
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Advanced Science Research Center Centers & Institutes 

2003 

Uncertainties in Precipitation and Their Impacts on Runoff Uncertainties in Precipitation and Their Impacts on Runoff 

Estimates Estimates 

Balazs M. Fekete 
University of New Hampshire, Durham 

Charles J. Vörösmarty 
CUNY City College 

John O. Roads 
University of California, San Diego 

Cort J. Willmott 
University of Deleware 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/asrc_pubs/6 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/asrc_pubs
https://academicworks.cuny.edu/centers
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/asrc_pubs/6
https://academicworks.cuny.edu/asrc_pubs/6
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


294 VOLUME 17J O U R N A L O F C L I M A T E

q 2004 American Meteorological Society

Uncertainties in Precipitation and Their Impacts on Runoff Estimates
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ABSTRACT

Water balance calculations are becoming increasingly important for earth-system studies. Precipitation is one
of the most critical input variables for such calculations because it is the immediate source of water for the land
surface hydrological budget. Numerous precipitation datasets have been developed in the last two decades, but
these datasets often show marked differences in their spatial and temporal distribution of this key hydrological
variable. This paper compares six monthly precipitation datasets—Climate Research Unit of University of East
Anglia (CRU), Willmott–Matsuura (WM), Global Precipitation Climate Center (GPCC), Global Precipitation
Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), and NCEP–Department of Energy
(DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2)—to assess the uncertainties
in these datasets and their impact on the terrestrial water balance. The six datasets tested in the present paper
were climatologically averaged and compared by calculating various statistics of the differences. The clima-
tologically averaged monthly precipitation estimates were applied as inputs to a water balance model to estimate
runoff and the uncertainties in runoff arising directly from the precipitation estimates. The results of this study
highlight the need for accurate precipitation inputs for water balance calculations. These results also demonstrate
the need to improve precipitation estimates in arid and semiarid regions, where slight changes in precipitation
can result in dramatic changes in the runoff response due to the nonlinearity of the runoff-generation processes.

1. Introduction

Water balance calculations are important in both cli-
mate research and biosphere studies since they provide
essential information on the amount of water circulating
in the hydrological cycle and the amount of renewable
water available for ecosystems and human society. The
water budget over a unit land surface area is normally
expressed as R 5 P 2 E 2 dS/dt, where P is precipi-
tation [length/time (L/T)], E is evapotranspiration (L/
T), dS/dt is change in surface water storage (L/T) and
R is excess water (runoff ) (L/T) (Thornthwaite 1948;
Thornthwaite and Mather 1955; Willmott et al. 1985a;
Vörösmarty et al. 1989). In this equation, precipitation
is the only climate variable measured directly on a reg-
ular basis.

Corresponding author address: Dr. Balázs M. Fekete, Water Sys-
tems Analysis Group, Institute for the Study of Earth, Oceans, and
Space, University of New Hampshire, Morse Hall, Rm. 211, 39 Col-
lege Road, Durham, NH 03824-3525.
E-mail: balazs.fekete@unh.edu

Precipitation is one of the most important climate
variables for determining accurate water balance cal-
culations since it is the predominant and ultimate source
of water for the land surface water budget. In the last
2 decades, numerous global precipitation datasets have
been developed using different input sources such as
ground observations, satellite estimates, and climate
model simulations. These datasets typically agree in the
major temporal trends and spatial distribution of the
precipitation (i.e., over latitudinal bands and seasonal
cycles), but they often show marked differences re-
gionally (Costa and Foley 1998; Adler et al. 2001). The
reliability of the station-based data products was found
to be closely related to the rain gauge density (Oki et
al. 1999). The present paper compares a series of pre-
cipitation datasets to assess the degree of uncertainty
among them and to estimate the impact of the uncer-
tainty on remaining components of the terrestrial water
cycle.

