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Abstract
IRT parameters have to be estimated, and becauke eftimation process, they do have
uncertainty in them. In most large scale testimggpams, the parameters are stored in
item banks, and automated test assembly algorigmenapplied to assemble operational
test forms. These algorithms treat item parametefsxed values, and uncertainty is not
taken into account. As a consequence, resulting teight be off target or less
informative than expected. In this paper, the psead parameter estimation is described
to provide insight into the causes of uncertaintthie item parameters. The consequences
of uncertainty are studied. Besides, an alternaitemated test assembly algorithm is
presented that is robust against uncertaintidsardata. Several numerical examples
demonstrate the performance of the robust testrddgelgorithm, and illustrate the
dangers of not taking this uncertainty into acco&imally, some recommendations about

the use of robust test assembly and some diredworigrther research are given.

Keywords: Automated test assembly, Computerizegtadgatesting, Item parameter
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Uncertainty.



Introduction

In most large scale testing programs, whether tisgycomputerized adaptive tests or not,
items are selected from an item bank to assemigsbtpnal test forms. Many methods
have been developed for automated test assemblpaper-and-pencil (P&P) tests, 0-1
linear programming techniques are commonly appliéety are either based on network
programming (Armstrong, Jones, Wang, 1995), intpgegramming (van der Linden,
2005), or on heuristic methods (Belov, & Armstro805; Luecht, & Hirsch, 1992;
Stocking, and Swanson, 1993, Veldkamp, 2002, VexsGt2007). For computer
adaptive testing (CAT), linear programming techesjor heuristics are generally
combined with exposure control methods (Barradadjlg Veldkamp, 2009; Barrada,
Olea, & Ponsoda, 2007; Barrada, Veldkamp, & Ol€@92 Chang & Ying, 1999;
Revuelta, & Ponsoda, 1998; Sympson, & Hetter, 1985;der Linden, & Veldkamp,

2004, 2007).

Even though these automated test assembly methféetsvdth respect to many aspects,
they do have one thing in common. All methods asstirat item parameters can be
treated as fixed values without any uncertaintghem. Obviously, this assumption can
never be met. ltem parameters have to be estimBtey.cannot be observed directly.
Due to the estimation process, some error of measamt is involved. To provide more
insight in the estimation process, a detailed deson of the most common estimation

methods in IRT is provided in the next section.



Both uncertainties in the amount of information itieens provide, and in the location
where the items provide maximum information affbet test assembly process.

For example, when items are selected based on maxinformation, items with over-
estimated discrimination parameters tend to beréjsince these items provide most
information. Item selection based on maximum infation, therefore, capitalizes on
positive estimation errors if this uncertainty i taken into account. An alternative
approach would be to include uncertainties dudecestimation errors in the item
selection process. Iltems can be stored in thebit@mk in such way that uncertainties are
stored as well, and automated test assembly proegdaould use this information.
Robust optimization techniques have been propasddal with optimization problems
with uncertainties in the parameters. The questamains whether they are applicable to
the problem of automated test assembly.

The focus of this paper is on the problem of howeal with uncertainty in the item
parameters in the test assembly process. We witeltiol answer the following
guestions. Why do we have uncertainty in test abgeproblems? How serious is the
problem? Would it be an option to apply robust mation techniques to automated test

assembly, in order to deal with uncertainties imedl?

