted a comprehensive up-to-date
review of the liner shipping literature with a specific emphasis on uncertainties in liner
shipping operations and ship schedule recovery. The collected studies were reviewed
in a systematic way capturing the main assumptions regarding sailing speed and port
time modeling, objective(s) considered, objective function components, uncertain elements,
ship schedule recovery options, solution approaches, and specific considerations adopted.
Moreover, supporting mathematical formulations were presented along with the major
future research needs.

It was found that the reviewed studies mostly aimed to minimize the total cost of
route service, primarily considering fuel consumption cost, ship operational cost, and port
time window violation cost. A significant number of studies captured uncertainty in port
handling time and ship sailing time. Single-objective mathematical formulations were
common among the collected studies. A large variety of solution methods were presented
for the considered decision problems related to uncertainties in liner shipping operations
and ship schedule recovery, including heuristic methods, metaheuristic methods, and exact
optimization methods (e.g., CPLEX, GUROBI, and BARON). Sailing speed adjustment and
port skipping without container diversion were found to be the most common recovery
strategies that were used by the reviewed studies. Extreme recovery actions (e.g., “cut-and-
go” when a ship can leave a given port without completing its service) were considered
only by a few studies. The outcomes from this research are expected to assist the relevant
stakeholders involved in liner shipping operations with improvements in the reliability
of their schedules and selection of the appropriate recovery options in response to major
disruptive events.

There are several areas for extending the scope of this study that can be explored by
future studies. First, a set of detailed interviews could be conducted with the relevant
stakeholders involved in liner shipping operations to identify the best practices used to
maintain schedule reliability and determine whether these practices receive sufficient
attention in the literature. Second, a set of detailed interviews could be conducted with the
marine terminal operators and inland operators to better understand how liner shipping
disruptions influence terminal operations and identify the best mitigation strategies. Third,
the future research needs, which were identified as a part of the performed literature survey,
should be prioritized considering the input from the relevant stakeholders. Fourth, a new
literature survey could be conducted to better understand the impacts of the COVID-19
pandemic on maritime supply chains. The identified insights could be further used to make
maritime supply chains more resilient and be more prepared for the pandemics that may
come in the following years.
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Appendix A. Notations Adopted in the Proposed Mathematical Formulations

Table A1. Definition of sets.

Set Description of Sets Remarks

P =
{

1, . . . , n1} set of ports for the considered shipping route (ports) All models

Hp =
{

1, . . . , n2
p

}
, p ∈ P

set of handling rates that can be requested by the shipping line at
port p (handling rates) SSR-HRA

Notes: SSR-HRA—ship schedule recovery with handling rate adjustment.

Table A2. Definition of decision variables.

Decision Variable Description of Decision Variables Remarks

sp ∈ R+ ∀p ∈ P sailing speed of ships on voyage leg p (knots) SSP-U

qtot ∈ N number of ships to be deployed (ships) SSP-U

σsea
p ∈ R ∀p ∈ P adjustment of ship sailing speed on voyage leg p (knots) SSR-SSA

xph ∈ B ∀p ∈ P, h ∈ Hp
=1 if handling rate h will be used for ship service at port p
(otherwise = 0) SSR-HRA

xskip
p ∈ B ∀p ∈ P =1 if port p will be skipped by the shipping line (otherwise = 0) SSR-PS and SSR-PSCD

xdiv
pp∗ ∈ B ∀p, p∗ ∈ P, p 6= p∗

=1 if containers will be diverted from port p that experienced
a disruption to alternative port p∗(otherwise = 0) SSR-PSCD

Notes: SSP-U—ship scheduling problem with uncertainties; SSR-SSA—ship schedule recovery with sailing
speed adjustment; SSR-HRA—ship schedule recovery with handling rate adjustment; SSR-PS—ship schedule
recovery with port skipping; SSR-PSCD—ship schedule recovery with port skipping and container diversion.

Table A3. Definition of auxiliary variables.

Auxiliary Variable Description of Auxiliary Variables Remarks

qown ∈ N number of own ships to be deployed (ships) SSP-U

qchar ∈ N number of chartered ships to be deployed (ships) SSP-U

τarr
p ∈ R+ ∀p ∈ P arrival time of ships at port p (hours) SSP-U

τarr
p ∈ R+ ∀p ∈ P recovered arrival time of ships at port p (hours) SSR

τwait
p ∈ R+ ∀p ∈ P recovered waiting time of ships at port p (hours) SSR

τhand
p ∈ R+ ∀p ∈ P recovered handling time of ships at port p (hours) SSR

τ
dep
p ∈ R+ ∀p ∈ P departure time of ships from port p (hours) SSP-U
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Table A3. Cont.

