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Abstract 

IRT parameters have to be estimated, and because of the estimation process, they do have 

uncertainty in them. In most large scale testing programs, the parameters are stored in 

item banks, and automated test assembly algorithms are applied to assemble operational 

test forms. These algorithms treat item parameters as fixed values, and uncertainty is not 

taken into account. As a consequence, resulting tests might be off target or less 

informative than expected. In this paper, the process of parameter estimation is described 

to provide insight into the causes of uncertainty in the item parameters. The consequences 

of uncertainty are studied. Besides, an alternative automated test assembly algorithm is 

presented that is robust against uncertainties in the data. Several numerical examples 

demonstrate the performance of the robust test assembly algorithm, and illustrate the 

dangers of not taking this uncertainty into account. Finally, some recommendations about 

the use of robust test assembly and some directions for further research are given. 

 

Keywords: Automated test assembly, Computerized adaptive testing, Item parameter 

estimation, Item response theory, Robust optimization, Robust test assembly, 

Uncertainty. 
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Introduction 

 

In most large scale testing programs, whether they use computerized adaptive tests or not, 

items are selected from an item bank to assemble operational test forms. Many methods 

have been developed for automated test assembly. For paper-and-pencil (P&P) tests, 0-1 

linear programming techniques are commonly applied. They are either based on network 

programming (Armstrong, Jones, Wang, 1995), integer programming (van der Linden, 

2005), or on heuristic methods (Belov, & Armstrong, 2005; Luecht, & Hirsch, 1992; 

Stocking, and Swanson, 1993, Veldkamp, 2002, Verschoor, 2007). For computer 

adaptive testing (CAT), linear programming techniques or heuristics are generally 

combined with exposure control methods (Barrada, Abad, & Veldkamp, 2009; Barrada, 

Olea, & Ponsoda, 2007; Barrada, Veldkamp, & Olea, 2009; Chang & Ying, 1999; 

Revuelta, & Ponsoda, 1998; Sympson, & Hetter, 1985; van der Linden, & Veldkamp, 

2004, 2007).  

 

Even though these automated test assembly methods differ with respect to many aspects, 

they do have one thing in common. All methods assume that item parameters can be 

treated as fixed values without any uncertainty in them. Obviously, this assumption can 

never be met. Item parameters have to be estimated. They cannot be observed directly. 

Due to the estimation process, some error of measurement is involved. To provide more 

insight in the estimation process, a detailed description of the most common estimation 

methods in IRT is provided in the next section.  



 4

Both uncertainties in the amount of information the items provide, and in the location 

where the items provide maximum information affect the test assembly process.  

For example, when items are selected based on maximum information, items with over-

estimated discrimination parameters tend to be favored, since these items provide most 

information. Item selection based on maximum information, therefore, capitalizes on 

positive estimation errors if this uncertainty is not taken into account. An alternative 

approach would be to include uncertainties due to the estimation errors in the item 

selection process. Items can be stored in the item bank in such way that uncertainties are 

stored as well, and automated test assembly procedures could use this information. 

Robust optimization techniques have been proposed to deal with optimization problems 

with uncertainties in the parameters. The question remains whether they are applicable to 

the problem of automated test assembly. 

The focus of this paper is on the problem of how to deal with uncertainty in the item 

parameters in the test assembly process. We would like to answer the following 

questions. Why do we have uncertainty in test assembly problems? How serious is the 

problem? Would it be an option to apply robust optimization techniques to automated test 

assembly, in order to deal with uncertainties involved?  

 

Uncertainty in item parameter estimation 

 

To answer these questions, we first have to address how uncertainty plays a role in item 

parameter estimation more into detail. In educational and psychological measurement, 

test theory, e.g. item response theory (IRT), is applied to determine a probabilistic 
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relationship between the responses of a candidate and his/her underlying ability. IRT was 

outlined in the sixties (Lord and Novick, 1968) but developments in research are still very 

active (De Ayala, 2009; Reckase, 2009). In IRT models, uni-dimensionality and local 

independence are assumed. Besides, a number of conditions are imposed on the item 

response function (IRF) describing the mathematical relation between the probability of 

success Pi(θ) and the underlying ability θ. A logistic (Birnbaum, 1968; Rasch, 1960), or a 

cumulative normal distribution function (Lord, 1952) is most commonly applied. 