Uncertainty in item parameter estimation

To answer these questions, we first have to ad¢h@ssuncertainty plays a role in item

parameter estimation more into detail. In educali@amd psychological measurement,

test theory, e.g. item response theory (IRT), #iad to determine a probabilistic



relationship between the responses of a candidatéia/her underlying ability. IRT was
outlined in the sixties (Lord and Novick, 1968) loletvelopments in research are still very
active (De Ayala, 2009; Reckase, 2009). In IRT nedei-dimensionality and local
independence are assumed. Besides, a number aficnadre imposed on the item
response function (IRF) describing the mathematedation between the probability of
succes®;(¢) and the underlying ability. A logistic (Birnbaum, 1968; Rasch, 1960), or a
cumulative normal distribution function (Lord, 1958 most commonly applied.
Parameters describing the IRFs, also called the jiterameters, are estimated based on
test responses. Both maximum likelihood and Bayess&imation methods can be used.
Parameters of logistic models are commonly estidhaiéhin marginal maximum
likelihood (MML) methods, while the parameters ofmal ogive models are commonly

estimated with Bayesian estimation methods likekdarchain Monte Carlo (MCMC).

In maximum likelihood estimation, item parametens eonsidered as fixed unknown
parameters, while ability can be viewed as eithiexed or a random variable. When
ability 6 is assumed to be a random latent variable wittnéirmuous distributiomgy(9),
marginal maximum likelihood (MML) estimation can ineplemented. The unconditional

or marginal probability of a response pattéfpfor a random candidatesampled from a

population with ability distributiomg(9) is obtained as follows
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whereY, denotes whether the iteins answered correctlfy, =1) or not (Y, =0). The

complete likelihood function can be computed uritierassumption of response

independence between examinees as

J
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Estimates for item parameters are found by maximgithe log of the likelihood (2),
turning out with different likelihood equations agpling on the chosen IRT model. In an

maximum likelihood framework, uncertainty in theiemted item parameters is

represented by the standard errors of the pararestienators.

A fully Bayesian parameter estimation can be cotetiander the assumption that all the
guantities of interests (i.e. item parameters add/idual abilities) are random variables.
The binary response variablg should be treated first by introducing independart
normal identically distributehfij*, with expected value equal &t6;-b;) and unit variance,
representing underlying responses and sampleddroormal distribution above 0 when
the response is correct or below 0 in case theonsgpis incorrect. The joint posterior
distribution of interest is the following

P(Y.0.51Y)=P(Y [0£.Y)P(0)P(&) . (3)

whereé is the vector containing all item parameters dhteems are expressed in matrix
notation. The joint posterior distribution in (I$an intractable form and the Gibbs
sampler (Geman & Geman, 1984) can be used in twdaw samples from each single
distribution of a variable conditional to all otheariables iteratively until convergence.

Uncertainty in the item parameters is reflectedh®yposterior standard deviation. The



95% credibility interval (CI) contains 95% of th@hest area of the posterior density,
and can be used as a measure of uncertainty patiaeneter estimates. ClI's can be
calculated for item parameters, but also for thewm of information an item provides at
a certain ability level, when a Markov chain foe tinformation is built in the Monte

Carlo iterations.

Assumptions underlying IRT are often (slightly) kateed in practice. Nuisance abilities or
fatigue might play a role, which violates the asption of uni-dimensionality. The
assumption of local independence could be violdtesito the use of common stimuli for
groups of items. Besides, item parameters are alwalymated based on finite samples,
which results in estimation errors. Because of, tmgertainty, either denoted as standard
deviation or as credibility interval, is involvea the estimation process. The question

remains, how much this uncertainty affects therimfation provided by the items.

Uncertainty and item information functions

In order to find out how uncertainty affects infation, the uncertainty about the

parameters could be modeled explicitly in the itafarmation functions. The item

information function, or Fisher Information funatiois defined as:
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For the 3-parameter logistic model (3PLM) , thipesssion simplifies to
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where (a,b,c ) represent the discrimination, difficulty and gueggarameter of an
item. When uncertainty in the parametéash ,c ) is modeled explicitly by denoting the

parameter values g8 + A3 li +Ali ,& +AC ),where the hat emphasizes that the

parameters are estimated, ahdlenotes the uncertainty in each parameter, the ite

information function could be formulated as
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To illustrate the effect of uncertainty, the itemioirmation function for a hypothetical
itemi with estimated paramete(§, =1.4,6I = 0G = 0.2is shown in Figure 1a. Let the
uncertainty in the parameters be described bytdrelard error of measurement

(se(@d)= 0.05,se.ﬁ F O0.1se ¢ ¥ 0.0% Figure 1b shows the item information

functions resulting from five random draws, whédre item parameters were assumed to

follow a normal distribution with mean& BI ,C) and standard deviations

(se.(é,.),se.(ﬁ ),se.€ )). Each of these information functions, could hagerbthe

original information functions that appeared asdbeve in Figure 1a after estimating the

item parameters with uncertainties.



