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Uncertainties of predictions from parton distribution functions. II. The Hessian method
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We develop a general method to quantify the uncertainties of parton distribution functions and their physical
predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian
formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key
ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along appropriately normalized eigen-
vectors. The result is a set of 2D eigenvector basis parton distributions~whered'16 is the number of parton
parameters! from which the uncertainty on any physical quantity due to the uncertainty in parton distributions
can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark
distribution functions,W boson rapidity distributions, and the correlation betweenW andZ production cross
sections.
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I. INTRODUCTION

The partonic structure of hadrons plays a fundame
role in elementary particle physics. Interpreting experimen
data according to the standard model~SM!, precision mea-
surement of SM parameters, and searches for signal
physics beyond the SM, all rely on the parton picture
hadronic beam particles that follows from the factorizati
theorem of quantum chromodynamics~QCD!. The parton
distribution functions ~PDF’s! are nonperturbative—an
hence at present uncalculable—functions of momentum f
tion x at a low-momentum transfer scaleQ0. They are deter-
mined phenomenologically by a global analysis of expe
mental data from a wide range of hard-scattering proces
using perturbative QCD to calculate the hard scattering
to determine the dependence of the PDF’s onQ by the
renormalization-group based evolution equations.

Considerable progress has been made in several pa
efforts to improve our knowledge of the PDF’s@1–3#, but
many problems remain open. In the conventional approa
specific PDF sets are constructed to represent the ‘‘best
mate’’ under various input assumptions, including select
variations of some of the parameters@4–6#. From these re-
sults, however, it is impossible to reliably assess the un
tainties of the PDF’s or, more importantly, of the physi
predictions based on PDF’s. The need to quantify those
certainties for precision SM studies and new phys
searches in the next generation of collider experiments
stimulated much interest in developing new approache
this problem@7,8#. Several attempts to quantify the unce
0556-2821/2001/65~1!/014013~17!/$20.00 65 0140
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tainties of PDF’s in a systematic manner have been m
recently@9–13#.

The task is difficult because of the diverse sources
experimental and theoretical uncertainty in the global QC
analysis. In principle, the natural framework for studyin
uncertainties is that of the likelihood function@12,14,15#. If
all experimental measurements were available in the form
mutually compatible probability functions for candida
theory models, then the combined likelihood function wou
provide the probability distribution for the possible PDF
that enter the theory. From this, all physical predictions a
their uncertainties would follow. Unfortunately, such ide
likelihood functions are rarely available from real expe
ments. To begin with, most published data sets used in glo
analysis provide only effective errors in uncorrelated for
along with a single overall normalization uncertainty. Se
ondly, published errors for some well-established expe
ments appear to fail standard statistical tests, e.g., thex2 per
degree of freedom, may deviate significantly from 1.0, ma
ing the data set quite ‘‘improbable.’’ In addition, when th
few experiments that are individually amenable to likeliho
analysis are examined together, they appear to demand
tually incompatible PDF parameters. A related problem
that the theoretical errors are surely highly correlated and
definition poorly known. All these facts of life make th
idealistic approach impractical for a real-world global QC
analysis.

The problems that arise in combining a large number
diverse experimental and theoretical inputs with uncertain
inconsistent errors are similar to the problems routin
faced in analyzing systematic errors within experiments, a
©2001 The American Physical Society13-1
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J. PUMPLINet al. PHYSICAL REVIEW D 65 014013
in averaging data from measurements that are margin
compatible@16#. Imperfections of data sets in the form o
unknown systematic errors or unusual fluctuations—
both—are a common occurrence. They need not necess
destroy the value of those data sets in a global analysis;
we must adapt and expand the statistical tools we us
analyze the data, guided by reasonable physics judgeme

In this paper we develop a systematic procedure to st
the uncertainties of PDF’s and their physics predictio
while incorporating all the experimental constraints used
the previous CTEQ analysis@1#. An effective x2 function,
called xglobal

2 , is used not only to extract the ‘‘best fit,’’ bu
also to explore the neighborhood of the global minimum
order to quantify the uncertainties, as is done in the cla
error matrix approach. Two key ingredients make this p
sible: ~i! a recently established iterative procedure@17# that
yields a reliable calculation of the Hessian matrix in t
complex global analysis environment, and~ii ! the use of ap-
propriately normalized eigenvectors to greatly improve
accuracy and utility of the analysis.

The Hessian approach is based on a quadratic approx

tion to xglobal
2 in the neighborhood of the minimum that d

fines the best fit. It yields a set of PDF’s associated with
eigenvectors of the Hessian, which characterize the PDF
rameter space in the neighborhood of the global minimum
a process-independentway. In a companion paper, referre
to here as ‘‘the preceding paper’’@18#, we present a comple
mentary process-dependent method that studiesxglobal

2 as a
function of whatever specific physical variable is of intere
That approach is based on the Lagrange multiplier~LM !
method@17#, which does not require a quadratic approxim
tion to xglobal

2 , and hence is more robust; but, being focus
on a single variable~or a few variables in a generalized fo
mulation! it does not provide complete information about t
neighborhood of the minimum. We use the LM method
verify the reliability of the Hessian calculations, as discuss
in Sec. V. Further tests of the quadratic approximation
described in Appendix B.

The outline of the paper is as follows. In Sec. II we su
marize the global analysis that underlies the study, and de
the functionxglobal

2 that plays the leading role. In Sec. III w
explore the quality of fit in the neighborhood of the min
mum. We derive the eigenvector basis sets, and show
they can be used to calculate the uncertainty on any qua
that depends on the parton distributions. In Sec. IV we ap
the formalism to derive uncertainties of the PDF parame
and of the PDF’s themselves. In Sec. V we illustrate
method further by finding the uncertainties on predictions
the rapidity distribution ofW production, and the correlatio
betweenW andZ production cross sections. We summari
our results in Sec. VI. Two appendixes provide details on
estimate of overall tolerance for the effectivexglobal

2 function,
and on the validity of the quadratic approximation inhere
in the Hessian method. Two further appendixes supply
plicit tables of the coefficients that define the best fit and
eigenvector basis sets. The mathematical methods used
have been described in detail in@17#. Some preliminary re-
sults have also appeared in@7,8#.
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II. GLOBAL QCD ANALYSIS AND EFFECTIVE CHI
SQUARED

Global x2 analysis is a practical and effective way
combine a large number of experimental constraints. In
section, we describe the main features of the global Q
analysis, and explain how we quantify its uncertaint
through the behavior ofxglobal

2 .

A. Experimental and theoretical inputs

We use the same experimental input as the CTEQ5 an
sis @1#: 15 data sets on neutral-current and charged-cur
deep inelastic scattering~DIS!, Drell-Yan lepton pair produc-
tion, forward backward lepton asymmetry fromW produc-
tion, and highpT inclusive jets, as listed in Table I of Ap
pendix A. The total number of data points is 1295, after c
such asQ.2 GeV andW.4 GeV in DIS designed to re
duce the influence of power-law suppressed corrections
other sources of theoretical error. The experimental precis
and the information available on systematic errors v
widely among the experiments, which presents difficult
for the effort to quantify the uncertainties of the results.

The theory input is next-to-leading-order~NLO! perturba-
tive QCD. The theory has systematic uncertainties due
uncalculated higher-order QCD corrections, including p
sible resummation effects near kinematic boundaries, pow
suppressed corrections, and nuclear effects in neutrino
on heavy targets. These uncertainties—even more than
experimental ones—are difficult to quantify.

