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Uncertainties in projections 
of sandy beach erosion due 
to sea level rise: an analysis 
at the european scale
panagiotis Athanasiou1,2*, Ap van Dongeren1,4, Alessio Giardino1, Michalis I. Vousdoukas3, 
Roshanka Ranasinghe1,2,4 & Jaap Kwadijk1,2

Sea level rise (SLR) will cause shoreline retreat of sandy coasts in the absence of sand supply 

mechanisms. These coasts have high touristic and ecological value and provide protection of valuable 
infrastructures and buildings to storm impacts. So far, large-scale assessments of shoreline retreat use 
specific datasets or assumptions for the geophysical representation of the coastal system, without any 
quantification of the effect that these choices might have on the assessment. Here we quantify SLR 
driven potential shoreline retreat and consequent coastal land loss in Europe during the twenty-first 
century using different combinations of geophysical datasets for (a) the location and spatial extent 
of sandy beaches and (b) their nearshore slopes. Using data-based spatially-varying nearshore slope 
data, a European averaged SLR driven median shoreline retreat of 97 m (54 m) is projected under RCP 
8.5 (4.5) by year 2100, relative to the baseline year 2010. This retreat would translate to 2,500  km2 

(1,400  km2) of coastal land loss (in the absence of ambient shoreline changes). A variance-based global 
sensitivity analysis indicates that the uncertainty associated with the choice of geophysical datasets 

can contribute up to 45% (26%) of the variance in coastal land loss projections for Europe by 2050 
(2100). This contribution can be as high as that associated with future mitigation scenarios and SLR 
projections.

�e global society’s response to impending climate change impacts will be one of the great challenges in the 
coming  decades1. With future projections indicating accelerating rates of sea level  rise2,3, increasing intensity 
and frequency of extreme sea  levels4–6 and increases in the exposed population and  capital7, low elevation coastal 
zones will be particularly vulnerable to climate change. About 10% of the world’s population resides in these low 
elevation coastal zones, de�ned as the area with an elevation less than 10 m above mean sea  level8.

Coastal zones with sandy beaches, which comprise almost one third of the world’s  coastline9, are geomor-
phologically highly dynamic, responding to hydro-morphological processes acting at di�erent time-scales, such 
as waves, tides, storms and long-term changes of water levels. In particular, sea level rise (SLR) is expected to 
contribute signi�cantly to future shoreline  retreat10,11. Shoreline retreat can diminish the touristic and recreational 
value of beaches and/or cause direct impacts to infrastructure by structural failure. Additionally, since sandy 
beaches act as the �rst bu�er against storm surges and wave attack, shoreline retreat can increase the vulnerability 
of the hinterland to  �ooding12–15.

Many studies have taken up the challenge of quantifying shoreline retreat at the local or sub-regional 
(~ < 500  km of coastline) scale, mostly at locations where high resolution and high accuracy data are 
 available16–20. �e availability of such data enables the use of higher complexity process  models21,22, probabilis-
tic  assessments19,23,24 and uncertainty  decomposition25. On the other hand, when shoreline retreat is assessed at 
the  regional26–28 (~ > 500 km of coastline),  continental29 or global  scale30,31, a high number of constraints emerge 
related to data availability, data resolution, data accuracy, and computational  demands32,33. �is necessitates the 
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use of simpler behavioural models to predict the response of sandy coastlines to SLR at these larger scales. �e 
Bruun  Rule34 currently o�ers the only computationally viable method to assess the retreat of sandy shorelines 
due to SLR at the global, continental or regional scale, even though so far it has received a lot of criticism on 
its assumptions and widespread use (see Discussion section). �is simple two-dimensional mass conservation 
principle predicts a landward retreat of the shoreline in response to SLR assuming that the beach will maintain 
an equilibrium pro�le. It requires as input the SLR amplitude and the nearshore bed slope of the sandy beach. 
�e Bruun Rule has been widely used to derive shoreline retreat projections at the  regional27,28,35,  global30,31 and 
local scale.

Hinkel et al.30 assessed the global impacts of SLR using the Bruun Rule in an—at that time—state of the art 
global framework. �ey described the spatial distribution of sandy coastlines qualitatively for coastal segments 
of varying length based on an aggregation of various coastal typology datasets. Additionally, they assumed the 
same nearshore slope (1:100) across all the sandy beaches globally, neglecting the inherent spatial variability of 
coastal pro�le slopes, an assumption that can be quite crucial, since shoreline retreat is linearly dependent on 
the nearshore slope under the Bruun rule.