The effects of uncertainty in the item parametears @lso be investigated individually. To

find the effects of uncertainty in the discrimimatiparametend on the information
function, it has to be noted first that iteéns most informative fo@in the proximity of
(ti +Ati). For thesed-values, it can be derived that the effect\dfon the denominator

is negligible. It can be shown that

1 (6) = (1+ 22—"" +[ﬁ] ] L ©) @)

for & close to(li +Ali), and small deviationAc, . In other words, uncertainty in the
discrimination parametehd affects the amount of information provided by itieen.
When A4 is positive, the discrimination parame&is underestimated, and the amount
of information is underestimated as well. On theeothand, whe\4, is negative, the

discrimination parameter is overestimated, andatheunt of information provided by

the item is also overestimated.

Uncertainty in the difficulty paramete!kti only plays a role in the denominator of

Equation 6. It mainly defines where the item is tmofrmative. For positivaﬁ , the
difficulty of the item is underestimated and themtwill be more informative for ability
levels slightly higher than the difficulty IevelanegativeABl , the difficulty will be
overestimated and the opposite will hold.

The guessing parametein Equation 5 is related to the amount of inforratprovided
by the item. The higher the, the lower the amount of information provided bg ftem.

The uncertaintyA¢ also affects the amount of information. When teeiation is



positive, the guessing parameteis underestimated, and the amount of information
provided by the item is overestimated. For negatalees ofAC , the opposite holds.

Finally, to gain insight in the consequences ofautainty in the item parameters, 95%
reliability intervals were drawn around the infoima function of item for small,

medium and large uncertainties in Figure 2.

Even for small uncertainties in the discriminataord difficulty parameters, the
uncertainty in the information function will be stantial. The question remains how to

take it into account during the test assembly pesce

Impact on automated test assembly and ability estimation.

Hambleton & Jones (1994) studied the impact of ttag#y in the information function
in automated test assembly. They took the effdataaitalization on chance during test
assembly into account. When optimal test assenellyniques are applied, items with
higher levels of discriminating power tend to bkested due to favorable measurement
properties (e.g. van der Linden, 2005). These itelss have higher chances of positive
errors in their item parameter estimates. Dueitogélection effect, optimal test
assembly might “capitalize on chance” by selectiems with positive estimation errors.
When the assembled test is administered and cadyrthe test will be less informative
than expected, because of regression towards the oféhe parameter estimates. In

their empirical study, Hambleton & Jones found fieatsmall calibration samples,
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magnitude of overestimation of the information fimic ranged up to 104%. They also
found that two factors were influencing this caltgtion of chance: size of the
calibration sample and ratio item bank size tolesgth. Large calibration samples
reduce uncertainty in the parameter estimates,hwigiduces overestimation of
information in the test. Besides, when the ragmitbank size to test length is small,
relatively many items are selected from the banHl,i,em selection does not capitalize
that much on items with positive estimation errors.

In this paper, we focus on uncertainty and autochtgst assembly. To prevent the
problems described by Hambleton and Jones (19%4gome up with a different
solution. A robust test assembly algorithm is aggblihat corrects for item parameter

uncertainty during test assembly.