The theory contains free parameters$ai%5$a1 , . . . ,ad%
defined below that characterize the nonperturbative inpu
the analysis. Fitting theory to experiment determines th
$ai% and thereby the PDF’s. The uncertainty of the result d
to experimental and theoretical errors is assessed in
analysis by an assumption on the permissible range ofDx2

for the fit, which is discussed in Sec. II D.

B. Parametrization of PDF’s

The PDF’s are specified in a parametrized form at a fix
low-energy scaleQ0, which we choose to be 1 GeV. Th
PDF’s at all higherQ are determined from these by the NL
perturbative QCD evolution equations. The functional form
we use are

f ~x,Q0!5A0xA1~12x!A2~11A3xA4! ~1!

with independent parameters for parton flavor combinati
uv[u2ū, dv[d2d̄, g, and ū1d̄. We assumes5 s̄

50.2(ū1d̄) at Q0. A somewhat different parametrization fo
the d̄/ū ratio is adopted to better fit the current data:

d̄~x,Q0!/ū~x,Q0!5B0xB1~12x!B21~11B3x!~12x!B4.
~2!

The specific functional forms are not crucial, as long as
parametrization is flexible enough to include the behavior
3-2
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UNCERTAINTIES OF PREDICTIONS . . . . II. . . . PHYSICAL REVIEW D 65 014013
the true—but unknown—PDF’s at the level of accuracy
which they can currently be determined. The parametriza
should also provide additional flexibility to model the d
grees of freedom that remain indeterminate. On the o
hand, too much flexibility in the parametrization leaves so
parameters poorly determined at the minimum ofx2. To
avoid that problem, some parameters in the present s
were frozen at particular values.

The number of free parameters has increased over
years, as the accuracy and diversity of the global data se
gradually improved. A useful feature of the Hessian appro
is the feedback it provides to aid in refining the parametri
tion, as we discuss in Sec. IV A. The current analysis use
total of d516 independent parameters, referred to gen
cally as $ai%. Their best-fit values, together with the fixe
ones, are listed in Table III of Appendix C.~Some of the fit
parametersai are defined by simple functions of their relate
PDF shape parametersAi or Bi , as indicated in the table, t
keep their relevant magnitudes in a similar range, or to
force positivity of the input PDF’s, etc.! The set of fit param-
eters$ai% could also include parameters associated with c
related experimental errors, such as an unkno
normalization error that is common to all of the data poi
in a particular experiment; however, such parameters w
kept fixed for simplicity in this initial study. The QCD cou
pling was similarly fixed atas(MZ)50.118.

C. Effective chi-squared function

Our analysis is based on an effective global chi-squa
function that measures the quality of the fit between the
and experiment:

xglobal
2 5(

n
wnxn

2 , ~3!

wheren labels the 15 different data sets.
The weight factorswn in Eq. ~3!, with default value 1, are

a generalization of the selection process that must begin
global analysis, where one decides which data sets to inc
(w51) or exclude (w50). For instance, we include neu
trino DIS data~because it contains crucial constraints on
PDF’s, although it requires model-dependent nuclear ta
corrections! but we exclude direct photon data~which would
help to constrain the gluon distribution, but suffers from de
cate sensitivity tok' effects from multiple soft gluon emis
sion!. The wn can be used to emphasize particular expe
ments that provide unique physical information, or to d
emphasize experiments when there are reasons to su
unquantified theoretical or experimental systematic err
~e.g., in comparison to similar experiments!. Subjectivity
such as this choice of weights is not covered by Gaus
statistics, but is a part of the more general Bayesian
proach, and is, in spirit, a familiar aspect of estimating s
tematic errors within an experiment, or in averaging expe
mental results that are marginally consistent.
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The generic form for the individual contributions in Eq
~3! is

xn
25(

I
S DnI2TnI

snI
D 2

, ~4!

whereTnI , DnI , and snI are the theory value, data valu
and uncertainty for data pointI of data set~or ‘‘experiment’’!
n. In practice, Eq.~4! is generalized to include correlate
errors such as overall normalization factors, or even the
experimental error correlation matrix if it is available@18#.

The value ofxglobal
2 depends on the PDF set, which w

denote byS. We stress thatxglobal
2 (S) is an ‘‘effective x2,’’

whose purpose is to measure how well the data are fit by
theory when the PDF’s are defined by the parameter
$ai(S)%. We usexglobal

2 (S) to study how the quality of fit
varies with the PDF parameters, but we do not assigna pri-
ori statistical significance to specific values of it—e.g., in t
manner that would be appropriate to an ideal chi-squa
distribution—since the experimental and theoretical inp
are often far from being ideal, as discussed earlier.

D. Global minimum and its neighborhood

Having specified the effectivex2 function, we find the
parameter set that minimizes it to obtain a ‘‘best estimate’
the true PDF’s. This PDF set is denoted byS0.1 The param-
eter values that characterizeS0 are listed in Table III of Ap-
pendix C.

To study the uncertainties, we must explore the variat
of xglobal

2 in the neighborhood of its minimum, rather tha
focusing only onS0 as has been done in the past. Moving t
parameters away from the minimum increasesxglobal

2 by an
amountDxglobal

2 . It is natural to define the relevant neighbo
hood of the global minimum as

Dxglobal
2 <T2, ~5!

where T is a tolerance parameter. The Hessian formalism
developed in Sec. III provides a reliable and efficient meth
of calculating the variation of all predictions of PDF’s in th
neighborhood, as long asT is within the range where a qua
dratic expansion ofxglobal

2 , in terms of the PDF parameter
is adequate.

In order to quantify the uncertainties of physical pred
tions that depend on PDF’s, one must choose the tolera
parameterT to correspond to the region of ‘‘acceptable fits
Broadly speaking, the order of magnitude ofT for our choice
of xglobal

2 is already suggested by self-consistency consid
ations: Our fundamental assumption—that the 15 data
used in the global analysis are individuallyacceptableand
mutuallycompatible, in spite of departures from ideal statis
tical expectations exhibited by some of the individual da

1It is very similar to the CTEQ5M1 set@1#, with minor differences

arising from the improved parametrization~2! for d̄/ū.
3-3
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FIG. 1. Illustration of the basic ideas of ou
implementation of the Hessian method. An iter
tive procedure@17# diagonalizes the Hessian ma
trix and rescales the eigenvectors to adapt
step sizes to their natural scale. The solid poin
represent the resulting eigenvector basis PD
described in Sec. III C. Pointp( i) is explained in
Sec. IV A.
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sets, as well as signs of incompatibility between some
them if the errors are interpreted according to strict statist
rules @12#—must, in this effectivex2 approach, imply a
value ofT substantially larger than that of ideal expectatio
More quantitatively, estimates ofT have been carried out in
the preceding paper@18#, based on the comparison o
Dxglobal

2 with detailed studies of experimental constraints
specific physical quantities. The estimates ofT will be dis-
cussed more extensively in Sec. V, where applications
presented, and in Appendix A. For the development of
formalism in the next section, it suffices to know that~i! the
order of magnitude of these estimates is

T'10 to 15, ~6!

and ~ii ! the master formulas, given in Sec. III D, imply th
all uncertainties are proportional toT, hence the results ar
fully scalable, according to the best available estimate oT.

III. THE HESSIAN FORMALISM

The most efficient approach to studying uncertainties i
global analysis of data is through a quadratic expansion
the x2 function about its global minimum.2 This is the well-
known error matrix or Hessian method. Although the meth
is standard, its application to PDF analysis has, so far, b
hindered by technical problems created by the complexity
the theoretical and experimental inputs. Those techn
problems have recently been overcome@17#.