In our study, we focus only in SLR driven future shoreline retreat and land loss at sandy beaches, not taking 
into account other processes driving long-term shoreline change such as natural gradients in alongshore sedi-
ment transport, changes in sediment transport due to human interventions (e.g. port construction)22, �uvial 
sediment  supply36,37, marine  feeding38 or sand nourishments/land  reclamations9. �ese long-term shoreline 
change patterns are de�ned herein as ambient shoreline  changes31,39. Since these patterns might be a�ected by 
non-monotonic signals, in our analysis we do not consider these, but rather focus on the e�ects of SLR alone as 
an indicator of climate change erosion impact which allows studying uncertainties related to input geophysical 
datasets. In order to estimate SLR driven shoreline retreat and land loss at sandy beaches (herea�er referred to 
as coastal land loss for convenience), we also employ the Bruun Rule, due to the scale of the study (i.e. Europe). 
However, we improve the representation of the geophysical information by computing the shoreline retreat 
due to SLR at the European scale and its uncertainties using: (a) two di�erent datasets that describe the spatial 
distribution of sandy beaches, and (b) two di�erent approaches to describe the nearshore slope. For the former, 
a reclassi�cation from the EUROSION  project40 and a dataset of satellite derived sandy  beaches9 (SDSB) are 
used. For the latter, we apply a newly produced global dataset with spatially varying nearshore  slopes41 (SVNS) 
and for comparison purposes, the commonly-used constant slope assumption of 1:100, given that it has been 
used before in large-scale coastal studies in absence of any other  information29,30 (see “Methods”, subsection 2). 
Regional SLR projections associated with the moderate-emission-mitigation-policy scenario (RCP 4.5) and a 
high-end, business-as-usual scenario (RCP 8.5) assuming also an increased contribution from ice-sheets (as used 
in Vousdoukas et al.31) are applied as boundary  conditions42. �ese projections include a glacial isostatic adjust-
ment (GIA)  model43 and are probabilistic, taking into account uncertainties related to SLR physical processes 
and climate modelling (see “Methods”, subsection 3).

Our analysis is performed at an alongshore spacing of 1 km using the Open Street Maps coastline which allows 
us to produce an ensemble of coastal land loss projections per region and subsequently aggregate to EU Member 
State level. �e regions used in this study are the  3rd level of the Nomenclature of Territorial Units for Statistics 
(NUTS 3), as de�ned by EUROSTAT 44. Four di�erent geophysical data (i.e., sandy beach location and nearshore 
slope) combinations are generated: (a) EUROSION and 1:100 slope, (b) EUROSION and SVNS, c) SDSB and 
1:100 slope and d) SDSB and SVNS. For each of these combinations the SLR driven potential shoreline retreat 
and coastal land loss, relative to the baseline year 2010, are estimated under RCP 4.5 and 8.5 making in total 8 
di�erent assessments. �ese are compared at a European and regional level. We estimate the potential shoreline 
retreat due to SLR using the Bruun rule and then aggregate it to coastal land loss as:

where SLRi is the regional SLR at the time of interest, tan(βi) is the nearshore  slope41 (see “Methods”, sub-
section 1 for de�nition) and Li is the length of each segment represented by grid point i (here 1 km), while n 
is the total number of grid points in the area of interest. �e term SLRi

tan(βi)
 is essentially the Bruun rule, which 

gives the potential shoreline retreat R at each grid point i , and it is set to zero if the point is not sandy or SLR is 
negative. We use coastal land loss as we believe that a metric of eroded area per NUTS3 region is much more 
descriptive than shoreline retreat because it takes the fraction of sandy beach length over the entire cell and thus 
the uncertainties with respect to the sandy beach location datasets into account. Additionally, area metrics can 
relate to beach capacity (e.g. for tourism) and needed quantity of beach nourishment material, so overall coastal 
land loss can be quite relevant for stakeholders. An overview of the framework followed in the analysis herein 
is presented in Fig. 1.

A variance-based sensitivity  analysis25 (see “Methods”, subsection 4) was applied to quantify the contribution 
of each source of uncertainty in Eq. (1) to the total uncertainty of the coastal land loss projections. �ese sources 
are (a) the dataset choice for the location of sandy beaches, (b) spatially-varying or uniform nearshore slopes, (c) 
the RCP scenario and d) the SLR projections uncertainty within each RCP. By assigning a probability distribution 
(see “Methods”, subsection 4) to each of the four aforementioned input parameters, we propagate the uncertain-
ties of the input parameters to the coastal land loss projections, using a Monte-Carlo approach comprising 50,000 
simulations per region and per decade (Supplementary Fig. S14). Uncertainty indices, describing the relative 
uncertainty contribution of each source de�ned above, are calculated for each NUTS3 region for di�erent time 
horizons in the twenty-�rst century.

(1)LL =

n∑

i=1

SLRi

tan(βi)
• Li ,
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�e projections thus obtained indicate the spatial variability in SLR driven potential shoreline retreat and 
coastal land loss and how the choice of input geophysical data (i.e., sandy beach location and nearshore slopes) 
can in�uence these projections. Additionally, the novel uncertainty analysis allows quantifying and comparing 
the uncertainties related to the choice of input geophysical datasets versus the inherent uncertainty associated 
with RCPs and SLR projections. �e choice of the geophysical datasets is a type of epistemic uncertainty, mean-
ing that it is connected with limitations in the current scienti�c knowledge and methods to accurately describe 
these characteristics of the coast at the considered spatial scale.