We compare six global, monthly, gridded precipita-
tion climatological datasets [Climate Research Unit
(CRU) (New et al. 1999, 2000; CRU 2000), Willmott–
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Matsuura (WM; Willmott and Matsuura 2001), Global
Precipitation Climate Center (GPCC; Rudolf et al. 1994;
GPCC 2001), Global Precipitation Climatology Project
(GPCP; Huffman et al. 1995; GPCP 1998), Tropical
Rainfall Measuring Mission (TRMM; Huffman et al.
1997; Huffman 1997), and the National Centers for En-
vironmental Prediction–Department of Energy (NCEP–
DOE) Atmospheric Model Intercomparison Project
(AMIP-II) Reanalysis (NCEP-2; Kanamitsu et al. 2002)]
to understand the spatial and seasonal differences be-
tween the different datasets. The different precipitation
data products along with other climate and land surface
variables were applied in a global water balance model
(WBM; Federer et al. 1996, 2003; Vörösmarty et al.
1998, 1996). All WBM calculations used the same cli-
mate input data from CRU (except for precipitation) and
the same land surface characterization (i.e., same land
cover and soil types).

2. Method

a. Global gridded precipitation datasets

The CRU at the University of East Anglia developed
both mean monthly climatologies and time series (1901–
95) of various climate variables including precipitation
(New et al. 1999, 2000). They collected station data
from various (formal and informal) sources and applied
thin-spline interpolation (Hutchinson 1995; Wahba
1979). They adopted Willmott et al.’s (1995, 1996) ap-
proach by developing a climatology first from relaxed
time series consistency and superimposed interannual
anomalies based on stations with sufficiently long rec-
ords (New et al. 1999). The CRU dataset was developed
at several resolutions and we used their 0.58 3 0.58
(latitude 3 longitude) resolution fields.

The WM global precipitation dataset (Willmott and
Matsuura 2001) at 0.58 3 0.58 resolution (latitude 3
longitude in geographical coordinates) was developed
at the Department of Geography at the University of
Delaware. This dataset grew out of the earlier Legates
and Willmott precipitation dataset (Legates and Will-
mott 1990). The Legates and Willmott climatologies
were among the first global datasets that broke the tra-
dition of using stations only with temporally commen-
surate records. They argued that the spatial variation of
climate fields at large scales are more significant than
the interannual variation; therefore, the inclusion of all
available stations to resolve the spatial heterogeneity is
more important than to maintain rigorous time series
consistency (Willmott et al. 1996). The original Legates
and Willmott (1990) datasets were only available as
long-term climatologies. The recently released Will-
mott–Matsuura dataset is based on the same philosophy
as well as on climatologically aided interpolation. It also
used an improved version of the Shepard interpolation
algorithm (Shepard 1968; Willmott et al. 1985b) and a
more robust neighbor-finding method. The maximum

number of nearby stations considered in the interpola-
tion was increased from 7 to 20, resulting in smaller
cross-validation errors and ‘‘visually more realistic’’
precipitation fields (Willmott and Matsuura 2001). Fur-
thermore, this new dataset is available as a time series
covering the 1950–99 period.

The GPCC hosted at the German Weather Service
(Deutscher Wetterdinst, Offenbach, Germany) is the of-
ficial precipitation data center of the World Meteoro-
logical Organization (WMO). GPCC operationally col-
lects and archives global precipitation data and develops
derived data products (Rudolf et al. 1994). GPCC has
data for ;48 000 land stations and near-real-time access
to 6000–7000 Synoptic Ocean Prediction (SYNOP) and
conveyable low-noise infrared radiometer for measure-
ments of atmosphere and ground surface targets (CLI-
MAT) reports via the WMO’s Global Telecommunica-
tion System (GTS). GPCC is developing verification
data products (using their entire data archive) and mon-
itoring products (based on the SYNOP and CLIMAT
data). Unfortunately, the verification product is not
available yet, therefore the monitoring product—which
is available near real time (with 2-month time lag) from
1986 to present at 18 3 18 resolution—was used in this
intercomparison. GPCC also provides separate gauge
correction data using the Legates and Willmott (1990)
method to account for the well-known problem of gauge
undercatch. This monitoring data product with the gauge
correction provides the ground truthing for the Global
Precipitation Climatology Project outputs.