The Hessian matrix is the matrix of second derivatives
x2 at the minimum. In our implementation, the eigenvect
of the Hessian matrix play a central role. They are used b
for an accurate evaluation of the Hessian itself, via the ite
tive method of@17#, and to produce an eigenvector basis
of PDF’s from which uncertainties of all physical obser
ables can be calculated. The basis PDF’s provide an o
mized representation of the parameter space in the neigh
hood of the minimumx2.

2The Lagrange multiplier method@17,18# is a complementary ap
proach that avoids the quadratic approximation.
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The general idea of our approach is illustrated concep
ally in Fig. 1. Every PDF setS corresponds to a point in th
d-dimensional PDF parameter space. It can be specified
the original parton shape parameters$ai(S)% defined in Sec.
II B, as illustrated in Fig. 1~a!; or by the eigenvector basi
coordinates$zk(S)%, which specify the components ofS
along the eigenvector basis PDF’s that will be introduced
Sec. III C, as illustrated in Fig. 1~b!. The solid points in both
Figs. 1~a! and 1~b! represent the basis PDF sets.

A. Quadratic approximation and the Hessian matrix

The standard error matrix approach begins with a Tay
series expansion ofxglobal

2 (S) around its minimumS0, keep-
ing only the leading terms. This produces a quadratic form
the displacements from the minimum:

Dx25x22x0
25

1

2 (
i 51

d

(
j 51

d

Hi j ~ai2ai
0!~aj2aj

0!, ~7!

where x0
25x2(S0) is the value at the minimum,$aj

0%
5$aj (S0)% is its location, and$aj%5$aj (S)%. We have
dropped the subscript ‘‘global’’ onx2 for simplicity. We also
suppress the PDF argument~S! in x2 and$ai% here and else-
where when it is not needed to make the discussion clea

The Hessian matrixHi j has a complete set of orthonorm
eigenvectorsv ik defined by

(
j 51

d

Hi j v jk5ekv ik , ~8!

(
i 51

d

v i l v ik5d lk , ~9!

where $ek% are the eigenvalues andd lk is the unit matrix.
Displacements from the minimum are conveniently e
pressed in terms of the eigenvectors by

ai2ai
05 (

k51

d

v ikskzk , ~10!
3-4
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where scale factorssk are introduced to normalize the ne
parameterszk such that

Dx25 (
k51

d

zk
2 . ~11!

With this normalization, the relevant neighborhood~5! of the
global minimum corresponds to the interior of a hypersph
of radiusT:

(
k51

d

zk
2<T2. ~12!

The scale factorssk are approximately equal toA2/ek, as is
explained in Appendix B.

The transformation~10! is illustrated conceptually in Fig
1, where$k,l % label two of the eigenvector directions. One
the eigenvectorsvl is shown both in the original paramete
basis and in the normalized eigenvector basis.

B. Eigenvalues of the Hessian matrix

The square of the distance in parameter space from
minimum of x2 is

(
i 51

d

~ai2ai
0!25 (

k51

d

~skzk!
2 ~13!

by Eqs. ~9!, ~10!. Becausesk'A2/ek, an eigenvector with
large eigenvalueek , therefore, corresponds to a ‘‘steep d
rection’’ in $ai% space, i.e., a direction in whichx2 rises
rapidly, making the parameters tightly constrained by
data. The opposite is an eigenvector with smallek , which
corresponds to a ‘‘shallow direction,’’ for which the criterio
Dx2<T2 permits considerable motion—as is the case forvl
illustrated in Fig. 1.

FIG. 2. Distribution of eigenvalues of the Hessian matrix for fi
usingd513, 16~standard!, and 18 free PDF parameters.
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The distribution of eigenvalues, ordered from largest
smallest, is shown in Fig. 2. Interestingly, the distribution
approximately linear in loge. The eigenvalues span an eno
mous range, which is understandable because the large
bal data set includes powerful constraints—particularly
combinations of parameters that control the quark distri
tions at moderatex—leading to steep directions; while fre
parameters have purposely been added to Eqs.~1! and~2! to
the point where some of them are at the edge of being
constrained by the data, leading to shallow directions.

Figure 2 also shows how the range of eigenvalues
pands or contracts if the number of adjustable paramete
changed; the 16-parameter fit is the standard one use
most of this paper; the 18-parameter fit is defined by allo
ing A1

uvÞA1
dv andA3

gÞ0 with A4
g56; the 13-parameter fit is

defined byA4
uv5A4

dv51 and A3
d̄1ū50. The range spanne

by the eigenvalues increases with the dimensiond of the
parameter space@roughly as log(e1 /ed)}d 0.4#.

The large (106:1) range spanned by the eigenvalu
makes the smaller eigenvalues and their eigenvectors
sensitive to fine details of the Hessian matrix, making it d
ficult to computeHi j with sufficient accuracy. This technica
problem hindered the use of Hessian or error matrix meth
in global QCD analysis in the past. The problem has be
tamed by an iterative method introduced in@17#, which com-
putes the eigenvalues and eigenvectors by successive
proximations that converge even in the presence of num
cal noise and nonquadratic contributions to3 x2.

The Hessian method relies on the quadratic approxim
tion ~7! to the effectivex2 function. We have extensively
tested this approximation in the neighborhood of interest
comparing it with the exacetxglobal

2 . The results are satisfac
tory, as shown in Appendix B, which also explains how t
approximation is improved by adjusting the scale factorssk
for the shallow directions.

C. PDF eigenvector basis setsSl
Á

Thekth eigenvector of the Hessian matrix has compon
v ik along thei th direction in the original parameter spac
according to Eq.~8!. Thusv ik is the orthogonal matrix tha
transforms between the original parameter basis and the
genvector basis. For our application, it is more convenien
work with coordinates$zk% that are normalized by the sca
factors$sk% of Eq. ~10!, rather than the ‘‘raw’’ coordinates o
the the eigenvector basis. Thus we use the matrix

Mik[v iksk ~14!

rather thanv ik itself. Mik defines the transformation betwee
the two descriptions that are depicted conceptually in Fig

ai2ai
05 (

k51

d

M ikzk . ~15!

3The iterative algorithm is implemented as an extension to
widely used CERNLIB programMINUIT @30#. The code is available
at http://www.pa.msu.edu/;pumplin/iterate/
3-5
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It contains information about the physics in the global
together with information related to the choice of parame
zation, and is a good object to study for insight into how t
parametrization might be improved, as we discuss in S
IV A.

The eigenvectors provide an optimized orthonormal ba
in the PDF parameter space, which leads to a simple par
etrization of the parton distributions in the neighborhood
the global minimumS0. In the remainder of this section, w
show how to construct theseeigenvector basisPDF’s
$Sl

6 ,l 51, . . . ,d%, and in the following section, we show
how they can be used to calculate the uncertainty of
chosen variableX(S).

The eigenvector basissetsSl
6 are defined by displace

ments of a standard magnitudet ‘‘up’’ or ‘‘down’’ along each
of the d eigenvector directions. Their coordinates in thez
basis are thus

zk~Sl
6!56tdkl . ~16!

More explicitly, S1
1 is defined by (z1 , . . . ,zd)

5(t,0, . . . ,0), etc. We make displacements in both dire
tions along each eigenvector to improve accuracy; which
rection is called ‘‘up’’ is totally arbitrary. As a practical ma
ter, we chooset55 for the displacement distance. Th
choice improves the accuracy of the quadratic approxima
by working with displacements that have about the same
as those needed in applications.4

The$ai% parameters that specify the eigenvector basis
Sl

6 are given by

ai~Sl
6!2ai

056tM il , ~17!

by Eqs.~15!, ~16!. Hence

ai~Sl
1!2ai~Sl

2!52tM il . ~18!