Results
Sandy beach erosion. Using the SDSB and SVNS data, by 2050 we project a European average SLR driven 
potential shoreline retreat (in the absence of ambient shoreline changes) of between 18.1 and 53.9 m (5%—95% 
con�dence interval) under RCP 8.5, relative to the baseline year 2010 (Fig. 2). At the end of the century, these 
projections reach values between 51 and 241.5 m. For RCP 4.5, the potential shoreline retreat by 2050 is pro-
jected to be between 10.7 and 33.9 m (5%—95% con�dence interval), i.e. almost 35% smaller than that for RCP 
8.5. At the end of the century, mitigation could play an even more important role with a reduction of almost 55% 
in average shoreline retreat under RCP 4.5 compared to that projected for RCP 8.5. �e use of the EUROSION 
versus the SDSB dataset has a minor e�ect on the European average shoreline retreat, with absolute di�erences 
of less than 3.5% (Fig. 2). On the other hand, the European average shoreline retreat values computed with the 
SVNS data are almost 36% larger compared to that calculated with the 1:100 uniform slope assumption.

With respect to the total coastal land loss, we project 473–1,410  km2 (5–95% con�dence interval) being lost 
across Europe under RCP 8.5 by 2050, using the SDSB and SVNS data (Fig. 2). By 2100 this range is projected 
to be between 1,334 and 6,316  km2. Under RCP 4.5, these values are almost 35% and 55% smaller by 2050 and 
2100, respectively. �e use of the EUROSION dataset instead of SDSB results in a reduction of almost 9% in 
the coastal land loss projections. On the other hand, when the 1:100 uniform slope assumption is used, the dif-
ferences between the projections using the two di�erent sandy beach location datasets increase, with the SDSB 
projecting 30% more coastal land loss.

�e con�dence intervals of the projections of the European average shoreline retreat and total coastal land loss 
(Fig. 2) per data combination are directly connected to the uncertainty in the SLR projections (Supplementary 
Fig. S13). �ese uncertainties are related to the contribution of steric SLR, ice sheets, glaciers and land–water 
 storage42. At the end of the century, the uncertainty related to the dynamic behaviour of the Antarctic ice sheet 
dominates the total uncertainty of the SLR  projections42, which consequently introduces a large uncertainty to 
the end of century shoreline retreat and coastal land loss values.

For each individual data combination, the shoreline retreat projections di�er spatially across Europe (Fig. 3). 
As expected, when using the 1:100 uniform nearshore slope assumption, the European coastal retreat map is quite 
uniform with modest spatial variability which arises only due to regional SLR di�erences. On the other hand, 
when the SVNS data are used, coastal retreat across Europe is more spatially variable (Fig. 3 and Supplementary 

Figure 1.  Schematization of the framework used herein to compute future European coastal land loss under 
the four di�erent uncertain sources: (1) sandy beach location data, (2) nearshore slope data, (3) climate change 
scenario, and (4) sea level rise projections.
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Fig. S1). Only in the North Baltic Sea is the shoreline retreat signi�cantly low due to GIA which reduces the 
regional SLR in the  area43.

�e coastal retreat values calculated per location are aggregated to coastal land loss at the NUTS3 regional 
level using Eq. (1), and then normalized according to the coastal length of each NUTS3 region. �is results in 
maps that indicate vulnerable NUTS3 regions which could potentially lose large coastal areas with respect to 
their total coastal length. �e spatial distribution of the normalized coastal land loss per region (in the absence 
of ambient shoreline changes) varies between the four data combinations but has a similar spatial pattern for 
RCP 8.5 (Fig. 4 and Supplementary Fig. S3) and RCP 4.5 (Supplementary Figs S2 and S4), with the magnitude 
di�ering signi�cantly. �e normalized coastal land loss  (km2 of area lost / km of coastline) is the combination of 
the coastal retreat per location, which is in turn connected to the SLR and the average nearshore slopes, and the 
relative length of the sandy coastline. When using the SVNS data and irrespective of the sandy beach distribu-
tions dataset, highly vulnerable regions are identi�ed on the Italian Adriatic coast, the French Atlantic coast, 
Belgium, �e Netherlands, Denmark, Lithuania and Latvia (Fig. 4).

Uncertainty analysis. As the results presented above indicate, the choice of the input geophysical datasets 
(i.e., sandy coastline and nearshore slope) is critical for the representation of the coastal retreat along the Euro-
pean coastline. �e relative contribution of the di�erent sources of uncertainty to the total uncertainty (being 
equal to unity in every year) and their temporal evolution per European country are quanti�ed using a global 
sensitivity analysis (Fig. 5). �e main e�ect of each source of uncertainty in Eq. (1) to the total variance of the 
coastal land loss projections (in the absence of ambient shoreline changes) per NUTS3 region is described by 
the 1st order Sobol index (see “Methods”, subsection 4). �is value can be interpreted as the relative amount of 
the total variance that would be removed if the true value of the parameter was  known25. �e global sensitivity 
analysis was performed for each NUTS 3 region, mapping the contribution of each parameter to the total vari-

Figure 2.  Projections of the European mean potential shoreline retreat (a, b, e, f) and European total coastal 
land loss (c, d, g, h) under the RCP 4.5 (blue colors) and RCP 8.5 (red colors), relative to the baseline year 2010 
(in the absence of ambient shoreline changes), for the four di�erent geophysical data (sandy beach location 
and nearshore slope) combinations: (a, c) EUROSION and 1:100 slope, (b, d) EUROSION and SVNS, (e, g) 
SDSB and 1:100 slope and (f, h) SDSB and SVNS. �e solid lines are the projected potential shoreline retreat/
coastal land loss under the median SLR projections, while the shaded areas indicate the 5% and 95% con�dence 
intervals.
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ance through the twenty-�rst century and then aggregated per country. �e temporal evolution of each source 
through the century di�ers signi�cantly among countries (Fig. 5). As expected, an increase of the uncertainty 
due to the selected RCP is observed towards the end of the century for all countries, as indicated by the green 
shaded area in Fig. 5. Even though sandy beach location and nearshore slope information is constant in time, 
their Sobol indices can be time dependent, since Sobol indices describe the relative contribution of each input 
parameter to the total variance. For the same reason, the uncertainty contribution of SLR projections can be high 