Robust optimization

The ultimate goal of robust optimization (Ben T&l,Ghaoui, & Nemirovski, 2009) is to
take data uncertainty, i.e. uncertainty in the iarameters or in the information
function, into account already at the item selecttage to “immunize” resulting tests
against this uncertainty. Under this approach, rgenalling to accept a suboptimal
solution for the problem in order to ensure thatdblution remains near optimal when
the estimated parameters turn out to differ fromirtreal values. When robust
optimization is applied to automated test assentblg,implies that we are willing to
accept a test that is suboptimal with respect tasueement precision, but that is

guaranteed to be near optimal even when the intowmaf the items is overestimated.
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To apply robust optimization, an uncertainty Zdtast to be defined that describes the

uncertainty in the parameters. A robust modeltierdonstruction of a linear test would

be:
maxy (8)
subject to
Y1@.0xzy 002, 9)
D> x<h, O (10)
i0s,
2% <b, g, (11)
x <1 Oe, (12)
Z)g =n, (13)
x 0{0,1. (14)

wherex; indicates whether the item is selected=() or not & =0), 1;(8,{) denotes the
information function of itena at ability leveld, { denotes the uncertainty, aAds the
uncertainty set. Equations 10 till 12 denote thegmrical, quantitative, and enemy
constraints (van der Linden, 2005, chap. 3.2).{€selength is set equal tatems in
Equation 13. Finally Equation 14 defines the decisiariables. The difference between
linear test assembly and robust test assemblyisgjiration 9, where the uncertainty set

has been added to the formulation.
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Different algorithms for solving the problem in Exdions 8 - 14 have been proposed.
First of all, Soyster (1973) developed an algoritiwhere all parameters in the
uncertainty set were fixed at their minimal valuesSoyster’s algorithm the test

assembly model in Equations 8 — 14 slightly changgsation 9 is reformulated as:

Zinfzmz (6,0)% 2. 9)

iol
Soyster’s approach is very conservative, becawsprttbability that all parameters take
the minimum value of their CI's is extremely sm&kpecially for large problems, over-
conservatism reduces the practical value of thithatk In order not to be too
conservative, we follow De Jong, Steenkamp, & Vatdk (2009) and propose a
modified version of Soyster’s algorithm for dealiwdh robust optimization problems,
by fixing the psychometric parameters at the eggchaalues minus one (posterior)
standard deviation, instead of fixing the paranse&titheir infima. Equation 9 in the test

assembly model now changes into:

2 1i@)xzy (97)

wherel , (6) equals the estimated information function at ablevel & minus one

(posterior) standard deviation. A robust optimiaatalgorithm for automated test
assembly, can be described as follows:

1. Obtain an estimate of the item parameters andrhbertainty in them.

2. Formulate the 0-1 LP model for automated test asem

3. Specify a relevant grid of theta values acrossathlkty range of interest, denote

them byg,, .
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4. Calculate the robust approximation of the informatior each of these
gridpoints.

5. Insert the robust approximation of the informationction in the model
formulated in (2).

6. Solve the test assembly problem modeled in (2).

Robust approximations of the information functiarstep 4 of the algorithm can be
calculated by applying multiple imputation (Rubi®87). The item parameters play the
role of missing data, but they have a multivarrademal distribution where the item

parameter estimates are the mean and the uncgrdaifimes the variance. Draivitem
parameter vectorg, = (a,,b,,c,), and calculate the information(¢&,,8,,) for each of the
m gridpoints defined in step 3. Finding the robugiragimation that subtracts one
standard deviation from the information functioregivalent to finding the 15.%8
percentile of the distribution df(fk,Hm) for each gridpoinm. Within a Bayesian
framework, the robust approximation might also bewed from the Markov chains
generated during the parameter estimation process.

To solve both the standard test assembly problehtamobust counterpart formulated in
Step 5 of the algorithm, several standard methodsdlving 0-1 LP problems can be

applied (van der Linden, 2005, Chap. 4). In the ieicgd examples, we used a Simulated

Annealing heuristic (see also, Veldkamp, 2002),ditber methods can be applied.

