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Uncertainties in the cluster —cluster correlation function
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Summary. We apply the bootstrap resampling technique to estimate sampling
errors and significance levels of the two-point correlation functions determined
for a subset of the CfA redshift survey of galaxies and a redshift sample of 104
Abell clusters. We also calculate the angular correlation function for a sample of
1664 Abell clusters. We find the standard errors in £(r) for the Abell data to be
considerably larger than quoted ‘Poisson errors’. Our best estimate for the ratio
of the correlation length of Abell clusters (richness class R=1, distance class
D<4) to that of CfA galaxies is 4.2*}¢ (68 percentile error). The enhancement of
cluster clustering over galaxy clustering is statistically significant in the presence
of resampling errors. The uncertainties found do not include the effects of
possible systematic biases in the galaxy and cluster catalogues and could be
regarded as lower bounds on the true uncertainty range.

1 Introduction

The study of the Universe’s large-scale structure has involved the application of various statistical
measures of galaxy clustering. Of these, the two-point correlation function, &(r), of galaxies
separated by distance r has proved the most popular because of the ease with which it can be
computed and the simple scaling relations that exist between its two- and three-dimensional
forms. It has been found that galaxies are strongly clustered on scales less than 104~} Mpc (the
Hubble constant is Hy=1004kms™ ! Mpc~!) with a power-law correlation function

&(r)=(r/r0)”, (1)
where y=—1.8 and the correlation length is ro=5h"!Mpc (Davis & Peebles 1983). Recent
computations of the two-point correlations of rich clusters, £.(r), have revealed them to possess
the functional form (1), also with y=—1.8 but with a significantly larger amplitude ry=25 h~! Mpc
(Bahcall & Soneira 1983; Klypin & Kopylov 1983; Postman, Geller & Huchra 1986).

Kaiser (1984) suggested that the enhancement of cluster—cluster correlations could be
explained if the comparatively rare rich clusters formed only at places where the density exceeds a
high threshold (Peacock & Heavens 1985; Bardeen et al. 1986; Coles 1986). If these high-contrast
regions are identified with rich clusters then, so long as the underlying density fluctuations
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constituted a Gaussian random field initially, the cluster—cluster two-point correlations are
amplified with respect to the two-point correlations of the total density field, with & « &,. This
amplification is seen in numerical simulations of scale-free hierarchical models of galaxy
formation and clustering, as well as in simulations of neutrino-dominated universes; in the latter
case, the predicted enhancement is much too small to account for what is observed (Barnes et al.
1985). Attempts have also been made to explain cluster correlations in the context of vacuum ...
string theories which naturally contain non-Gaussian fluctuations (Turok 1985).

A current model for the origin of cosmic structure assumes that galaxies form only near high
peaks of the smoothed linear density field, where the latter is provided by a background of cold
dark matter in an Einstein—de Sitter universe (Blumenthal et al. 1984; Davis et al. 1985). In this
model, neither the galaxies nor the clusters are fair tracers of the mass and the ratio of their
correlation amplitudes reflect their relative bias with respect to the mass distribution. In a recent
investigation, White et al. (1986) showed that while the predicted correlation length of rich
clusters in this model is five times that of the dark matter distribution, it is only 2.1 times that of
the galaxy distribution.

It is therefore now of considerable importance to quantify as precisely as possible the
significance of the observational data, particularly that of the ratio of the clustering strengths of
galaxy and cluster clustering. This is not straightforward. The general form for the uncertainty in
the estimate of £(r) is complicated and involves two-, three- and four-point correlation functions;
simplified expressions have been derived, but only for the limiting situation where £<1 (Peebles
1973; Kaiser 1986). The ‘Poisson error bars’ often quoted assume an uncorrelated distribution
and thus may seriously underestimate the. true uncertainties. In practice, a further complication
arises from the need to estimate the mean density of the sample from the same data set used to
estimate £. In the case of the Abell cluster sample, in addition to statistical uncertainties, there
may well be systematic biases associated with the subjective nature of the selection procedure,
misidentifications, obscuration and projection effects, and the use of estimated rather than
measured redshifts (Lucey 1981, 1983; Postman et al. 1986). Such biases may be quite complex
and will not be fully understood until current ‘photometric and spectroscoplc surveys are
completed.

In this paper we are concerned exclusively with sampling uncertainties; we show how a
statistical significance can be associated with the computations of the cluster—cluster correlation
function using modern resampling techniques. Ideally, to estimate sampling uncertainties, we
would like to have a large number of independent samples. In the case of non-repeatable
observations like those of rich cluster clustering there are well-documented techniques for
generating pseudo data sets from the original sample The magnitude of the variance of any
quantity determined over the ensemble of pseudo data sets allows us to assess the robustness of
the original data set to any source of sampling error*

If this variance is found to be large then it indicates a lack of robustness in the original data set
with respect to the statistical parameter being evaluated. An application of these techniques to
calculations of the angular two-point correlation function of the Zwicky catalogue by Barrow,
Bhavsar & Sonoda (1984) found standard errors that significantly exceed the quoted
measurement errors. Resampling methods also offer a good means of associating a statistical
significance to measures of filamentary or cellular pattern (Barrow & Bhavsar 1987).