Interpreted as a difference equation, this shows directly
the elementMil of the transformation matrix is equal to th
gradient of parameterai along the direction of5 zl .

Basis PDF sets along two of the eigenvector directions
illustrated conceptually in Figs. 1~a! and 1~b! as solid points
displaced from the global minimum setS0. The coefficients
that specify all of the setsSl

6 are listed in Table IV of Ap-
pendix D.

4The value chosen fort is somewhat smaller than the typicalT
given in Eq.~6! because in applications, the component of displa
ment along a given eigenvector direction will generally be sma
than the total displacement.

5Technically, we calculate the orthogonal matrixv i j using dis-
placements that giveDx2.5, where the iterative procedure@17#
converges well. The eigenvectors are then scaled up by an am
that is adjusted to makeDx2525 exactly for eachSk

6 to improve
the quadratic approximation.
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D. Master equations for calculating uncertainties using the
eigenvector basis setŝSl

Á
‰

Let X(S) be any variable that depends on the PDF’s.
can be a physical quantity such as theW production cross
section; or a particular PDF such as the gluon distribution
specificx andQ values; or even one of the PDF paramete
ai . All of these cases will be used as examples in Secs
and V.

The best-fit estimate forX is X05X(S0). To find the un-
certainty, it is only necessary to evaluateX for each of the 2d
sets$Sl

6%. The gradient ofX in the z representation can the
be calculated, using a linear approximation that is essen
to the Hessian method, by

]X

]zk
5

X~Sk
1!2X~Sk

2!

2t
, ~19!

where t is the scale used to define$Sl
6% in Eq. ~16!. It is

useful to define

Dk~X!5X~Sk
1!2X~Sk

2!, ~20!

D~X!5S (
k51

d

@Dk~X!#2D 1/2

, ~21!

D̂k~X!5Dk~X!/D~X!, ~22!

so thatDk(X) is a vector in the gradient direction andD̂k(X)
is the unit vector in that direction.

The gradient direction is the direction in whichX varies
most rapidly, so the largest variations inX permitted by Eq.
~12! are obtained by displacement from the global minimu
S0 in the gradient direction by a distance6T. Hence

DX5 (
k51

d

~TD̂k!
]X

]zk
. ~23!

From this, using Eqs.~19!–~22!, we obtain themaster equa-
tion for calculating uncertainties,

DX5
T

2t
D~X!. ~24!

This equation is applied to obtain numerical results in Se
IV and V.

For applications, it is often important to also construct t
PDF setsSX

1 and SX
2 that achieve the extreme valuesX

5X06DX. Their z coordinates are

zk~SX
6!56TD̂k~X!, ~25!

which follows from the derivation of Eq.~24!. Their physical
parameters$ai% then follow from Eqs.~15! and ~18!:

ai~SX
6!2ai

05
6T

2t (
k51

d

D̂k~X!@ai~Sk
1!2ai~Sk

2!#. ~26!

-
r

unt
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FIG. 3. Two extreme gluon distributions~left!
and u-quark distributions~right! for Q52 GeV
~long dash! and Q5100 GeV ~short dash! with
T510. Each curve is calculated to give the min
mum or maximum value for some particularx.
The entire allowed region, which is the envelop
of all such curves, is shaded.
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In practice, we calculate the parameters forSX
1 and SX

2 by
applying Eq. ~26! directly to the parton shape paramete
ln A0

uv, A1
uv , . . . listed in Table IV, except that the norma

ization factorsA0
uv, A0

dv, andA0
g are computed from the mo

mentum sum rule and quark number sum rules

(
i
E

0

1

x f i~x!dx51, ~27!

E
0

1

uv~x!dx52, E
0

1

dv~x!dx51 ~28!

to ensure that those sum rules are satisfied exactly.

IV. UNCERTAINTIES OF PARTON DISTRIBUTIONS

A. Uncertainties of the PDF parametersˆai‰

As a useful as well as illustrative application of the ge
eral formalism, let us find the uncertainties on the physi
PDF parametersai . We only need to follow the steps of Se
III D. Letting X5ai for a particulari, Eqs.~20! and~18! give

Dk~ai !5ai~Sk
1!2ai~Sk

2!52tM ik . ~29!

The uncertainty onai in the global analysis follows from the
master equation~24!:

Dai5TS (
k

M ik
2 D 1/2

. ~30!

The parameter sets$aj (ai
1)% and $aj (ai

2)% that produce
the extreme values ofai can be found using Eq.~26!. In the
conceptual Fig. 1, the parton distribution set with the larg
value ofai for Dxglobal

2 5T2 is depicted as pointp( i).
The uncertainties$Dai% of the standard parameter set, ca

culated from Eq.~30! with T55 are listed along with the
central values$ai

0% in Table III. To test the quadratic approx
mation, asymmetric errors are also listed. These are defi
by displacements in the gradient direction~29! that are ad-
justed to makeDx2 exactly equal toT2525. They agree
quite well with the errors calculated using Eq.~30!, which
shows that the quadratic approximation is adequate for
purposes.
01401
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Table III also lists the components of the displacem
vectorszk(ai

1) of Eq. ~25! which have been renormalized t
(zk

251. These reveal which features of the PDF’s are g
erned most strongly by specific eigenvector directions. T
table is divided into sections according to the various fla
combinations that are parametrized. One can see, for
ample, that the flattest directionz16 is strongly related to the
gluon parametersA1

g andA2
g , confirming that the gluon dis-

tribution at Q051 GeV is a highly uncertain aspect of th
PDF’s. The second-flattest directionz15 relates mainly to the

d̄/ū ratio, as seen by the large components alongz15 for B0
d̄/ū

andB1
d̄/ū . Meanwhile, the steepest directionz1 mainly influ-

ences the valence quark distribution viaA1
uv.

All of the parametrized aspects of the PDF’s atQ0,
namely,uv , dv , g, d̄1ū, andd̄/ū receive substantial contri
butions from the four-flattest directions 13–16, which sho
that the current global data set could not support the ext
tion of much finer detail in the PDF’s. This can be confirm
by noting that the error ranges of the individual paramet
ai are not small.

B. Uncertainties of the PDF’s

The uncertainty range of the PDF’s themselves can a
be explored using the eigenvector method. For example,
ting the gluon distributiong(x,Q) at some specific values o
(x,Q) be the variableX that is extremized by the method o
Sec. III D leads to the extreme gluon distributions shown
the left-hand side of Fig. 3. The envelope of such curv
obtained by extremizing at a variety ofx values at fixedQ, is
shown by the shaded region, which is defined byT510, i.e.,
by allowing xglobal

2 up to 100 above its minimum value.
The right-hand side of Fig. 3 similarly shows the allowe

region and two specific cases for theu-quark distribution.
The uncertainty is much smaller than for the gluon, reflect
the large amount of experimental data included in the glo
analysis that is sensitive to theu quark through the square o
its electric charge.

The dependence onx in these figures is plotted as a fun
tion of x1/3 to better display the region of current experime
tal interest. The values are weighted by a factorx5/3, which
makes the area under each curve proportional to its co
bution to the momentum sum rule. Note that the uncertai
decreases markedly with increasingQ as a result of evolu-
3-7
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FIG. 4. Ratio of gluon~left! and u-quark
~right! distributions to best fitS0 at Q510 GeV.
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tion. Also note that the gluon distribution is large and fair
well determined at smallerx values and largeQ—the region
that will be vital for physics at the CERN Large Hadro
Collider ~LHC!.