Parameters describing the IRFs, also called the item parameters, are estimated based on 

test responses. Both maximum likelihood and Bayesian estimation methods can be used. 

Parameters of logistic models are commonly estimated within marginal maximum 

likelihood (MML) methods, while the parameters of normal ogive models are commonly 

estimated with Bayesian estimation methods like Markov chain Monte Carlo (MCMC).  

 

In maximum likelihood estimation, item parameters are considered as fixed unknown 

parameters, while ability can be viewed as either a fixed or a random variable. When 

ability θ is assumed to be a random latent variable with a continuous distribution g(θ), 

marginal maximum likelihood (MML) estimation can be implemented. The unconditional 

or marginal probability of a response pattern Y j  for a random candidate j sampled from a 

population with ability distribution g(θ) is obtained as follows 
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where ijY  denotes whether the item i is answered correctly ( 1)ijY =  or not ( 0)ijY = . The 

complete likelihood function can be computed under the assumption of response 

independence between examinees as 

 ( ) ( )
1

| | .
J

j
j

P Pθ θ
=

= ∏Y Y  (2) 

Estimates for item parameters are found by maximizing the log of the likelihood (2), 

turning out with different likelihood equations depending on the chosen IRT model. In an 

maximum likelihood framework, uncertainty in the estimated item parameters is 

represented by the standard errors of the parameter estimators. 

 

A fully Bayesian parameter estimation can be conducted under the assumption that all the 

quantities of interests (i.e. item parameters and individual abilities) are random variables. 

The binary response variable Yij should be treated first by introducing independent and 

normal identically distributed Yij
*, with expected value equal to ai(θj-bi) and unit variance, 

representing underlying responses and sampled from a normal distribution above 0 when 

the response is correct or below 0 in case the response is incorrect. The joint posterior 

distribution of interest is the following 

 ( ) ( ) ( ) ( )* *, , | | , , ,P P P P=Y θ ξ Y Y θ ξ Y θ ξ  (3) 

where ξ is the vector containing all item parameters and all terms are expressed in matrix 

notation. The joint posterior distribution in (3) has an intractable form and the Gibbs 

sampler (Geman & Geman, 1984) can be used in order to draw samples from each single 

distribution of a variable conditional to all other variables iteratively until convergence. 

Uncertainty in the item parameters is reflected by the posterior standard deviation. The 
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95% credibility interval (CI) contains 95% of the highest area of the posterior density, 

and can be used as a measure of uncertainty of the parameter estimates. CI’s can be 

calculated for item parameters, but also for the amount of information an item provides at 

a certain ability level, when a Markov chain for the information is built in the Monte 

Carlo iterations.  

 

Assumptions underlying IRT are often (slightly) violated in practice. Nuisance abilities or 

fatigue might play a role, which violates the assumption of uni-dimensionality. The 

assumption of local independence could be violated due to the use of common stimuli for 

groups of items. Besides, item parameters are always estimated based on finite samples, 

which results in estimation errors. Because of this, uncertainty, either denoted as standard 

deviation or as credibility interval, is involved in the estimation process. The question 

remains, how much this uncertainty affects the information provided by the items. 

 

Uncertainty and item information functions 

 

In order to find out how uncertainty affects information, the uncertainty about the 

parameters could be modeled explicitly in the item information functions. The item 

information function, or Fisher Information function, is defined as: 
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For the 3-parameter logistic model (3PLM) , this expression simplifies to 
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where ( , , )i i ia b c  represent the discrimination, difficulty and guessing parameter of an 

item. When uncertainty in the parameters ( , , )i i ia b c  is modeled explicitly by denoting the 

parameter values as ˆ ˆˆ ˆ ˆ ˆ( , , ),i i i i i ia a b b c c+ ∆ + ∆ + ∆ where the hat emphasizes that the 

parameters are estimated, and ∆  denotes the uncertainty in each parameter, the item 

information function could be formulated as 
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 (6) 

 

To illustrate the effect of uncertainty, the item information function for a hypothetical 

item i with estimated parameters ˆˆ ˆ( 1.4, 0, 0.2)i i ia b c= = = is shown in Figure 1a. Let the 

uncertainty in the parameters be described by the standard error of measurement 

ˆˆ ˆ( . .( ) 0.05, . .( ) 0.1, . .( ) 0.03)i i is e a s e b s e c= = = . Figure 1b shows the item information 

functions resulting from five random draws, where the item parameters were assumed to 

follow a normal distribution with means ˆˆ ˆ( , , )i i ia b c  and standard deviations 

ˆˆ ˆ( . .( ), . .( ), . .( ))i i is e a s e b s e c . Each of these information functions, could have been the 

original information functions that appeared as the curve in Figure 1a after estimating the 

item parameters with uncertainties. 