Figure 3.  Potential shoreline retreat (m) projections at sandy beaches for the median projected SLR at 2100 
under RCP8.5 (in the absence of ambient shoreline changes), relative to the baseline year 2010. Each map 
represents an assessment with a speci�c combination of geophysical data (sandy beach location and nearshore 
slope): (a) EUROSION and 1:100 slope, (b) EUROSION and SVNS, (c) SDSB and 1:100 slope and (d) SDSB and 
SVNS. �e maps are projected in the ETRS89-LAEA system.
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Figure 4.  Normalized coastal land loss  (km2/km) projections per NUTS 3 region for the median SLR at 2100 
under RCP 8.5 (in the absence of ambient shoreline changes), relative to the baseline year 2010. �e coastal 
land loss has been normalized per the coastline length of each NUTS3 region. Note that each region has a 
variable area and thus coastline length as de�ned by Eurostat. Each map represents an assessment with a speci�c 
combination of geophysical (sandy beach location and nearshore slope): (a) EUROSION and 1:100 slope, (b) 
EUROSION and SVNS, (c) SDSB and 1:100 slope and (d) SDSB and SVNS. �e maps are projected in the 
ETRS89-LAEA system. �e values at the bottom le� of each map indicate the European average shoreline retreat 
(m) and are derived for median SLR projections, while in the brackets the average EU values are given for the of 
5th to 95th percentiles of the SLR projections.
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at the beginning of the century for some countries, because even though the variance of the SLR projections is 
small, it can have large relative e�ect, since it is the main driving force of changes in the coastal land loss model.

Figure 5 also indicates that European countries can be divided into three groups with respect to the di�er-
ent uncertainty contributions. �ere are countries (Poland, Ireland, Italy, United Kingdom, Lithuania, Finland, 
Sweden and Denmark representing 50% of total sandy coastline) where the relative contribution of the variance 
related to the climate change scenario and the SLR projections dominate by the middle of the century (72.6%, 
58.6%, 53.9%, 53.3%, 52.5%, 50.7%, 42.3% and 38.8% by 2050 respectively). �is type of uncertainty is inherent 
and is connected to unknowns in future climate change mitigation policies and physical processes as e.g., ice sheet 
dynamics. A second group (Malta, Estonia, Slovenia, Greece, Portugal, Spain and Germany representing 38% of 
total sandy coastline) have a quite high relative contribution to the total uncertainty due to the choice of the sandy 
beach distribution dataset (70.9%, 46.7%, 43.5%, 39.9%, 35.3%, 32.3% and 31.6% by 2050 respectively). �is is 

Figure 5.  Variance-based global sensitivity analysis of the coastal land loss model as a function of time for 
di�erent EU countries. For each year considered, the width of each patch indicates the fraction of the variance 
of the coastal land loss projections (in the absence of ambient shoreline changes) that could be removed if the 
respective input parameter was known. White areas indicate interactions between parameters. �e 1st order 
Sobol indices presented here are calculated as the weighted average of the country’s regions (with respect to the 
sandy coastline length). �e total potential sandy coastline length (EUROSION or SDSB) is indicated at the top 
right corner of each graph. On the bottom right an EU average plot shows the average values over all of Europe.
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an artefact of a regional disagreement between the total sandy coast length of the two datasets considered here, 
which overshadows the uncertainty of the other parameters. In the third group (Belgium, Latvia, Netherlands 
and France representing 12% of total sandy coastline) the variability of coastal land loss projection is dominated 
by the nearshore slope uncertainty (61.7%, 50.2%, 43.5% and 28.0% by 2050 respectively). In these countries the 
largest contribution to coastal land loss variance is from the di�erence between the average nearshore slopes as 
calculated by the SVNS dataset and the commonly used assumption of 1:100.

�e uncertainty of the coastal land loss projections could be reduced on average by up to 45% in 2050 and 
by 26% by 2100 if the exact spatial distribution of sandy beaches across Europe and their nearshore slopes were 
known (Fig. 5). Still, these values can vary signi�cantly when considering speci�c regions (Supplementary Figs 
S5 and S6), as agreement between datasets and di�erences in SLR projections can vary locally. Note that the white 
area in Fig. 5, which for most of the countries is smaller than 20% by 2100, indicates the interactions between 
the parameters meaning that the combined variation of the considered parameters also contributes to the total 
variance. �is for example can be related to the spatial dependency of the variables used herein, since for each of 
the sandy beach location datasets, di�erent combinations of SLR projections and nearshore slopes will be used.