In what follows we shall discuss resampling methods and apply them to the computation of £(r)
for the Abell and CfA catalogues. We also discuss the presence of negative correlations between

*The bootstrap scheme cannot give any quantitative measure of systematic contributions to the errors, nor will it
mirror uncertainties introduced because the data set being used is unrepresentative in some way; for example, in the
problem of rich cluster clustering, by being so underpopulated with rich clusters that it cannot be regarded as a fair
sample of the Universe from which to draw statistical conclusions about the whole.
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Abell clusters; models with subrandom power spectra on large scales, such as the cold dark matter
model discussed above, predict that & should go negative on some scale.

2 Resampling methods

The purpose of resampling a data set is to generate further data sets with a population distribution
that is identical to the original true data set. This can be done by an appropriately small
perturbation of the true data set. Clearly, if the perturbation is too strong we risk producing data
sets with different distributions. Thus, the resampling procedure must be chosen carefully.

The optimal procedures to follow in generating pseudo data sets has been discussed in detail by
statisticians (Rey 1980; Rocke & Downs 1981). We shall use the so-called ‘bootstrap’ resampling
method whereby pseudo data sets are generated by sampling N points with replacement from the
true data set of NV points. It should be noted that these techniques are only designed to estimate
the internal variance of the true data set. Mean values calculated over an ensemble of pseudo data
sets are not expected to be good estimators of the true mean.

More precisely, suppose the underlying (unknown) probability distribution of galaxies or
clusters is denoted by P(Xy, X5, ... X,). We have observed the particular realization X,;=x,,
X,=x,,...,X,=x,which constitutes the catalogue under study and P* the observed distribution
obtained when equal weight 1/# is placed on each of the x;. A bootstrap sample is formed by
taking a random sample of size n with replacement from the observed catalogue {xy, x5, ... X, }.
This operation is repeated N times to produce N bootstrap samples y/,i=1,2,... N. We can now
calculate the statistic of interest [e.g. in this case the two-point correlation function, £(r)] for each
of the bootstrap samples. We label them £¥=§&,(y}) where i=1,2, ... N. The bootstrap estimate
of the standard deviation of &} is

N 1/2

UN={2 [&f—é‘*(—)lz/(N—l)} , )
i=1

where

E ()= E/N. (3)

As N— =, gy approaches a limit o™, which we call the bootstrap estimate of the standard error,
that is

Lt oy=0"=0(P"), (4)
N
providing the bootstrap samples have the same size as the original sample. The quantity 0" is the
non-parametric maximum-likelihood estimate of the true standard error o(P) of the underlying
distribution (Kiefer & Wolfowitz 1956) from which the galaxy catalogue was drawn by
observation.

In view of the limit in (4) it is clearly best to take as many bootstrap resamples as possible. We
used N=20 for computations of the angular correlation function and N=100 for the spatial
correlations and J3(R) and found rapid convergence. Some idea of the rate of convergence of oy
to 0 as N—  can be obtained from the formula derived by Efron & Tibshirani (1986),

X(on)={X (0" +[E(@n)+2]/4N}2, (5)

where X(o)=0/u, is Pearson’s coefficient of variation, E(Jdy) is the expectation value of the
kurtosis, dy=us/0%, of the bootstrap resamples £*(—) and y; are the ith moments of the
bootstrap sample distributions (see, for example, Kendall & Stuart 1976).
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3 The samples

We examine samples derived from Abell’s (1958) catalogue of rich clusters of galaxies and the
CfA redshift survey of Davis et al. (1983). The Abell sample contains 104 clusters and is described
in Bahcall & Soneira (1983). This data set includes all clusters located at high galactic latitude (as
specified in Abell’s table 1 plus the requirement b''>30°) that have distance class D<4 and
richness class R=1. Redshifts are available for all but one of these clusters (Hoessel, Gunn &
Thuan 1980). We use the redshift estimate of 0.083 made by Bahcall & Soneira for the missing
redshift of cluster A415. We shall also use a much larger subset of the Abell catalogue to calculate
the angular two-point correlation function. This sample of 1664 clusters fulfils the geometrical
selection criterion given above. It includes richness classes R=1 and distance classes D=5+6.
The subset of the CfA catalogue which we use is a volume-limited sample containing 489 galaxies
in the north galactic cap (b™'>40°) with a maximum radial distance of 40 4~* Mpc. All positions
are corrected for Virgocentric infall.