Figure 4 displays similar information forQ510 GeV,
expressed as the fractional uncertainty as a function of lox.
It shows that the gluon distribution becomes very uncert
at largex, e.g.,x.0.25.~At x.0.6, where the distribution is
extremely small, the lower envelope of fractional uncertai
begins to rise. This is an artifact of the parametrization w
A3

g50; making the parametrization more flexible by freei
A3

g with A4
g56 leads to a broader allowed range indicated

the dotted curves.!
The boundaries of the allowed regions for the PDF’s

not themselves possible shapes for the PDF’s, since if a
ticular distribution is extremely high at one value ofx, it will
be low at other values. This can be seen most clearly in
gluon distributions of Figs. 3 and 4, where the extre
PDF’s shown push the envelope on the high side in
region ofx, and on the low side in another.

V. UNCERTAINTIES OF PHYSICAL PREDICTIONS

In applying the Hessian method to study the uncertain
of physical observables due to PDF’s, it is important to u
derstand how the predictions depend on the tolerance pa
eterT, and how wellT can be determined. We discuss the
issues first, and then proceed to illustrate the utility of t
method by examining the predictions for the rapidity dist
bution of W andZ boson production as well as the correl
tion of W andZ cross sections inpp̄ collisions.

First, note that the uncertainties of all predictions are l
early dependent on the tolerance parameterT in the Hessian
approach, by the master formula~24!; hence they are easil
scalable. The appropriate value ofT is determined, in prin-
ciple, by the region of ‘‘acceptable fits’’ or ‘‘reasonab
agreement with the global data sets’’ in the PDF param
space. Physical quantities calculated from PDF sets wi
this region will range over the values that can be conside
‘‘likely’’ predictions. As discussed in the introductory sec
tions, the complexity of the experimental and theoretical
put to the functionxglobal

2 in the global analysis, in particular
the unknown systematic errors reflected in apparent ab
malities of some reported experimental errors as well
seeming incompatibilities between some data sets, mak
difficult to assign an unambiguous value toT. However, as
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mentioned in Sec. II D, self-consistency considerations
herent to our basic assumption that the 15 data sets use
the global analysis are acceptable and compatible, in c
junction with the detailed comparison to experiment co
ducted in the preceding paper@18# using the samexglobal

2

function, yield a best estimate ofT'10 to 15@~Eq. 6!#. De-
tails of these considerations are discussed in Appendix A

Of the estimates ofT described there, the most quantit
tive one is based on the algorithm of the preceding pa
@18# to combine 90% confidence level error bands from
15 individual data sets for any specific physical variable su
as the total production cross section ofW or Z at the Fermi-
lab Tevatron or LHC~see Appendix A for a summary, an
the preceding paper@18# for the detailed analysis!. For the
case ofsW

TeV , the uncertainty according to the specific alg
rithm is 64%, corresponding toT;13. With our working
hypothesisT'10–15, the range of the uncertainty ofsW

TeV

will be 63.3% to64.9%.
The numerical results on applications presented in the

lowing sections are obtained with the same choice ofT as in
Sec. IV, i.e.,T510. Bearing in the mind the linear depen
dence of the uncertainties onT, one can easily scale these u
by the appropriate factor if a more conservative estimate
the uncertainty of any of the physical quantities is desir
We should also note that the experimental data sets use
this analysis are continuously evolving. Some data sets~cf.,
Table I in Appendix A! will soon be updated~H1, ZEUS! or
replaced~CCFR!.6 In addition, theoretical uncertainties hav
yet to be systematically studied and incorporated. Theref
the specific results presented in this paper should be con
ered more as a demonstration of the method rather than
finitive predictions. The latter will be refined as new an
better inputs become available.

A. Rapidity distribution for W production

Figure 5 shows the predicted rapidity distributionds/dy

for W1 production in pp̄ collisions atAs51.8 TeV. The
cross section is not symmetric iny because of the strong
contribution from the valenceu quark in the proton—indeed
the forward backward asymmetry produces an observa

6Compare talks presented by these collaborations at DIS2
Workshop on Deep Inelastic Scattering and Related Topics, Liver-
pool, England, 2000.
3-8
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FIG. 5. Left: Predicted rapidity distribution

for pp̄→W11X at As51.8 TeV. The curves
are extreme predictions for the integrated cro
section s ~solid!, or the rapidity momentŝy&
~long dash!, or ^y2& ~short dash!. Right: same ex-
cept the best-fit prediction is subtracted to sho
the details better.
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asymmetry in the distribution of leptons fromW decay,
which provides an important handle on flavor ratios in t
current global analysis.

The left-hand side of Fig. 5 shows the six rapidity dist
butions that give the extremes~up or down! of the integrated
cross sections5*(ds/dy)dy, the first moment̂ y&, or the
second moment̂y2&, as calculated using the Hessian form
ism for T510. To show the differences more clearly, t
right-hand side shows the difference between each of th
rapidity distributions and the best-fit distribution.

Figure 6 shows three of the same difference curves a
Fig. 5 along with results obtained using the Lagrange mu
plier method of the preceding paper@18#. The good agree-
ment shows that the Hessian formalism, with its quadra
approximation~7!, works well at least for this application.

Figure 7 shows the same three curves from Fig. 5,
gether with 6 random choices of the PDF’s withDxglobal

2

5100. These random sets were obtained by choosing
dom directions in$zi% space and displacing the paramete
from the minimum in those directions untilxglobal

2 has in-
creased by 100. Note that none of this small number of r

FIG. 6. Comparison with the Lagrange multiplier method: thr
of the six curves from Fig. 5~corresponding to maximums, ^y&, or
^y2&) are shown, together with the result of the exact LM meth
for Dxglobal

2 5100.
01401
-

se

in
i-

ic

-

n-
s

n-

dom sets give good approximations to the three extre
curves. This is not really surprising, since the extrema
produced by displacements in specific~gradient! directions,
and in 16-dimensional space, the component of a rand
unit vector along any specific direction is likely to be sma
But it indicates that producing large numbers of random s
would at best be an inefficient way to unearth the extre
behaviors.

B. Correlation betweenW and Z cross sections

One can ask what are the error limits on two quantitiesX
andY simultaneously, according to theDxglobal

2 ,T criterion.
In the Hessian approximation, the boundary of the allow
region is an ellipse, as shown in@17#. The ellipse can be
expressed elegantly in a ‘‘Lissajous figure’’ form

X5X01DX sin~u1f!,

Y5Y01DY sin~u!, ~31!

FIG. 7. Comparison with random methods: three of the
curves from Fig. 5~corresponding to maximums, ^y&, or ^y2& for
Dxglobal

2 5100) are shown, together with results from PDF sets t
are obtained by displacement in 6 random directions of$zi% space
by Dxglobal

2 5100.
3-9
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where 0,u,2p traces out the boundary. The shape of t
ellipse is governed by the phase anglef, which is given by
the dot product between the gradient vectors forX andY in
$zk% space:

cosf5 (
k51

d

D̂k~X!D̂k~Y!, ~32!

whereD̂ i(X) and D̂ i(Y) are defined by Eq.~22!.
As an example of this,T510 error limits forW6 andZ0

production at the Tevatron are shown in Fig. 8. The er
limits on the separate predictions for these cross sections
each about 3.3% forT510. The predictions are strongl
correlated (cosf50.60), in part because the same qua
distributions—in different combinations—are responsible
both W andZ production, and in part because the uncerta
ties of all the quark distributions are negatively correla
with the more uncertain gluon distribution, and hence po
tively correlated with each other.