Discussion
Our results provide novel insights with respect to the use of di�erent geophysical datasets and assumptions in 
large scale assessments of SLR driven shoreline retreat and consequent coastal land loss. �e use of the SVNS 
dataset instead of the uniform slope assumption resulted in an increased estimate of European average shoreline 
retreat. �is is due to the fact that the SVNS based slopes are on average milder than 1:100 across  Europe41. On 
the other hand, the di�erences in the European coastal land loss predictions (Fig. 2) are connected to di�erences 
in the sandy beach distribution and total length of sandy beaches in the EUROSION and SDSB datasets. �eir 
point-to-point agreement was 36% along the total European coastline (Supplementary Fig. S10). �e agreement 
was larger than 50% in most NUTS3 regions, with the exception of the Atlantic coast of Spain, some regions in 
France and the UK, Sweden, Finland and Greece (Supplementary Fig. S11).

�e European average shoreline retreat due to SLR calculated herein with the SDSB and SVNS datasets 
compares well with the results from a previous global assessment that used the same input, but with some over-
estimation related to the use of a Bruun Rule correction factor in that  study31, which is described by a triangular 
probability distribution ranging from 0 to 1 with a peak at 0.7. An older study at the European scale by Hinkel 
et al.29 which employs the assumption of uniform 1:100 nearshore slopes, projected a total coastal land loss of 
about 450  km2 (300  km2) by 2100 under IPCC SRES A2 (B1). �e projected median coastal land loss when using 
the 1:100 uniform slopes here is about 1,700  km2 (950  km2) under RCP 8.5 (4.5). �ese results are not directly 
comparable since they are based on di�erent greenhouse gases concentration pathways, but di�erences can be 
attributed to a) mainly the use of di�erent mitigation scenarios, SLR projections and baseline years, b) di�erences 
in the coastline de�nition and thus coastline length, and c) sandy beach distribution di�erences between their 
study and the assessment presented herein.

�e present analysis has inherent limitations and assumptions. Despite its widespread use, the Bruun Rule 
has been  criticized45,46 for its assumptions and simpli�cations. �ese include: (a) that an equilibrium pro�le is 
always attained, (b) that there is a cross-shore sediment balance (no sediment sinks and sources) and (c) that 
it does not take into account alongshore sediment transport gradients. Additionally, recent studies have shown 
that the Bruun rule tends to overestimate coastal retreat when compared to physics-based probabilistic numeri-
cal  models17,19,25. �is could be potentially added as a correction factor in Eq. (1) in future studies (similarly to 
Vousdoukas et al.31) and modelled as a stochastic variable in the uncertainty analysis. �e use of a physics-based 
model was not feasible within the scope of the present study due to time constraints as a result of the regional 
spatial scale of the assessment. �e contribution of the choice of the coastal impact model has been previously 
shown to account for 20–40% of the variance in shoreline change projections by 2100 in various sites in  France25.

Shoreline change is a dynamic process that is not only dictated by SLR. Long-term changes in shoreline posi-
tion can be expected in response to long-shore sediment transport  gradients22,31,47. Additionally, the presence 
of sediment sources/sinks37,48 and any residual e�ects of storms and others seasonal, annual or multi-annual 
 �uctuations49 can lead to additional shoreline  changes22,25,31,37,48. In the work herein, we focused on the shoreline 
retreat that is directly driven by SLR, omitting the uncertainty related to the aforementioned additional pro-
cesses. �erefore, to investigate whether the SLR-induced shoreline retreat calculated herein is the dominant 
mechanism of future shoreline retreat, we compare our results with projections of historic shoreline  changes31. 
�ese ambient changes are derived from historical change rates of shoreline position based on publicly available 
satellite  imagery9,39 assuming that these trends can be extrapolated into the future. We therefore calculate the 
ratio of median SLR induced shoreline retreat ( R ) to the median long-term ambient changes ( AC ) for each sandy 
location along the European coastline, di�erentiating between historically eroding (i.e., AC > 0 ) and historically 
advancing (i.e., AC < 0 ) coasts (Fig. 6 and Supplementary Fig. S12). We then distinguish between two groups; 
SLR dominated coasts ( |R| > |AC| ) and ambient changes dominated coasts ( |R| < |AC| ). We �nd that under 
RCP 4.5, AC is slightly more important than R in 2050, while in 2100 their relative importance is quite similar 
for both historically eroding and advancing coasts. Under RCP 8.5 though, in 2050, R is more important than AC 
over Europe, while in 2100 the dominance of R over AC becomes even more pronounced. �ese insights show 
that at least under RCP 4.5 ambient shoreline changes can be of the same importance as SLR driven shoreline 
retreat overall in Europe. On the other hand, under RCP 8.5 SLR driven shoreline retreat dominates especially at 
the end of the century when SLR rates increase. Historically advancing coasts represent almost 40% of the sandy 
coastline studied herein. Up to 14% of the sandy coastline can have an overall land gain by 2100 and under RCP 
8.5 if the accreting historic trends continue ( |R| < |AC| and AC < 0 ). For these coasts (e.g. heavily nourished 
beaches along the Dutch coast), SLR driven shoreline retreat could potentially be counteracted with continuing 
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interventions at the historic rate under RCP 4.5. Obviously, there are distinct spatial patterns (Fig. 6) which show 
quite some spatial variability of the ratio. Furthermore, the assumption of the long-term shoreline change rates 
to remain constant in the future is also somewhat tenuous.