The GPCP as part of the Global Energy and Water
Cycle Experiment (GEWEX) of the World Climate Re-
search Program, was established to develop monthly
precipitation data products based on remotely sensed
data from geostationary and polar-orbiting satellites plus
ground observations. The currently available GPCP
products (versions 1.c and 2.x) combine precipitation
estimates from microwave [Special Sensor Microwave
Imager (SSM/I)] and infrared sensors at 2.58 3 2.58
resolution and GPCC ground-based precipitation esti-
mates with gauge correction. The version 1.c and the
version 2.x products are very similar, except that the
version 2.x product incorporates TIROS Operational
Vertical Sounder (TOVS) and outgoing longwave ra-
diation (OLR) Precipitation Index (OPI) for time periods
when SSM/I was not available (Susskind et al. 1997).
The version 1.c product covers the time period of 1986
through present while the version 2.x product is avail-
able for 1979 to present.

The TRMM is a joint mission between the National
Space Development Agency (NASDA) of Japan and the
National Aeronautics and Space Administration
(NASA) of the United States. The mission was designed
to study tropical rainfall between 358N and 358S. The
TRMM satellite carries five different instruments [the
first space-borne Precipitation Radar (PR), TRMM Mi-
crowave Imager (TMI), Visible and Infrared Scanner
(VIRS), Clouds and the Earth’s Radiant Energy System
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sensor (CERES), Lightning Imaging Sensor]. The
TRMM community developed and distributes a large
array of data products ranging from the raw remote
sensing data to higher-level outputs including various
precipitation estimates. In the present study, we used
the 3B43 product, which was developed to provide the
‘‘best estimate’’ of precipitation based on TRMM and
other data including GPCC precipitation estimates. This
data product developed at 18 3 18 resolution is contin-
ously updated and available in semi–real time with a
few months lag. For this study, we used the 1998–2001
period that was available with complete annual cycle at
the time of the presented analysis.

The NCEP-DOE AMIP-II Reanalysis (R-2) is a fol-
low-up to the NCEP–National Center for Atmospheric
Research (NCAR) reanalysis (Kistler et al. 2001; Kal-
nay et al. 1996). The original NCEP–NCAR reanalysis
covers the 1950–2001 period while the new NCEP-2
product is available from 1979–present. This reanal-
ysis product incorporates observational data (such as
surface meteorological stations, ships, aircraft, rawin-
sonde, and satellite) with numerical weather forecast
simulation. The developers of the NCEP–NCAR and
the NCEP-2 reanalysis products mark clearly the de-
gree to which a particular variable is simulated or ob-
served. The precipitation is mostly simulated. The dif-
ferences between the original NCEP–NCAR reanalysis
and the new NCEP-2 products are discussed in Roads
et al. (1999, 2002) and Roads (2003). The reanalysis
product is available on a roughly 2.58 3 2.58 resolution
global grid and the output variables are archived as 6-
hourly integrals.

b. Meteorological variables

The evapotranspiration term of the water balance
equation is normally not measured directly over broad
domains, therefore it has to be estimated considering
the state of the atmosphere and the available water for
evapotranspiration. The number of variables required
for the calculation of the evapotranspiration varies by
the sophistication of the applied methods. The simpler
ones require air temperature and sometimes solar ra-
diation, while the more complex ones additionally re-
quire vapor pressure, wind speed, and diurnal variation
of air temperature (Federer et al. 1996).