==================== 

Insert Figure 1 at about here 

==================== 
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The effects of uncertainty in the item parameters can also be investigated individually. To 

find the effects of uncertainty in the discrimination parameter ˆia∆  on the information 

function, it has to be noted first that item i is most informative for θ in the proximity of 

ˆ ˆ( )i ib b+ ∆ . For these θ -values, it can be derived that the effect of ˆia∆ on the denominator 

is negligible. It can be shown that  

 
2

2

ˆ ˆ
( ) 1 2 ( )

ˆ ˆ
i i

i i
i i

a a
I I
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θ θ∆

  ∆ ∆
 ≈ + +     

 (7) 

for θ  close to ˆ ˆ( )i ib b+ ∆ , and small deviations îc∆ . In other words, uncertainty in the 

discrimination parameter ˆia∆  affects the amount of information provided by the item. 

When ˆia∆  is positive, the discrimination parameter ia is underestimated, and the amount 

of information is underestimated as well. On the other hand, when ˆia∆  is negative, the 

discrimination parameter is overestimated, and the amount of information provided by 

the item is also overestimated.  

Uncertainty in the difficulty parameter ̂ ib∆  only plays a role in the denominator of 

Equation 6. It mainly defines where the item is most informative. For positive îb∆ , the 

difficulty of the item is underestimated and the item will be more informative for ability 

levels slightly higher than the difficulty level. For negative îb∆ , the difficulty will be 

overestimated and the opposite will hold.  

The guessing parameteric in Equation 5 is related to the amount of information provided 

by the item. The higher the ic , the lower the amount of information provided by the item. 

The uncertainty îc∆  also affects the amount of information. When the deviation is 
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positive, the guessing parameter îc is underestimated, and the amount of information 

provided by the item is overestimated. For negative values of îc∆ , the opposite holds. 

Finally, to gain insight in the consequences of uncertainty in the item parameters, 95% 

reliability intervals were drawn around the information function of item i for small, 

medium and large uncertainties in Figure 2. 

==================== 

Insert Figure 2 at about here 

==================== 

Even for small uncertainties in the discrimination and difficulty parameters, the 

uncertainty in the information function will be substantial. The question remains how to 

take it into account during the test assembly process.  

 

Impact on automated test assembly and ability estimation. 

Hambleton & Jones (1994) studied the impact of uncertainty in the information function 

in automated test assembly. They took the effects of capitalization on chance during test 

assembly into account. When optimal test assembly techniques are applied, items with 

higher levels of discriminating power tend to be selected due to favorable measurement 

properties (e.g. van der Linden, 2005). These items also have higher chances of positive 

errors in their item parameter estimates. Due to this selection effect, optimal test 

assembly might “capitalize on chance” by selecting items with positive estimation errors. 

When the assembled test is administered and calibrated, the test will be less informative 

than expected, because of regression towards the mean of the parameter estimates. In 

their empirical study, Hambleton & Jones found that for small calibration samples, 
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magnitude of overestimation of the information function ranged up to 104%. They also 

found that two factors were influencing this capitalization of chance: size of the 

calibration sample and ratio item bank size to test length. Large calibration samples 

reduce uncertainty in the parameter estimates, which reduces overestimation of 

information in the test. Besides, when the ratio item bank size to test length is small, 

relatively many items are selected from the bank, and item selection does not capitalize 

that much on items with positive estimation errors. 

In this paper, we focus on uncertainty and automated test assembly. To prevent the 

problems described by Hambleton and Jones (1994), we come up with a different 

solution. A robust test assembly algorithm is applied that corrects for item parameter 

uncertainty during test assembly. 