The W and Z cross sections from Collider Detector
Fermilab~CDF! ~dashed! and DØ~dotted! are also shown in
Fig. 8 @31#. ~The measured quantitiessW•BW→en and
sZ•BZ→e1e2 were converted tosW andsZ using world av-
erage values for the branching ratios@16#; the measured CDF
and DØ branching ratios forW agree with the world averag
to within about 1%.! The data points are shown in the for
of error bars defined by combining statistical and system
errors ~including the errors in decay branching ratios! in
quadrature. The errors in these measurements are also h
correlated, in part through the uncertainty in overall lumino
ity, which both cross sections are proportional to—so
experimental points would also be better represented by

FIG. 8. Error ellipse for predictedW andZ boson production in

pp̄ collisions at 1.8 TeV. The error limit (T510) of the prediction is
the interior of the ellipse. Error bars show data from DØ~dotted!
and CDF~dashed!. The dot-dash error bars show the result of re
terpreting the CDF data by using the same assumption for lumi
ity as DØ @31#.
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lipses. The two experiments in fact use different assumpti

for the inelasticpp̄ cross section which measures the lum
nosity; CDF uses its own measurement of it, while DØ us
the world average. The dot-dashed data point shows the
sult of reinterpreting the CDF point by scaling the luminos
down by a factor of 1.062 to correspond to the world avera

pp̄ cross section@31#.

VI. SUMMARY AND CONCLUDING REMARKS

Experience over the past two decades has shown
minimizing a suitably definedxglobal

2 is an effective way to
extract parton distribution functions consistent with expe
mental constraints in the PQCD framework. The goal of t
paper has been to expand the scope of such analysis to m
quantitative estimates of the uncertainties of PDF’s and th
predictions, by examining the behavior ofxglobal

2 in the
neighborhood of the minimum. The techniques developed
Ref. @17# allow us to apply the traditional error matrix ap
proach reliably in the complex global analysis environme
The eigenvectors of the Hessian~inverse of the error matrix!
play a crucial role, both in the adaptive procedure to ac
rately calculate the Hessian itself, and in the derivation of
compact master formula for determining the uncertainties
parton distributions and their predictions, Eq.~24!.

Our principal results are~i! the formalism developed in
Sec. III D, leading to the master formulas, and~ii ! the best-fit
parton distribution setS0 plus the 2d eigenvector basis set
Sk

6 presented in Sec. III C, which are used in applications
the master formula~24!. The uncertainties are proportional t
T, the tolerance parameter forDxglobal

2 . We present severa
estimates, based on current experimental and theoretica
put, that suggestT is in the range 10–15. It is important t
note, however, that this estimate can, and should, be refi
in the near future. First, several important data sets use
the global analysis will soon be updated or replaced~cf. Sec.
V, footnote 5!. Second, there are other sources of uncerta
ties, which have yet to be studied and included in the ana
sis in a full evaluation of uncertainties.~The work of Botje
@10# describes possible ways to incorporate some of thes!

This paper, focusing on the presentation of a new form
ism and its utility, represents the first step in a long-te
project to investigate the uncertainties of predictions dep
dent upon parton distributions. We plan to perform a serie
studies on processes in precision SM measurements~such as
the W mass! and in new physics searches~such as Higgs
production cross section! which are sensitive to the parto
distributions, at the Tevatron and LHC.
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APPENDIX A: ESTIMATES OF THE TOLERANCE
PARAMETER FOR Dxglobal

2

This appendix provides details of the various approac
mentioned in Secs. II D and V to estimate the tolerance
rameterT defined by Eq.~5!. In our global analysis based o
Dxglobal

2 , all uncertainties of predictions of the PDF’s accor
ing to the master formula Eq.~24! are directly proportional
to the value ofT.

The first two estimates rest on considerations of s
consistency, which are required by our basic assumption
the 15 data sets used in the global analysis~see Table I! are
acceptableand mutuallycompatible—in spite of the depar-
ture from ideal statistical expectations exhibited within ma
of the individual data sets, as well as apparent incompat
ity between experiments when the errors are interpreted
cording to strict statistical rules@12#.

Tolerance required by acceptability of the experimen
One can examine how well the best fitS0 agrees with the
individual data sets, by comparingxn

2 in Eq. ~3! with the
rangeNn6A2Nn that would be the expected 1s range if the
errors were ideal. The largest deviations found lie well o
side that range:xn

22Nn(A2Nn)565.5(17.7),264.8(18.5),
65.1(19.3),225.9(15.4), and 22.4(8.1), for experimentsn
52,3,4,10, and 15, respectively. By attributing the ‘‘abno
mal’’ xn

2’s to unknown systematic errors or unusual fluctu
tions ~or both!, and accepting them in the definition ofxglobal

2

for the global analysis, we must anticipate a tolerance for
latter which is larger than that for an ‘‘ideal’’x2 function.
~Compare Appendix A of the preceding paper@18# for a
quantitative discussion of the increase inT due to neglected
systematic errors.! Since the sources of the deviation of the
real experimental errors from ideal expectations are
known, it is not possible to give specific values for the ov
all tolerance. However, the sizes of the above quoted de
tions~which, in each case, imply a very improbable fit toany

TABLE I. Data sets used in the global analysis. If experimenn
is omitted,Dn denotes the amount by whichx2 for the remaining 14
experimentscan be reduced by readjusting the fit parameters.

Expt n Process Nn Name Ref. Dn

1 DIS F2(mp) 168 BCDMS @19# 19.7
2 DIS F2(md) 156 BCDMS @19# 4.5
3 DIS F2(ep) 172 H1 @20# 3.7
4 DIS F2(ep) 186 ZEUS @21# 9.7
5 DIS F2(mp) 104 NMC @22# 7.8
6 DIS mp/mn 123 NMC @22# 1.9
7 DIS mp/mn 13 NMC @22# 13.9
8 DIS F2(np) 87 CCFR @23# 8.9
9 DIS F3(np) 87 CCFR @23# 5.5
10 D-Y pp 119 E605 @24# 6.4
11 D-Y pd/pp 1 NA51 @25# 0.5
12 D-Y pd/pp 11 E866 @26# 0.6
13 Wlept. asym. 11 CDF @27# 15.1
14 p̄p→ jetX 24 DO” @28# 3.4

15 p̄p→ jetX 33 CDF @29# 3.7
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theory model, according to ideal statistics! suggest that the
required tolerance value for the overallDxglobal

2 ~involving
1300 data points! must be rather large.

Tolerance required by mutual compatibility of the expe
ments. We can quantify the degree of compatibility amo
the 15 data sets by removing each one of them in turn fr
the analysis, and observing how much the totalx2 for the
remaining 14 sets can be lowered by readjusting the$ai%.
This is equivalent to minimizingx2 for each possible 14-
experiment subset of the data, and then asking how m
increase in thex2 for those 14 experiments is necessary
accommodate the return of the removed set. These incre
are listed asDn in Table I. They range up to'20. In other
words, we have implicitly assumed that when a new exp
ment requires an increase of 20 in thexglobal

2 of a plausible
global data set, that new experiment is nevertheless s
ciently consistent with the global set that it can be includ
as an equal partner.7 Hence the value ofT2 must be substan
tially larger than 20.

A complementary, and more quantitative, estimate of
overall tolerance parameterT for our xglobal

2 follows from the
analyses of the preceding paper@18#.