The CRU dataset has all the variables needed for
evaporation estimates. Some of the variables (air tem-
perature, cloud coverage, and vapor pressure) are avail-
able as time series similar to the precipitation datasets
for the 1901–95 time period. Others were developed as
long-term mean only (wind speed). In the present study,
we used the CRU datasets for each meteorological var-
iable needed by the water balance model with the ex-
ception of precipitation.

c. Water balance model configuration

UNH’s water balance model (Vörösmarty et al. 1998,
1989) configured with the Shuttleworth and Wallace
(1985) potential evaporation (PET) function was used
to test the different precipitation datasets. The Shuttle-
worth and Wallace PET method is one of the most data-
extensive PET functions, which considers all elements
(such as evaporation from soil and leaves as well as
transpiration from the plant) by calculating resistance
terms from the different evaporating surfaces. None-
theless, the availability of vapor pressure, cloud cov-
erage, and wind speed from the CRU dataset makes it
possible to use such a complex PET calculation scheme
at the global scale.

The land surface characterization was developed by
Melillo et al. (1993), which was translated to seven
major land surface categories (conifer forest, broad-leaf
forest, savannah, grassland, tundra, desert, and open wa-
ter). These major land-use categories were found to have
distinct evaporation characteristics (Federer et al. 1996;
Vörösmarty et al. 1998). Dominant soil texture was from
United Nations Food and Agriculture Organization
(FAO) soil maps (FAO/UNESCO 1986). The combi-
nation of the major land-use categories and the soil tex-
ture was used to determine rooting depth (Vörösmarty
et al. 1998). Soil texture was also used to parameterize
soil properties such as porosity, maximum capacity, and
wilting point.

3. Comparison of precipitation datasets

a. Assessing the degree of inconsistency among
precipitation datasets

The six precipitation datasets compared in the present
study have inconsistencies in spatial resolution, tem-
poral coverage, and methodology. As was discussed in
section 2a, some of the datasets were only available at
coarser resolutions (GPCC and TRMM at 18, GPCP and
NCEP-2 at ;2.58). These datasets were interpolated to
30-min resolution using an inverse distance-weighted
‘‘4-6-9 point’’ interpolation (Fekete 2001).

The impact of differences in spatial resolution was
tested on the Willmott–Matsuura dataset. First the 309
resolution annual precipitation was aggregated to 18 and
2.58, then the aggregated fields were interpolated to 309
resolution. The regridded fields were compared to the
original dataset. This comparison showed that the deg-
radation and interpolation could cause substantial local
differences but preserved sufficiently the large-scale
patterns of the original precipitation field and introduced
negligible bias (1.3 and 3.4 mm, respectively) (Table
1).

Besides the resolution differences, these datasets rep-
resent different observation periods. The CRU dataset
represents 1901–95, GPCC and GPCP are available for
1986 to present, the NCEP-2 dataset used in the present
study covers 1979–present, while Willmott–Matsuura
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TABLE 1. Comparison of mean annual precipitation at different
resolutions. The Willmott–Matsuura datasets at 0.58 resolution were
aggregated to 18 and 2.58 and the aggregated coarser-resolution da-
tasets were interpolated back to 0.58. The table summarizes the com-
parison of the original gridded fields to the reinterpolated fields to
assess the impact of comparing datasets from different resolutions.
The first row contains the mean annual precipitation over the con-
tinental landmass depicted by the original Willmott–Matsuura dataset
and regridded datasets. The three cross-matrices give mean absolute
difference (MAD), root-mean-square error (rmse) and the bias.

30 min 18 2.58

Mean 697.6 698.9 701.0

Mean absolute difference (MAD)

30 min
18
2.58

0.0
37.2
77.9

37.2
0.0

53.6

77.9
53.6

0.0

Root-mean-square error (rmse)

30 min
18
2.58

0.0
98.9

178.6

98.9
0.0

114.2

178.6
114.2

0.0

Bias

30 min
18
2.58

0.0
1.3
3.4

21.3
0.0
2.2

23.4
22.2

0.0

FIG. 1. Latitudinal profiles of the CRU, WM, GPCC, GPCP, NCEP-2, and TRMM mean annual
precipitation datasets.

was available for the 1950–99 period. Since five out of
the six datasets were available between 1986 and 1995,
this period was chosen as the common time frame for
calculating monthly and annual climatologies (Fig. 1).