 

Robust optimization 

 

The ultimate goal of robust optimization (Ben Tal, El Ghaoui, & Nemirovski, 2009) is to 

take data uncertainty, i.e. uncertainty in the item parameters or in the information 

function, into account already at the item selection stage to “immunize” resulting tests 

against this uncertainty. Under this approach, we are willing to accept a suboptimal 

solution for the problem in order to ensure that the solution remains near optimal when 

the estimated parameters turn out to differ from their real values. When robust 

optimization is applied to automated test assembly, this implies that we are willing to 

accept a test that is suboptimal with respect to measurement precision, but that is 

guaranteed to be near optimal even when the information of the items is overestimated. 
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To apply robust optimization, an uncertainty set Ζ hast to be defined that describes the 

uncertainty in the parameters. A robust model for the construction of a linear test would 

be: 

 maxy  (8) 

subject to  
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where xi indicates whether the item is selected (xi =1) or not (xi =0), Ii(θ,ζ) denotes the 

information function of item i at ability level θ, ζ denotes the uncertainty, and Ζ is the 

uncertainty set. Equations 10 till 12 denote the categorical, quantitative, and enemy 

constraints (van der Linden, 2005, chap. 3.2). The test length is set equal to n items in 

Equation 13. Finally Equation 14 defines the decision variables. The difference between 

linear test assembly and robust test assembly is in Equation 9, where the uncertainty set 

has been added to the formulation.  
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Different algorithms for solving the problem in Equations 8 - 14 have been proposed. 

First of all, Soyster (1973) developed an algorithm, where all parameters in the 

uncertainty set were fixed at their minimal values. In Soyster’s algorithm the test 

assembly model in Equations 8 – 14 slightly changes. Equation 9 is reformulated as: 

 inf ( , ) .i i
i I

I x yζ θ ζ∈Ζ
∈

≥∑  (9’) 

Soyster’s approach is very conservative, because the probability that all parameters take 

the minimum value of their CI’s is extremely small. Especially for large problems, over-

conservatism reduces the practical value of this method. In order not to be too 

conservative, we follow De Jong, Steenkamp, & Veldkamp (2009) and propose a 

modified version of Soyster’s algorithm for dealing with robust optimization problems, 

by fixing the psychometric parameters at the estimated values minus one (posterior) 

standard deviation, instead of fixing the parameters at their infima. Equation 9 in the test 

assembly model now changes into: 

 ( )i i
i I

I x yθ
∈

≥∑  (9’’) 

where )(θiI equals the estimated information function at ability level θ minus one 

(posterior) standard deviation. A robust optimization algorithm for automated test 

assembly, can be described as follows: 

1. Obtain an estimate of the item parameters and the uncertainty in them. 

2. Formulate the 0-1 LP model for automated test assembly  

3. Specify a relevant grid of theta values across the ability range of interest, denote 

them by mθ . 
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4. Calculate the robust approximation of the information for each of these 

gridpoints. 

5. Insert the robust approximation of the information function in the model 

formulated in (2). 

6. Solve the test assembly problem modeled in (2). 

 

Robust approximations of the information function in step 4 of the algorithm can be 

calculated by applying multiple imputation (Rubin, 1987). The item parameters play the 

role of missing data, but they have a multivariate normal distribution where the item 

parameter estimates are the mean and the uncertainty defines the variance. Draw K item 

parameter vectors ( , , )k k k ka b cξ = , and calculate the information ( ),k mI ξ θ  for each of the 

m gridpoints defined in step 3. Finding the robust approximation that subtracts one 

standard deviation from the information function is equivalent to finding the 15.78th 

percentile of the distribution of ( ),k mI ξ θ  for each gridpoint m. Within a Bayesian 

framework, the robust approximation might also be derived from the Markov chains 

generated during the parameter estimation process. 

To solve both the standard test assembly problem and its robust counterpart formulated in 

Step 5 of the algorithm, several standard methods for solving 0-1 LP problems can be 

applied (van der Linden, 2005, Chap. 4). In the empirical examples, we used a Simulated 

Annealing heuristic (see also, Veldkamp, 2002), but other methods can be applied. 

 

Empirical examples 
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The impact of the modified version of Soyster’s algorithm on test assembly was studied 

in the first example both for uncertainty in the discrimination parameters (Example 1a) 

and for uncertainty in the difficulty parameters (Example 1b). The implementation of the 

robust test assembly algorithm was illustrated in the second example, where the different 

steps of the algorithm were followed, to assemble a robust test with maximum 

information around a cut-off point. In both examples, application of the modified version 

of Soyster’s algorithm was compared with the application of 0-1 linear programming test 

assembly. In the first example, items were used with a large uncertainty in the item 

parameters, where in the second example items were used with a small uncertainty in the 

parameters. 