Empirical examples

14



The impact of the modified version of Soyster’sagithm on test assembly was studied
in the first example both for uncertainty in theaimination parameters (Example 1a)
and for uncertainty in the difficulty parameterscé@ple 1b). The implementation of the
robust test assembly algorithm was illustratechengecond example, where the different
steps of the algorithm were followed, to assembigbaist test with maximum

information around a cut-off point. In both exanglapplication of the modified version
of Soyster’s algorithm was compared with the agpicn of 0-1 linear programming test
assembly. In the first example, items were uset witarge uncertainty in the item
parameters, where in the second example itemswgec with a small uncertainty in the

parameters.

Example 1: Uncertainty in the item parameters.
The Connector Ability (Maij- de Meij, Schakel, SmMerstappen, and Jaganjac, 2008) is
a test battery for measuring Intelligence that =ia®f three different subtests: Number
series, Figure series, and Raven’s matrices. Thdfimd version of Soyster’s algorithm
was applied to assemble a 20-item linear NumbeeSazst.
For the Number series subtest, an item bank ofit2B&8 was available. The MIRT
software package, developed at the University oéfite in the Netherlands, was applied
to calibrate the items with the 2PL model based sample of 3000 respondents, where
each of the respondents answered 20 items in adeddlock design. The resulting

parameter values and their standard errors (SEShem@n in Figure 3a and Figure 3b.

Insert Figure 3a and Figure 3b at around here.
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The discrimination parameters) @re in the interval [0.25, 2.29] with a mean alu

of 4, = 114and a mean value of the standard esgy, =0.21. The correlation between
the discrimination parameters and the SE’s wasléqugn ., = 0.78. This implies that

the discrimination parameters of the more discrating items have been estimated with
larger errors. The difficulty parametets @re in the interval [-2.33, 1.69], with a mean

value ofy, = - 044and a mean value of the standard emgy, =0.20. Figure 4b shows

a quadratic relation between the difficulty paraene@ind the SE’s. This implies that the
difficulty parameters in the middle of the distrilmn were estimated with the highest
precision.

The relation between the difficulty parametei@nd the standard errors of the
discrimination parameter is shown in Figure 4.aih de seen that the discrimination

parameters of the easy items have been estimatkedheihighest standard errors.

Uncertainty in the discrimination parameter

To illustrate the consequences of taking the uagestin the discrimination parameters
a into account, four 20-items tests were assembtad the NS item bank. Each test
consisted of the 20 most informative items at fditferent ability levels §{-2,-1,0,1}).

It should be noted that the Connector Ability isaalaptive test, but for the purpose of

illustrating robust optimization techniques, founelar tests were assembled. First, the
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tests were assembled without taking the uncertamdyaccount. Then a modified
version of Soyster’s algorithm was applied, whéedne standard error was subtracted
from each discrimination paramegerThe resulting test information functions are show

in Figure 5.

For low ability respondent® & -2), the loss of information is substantive (3#hen

the uncertainty ira is taken into account. Fof € -1) and ¢ = 0) the loss is 25%, and for
high ability respondent® (= 1), the loss is 20%. For all four cases it carcbncluded

that the measurement precision of the test migluveeestimated when the uncertainty in
the parameters is not taken into account. The reaty the low ability respondents lose
most information is that the discrimination paraenetof the easy items have been
estimated with highest uncertainty (see Figure 4).

Item overlap between the four tests and their rbbognter parts varied from 80% € -

2) to 95% ¢ = 1), which implies that almost the same setarhi is selected in 0-1 linear
programming and Robust test assembly. Further sesisevealed that the order in which
the items were selected was quite different. Egigdor low theta valuesi(= -2) and

for high theta value9)(= 1) the change in position was on average 3msitions when

the items were ordered with respect to the amolinf@rmation they provide.