Tolerance calculated from confidence levels of individu
experiments. In@18#, we examine how the quality of fit to
each of the 15 individual experiments varies as a function
the predicted value for various specific observable quanti
such assW or sZ . The fit parameters$ai% are continuously
adjusted by the Lagrange multiplier method to yield t
minimum possible value ofxglobal

2 for given values of the
chosen observable. The constrainted fits obtained this w
and interpreted as ‘‘alternative hypotheses’’ in statisti
analysis, are then compared to each of the 15 data se
obtain a 90% confidence level error range for the individ
experiments. Finally, these errors are combined with a d
nite algorithm to provide a quantifiable uncertainty meas
for the cross section. In the case of theW production cross
section at the Tevatron,sW

TeV , this procedure yields an unce
tainty of 64%, which translates into a value of'180 for
Dxglobal

2 , or T'13. This method is definite, but it is, in prin
ciple, process dependent. However, when the same ana
is applied tosZ

TeV , sW
LHC , andsZ

LHC ~which probe different
directions in the PDF parameter space! we findDxglobal

2 to be
consistently in the same range as forsW

TeV , even though the
percentage errors on the crossection vary from 4% at
Tevatron to 10% at LHC.

Based on all the above results, we adopt as our work
hypothesis,

T'10 to 15,

which is quoted in Sec. II D@Eq. ~6!#, and used in Secs. IV
and V for estimating the numerical results shown in the plo

7Since 5 or 6 of the experiments requireDn in the range of 10–20,
this level of inconsistency is not caused by problems with just o
particular experiment—which would simply invite the removal
that experiment from the analysis.
3-11
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Finally, it is of some interest to compare this toleran
estimate with the traditional—although by now genera
recognized as questionable—gauge provided by differen
between published PDF’s.

Comparison of tolerance figures to differences betw
published PDF’s. Table II lists the value obtained when o
xglobal

2 is computed using various current and historical P
sets. TheDx2 column lists the increase over the CTEQ5M
set. Typical values for the modern sets are similar to
range 100–225 that corresponds toT510–15. For previous
generations of PDF sets,xglobal

2 is much larger—not surpris
ingly, because the obsolete sets were extracted from m
less accurate data, and without some of the physical
cesses such asW decay lepton asymmetry and inclusive j
production.

APPENDIX B: TESTS OF THE QUADRATIC
APPROXIMATION

The Hessian method relies on a quadratic approxima
~7! to the effectivex2 function in the relevant neighborhoo
of its minimum. To test this approximation, Fig. 9 shows t
dependence ofx2 along a representative sample of the eige
vector directions. The steep directions 1 and 4 are indis
guishable from the ideal quadratic curveDx25z2. The shal-
lower directions 7, 10, 13, and 16, are represented fa
well by that parabola, although they exhibit noticeable cu
and higher-order effects. The agreement at smallz is not
perfect because we adjust the scale factorssk in Eq. ~10! ~see
footnote 5! to improve the average agreement over the
portant regionz&5, rather than defining the matrixHi j in
Eq. ~7! strictly by the second derivatives atz50. For this
reason, the scale factorssk in Eq. ~17! are somewhat differ-
ent from theA2/ek suggested by the Taylor series: the flatt
directions are extremely flat only over very small intervals
z, so it would be misleading to represent them solely by th
curvature atz50.

Figure 10 shows the dependence ofx2 along some ran-
dom directions in$zi% space. The behavior is reasonab
close to the ideal quadratic curveDx25z2, implying that the
quadratic approximation~7! is adequate. In particular, th
approximation gives the range ofz permitted byT510 to an
accuracy of'30%. Since the tolerance parameterT used to
make the uncertainty estimates is known only to perh
50%, this level of accuracy is sufficient.

TABLE II. Overall xglobal
2 values and their increments above t

best-fit value, for some current and historical parton distribut
sets.

Current sets x2 Dx2 Historical sets x2 Dx2

CTEQ5M1 1188 - CTEQ4M 1540 352
CTEQ5HJ 1272 84 MRSR2 1680 492
MRST99 1297 109 MRSR1 1758 570
MRST-a↓ 1356 168 CTEQ3M 2254 1066
MRST-a↑ 1531 343 MRSA’ 3371 2183
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APPENDIX C: TABLE OF BEST FIT S0

Table III lists the parameter values that define the ‘‘b
fit’’ PDF set S0, which minimizesxglobal

2 . It also lists the
uncertainties~for T55) in those parameters.

For each of thed516 parameters, Table III also lists th
components of a unit vectorz1 , . . . ,zd in the eigenvector

n

FIG. 9. Variation ofx2 with distance along representative eige
vector directions 1, 4, 7, 10, 13, and 16. The first two, shown
solid curves, are nearly indistinguishable from each other and f
the idealDx25z2. The remaining four, shown by dashed curv
with increasing dash length denoting increasing eigenvector n
ber, demonstrate that the quadratic approximation is adequ
though imperfect.

FIG. 10. Variation ofx2 with distance along 10 randomly cho
sen directions in$zi% space. The dependence is represented acc
ably well by the quadratic approximationDx25z2, which is shown
as the dotted curve.
3-12
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TABLE III. Parameters of the global fit. Errors shown are forT55, i.e.,Dxglobal
2 525. Fixed parameters:A4

d̄1ū51.0, B2
d̄/ū515.0, B3

d̄/ū

510.0, andA3
g50.0⇒A4

g irrelevant. Thezk are proportional to thezk(ai
6)56tM ik of Eq. ~29! and are normalized to(kzk

251.

Parameter Value Error z1 z2 z3 z4 z5 z6 z7 z8

z9 z10 z11 z12 z13 z14 z15 z16

A1
uv11 0.466 0.094 0.04 20.01 0.00 20.08 20.04 20.09 0.05 0.07

10.08320.079 20.06 20.06 0.35 20.74 20.37 20.39 20.06 0.00

A2
uv 3.360 0.122 20.01 20.01 0.03 20.14 20.07 20.37 20.32 0.46

1.11220.106 0.54 20.13 0.06 20.23 0.17 0.09 0.35 0.04

ln(11A3
uv) 2.553 0.51 0.00 0.00 0.00 0.00 0.06 20.01 20.06 20.07

10.4420.45 0.10 0.02 20.36 0.73 0.36 0.41 0.13 0.03

A4
uv 0.855 0.118 0.01 0.00 20.04 0.19 20.09 20.13 20.29 0.51

10.11020.118 0.48 20.05 0.05 0.06 0.47 0.19 0.30 20.01

A2
dv 4.230 0.45 0.00 0.00 0.00 0.00 0.06 20.06 0.00 0.02

10.4520.40 20.05 0.13 0.72 0.45 0.32 20.23 20.30 0.08

ln(11A3
dv) 2.388 0.64 0.00 0.00 0.00 0.00 20.04 0.00 0.04 0.05

10.5920.62 20.08 0.05 20.04 0.88 0.38 0.26 20.03 0.06

A4
dv 0.763 0.30 0.00 0.00 0.00 20.01 20.06 0.16 20.13 20.18

10.2420.23 0.26 0.11 0.52 0.37 0.49 20.11 20.41 0.08

ln f̃g
21.047 0.018 0.01 0.79 0.32 0.12 0.19 20.25 20.16 0.09

10.01820.019 20.19 0.26 0.00 20.05 20.03 0.00 20.06 20.11
A1

g11 0.469 0.40 0.00 0.00 0.02 0.01 0.02 0.02 0.23 0.0
10.3920.35 0.22 0.29 0.00 0.03 20.09 0.04 0.12 0.89