 

Example 1: Uncertainty in the item parameters. 

The Connector Ability (Maij- de Meij, Schakel, Smid, Verstappen, and Jaganjac, 2008) is 

a test battery for measuring Intelligence that consists of three different subtests: Number 

series, Figure series, and Raven’s matrices. The modified version of Soyster’s algorithm 

was applied to assemble a 20-item linear Number Series test.  

For the Number series subtest, an item bank of 253 items was available. The MIRT 

software package, developed at the University of Twente in the Netherlands, was applied 

to calibrate the items with the 2PL model based on a sample of 3000 respondents, where 

each of the respondents answered 20 items in a balanced block design. The resulting 

parameter values and their standard errors (SE) are shown in Figure 3a and Figure 3b. 

================================= 

Insert Figure 3a and Figure 3b at around here. 
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================================= 

The discrimination parameters (a) are in the interval [0.25, 2.29] with a mean value 

of 14.1=aµ and a mean value of the standard error( ) 0.21SE aµ = . The correlation between 

the discrimination parameters and the SE’s was equal to 78.0, =SEaaρ . This implies that 

the discrimination parameters of the more discriminating items have been estimated with 

larger errors. The difficulty parameters (b) are in the interval [-2.33, 1.69], with a mean 

value of 44.0−=bµ  and a mean value of the standard error( ) 0.20SE bµ = . Figure 4b shows 

a quadratic relation between the difficulty parameter and the SE’s. This implies that the 

difficulty parameters in the middle of the distribution were estimated with the highest 

precision.  

The relation between the difficulty parameters b and the standard errors of the 

discrimination parameter is shown in Figure 4. It can be seen that the discrimination 

parameters of the easy items have been estimated with the highest standard errors. 

====================== 

Insert Figure 4 at around here. 

===================== 

 

Uncertainty in the discrimination parameter 

To illustrate the consequences of taking the uncertainty in the discrimination parameters 

a into account, four 20-items tests were assembled from the NS item bank. Each test 

consisted of the 20 most informative items at four different ability levels (θ∈{-2,-1,0,1}). 

It should be noted that the Connector Ability is an adaptive test, but for the purpose of 

illustrating robust optimization techniques, four linear tests were assembled. First, the 



 17

tests were assembled without taking the uncertainty into account. Then a modified 

version of Soyster’s algorithm was applied, where the one standard error was subtracted 

from each discrimination parameter a. The resulting test information functions are shown 

in Figure 5. 

====================== 

Insert Figure 5 at around here. 

===================== 

 

For low ability respondents (θ = -2), the loss of information is substantive (37%) when 

the uncertainty in a is taken into account. For (θ = -1) and (θ = 0) the loss is 25%, and for 

high ability respondents (θ = 1), the loss is 20%. For all four cases it can be concluded 

that the measurement precision of the test might be overestimated when the uncertainty in 

the parameters is not taken into account. The reason why the low ability respondents lose 

most information is that the discrimination parameters of the easy items have been 

estimated with highest uncertainty (see Figure 4).  

Item overlap between the four tests and their robust counter parts varied from 80% (θ = -

2) to 95% (θ = 1), which implies that almost the same set of items is selected in 0-1 linear 

programming and Robust test assembly. Further analyses revealed that the order in which 

the items were selected was quite different. Especially for low theta values (θ = -2) and 

for high theta values (θ = 1) the change in position was on average 3 or 4 positions when 

the items were ordered with respect to the amount of information they provide. 

 

Uncertainty in the difficulty parameter 
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Application of the modified version of Soyster’s algorithm to take uncertainty in the 

difficulty parameter into account, would imply that  
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In other words, a robust information function that takes uncertainty in the difficulty 

parameter into account can be derived from the information functions based on the lowest 

and highest difficulty values in the uncertainty interval. Again, four 20-items tests were 

assembled from the NS item bank. Each test consisted of the 20 most informative items at 

four different ability levels (θ∈{-2,-1,0,1}). The results are shown in Figure 6.  

====================== 

Insert Figure 6 at around here. 