For the sake of completeness, the projected shoreline retreat induced by SLR alone ( R ) were compared with 
projections of total potential shoreline retreat ( dx ) that includes the aforementioned ambient shoreline change 
( AC ). Here, dx was estimated in a probabilistic manner, by sampling R and AC from their distributions in a 
Monte Carlo simulation and adding them up to create probabilistic dx projections for 2050 and 2100 under RCP 
4.5 and 8.5. As an illustrative example, European maps of the median dx values across Europe thus obtained 
are shown in Supplementary Fig. S15, indicating that the general spatial patterns when AC is included stay the 
same for the most part, with the exception of a few locations where a shoreline advance is projected (e.g., Dutch 
coast and North Baltic Sea) or where more severe shoreline retreat (than R alone) is projected. �e variance of 
the projected distributions of dx is somewhat larger than that of the variance associated with projections of R 
alone (Supplementary Fig. S1).

Other missing uncertainty factors include the choice of the parameter distributions  used25 in the global 
sensitivity analysis, which can a�ect the total variance of coastal land loss projections and subsequently alter the 
relative contribution of each variable. For example, assigning the same probability to the choice of the two sandy 
beach location datasets and the two nearshore slope approaches is a choice that directly a�ects the uncertainty 

Figure 6.  Ratios of SLR driven shoreline retreat to erosion due to ambient shoreline changes |R|/|AC| for 
median projected SLR at 2100 under RCP8.5, for historically eroding (HE) coasts (a) and historically advancing 
(HA) coasts (b). Histograms of ratios R/LT for historically eroding (R/AC > 0) and historically advancing (R/
AC < 0) coasts for RCP 4.5 (c, d) and RCP 8.5 (e, f). For the comparison the points from Vousdoukas et al. 2020 
were interpolated to the points of the present study by using inverse distance interpolation at a 2 km radius.
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quanti�cation. For the former, this choice derives from the spatial extent of the dataset which makes it di�cult 
to assign di�erent performance levels for the two datasets. For the latter, even though we can expect that the 
SVNS dataset will contribute to better estimations of shoreline retreat than the assumption of a uniform slope, 
we assign the same probability to quantify the sensitivity of this choice and to be able to compare our results with 
previous  studies29,30. Additionally, we treat the geophysical characteristics of the coastline (i.e. location of sandy 
beaches and nearshore slopes) as constants in the future and thus described by the current available datasets, 
even though at the end of the century changes in hydrodynamics and sediment supply might alter them.

Our uncertainty analysis is based on choices with respect to the geophysical representation of the coastline 
that need to be made in large-scale shoreline retreat assessments. For this reason, we use available large-scale 
datasets that cover all of Europe or a large part of it (see “Methods”, subsection 2 for spatial coverage of EURO-
SION). Uncertainty related to geophysical representation is epistemic and is mainly due to the availability, spatial 
coverage and accuracy of data and observations. However, at the regional or country scale, better resolution and 
higher accuracy data are seldom available. Exceptions are �e Netherlands and Belgium where the relatively 
smaller coastline length and long-term surveying have contributed to the creation of detailed coastal bathymetric 
datasets available at country  level50. Where such data are available, the uncertainty arising from the sandy beach 
location and nearshore slopes can be reduced signi�cantly. �us, data acquisition and observational programs 
could provide better representation of the coastal system and reduce the uncertainties in shoreline retreat projec-
tions, especially for the 2nd and 3rd group of countries described in Results subsection 2. Conversely, uncertainty 
related to future SLR projections (1st group of countries described in Results subsection 2) is more di�cult to 
reduce, since it is related to global carbon emission reductions, economic developments, and inherit uncertain-
ties in the physical processes that will lead to SLR.

�e SLR projections used here include the contribution from GIA but not the local tectonics and subsidence 
 e�ects42. �us, the relative sea level rise in areas with signi�cant subsidence (e.g. Po Delta in  Italy51) can be larger 
than the values used here. Nevertheless, there is to date no Europe-wide map of subsidence projections available. 
Additionally, due to the e�ect of GIA, there are regions (mainly in North Baltic Sea) where there is negative SLR, 
and for which we assume a zero coastal retreat in the study herein as the Bruun rule has in fact not been derived 
to explicitly account for coastal accretion due to sea level drop. Nevertheless, we expect that negative SLR would 
contribute to land gain in these areas (which roughly account for almost 3% of the European transects).

Regional coastal land loss projections presented here are sensitive to the spatial extent of the regions used, 
due to the spatial characteristics of the input datasets. �is means that the level at which the coastal retreat per 
segment is aggregated to coastal land loss is important for both the (normalized) coastal land loss projections 
and the uncertainty analysis. Here we used the NUTS 3 level, as it is the smallest administrative unit de�ned 
from the European Union available and we believe that at that level our results could be most useful for policy 
making and adaptation planning. Furthermore, our projections of shoreline retreat of sandy coastlines assume 
that a su�ciently wide erodible beach is present. However, it should be noted that at some locations the erodible 
beach width could be smaller than the projected retreat, leading to an overestimation of coastal land loss therein. 
Nevertheless, as observations of beach width at the European scale are not readily available, the erodible beach 
width cannot be taken into account at present. �at is why our projections are de�ned as potential shoreline 
retreat and coastal land loss. When European-wide information becomes available on the actual spatial distribu-
tion of sandy beach width our results could be translated to actual beach loss.