Uncertainty in the difficulty parameter
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Application of the modified version of Soyster'galithm to take uncertainty in the
difficulty parameter into account, would imply that
1(0) = min 1(6,{)
= qu_r;]:’gmb] | (6;a,b) (15)

_[I(6a,b+sdy) O<b,
“|1(B;a,b-sd,) @>b.

In other words, a robust information function ttedtes uncertainty in the difficulty
parameter into account can be derived from themdbion functions based on the lowest
and highest difficulty values in the uncertaintteival. Again, four 20-items tests were
assembled from the NS item bank. Each test codsidtthe 20 most informative items at

four different ability levelsq(1{-2,-1,0,1}). The results are shown in Figure 6.

It can be seen that the differences in test inftiondunction between robust test
assembly and its 0-1 LP counterpart are relatigeigll. The overlap in selected items
was 95% or higher, and even the order in whichtdmas were selected was almost the

same for both test assembly algorithms.

Example 2: Uncertainty in the information function.
For the second example, an item bank for the Loéleasoning (LR) section of the Law
School Admission Test (LSAC, 2010) was used. 1&ds were calibrated with a 3PLM

using BILOG MG 3, for a sample of 41,500 candidalés estimated item parameters
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ranged froma J[0.22,1.22], li [0[-3.14,2.24]and ¢ 0[0.0,0.49, and the average

uncertainty(A_él,ES,E:) was equal tq.020,.043,.014. These uncertainties are relatively
small, since the item parameters were estimateelddbas a large sample of examinees.
Nine different item types were distinguished. Tlalgvas to assemble a 20-item test that
was maximum informative arour@= 0, and where a number a predefined number of

items was selected for each of the item types.pFrbblem could be modeled as:

150

max> "I, @ = 0 (16)

i=1

subject to
> x<b j=1..,9, (17)
iV,

150
> % =20, (18)

i=1
x 0{0,13 i=1,..,150, (19)

whereV; denotes the subset of items with item typendb, denotes the maximum

number of items to be selected for this categaryas$ to be mentioned that these
specifications do not resemble the specificatiangte LR section of the LSAT.
For this specific test assembly problem, there evdg one ability point of interest

(6=0). Robust values for the information & € 0) were obtained by generating 500

random draws from a normal distribution with me@sﬁ ,¢) and standard deviations

(se.(d ),sJe.Cf)I ),se.€ )), for each of the 150 items in the pool. For eagtwdhe

information at @ =0) was calculated. The resulting values were raritdeedach of the

items and the values of the 15" @rcentile were selected as robust approximathuats

19



could be used in the modified version of Soystapproach. The robust approximations
of the information function were implemented in test assembly model. Both the 0-1
LP test assembly problem in (16) — (19) and itsusblcounterpart were solved. Resulting

tests are shown in Figure 7.

It can be seen in this example that applicatiothefmodified Soyster’s approach results
in a decrease of information by 5%, even for amit@nk where uncertainty in the item
parameters is very small. For both the 0-1 LP &edwodified version of Soyster’'s

approach the same set of items was selected foeshe

Discussion

Even though Hambleton & Jones (1994) already detratesl how uncertainty in the

item parameters might result in overestimatiorhefihformation in test, until now, these
uncertainties are not reckoned with in operatioesi assembly algorithms. Instead, it is
often argued that the uncertainties in the paramete normally distributed and that they
will cancel out over all items in the test. Thig@ment might sound appealing, but it
does not take into account that optimal item selaatapitalizes on positive estimation
errors, which results in overestimation of the antaf information in the tests. To
emphasize the impact of the problem, it was deedribto detail how uncertainty enters

test assembly problems due to estimation errovaiiious estimation procedures. When
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the effects of uncertainty were examined, bothditally and graphically, it was
demonstrated that even small uncertainties wowe kyaiite an impact on the item
information functions.

In the numerical examples, it was demonstrated@at.P was most sensitive to
uncertainties in the discrimination parameters.sehexamples also illustrated that not
taking the uncertainties into account might resuin overestimation of the amount of
information in the test, which implies a seriousett for the validity of the resulting
scores. For large uncertainties, the decreasdarhmation in robust test assembly was up
to 37%, whereas for small uncertainties, the Idssformation was still around 5%.