===================== 

It can be seen that the differences in test information function between robust test 

assembly and its 0-1 LP counterpart are relatively small. The overlap in selected items 

was 95% or higher, and even the order in which the items were selected was almost the 

same for both test assembly algorithms. 

 

Example 2: Uncertainty in the information function. 

For the second example, an item bank for the Logical Reasoning (LR) section of the Law 

School Admission Test (LSAC, 2010) was used. 150 items were calibrated with a 3PLM 

using BILOG MG 3, for a sample of 41,500 candidates. The estimated item parameters 
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ranged from ̂ [0.22,1.22],ia ∈  ˆ [ 3.14,2.24],ib ∈ − and ˆ [0.0,0.49]ic ∈ , and the average 

uncertainty ˆˆ ˆ( , , )a b c∆ ∆ ∆  was equal to (.020,.043,.014). These uncertainties are relatively 

small, since the item parameters were estimated based on a large sample of examinees. 

Nine different item types were distinguished. The goal was to assemble a 20-item test that 

was maximum informative around 0,θ =  and where a number a predefined number of 

items was selected for each of the item types. The problem could be modeled as: 

 
150
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max ( 0)i i
i

I xθ
=

=∑  (16) 
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 1,..,9,
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i j
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x b j
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i
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 {0,1} 1,..,150,ix i∈ =  (19) 

where jV  denotes the subset of items with item type j, and jb  denotes the maximum 

number of items to be selected for this category. It has to be mentioned that these 

specifications do not resemble the specifications for the LR section of the LSAT.  

For this specific test assembly problem, there was only one ability point of interest 

( 0θ = ). Robust values for the information at ( 0θ = ) were obtained by generating 500 

random draws from a normal distribution with means ̂ˆ ˆ( , , )i i ia b c  and standard deviations 

ˆˆ ˆ( . .( ), . .( ), . .( ))i i is e a s e b s e c , for each of the 150 items in the pool. For each draw the 

information at ( 0θ = ) was calculated. The resulting values were ranked for each of the 

items and the values of the 15,78th percentile were selected as robust approximations that 
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could be used in the modified version of Soyster’s approach. The robust approximations 

of the information function were implemented in the test assembly model. Both the 0-1 

LP test assembly problem in (16) – (19) and its robust counterpart were solved. Resulting 

tests are shown in Figure 7. 

====================== 

Insert Figure 7 at around here. 

===================== 

It can be seen in this example that application of the modified Soyster’s approach results 

in a decrease of information by 5%, even for an item bank where uncertainty in the item 

parameters is very small. For both the 0-1 LP and the modified version of Soyster’s 

approach the same set of items was selected for the test. 

 

Discussion 

 

Even though Hambleton & Jones (1994) already demonstrated how uncertainty in the 

item parameters might result in overestimation of the information in test, until now, these 

uncertainties are not reckoned with in operational test assembly algorithms. Instead, it is 

often argued that the uncertainties in the parameters are normally distributed and that they 

will cancel out over all items in the test. This argument might sound appealing, but it 

does not take into account that optimal item selection capitalizes on positive estimation 

errors, which results in overestimation of the amount of information in the tests. To 

emphasize the impact of the problem, it was described into detail how uncertainty enters 

test assembly problems due to estimation errors in various estimation procedures. When 
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the effects of uncertainty were examined, both analytically and graphically, it was 

demonstrated that even small uncertainties would have quite an impact on the item 

information functions. 

In the numerical examples, it was demonstrated that 0-1 LP was most sensitive to 

uncertainties in the discrimination parameters. These examples also illustrated that not 

taking the uncertainties into account might result in an overestimation of the amount of 

information in the test, which implies a serious threat for the validity of the resulting 

scores. For large uncertainties, the decrease of information in robust test assembly was up 

to 37%, whereas for small uncertainties, the loss of information was still around 5%. 

It might sound strange to claim that robust tests with less information are actually more 

reliable than 0-1 LP based tests. But in this paper, it was demonstrated how uncertainty in 

the item parameters accounts for this effect. Not taking the uncertainty into account 

results in overestimation of the information and as a result, in overestimation of the 

reliability of the test. In case bounds have been imposed on the amount of information in 

the test, uncertainty might also result in violation of these bounds, and feasibility 

problems might arise during test assembly (Huitzing, Veldkamp, & Verschoor, 2007). 