The TRMM dataset was available only for the 1998–
2001 period. The effect of this inconsistency in com-
paring 1998–2001 TRMM climatology to the 1986–95
climatologies of the five other datasets was assessed by
comparing the 1986–95 and 1998–2001 climatologies
of GPCC and GPCP (the two datasets, which covered
both the common 1986–95 and the TRMM 1998–2001
periods). Figure 2 shows the latitudinal profiles mean
annual precipitation derived from the 1986–95 (P10yr)
and 1998–2001 (P3yr) periods from the two datasets
along with the frequency distribution of their absolute

(P3yr 2 P10yr) and relative differences [(P3yr 2 P10yr)/
(P3yr 1 P10yr)].

The remarkable similarity of the climatologies de-
rived from different observation periods strongly sup-
ports Legates and Willmott’s argument that at large
scales the spatial variation of the precipitation is much
more important than the interannual variation.

b. Comparison of mean annual precipitation
estimates from the different global monthly
datasets

Table 2 summarizes the mean annual precipitation
differences between the five datasets, which were avail-
able for the 1986–95 period. The mean annual precip-
itation over global landmass varies between 653.8 mm
yr21 (GPCC) and 804.4 mm yr21 (NCEP-2). The Will-
mott–Matsuura and the CRU datasets appear to be al-
most identical with 697.2 and 697.6 mm yr21 annual
mean precipitation. Despite their similarity with the 10-
yr mean global annual precipitation, the mean absolute
difference (MAD) between the two datasets (based on
one-to-one grid comparison) is high (91.2 mm yr21,
which is almost as high as the mean absolute deviation
from the other datasets), suggesting that the two datasets
have marked local differences.1 The opposite is the case
with GPCC and GPCP. These two datasets appear to be
largely different in terms of mean annual precipitation
over land yet the mean absolute deviation of the two
datasets is relatively low (110.8 mm yr21, considering
the high bias 70.8 mm yr21).

The NCEP-2 data product stands out from the other
four datasets both in terms of the mean annual precip-
itation over land and the mean absolute deviation of
NCEP-2 from any other datasets. The NCEP-2 dataset

1 We calculate and report both the MAD and the rmse, although
we interpret only the MAD. While rmse is reported commonly in the
literature, it is a function of both the average error and the distribution
of errors, rather than of average of error exclusively. We interpret
MAD, since it is the natural, unambiguous measure of average error
alone.
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FIG. 2. Comparison of 1986–95 mean annual precipitation according to GPCC and GPCP to annual mean of the 1998–2001 period. The
latitudinal profiles (a) GPCC and (b) GPCP show minor differences, which is also reflected in the low bias (1.4 and 14.4 mm yr 21 according
to GPCC and GPCP, respectively) between the mean annual precipitation based on the different sampling periods. The frequency distribution
of the absolute and relative deviations (presented next to the latitudinal profiles) show more significant differences [the mean absolute
deviation (MAD) between the different climatologies of GPCC and GPCP are 89.4 and 75.4 mm yr21, respectively, while the relative deviation
for both datasets is ;10%].

TABLE 2. Comparison of mean annual precipitation fields. The first
row contains the mean annual precipitation over the continental land-
mass depicted by five precipitation datasets. The three cross-matrices
give mean absolute difference (MAD), root-mean-square error (rmse)
and the bias between the datasets.