Auxiliary Variable Description of Auxiliary Variables Remarks

τ
dep
p ∈ R+ ∀p ∈ P recovered departure time of ships from port p (hours) SSR

sp ∈ R+ ∀p ∈ P recovered sailing speed of ships on voyage leg p (knots) SSR

τsail
p ∈ R+ ∀p ∈ P sailing time of ships on voyage leg p (hours) SSP-U

τsail
p ∈ R+ ∀p ∈ P recovered sailing time of ships on voyage leg p (hours) SSR

τlate
p ∈ R+ ∀p ∈ P late arrival hours of ships at port p (hours) SSP-U

τlate
p ∈ R+ ∀p ∈ P recovered late arrival hours of ships at port p (hours) SSR

τstt ∈ R+ turnaround time of ships for the recovered ship schedule (hours) SSR

ϕp ∈ R+ ∀p ∈ P consumption of fuel by the main engines of ships on voyage
leg p (tons/nmi) SSP-U

ϕp ∈ R+ ∀p ∈ P recovered consumption of fuel by the main engines of ships on voyage
leg p (tons/nmi) SSR

δ
port
p ∈ R+ ∀p ∈ P number of containers to be handled at port p (TEUs) SSP-U

δsea
p ∈ R+ ∀p ∈ P number of containers to be carried on voyage leg p (TEUs) All models

xdd
p ∈ B ∀p ∈ P

=1 if containers diverted from a port that experienced a disruption will
be handled at alternative port p (otherwise = 0) SSR-PSCD

δdiv
pp∗ ∈ N ∀p, p∗ ∈ P, p 6= p∗

number of containers diverted from port p that experienced
a disruption to alternative port p∗ (TEUs) SSR-PSCD

Khand ∈ R+ total cost associated with container handling at ports (USD) SSP-U

Khand ∈ R+ total cost associated with container handling at ports for the recovered
schedule of ships (USD) SSR

Klate ∈ R+ total cost associated with late ship arrivals (USD) SSP-U

Klate ∈ R+ total cost associated with late ship arrivals for the recovered schedule
of ships (USD) SSR

K f uel ∈ R+ total cost associated with fuel consumption (USD) SSP-U

K f uel ∈ R+ total cost associated with fuel consumption for the recovered schedule
of ships (USD) SSR

Koper ∈ R+ total cost associated with basic ship operations (USD) SSP-U

Kchar ∈ R+ total cost associated with chartering of ships (USD) SSP-U

Kinv ∈ R+ total cost associated with container inventory (USD) SSP-U

Kinv ∈ R+ total cost associated with container inventory for the recovered
schedule of ships (USD) SSR

Kdiv ∈ R+ total cost associated with container diversion for the recovered
schedule of ships (USD) SSR-PSCD

R ∈ R+ total revenue that will be accumulated by the shipping line (USD) SSP-U

R ∈ R+ total revenue that will be accumulated by the shipping line for the
recovered schedule of ships (USD) SSR

Π ∈ R+ total profit that will be accumulated by the shipping line (USD) SSP-U

Π ∈ R+ total profit that will be accumulated by the shipping line for the
recovered schedule of ships (USD) SSR

Notes: SSP-U—ship scheduling problem with uncertainties; SSR—ship schedule recovery models (i.e., SSR-SSA
and SSR-PS and SSR-PSCD and SSR-HRA); SSR-SSA—ship schedule recovery with sailing speed adjustment;
SSR-HRA—ship schedule recovery with handling rate adjustment; SSR-PS—ship schedule recovery with port
skipping; SSR-PSCD—ship schedule recovery with port skipping and container diversion.
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Table A4. Definition of parameters.

Parameter Description of Parameters Remarks

τst
p ∈ R+ ∀p ∈ P start of the arrival TW at port p (hours) SSR

τend
p ∈ R+ ∀p ∈ P end of the arrival TW at port p (hours) SSP-U

τarr
p ∈ R+ ∀p ∈ P arrival time of ships at port p for the original ship schedule (hours) SSR

χp ∈ R+ ∀p ∈ P handling productivity for ship service at port p (TEU/hour) SSR

χph ∈ R+ ∀p ∈ P, h ∈ Hp
handling productivity for ship service at port p when handling rate h is
requested (TEU/hour) SSR-HRA

φ ∈ N frequency of port service for the considered shipping route (days) All models

qown−max ∈ N maximum number of own ships that could be deployed for the considered
shipping route (ships) SSP-U

qchar−max ∈ N maximum number of chartered ships that could be deployed for the
considered shipping route (ships) SSP-U

qown ∈ N number of own ships to be deployed for the original ship schedule (ships) SSR

qchar ∈ N
number of chartered ships to be deployed for the original ship
schedule (ships) SSR