Operational item banks are often calibrated based on relatively small samples and, like 

Hambleton and Jones (1994) already demonstrated, items calibrated with small samples 

are most vulnerable to overestimation of the information. In general, binary IRT models 

can be estimated with a reasonable fit, based on a sample of 1000 candidates. However, 

the first example illustrates that the uncertainty resulting from such small samples might 

have a considerable impact on test assembly. The second example demonstrates that even 

for large samples, uncertainty cannot be neglected. 
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For practical purposes, it has to be remarked that the mode of test administration 

influences the impact of uncertainty, as well. In CAT only one item is administered at a 

time, and capitalization of chance is a serious problem. In linear testing, it is less of a 

problem, since the ratio item bank – test length is much smaller. But we also 

recommended to use the modified version of Soyster’s algorithm for the assembly of 

linear tests, when test length is smaller than 15,78% of the item bank size, since at least 

15,78% of the items will have an uncertainty in the information function larger than the 

amount of uncertainty that was taken into account. 

Implementation of the modified version of Soyster’s algorithm turned out to be a rather 

straightforward way to deal with uncertainties in the item parameters. Unfortunately, the 

method assumes the same amount of uncertainty in all the items, which is not very 

realistic. Uncertainty in some items will be much higher, while uncertainty in most items 

will be lower. Subtracting one standard deviation for all items is just a compromise, but 

for long linear tests it might be too conservative. It is a topic of further research to find 

out whether applications of more recent approaches to robust optimization, like the 

methods proposed by Ben-Tal and Nemirovski (2000) or by Bertsimas and Sim (2004), 

would reduce the gap between robust optimization and 0-1 LP or that it would underline 

the conclusion that application of 0-1 LP result in a serious overestimation of the amount 

of information in the test. 

Even though uncertainty in item parameters is not taken into account directly, some 

automated test assembly methods do pay attention to it, especially in the area of CAT. 

The alpha-stratification method (Chang & Ying, 1999) for CAT was originally developed 

to prevent overexposure of items with highest discrimination parameters. But indirectly, 
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this method also prevents overexposure of items with highest probability of positive 

estimation errors for the discrimination parameters, and it reduces uncertainty in the 

outcomes of the test. Besides, in the Weighted Deviation Method (WDM) (Stocking & 

Swanson, 1993), specifications are formulated as weak constraints that might be violated 

during test assembly. One of the reasons to impose weak constraints is that it is not very 

realistic to impose strict constraints when some parameters are estimated with 

uncertainty. The comparison of robust test assembly with these methods for CAT might 

be an interesting topic for further research. 

Finally, it should be remarked that dealing with uncertainties due to parameter estimation 

is only one of the virtues of robust optimization. Recently, several methods for automated 

item generation were proposed. Matteucci, Mignani & Veldkamp (2012) presented an 

approach based on regression trees and Glas & van der Linden (2003) and Glas, van der 

Linden, & Geerlings (2010) proposed an item cloning technique for generating new 

items. Both methods predict the parameters of the generated items. The predictions 

parameters can be used to start a computerized adaptive test and the parameters can be 

estimated on the fly. In this way, the time-consuming and expensive calibration of the 

item pool can be shortened or even skipped. Robust test assembly methods that take the 

uncertainties due to parameter prediction instead of estimation into account, can 

contribute to the validity of such an approach.   
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Figure 1a: Item information function ( 1.4, 0, 0.2)i i ia b c= = = . Figure 1b: Item 

information functions from the same distribution. 
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Figure 2: 95% Reliability Interval for the item information function 

( 1.4, 0, 0.2)i i ia b c= = = .
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Figure 3a: Relation between discrimination parameter a and its standard error 
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Figure 3b: Relation between difficulty parameter b and its standard error 
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Figure 4: Relation between difficulty parameter b and the standard error of the 

discrimination parameter a. 
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Figure 5: Test information functions without (solid line) and with (dotted line) taking the 

uncertainty in the discrimination parameter into account  
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Figure 6: Test information functions without (solid line) and with (dotted line) taking the 

uncertainty in the difficulty parameter into account 
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Figure 7: Test information function without (solid) and with (dashed) taking uncertainty 

in the item parameters into account when uncertainty in the parameters is small. 

 