4 The angular correlation function

We derive the angular two-point correlation function for the Abell D=5+6 sample and then
repeat the computation for pseudo data sets derived from it by the bootstrap procedure. The
correlation function w(€) was determined from the standard estimator

w(6)=[No(6)/Nr(6)]-1, (6)

where Ny(6) is the observed frequency of pairs in the sample and Nk (¢) is the frequency of pairs
in a random catalogue within the same angular boundaries. We average N (&) over an ensemble

w(8) 304
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Figure 1. The two-point angular correlation function for the Abell D=5+6 sample. The 1o error bars are determined
from 20 pseudo data resamples of the observational data set. The correlation function remains positive at the 3o
confidence level. :
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of random catalogues (=10* points) in order to eliminate the effects of fluctuations present in a
single random realization. We ensure that each random catalogue contains the same number of
points in each hemisphere as the real Abell data and the associated pseudo data sets. We fitted the
correlation function with a power law

w(0)=(6/6y)"; 6y, y constants. (7)

The results are displayed in Fig. 1 and agree well with those of Bahcall & Soneira (1983). The
bootstrap technique was then applied to generate 20 pseudo data sets from the original Abell data
set. The standard errors in (@) for each bin over the ensemble are indicated by the error bars
shown on Fig. 1. These errors are the percentile range at the 68 per cent level either side of the
median (analogous to the standard deviation in Gaussian statistics). Small positive correlations,
w(6)=0.1, are present at #>40°. The error estimates show w(6) to be at least 30 above zero.

5 The spatial correlation function

We now estimate the two-point spatial correlation functions for the Abell redshift sample and the
CfA data. The above-mentioned angular criteria were adhered to when generating random data.
In addition we took account in the random catalogues of the density dependence on redshift in the
Abell sample by randomly selecting redshifts from the same selection function as the real data.

The resulting correlation functions were fitted by (1) and the results are displayed in Fig. 2. The
values of the galaxy—galaxy and cluster—cluster correlation lengths, ry, are found to be 5.2 and
21.9 1 Mpc, with corresponding y values of —1.87 and —1.52, respectively. Again, these values
agree well with the results of previous computations.

The errors on &(r) were estimated from 100 pseudo data sets constructed from the Abell and
CfA samples. The 68 and 95 percentile error ranges in ry were found to be (+0.22, —0.55) Mpc
and (+0.51, ~0.64) Mpc for the CfA data and (+7.18, —5.14) Mpc and (+17.3, -9.12) Mpc for
the Abell data. These are shown as horizontal error bars in Fig. 2.

€(r) 1004
+ « Abell DBs4
o CfA 40Mpc Vol. limited
104
N
]
01
O'm'r t ] ' '?lw()O o 1000
10 ! 000 (h-1 Mpc)

Figure 2. The spatial correlation function for the CfA and Abell data sets described in the text. The 1o error bars are
determined from 100 pseudo data resamples of the observational data set. The 1o errors in the correlation lengths are
indicated as horizontal bars.
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Table 1. Computations of J5(R) for the CfA and Abell samples described in the text. The 68 per cent
errors are those arising from the spread over 100 pseudo data sets generated by the bootstrap
resampling procedure.

R/h™'Mpc CfA galaxies Abell clusters
J3(R)/h~3Mpc? 68 per cent J3(R)/h > Mpc? 68 per cent

3 63 +12, -8

5 125 +13, ~19 1147 +1015, -571
10 278 +47, —28 2044 +1760, —630
15 419 +37, =71 3832 +4355,. —1661
20 . o 7898 +4930, -—4978
30 11350 . +6085, —6059

45 v 19490 +10780, —14720

We have also calculated the integral J; defined as,

R
Jy(R)= f () dr. e ®)

Values of J3(R) and 68 percentile error ranges for both the CfA and Abell cluster samples are
given in Table 1. For the latter sample J; is very uncertain beyond 10 Mpc. .

6 Discussion

By employing the bootstrap resampling technique we have derived an estimate of the standard
error associated with determinations of the two-point correlation function of cluster—cluster
clustering. We find that the standard errors in £(r) are considerably larger than the ‘Poisson
errors’ given by Bahcall & Soneira (1983)‘. Smaller errors are fdund in the calculations of the
galaxy—galaxy correlations because the CfA catalogue is larger and complete. Our estimates for
the error in ry do indicate a significant enhancement of the cluster—cluster correlation function
&c(r) over £,(r) at the 3.20level, not withstanding the larger errors in £.(r). Our best estimate for
the ratio of the correlation length of Abell clusters of richness class R=1 and distance class D<4
to the correlation length of CfA galaxies is 4.2 with a 68 percentile error range of (+1.4, —1.0).
The angular correlation function of Abell clusters remains positive at least out to an angular
separation #=40°. This behaviour appears also in the spatial correlations of the D=4 sample but
with less statistical significance. ‘

We conclude that the enhanced amplitude of cluster—cluster clustering is statistically significant
in the presence of bootstrap resampling errors. These do not include possible systematic biases in
Abell’s cluster catalogue nor do they include errors introduced if the samples used are
unrepresentative of the Universe. The present data are inconsistent at the ‘20’ level with the
predictions of the standard cold dark matter models and indeed with any other model that
predicts anti-clustering on large scales. Larger and more homogeneous cluster catalogues are
required to confirm the observational result.
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