CRU WM GPCC GPCP NCEP2

Mean 697.2 697.6 653.8 724.8 804.4

Mean absolute difference (MAD)

CRU
WM
GPCC
GPCP
NCEP2

0.0
91.2

102.4
138.7
246.3

91.2
0.0

105.4
147.8
252.6

102.4
105.4

0.0
110.8
243.1

138.7
147.8
110.8

0.0
224.0

246.3
252.6
243.1
224.0

0.0

Root-mean-square error (rmse)

CRU
WM
GPCC
GPCP
NCEP2

0.0
189.1
228.1
247.2
437.0

189.1
0.0

236.6
261.5
446.0

228.1
236.6

0.0
163.0
431.8

247.2
261.5
163.0

0.0
394.3

437.0
446.0
431.8
394.3

0.0

Bias

CRU
WM
GPCC
GPCP
NCEP2

0.0
0.4

243.1
27.6

107.1

20.4
0.0

243.5
27.2

106.7

43.1
43.5

0.0
70.8

150.3

227.6
227.2
270.8

0.0
79.6

2107.1
2106.7
2150.3
279.6

0.0

appears to be very different both regionally (mean ab-
solute deviation well over 200 mm yr21) and in de-
picting the mean annual precipitation globally (;80 to
150 mm yr21 bias) compared to the other datasets (Table
2).

Figure 1 shows the latitudinal profiles of the six pre-
cipitation climatologies. Although all of them depict the

same precipitation patterns, the differences among them
far exceed the differences that can be attributed to in-
consistency in spatial resolution or temporal coverage.
The latitudinal profiles reveal more details about the
differences between the datasets. The NCEP-2 is the
highest at almost all latitudes. GPCC and GPCP are very
similar in the midlatitudes, but depart significantly at
the higher latitudes. Apparently, the large difference in
terms of the mean annual average over land is largely
due to the differences between the two datasets across
the higher latitudes. CRU and WM are very similar at
all latitudes.

In lieu of all the possible one-to-one combinations,
an ensemble dataset based on the four most similar da-
tasets (CRU, WM, GPCC, GPCP) was developed as a
reference against which the individual datasets could be
compared. Figure 3 shows the frequency distribution of
the differences between the ensemble mean annual pre-
cipitation versus the six tested datasets. The four da-
tasets used for the reference ensemble datasets shows
much similarity, while both the NCEP-2 and the TRMM
data products have larger deviations from the ensemble
datasets than the other four.

The difference between TRMM and the ensemble
data is partly due to the difference in geographic extents
and observation periods as discussed in sections 2a and
3a. When a similar comparison is performed among the
six datasets for the TRMM domain only, the TRMM
datasets appears to be more similar to the ensemble
datasets but still stand out. This suggest that the TRMM
product gives less weight to the ground-based obser-
vations than the ensemble datasets.

The high disparity between the NCEP-2 and the en-
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FIG. 3. Frequency distribution of the difference in mean annual precipitation from the tested
data products and the reference ensemble dataset developed by averaging the most similar four
data products (CRU, WM, GPCC, and GPCP).

semble datasets is clearly due to the simulated nature
of the NCEP-2 products.

The four core precipitation datasets (CRU, WM,
GPCC, GPCP) represent our current ‘‘state-of-the-art’’
understanding of global precipitation distribution. The
differences among them can be viewed as estimates of
the uncertainties in our collective capacity to depict spa-
tial and temporal patterns of global rainfall. Figure 4
shows the absolute (max 2 min) and relative [(max 2
min)/(max 1 min)] 3 100) ranges of difference between
CRU, GPCC, GPCP, and Willmott–Matsuura datasets
where max and min are, respectively, the highest and
lowest grid cell values across the four datasets. The
TRMM and NCEP-2 products were excluded because
of their extreme anomalies compared to the other four
data products.