It might sound strange to claim that robust testh less information are actually more
reliable than 0-1 LP based tests. But in this papearas demonstrated how uncertainty in
the item parameters accounts for this effect. Bkihg the uncertainty into account
results in overestimation of the information ancgassult, in overestimation of the
reliability of the test. In case bounds have bespased on the amount of information in
the test, uncertainty might also result in violataf these bounds, and feasibility
problems might arise during test assembly (HuitzZWwgJdkamp, & Verschoor, 2007).
Operational item banks are often calibrated baseelatively small samples and, like
Hambleton and Jones (1994) already demonstrageds italibrated with small samples
are most vulnerable to overestimation of the infation. In general, binary IRT models
can be estimated with a reasonable fit, basedsamgple of 1000 candidates. However,
the first example illustrates that the uncertanesulting from such small samples might
have a considerable impact on test assembly. Tdmndeexample demonstrates that even

for large samples, uncertainty cannot be neglected.
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For practical purposes, it has to be remarkedtb®amode of test administration
influences the impact of uncertainty, as well. INTConly one item is administered at a
time, and capitalization of chance is a serioudler. In linear testing, it is less of a
problem, since the ratio item bank — test lengtmigh smaller. But we also
recommended to use the modified version of Soystgorithm for the assembly of
linear tests, when test length is smaller than8%, 6f the item bank size, since at least
15,78% of the items will have an uncertainty in itifermation function larger than the
amount of uncertainty that was taken into account.

Implementation of the modified version of Soysteigorithm turned out to be a rather
straightforward way to deal with uncertaintieshi ftem parameters. Unfortunately, the
method assumes the same amount of uncertaintytimeatems, which is not very
realistic. Uncertainty in some items will be muabher, while uncertainty in most items
will be lower. Subtracting one standard deviationdll items is just a compromise, but
for long linear tests it might be too conservativeés a topic of further research to find
out whether applications of more recent approatihesbust optimization, like the
methods proposed by Ben-Tal and Nemirovski (200@ydBertsimas and Sim (2004),
would reduce the gap between robust optimizatiahGat LP or that it would underline
the conclusion that application of 0-1 LP resul&iserious overestimation of the amount
of information in the test.

Even though uncertainty in item parameters is aken into account directly, some
automated test assembly methods do pay attentibretgpecially in the area of CAT.
The alpha-stratification method (Chang & Ying, 1988 CAT was originally developed

to prevent overexposure of items with highest disiciation parameters. But indirectly,
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this method also prevents overexposure of itemis wghest probability of positive
estimation errors for the discrimination parametansl it reduces uncertainty in the
outcomes of the test. Besides, in the Weighted &ewvi Method (WDM) (Stocking &
Swanson, 1993), specifications are formulated akwenstraints that might be violated
during test assembly. One of the reasons to impesd constraints is that it is not very
realistic to impose strict constraints when sontaipeters are estimated with
uncertainty. The comparison of robust test assemtitythese methods for CAT might
be an interesting topic for further research.

Finally, it should be remarked that dealing witltertainties due to parameter estimation
is only one of the virtues of robust optimizati®tecently, several methods for automated
item generation were proposed. Matteucci, MignaMeldkamp (2012) presented an
approach based on regression trees and Glas &erdardlen (2003) and Glas, van der
Linden, & Geerlings (2010) proposed an item clorteghnique for generating new
items. Both methods predict the parameters of émeated items. The predictions
parameters can be used to start a computerizediaeltgst and the parameters can be
estimated on the fly. In this way, the time-consugrand expensive calibration of the
item pool can be shortened or even skipped. Rabssassembly methods that take the
uncertainties due to parameter prediction instéas$timation into account, can

contribute to the validity of such an approach.
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