δ
port
p ∈ R+ ∀p ∈ P

number of containers to be handled at port p for the original ship
schedule (TEUs) SSR

lp ∈ R+ ∀p ∈ P length of voyage leg p for the considered shipping route (nmi) All models

α, γ ∈ R+ coefficients associated with the fuel consumption function All models

ω ∈ R+ average cargo weight within a standard TEU (tons) All models

δempty ∈ R+ weight of a ship without containers (tons) All models

δcap ∈ R+ maximum weight of containers that could be loaded on a ship (tons) All models

smax ∈ R+ maximum sailing speed that could be set for ships (knots) SSR

smin ∈ R+ minimum sailing speed that could be set for ships (knots) SSR

sp ∈ R+ ∀p ∈ P sailing speed of ships on voyage leg p for the original ship schedule (knots) SSR

τ̃wait
p ∈ R+ ∀p ∈ P expected waiting time of ships at port p (hours) SSP-U

τ̃hand
p ∈ R+ ∀p ∈ P expected handling time of ships at port p (hours) SSP-U

τ̃
d−port
p ∈ R+ ∀p ∈ P expected duration for a disruption at port p (hours) SSR

σ̃d−sea
p ∈ R ∀p ∈ P

expected change in sailing speed of ships due to a disruption on voyage
leg p (knots) SSR

z̃port
p ∈ B ∀p ∈ P =1 if a disruption happened at port p (otherwise = 0) SSR

z̃sea
p ∈ B ∀p ∈ P =1 if a disruption happened on voyage leg p (otherwise = 0) SSR

zskip
p ∈ B ∀p ∈ P

=1 if the port skipping would be a feasible option for port p as a result of
disruption occurrence (otherwise = 0)

SSR-PS and
SSR-PSCD

zdiv
pp∗ ∈ B ∀p, p∗ ∈ P, p 6= p∗

=1 if containers can be potentially diverted from port p that experienced
a disruption to alternative port p∗ (otherwise = 0) SSR-PSCD

δterm
p ∈ R+ ∀p ∈ P available container terminal capacity for accommodating the containers

diverted at port p (TEUs) SSR-PSCD

δland
p ∈ R+ ∀p ∈ P

available inland transport capacity for accommodating the containers
diverted at port p (TEUs) SSR-PSCD

κhand
p ∈ R+ ∀p ∈ P unit cost associated with container handling at port p (USD/TEU) All models

κhand
ph ∈ R+ ∀p ∈ P, h ∈ Hp

unit cost associated with container handling at port p when handling rate
h is requested (USD/TEU) SSR-HRA
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Table A4. Cont.

Parameter Description of Parameters Remarks

κlate
p ∈ R+ ∀p ∈ P unit cost associated with late ship arrivals at port p (USD/hour) All models

κ f uel ∈ R+ unit cost associated with fuel consumption (USD/ton) All models

κoper ∈ R+ unit cost associated with basic ship operations (USD/day) All models

κchar ∈ R+ unit cost associated with chartering of ships (USD/day) All models

κinv ∈ R+ unit cost associated with container inventory (USD/TEU/hour) All models

κrev
p ∈ R+ ∀p ∈ P unit cost associated with transporting the cargo for the considered

shipping route, i.e., freight rate (USD/TEU) All models

κ
skip
p ∈ R+ ∀p ∈ P

cost associated with skipping port p for the considered shipping
route (USD)

SSR-PS and
SSR-PSCD

κmis
p ∈ R+ ∀p ∈ P

unit cost associated with misconnected cargo at port p for the considered
shipping route (USD/TEU) SSR-PSCD

κd−term
pp∗ ∈ R+ ∀p, p∗ ∈ P,

p 6= p∗
unit cost associated with handling the containers diverted from port p that
experienced a disruption at alternative port p∗ (USD/TEU) SSR-PSCD

κd−land
pp∗ ∈ R+ ∀p, p∗ ∈ P,

p 6= p∗

unit cost associated with inland transport cost of the containers diverted
from port p that experienced a disruption at alternative port
p∗ (USD/TEU)

SSR-PSCD

Π0 ∈ R+ total profit that was expected to be accumulated by the shipping line for
the original ship schedule (USD) SSR

Koper ∈ R+ total cost associated with basic ship operations for the recovered schedule
of ships (USD) SSR

Kchar ∈ R+ total cost associated with chartering of ships for the recovered schedule of
ships (USD) SSR

Notes: SSP-U—ship scheduling problem with uncertainties; SSR—ship schedule recovery models (i.e., SSR-SSA
and SSR-PS and SSR-PSCD and SSR-HRA); SSR-SSA—ship schedule recovery with sailing speed adjustment;
SSR-HRA—ship schedule recovery with handling rate adjustment; SSR-PS—ship schedule recovery with port
skipping; SSR-PSCD—ship schedule recovery with port skipping and container diversion.
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