The range in differences appears to be high in the
wet Tropics and less so in dry regions, but the relative
ranges are actually the opposite and show greater rel-
ative differences in the dry regions and more consis-
tency in the wet regions. This finding is not surprising,
but emphasizes the need to improve the sampling of
precipitation in dry regions, where the relative differ-
ences between the different datasets could be as high
as 100%.

c. Comparison of seasonality from the different
global precipitation datasets

After analyzing the differences in mean annual total
precipitation across the datasets, normalized mean
monthly precipitation ( ) was calculated by dividingP9i
the mean monthly precipitation by the mean annual total

precipitation ( 5 Pi/Pa), where Pi and Pa are monthlyP9i
and annual precipitation, respectively. The normalized
precipitation can be viewed as the proportional distri-
bution of the annual precipitation throughout the year.
The normalization of the original datasets allowed the
isolation of the seasonal differences from the inherited
anomalies in the annual precipitation discussed in the
previous section. The seasonal differences between the
individual normalized precipitation and the normalized
ensemble precipitation (Psd) were calculated as Psd 5
[ | 2 | ]/12, where is the normalized12S P9 P9 P9i51 i ei i* *
monthly precipitation according to the individual da-
tasets and is the normalized monthly ensemble pre-P9ei

cipitation.
Figure 5 shows the maxima of the seasonal differ-

ences of the four core datasets. The datasets show higher
uncertainties in the seasonal partitioning of precipitation
in dry regions. Apparently, the regions with high relative
differences in mean annual precipitation (Fig. 4b) cor-
respond to high uncertainties in the seasonal distribution
of the precipitation. Generally, the drier regions have
larger uncertainties both in terms of capturing the mean
precipitation and in representing its seasonality. The
only exception appears to be in the upper part of the
Yukon basin where the differences in both the mean
annual precipitation and seasonality are high despite the
fact that this region is not extremely dry. This high
uncertainty is due to the CRU dataset, which appears
to have markedly different (high) precipitation values
and different seasonality compared to the other three
datasets (WM, GPCC, GPCP). Without having access
to the raw data (the locations and the precipitation times
series of the meteorological stations) used in developing
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FIG. 4. Absolute and relative range of the four ‘‘state-of-the-art’’ precipitation datasets (CRU, WM, GPCC,
and GPCP).

the different datasets, it is hard to identify the source
of these differences and to judge which dataset provides
better precipitation estimates.

4. Testing the different precipitation datasets in a
water balance context

Water balance model calculations were made using
long-term mean monthly input climate forcing (such as
maximum, minimum, and mean air temperature, vapor
pressure, cloud coverage, and wind speed) and varying
individual precipitation datasets. We note again that all
the climate forcings were long-term monthly averages
from the CRU 95-yr time series. The precipitation was
varied in order to assess the impact of the differences

in the tested precipitation datasets on the resulting run-
off.

Figure 6 shows the latitudinal profiles of runoff pro-
duced by the six water balance model runs. The lati-
tudinal profiles largely have the same pattern as the
precipitation profiles (Fig. 1) but the spread between the
different datasets appears to be amplified.

Figures 7a and 7b show the ratios of the runoff and
precipitation of absolute and relative ranges and clearly
an increase in the relative range of the spatial distri-
bution of runoffs. The apparent insensitivity of WBM
in the arid regions should be noted. WBM does most
poorly in extremely dry regions where rapid rain events
may have the ability to produce substantial runoff de-
spite the overall water stress. In these regions, WBM
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FIG. 5. Maximum seasonal differences between the four core datasets (CRU, WM, GPCC, and GPCP) and the
ensemble precipitation.

FIG. 6. Latitudinal profiles of the water balance model estimated mean annual runoff using
CRU, WM, GPCC, GPCP, NCEP-2, and TRMM precipitation datasets.

tends not to produce any runoff regardless of the dif-
ferences in precipitation.

The sensitivity of runoff to precipitation clearly de-
pends on the relationship between the precipitation (P)
and the potential evapotranspiration (PET). This rela-
tionship can be summarized as three classes of climate
regimes:

1) Wet (P . PET)–the uncertainty in P translated to
an uncertainty in runoff of roughly the same mag-
nitude.