conclusions
�e present analysis focused on shoreline retreat and regional coastal land loss projections at the European scale 
driven only by sea level rise (SLR), in the absence of any other natural processes or human in�uences that could 
result in shoreline change. Against previous studies at this scale, here we employ di�erent geophysical datasets, 
identifying the sensitivity of this choice. �e spatially averaged median value of SLR driven potential shoreline 
retreat of sandy beaches in Europe by 2100, relative to the baseline year 2010, is projected to be about 97 m 
under RCP 8.5 and 54 m under RCP 4.5. �is translates to a potential coastal land loss of about 2,500  km2 under 
RCP 8.5 and 1,400  km2 under RCP 4.5 for the same time period along the European coastal zone. For coastlines 
with historically advancing trends larger than that of the SLR retreat ones (about 14% of the European coastline 
studied herein), overall net changes on coastal land area might result in land gain. �e use of spatially-variable, 
data-based nearshore slope information identi�ed a number of coastal land loss hotspots around Europe and 
higher shoreline retreat values compared to projections provided by previous assessments that used the assump-
tion of a uniform 1:100 slope throughout Europe. �ese hotspots include regions along the Italian Adriatic coast, 
the French Atlantic coast, the east part of the Baltic Sea and around the North Sea.

An analysis of the temporal evolution of the composition of the total uncertainty associated with projected 
SLR driven coastal land losses indicated that the choice of the input geophysical datasets (i.e. sandy beach loca-
tion and nearshore slope) is an important source of uncertainty for a large number of European coastal regions 
especially until 2050. By the end of the twenty-�rst century, the uncertainties associated with climate change 
scenario and SLR projections become more dominant. On average, the variance of coastal land loss projections 
could diminish by almost 45% in 2050 and 26% in 2100 if accurate data on sandy beach location and nearshore 
slope were used. In Malta, Estonia, Slovenia, Greece, Portugal, Spain and Germany, the choice of the sandy beach 
location dataset was the most important source of uncertainty, while for Belgium, Latvia, Netherlands and France 
the choice of spatially varying versus uniform slopes was the most important choice. For the rest of European 
countries, the uncertainties associated with unknown future scenarios and the SLR projections dominated the 
total uncertainty in projections.
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Methods
Coastal impact model. We used the Bruun  rule34 to quantify the direct erosion of sandy beaches due to 
SLR. �is approach is based on a simple two-dimensional mass conservation rule assuming that an equilibrium 
pro�le will be preserved in the future when SLR occurs. It employs a number of assumptions and simpli�ca-
tions (i.e. equilibrium pro�le existence, cross-shore sediment balance), that have made it a controversial matter, 
debated in the literature for  decades45,46. Nevertheless, it is, at present, the only method that can produce coastal 
recession estimates due to SLR at large spatial scales in a computationally e�cient manner. �e Bruun Rule is 
expressed as:

where R is the horizontal shoreline retreat, SLR is the sea level rise, and β is the active pro�le slope. As active 
pro�le slope here we describe the slope between the depth of closure (i.e., the depth beyond which observed bed 
level changes show no signi�cant changes in time) and the  shoreline34 which we call herein nearshore slope. We 
also assume that if SLR is negative there will be no shoreline retreat.

�e European coastline was discretized with an alongshore spacing of 1 km to have a good coverage of the 
alongshore variability of the coastal pro�les, while keeping the computational costs at a feasible level. �e coast-
line was de�ned by the Open Street Maps dataset of  201652. �is approach has been previously used for a global 
assessment of historical coastal  erosion9. Our projections coverage is determined by the overlap of the two sandy 
beach distribution datasets used (see next section). �is was de�ned by the EUROSION dataset which includes 
the coastal EU counties except Croatia, and Romania, Bulgaria and Cyprus which are partially covered.

Geophysical data. �e spatial distribution of sandy beaches at the European scale is a critical input for 
assessing shoreline retreat. Here we used two datasets that describe the location of sandy beaches and have 
European-scale coverage. �e �rst was the geomorphological map of the European coasts available from the 
EUROSION  project40. �is map includes 20 di�erent classes and it is available at a coastal segment level with 
coherent characteristics (e.g. geomorphology, geology, erosion rates and more) and various lengths. �ese 
data were extracted as points with a 250 m alongshore resolution, using GIS. �e resulting data-points were 
used to populate the alongshore point grid described in the previous section, employing proximity analysis. 
Another coastal geomorphological map is available for the  Mediterranean53, which classi�es coastal segments in 
four classes and was used herein to reclassify the EUROSION dataset. �e classes that were used are (a) sandy 
beaches, (b) unerodable coasts, (c) muddy coastlines and (d) rocky coasts with pocket beaches. �e EUROSION 
classes were then regrouped in these four classes according to the highest occurrence as described in Athanasiou 
et al.41. Ultimately, only the alongshore points that were classi�ed as sandy beaches were used for the assessment 
of future shoreline retreat and coastal land loss. For the points classi�ed as “rocky with pocket beaches” a rela-
tive percentage of sandy beach length per 1 km long segments was retained using the length of pocket beaches 
following Monioudi et al.26.