2) Semiarid (P , PET)–the uncertainty in P translated
to less absolute uncertainty in runoff, but this runoff
uncertainty in relative terms is typically higher than
in the first case, due to the high nonlinearity of the
evapotranspiration process.

3) Arid (P K PET)–regardless of the amount of pre-
cipitation no runoff is produced, therefore the runoff
estimate is completely insensitive to the precipita-
tion.

Figures 7a and 7b clearly show these categories. The
regions showing close to 1.0 absolute runoff/precipi-
tation range ratios are those regions in which the pre-
cipitation uncertainty translates the same uncertainty in
runoff estimates. While the ratio of the absolute-ranges
runoff and precipitation has an upper limit, the relative-
range ratio is limitless. Figure 7b shows a high degree
of runoff uncertainties in transitional zones between hu-
mid and arid regions. Regions with zero uncertainty
ratios in both absolute and relative terms appear to be
in the arid regions, which produce little if any runoff.

5. Summary and conclusions

Six mean monthly precipitation datasets (Climate Re-
search Unit, Willmott–Matsuura, Global Precipitation
Climate Center, Global Precipitation Climatology Proj-
ect, TRMM, and NCEP–NCAR reanalysis) were com-
pared in a water balance model context. The intercom-
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FIG. 7. Sensitivity measures arising from the use of contrasting precipitation datasets. The absolute range ratio and
relative range ratio of the runoff and the precipitation were calculated by dividing the absolute and relative ranges of
runoff by the absolute and relative ranges of precipitation, respectively. The figure can be viewed as the spatial
distribution of the water balance calculations sensitivity to uncertainties in precipitation.

parison of individual precipitation datasets revealed sub-
stantial numerical differences, however, the overall pre-
cipitation pattern is fairly similar in each dataset. Not
surprisingly, the different datasets show the largest ab-
solute differences in the wet Tropics, but their relative
performance is worse in dry regions. The range in dif-
ferences between the different datasets is comparable to
the total range of interannual variation of the precipi-
tation depicted by the CRU monthly time series.

The different precipitation datasets were applied as
forcings to a water balance model to estimate runoff.
Comparison of the different runoff estimates showed
that the uncertainty in precipitation translates to at least
the same and typically much greater uncertainty in run-

off in relative terms. In wet regions, where the precip-
itation always exceeds the potential evaporation, any
error in the precipitation translates to approximately the
same absolute error in runoff (which will result in higher
relative error since runoff is always less than the pre-
cipitation). In semidry regions, the runoff-generation
processes are highly nonlinear, therefore the errors in
precipitation translate into even greater errors in the
runoff. In arid regions, the water balance calculation
does not produce any runoff (in some cases due to the
WBM’s inability to capture the impact of rapid rain
events over small scales), therefore the runoff estimate
is virtually insensitive to the precipitation inputs.

The present study demonstrated the significance of
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potential precipitation errors in water balance calcula-
tions. Such calculations are becoming increasingly im-
portant for better water resource management as water
availability is becoming recognized as one of the most
important limiting natural resources for human devel-
opment (Oki et al. 2001; Vörösmarty et al. 2000; Al-
camo et al. 2000). The sensitivity of runoff (water sup-
ply) to precipitation uncertainties in semiarid regions
demonstrates the need to make significant improvements
of the precipitation monitoring in those regions as many
are already under severe water stress (Vörösmarty et al.
2000; Vörösmarty et al. 2003, manuscript submitted to
Ambio).

Comparison of simulated runoff to observed river dis-
charge has the potential to objectively assess the per-
formance of various precipitation datasets. Unfortu-
nately, the availability of river discharge data is limited
and in a rapid decline after the mid-1980s (Vörösmarty
et al. 2002; Shiklomanov et al. 2002). Thus, the com-
parison of the tested datasets to corresponding discharge
datasets globally was not possible for the present study
and likely future studies.
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