�e second dataset was the Satellite Derived Sandy Beaches (SDSB) location  dataset9. �is dataset has a global 
coverage and was created using machine learning techniques on satellite images from the Sentinel-2 mission. 
It classi�es locations with an alongshore spacing of 500 m as sandy or not sandy. Using the same method as for 
the EUROSION data, the alongshore points of our computational vector were populated with the SDSB data, 
creating another layer of sandy beaches location (Supplementary Fig. S7).

�e coastal recession computed using the Bruun rule is linearly dependent on nearshore slope (Eq. 2). A 
recent study produced a global dataset of nearshore slopes, using global topo-bathymetric data at a 1 km along-
shore  resolution41 (called SVNS dataset herein). �e spatial variability of β as indicated from this dataset is quite 
distinctive in Europe (Supplementary Fig. S8). In order to compare the importance of the spatial variability of 
the nearshore slope against the so far commonly used assumption of a uniform slope of 1:100, we used both 
approaches when applying Eq. (1). To constrain nearshore slopes to the naturally encountered values we used 
an upper and lower limit of 1:5 and 1:30031. �e points that had values out of this range were constrained to the 
limits. �is was necessary to take into account outliers from the SVNS dataset and consider that in some cases 
the sandy beach location datasets can erroneously indicate presence of sandy beaches in non-sandy coastlines. 
From the sandy segments across the European coastline extents that were considered presently, we found that 
about 51.5% have slopes milder than 1:100 (as de�ned between the depth of closure and the shoreline).

Sea level rise data. We used the results of a global probabilistic, process based  study4,42 to obtain SLR 
projections around Europe up to end of the twenty-�rst century. �e data were available at o�shore points 
with a spacing of about 50 km. Projections were available from 2010 to 2100, every 10 years, capturing the 5th, 
17th, 50th, 83th, 95th and 99th percentiles of potential SLR under RCP 4.5 and RCP 8.5. For RCP 8.5 we use 
the high-end RCP 8.5 scenario from Jackson and  Jevrejeva42 which is based on IPCC  AR52 but uses Antarctic 
and Greenland ice sheet contributions from Bamber and  Aspinall54, resulting in higher median global SLR (i.e., 
84 cm versus 74 cm of AR5) and larger and more asymmetric  uncertainties4. �ese projections were of regional 
SLR, thus taking into account the regional footprint of SLR, due to various contributions as described in Jackson 
and  Jevrejeva42. On the other hand, local tectonics and subsidence are not included in the projections. For each 
computational point a speci�c SLR value was attributed for each decade, RCP and percentile using proximity 
analysis (Supplementary Fig. S9). �en an empirical cumulative distribution function (ECDF) was created for 
each location and RCP scenario, using the percentile values.

(2)R =

SLR

tan(β)
,
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Uncertainty analysis. A variance-based sensitivity analysis was used to quantify the uncertainty of the 
coastal land loss estimates produced using Eq. (1). �is method measures the contribution of each of the uncer-
tain input parameters Xi to the variance of the outcome of a model Y  55,56 and has been previously applied in 
various studies of coastal  impacts25,57,58. On this basis, the 1st order Sobol indices, which range between zero and 
one, can be de�ned as follows:

where X∼i denotes the matrix of all parameters but Xi . �e �rst-order indices Si can be interpreted as the 
main e�ects of Xi , i.e. the proportion of the total variance of the output Y  that would be removed if we knew the 
true value of parameter Xi . �is index provides a measure of importance (i.e. a sensitivity measure) useful when 
ranking, in terms of importance, the di�erent input  parameters55.

We applied the variance-based sensitivity analysis on Eq. (1), using as inputs: the choice of the 2 geophysical 
datasets (i.e., sandy beach location and nearshore slopes), the unknown mitigation scenarios (i.e., RCP 4.5 or 
RCP 8.5) and the SLR projections (Fig. 1). A discrete uniform distribution with the same probability of 50% was 
applied for the choices of geophysical datasets and the RCPs, assuming that there is no information on which 
one performs better (for the geophysical datasets) or which is most probable to occur (for the RCPs). Sea level 
rise uncertainty was described by the probability distribution for each location and decade, per RCP as described 
in the previous subsection.

For each NUTS3 region and decade, auxiliary random variables uniformly distributed in [0,1] were sampled 
for each parameter, following Le Cozannet et al.58. �en the inverse cumulative distribution functions of each 
parameter were used to translate these to the actual parameters. Each of the four input parameters was sampled 
from the aforementioned distributions following a quasi-random Sobol sequence of 5,000 samples, resulting in 
50,000 input parameter combinations which were propagated through Eq. (1) using a Monte Carlo approach, 
leading to 50,000 realizations of coastal land loss per NUTS3 region and per decade. �e sampling of the SLR 
was performed from the speci�c SLR distributions of each region and decade. An outline of the framework can 
be seen in Supplementary Fig. S14. �e number of samples was chosen in order to achieve a precision of the 
Sobol indices in the order of 2% while maintaining computational costs within reasonable limits. �e Python 
package SALib was used to perform the  analysis56,59.

 Data availability
�e projections of shoreline retreat are available at https ://doi.org/10.4121/uuid:8e73c ab0-960b-46a8-bf67-ee0ea 
dcc1e 7d.
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