A2
g 5.574 2.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

12.9822.30 0.00 20.03 0.01 0.01 20.03 0.03 0.11 0.99

A1
d̄1ū11 20.009 0.148 0.00 20.03 0.10 0.07 0.01 0.01 20.24 20.07

10.14220.119 20.15 20.65 0.06 0.15 20.13 20.07 20.09 20.65

A2
d̄1ū 7.866 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.0

11.0521.09 0.01 20.21 0.03 20.15 0.89 0.28 20.10 20.22

ln(11A3
d̄1ū) 2.031 0.89 0.00 0.00 0.00 0.00 0.00 0.00 20.03 0.00

10.7820.89 20.04 0.29 20.05 20.28 0.66 0.20 0.04 0.59

ln B0
d̄/ū 10.29 1.45 0.00 0.00 0.00 0.00 20.01 20.02 0.01 20.04

11.55121.496 0.00 0.01 0.03 0.00 0.00 0.06 0.94 20.32

B1
d̄/ū 5.379 0.85 0.00 0.00 0.00 20.01 0.02 0.06 20.02 0.10

11.0220.75 20.02 20.03 0.01 0.04 0.16 20.21 0.93 20.24

B4
d̄/ū 4.498 1.21 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.0

11.2021.12 0.00 0.01 0.06 20.04 20.27 0.94 20.01 20.20
a

or

ify

at
w

ef

the
basis. That unit vector gives the direction for which the p
rameter varies most rapidly withxglobal

2 , i.e., the direction
along which the parameter reaches its extreme values f
given increase inxglobal

2 . For parameterai , the components
zk are proportional toMik according to Eq.~29!.

APPENDIX D: TABLE AND GRAPHS OF THE
EIGENVECTOR SETS Sl

Á

Table IV and its continuation Table V completely spec
the PDF eigenvector basis setsSl

1 and Sl
2 by listing all of

their parameters atQ0. The notation and the best fit setS0
are specified at the beginning of the table.

The coefficients listed provide all of the information th
is needed for applications. For completeness, however,
state here explicitly the connections between these co
01401
-

a

e
fi-

cients and the constructs that were used elsewhere in
paper to derive them. The fit parameters$ai% are related to
the tabulated parameters by

a15A1
uv11, a25A2

uv , a35 ln~11A3
uv!, a45A4

uv ,

a55A2
dv , a65 ln~11A3

dv!, a75A4
dv , a85 ln f̃ g ,

a95A1
g11, a105A2

g , a115A1
d̄1ū11, a125A2

d̄1ū ,

a135 ln~11A3
d̄1ū!, a145 ln B0

d̄/ū , a155B1
d̄/ū ,

a165B4
d̄/ū . ~D1!
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TABLE IV. Parameters of the best fitS0 and their definitions, followed by eigenvector setsS1
1 ,S1

2 ,S2
1 ,S2

2 , . . . .

20.1941 20.5337 3.3604 11.8404 0.8552 ln A0
uv A1

uv A2
uv A3

uv A4
uv

20.7175 20.5337 4.2296 9.8950 0.7628 ln A0
dv A1

dv A2
dv A3

dv A4
dv

1.8914 20.5305 5.5737 0.0000 1.0000 ln A0
g A1

g A2
g A3

g A4
g

21.1174 21.0092 7.8658 6.6187 1.0000 ln A0
d̄1ū A1

d̄1ū A2
d̄1ū A3

d̄1ū A4
d̄1ū

10.2940 5.3793 15.0000 10.0000 4.4980 ln B0
d̄/ū B1

d̄/ū B2
d̄/ū B3

d̄/ū B4
d̄/ū

20.1841 20.5298 3.3596 11.8478 0.8558 20.2042 20.5376 3.3612 11.8331 0.8546
20.7064 20.5298 4.2295 9.8957 0.7629 20.7285 20.5376 4.2297 9.8942 0.7627

1.8919 20.5304 5.5737 0.0000 1.0000 1.8910 20.5306 5.5737 0.0000 1.0000
21.1342 21.0089 7.8658 6.6191 1.0000 21.1010 21.0095 7.8658 6.6182 1.0000
10.2940 5.3793 15.0000 10.0000 4.4980 10.2940 5.3793 15.0000 10.0000 4.

20.1951 20.5343 3.3597 11.8372 0.8557 20.1931 20.5331 3.3611 11.8437 0.8547
20.7184 20.5343 4.2291 9.8952 0.7636 20.7165 20.5331 4.2301 9.8947 0.7620

1.9025 20.5321 5.5740 0.0000 1.0000 1.8802 20.5288 5.5734 0.0000 1.0000
21.1609 21.0140 7.8662 6.6117 1.0000 21.0751 21.0043 7.8654 6.6256 1.0000
10.2940 5.3794 15.0000 10.0000 4.4980 10.2940 5.3792 15.0000 10.0000 4.

20.1981 20.5338 3.3645 11.8237 0.8501 20.1903 20.5336 3.3564 11.8567 0.8602
20.7182 20.5338 4.2287 9.9098 0.7633 20.7167 20.5336 4.2304 9.8806 0.7623

1.9095 20.5244 5.5730 0.0000 1.0000 1.8738 20.5364 5.5745 0.0000 1.0000
21.0925 20.9946 7.8651 6.6340 1.0000 21.1422 21.0234 7.8665 6.6037 1.0000
10.2939 5.3795 15.0000 10.0000 4.4980 10.2941 5.3791 15.0000 10.0000 4.

20.1932 20.5413 3.3436 11.8275 0.8774 20.1960 20.5260 3.3774 11.8536 0.8327
20.7420 20.5413 4.2312 9.8814 0.7592 20.6928 20.5260 4.2279 9.9087 0.7664

1.9005 20.5271 5.5735 0.0000 1.0000 1.8822 20.5340 5.5739 0.0000 1.0000
21.0798 20.9990 7.8655 6.6250 1.0000 21.1544 21.0195 7.8661 6.6122 1.0000
10.2964 5.3748 15.0000 10.0000 4.4970 10.2916 5.3839 15.0000 10.0000 4.

20.2373 20.5372 3.3513 12.2488 0.8440 20.1528 20.5303 3.3692 11.4555 0.8661
20.7278 20.5372 4.2550 9.5924 0.7435 20.7078 20.5303 4.2049 10.1974 0.7816

1.9071 20.5244 5.5733 0.0000 1.0000 1.8761 20.5364 5.5742 0.0000 1.0000
21.1096 21.0071 7.8668 6.6099 1.0000 21.1246 21.0112 7.8648 6.6272 1.0000
10.2848 5.3943 15.0000 10.0000 4.5012 10.3029 5.3647 15.0000 10.0000 4.

20.2370 20.5419 3.3147 11.7529 0.8399 20.1529 20.5258 3.4046 11.9257 0.8700
20.6899 20.5419 4.2039 9.8658 0.8113 20.7483 20.5258 4.2545 9.9232 0.7159

1.9021 20.5228 5.5734 0.0000 1.0000 1.8811 20.5379 5.5741 0.0000 1.0000
21.0919 21.0074 7.8633 6.6099 1.0000 21.1398 21.0109 7.8682 6.6271 1.0000
10.2670 5.4325 15.0000 10.0000 4.5101 10.3201 5.3279 15.0000 10.0000 4.

20.2078 20.5282 3.3181 11.4087 0.8179 20.1833 20.5383 3.3960 12.2156 0.8866
20.7700 20.5282 4.2279 10.1816 0.7198 20.6769 20.5383 4.2310 9.6594 0.7990

2.0853 20.4301 5.5687 0.0000 1.0000 1.7217 20.6150 5.5779 0.0000 1.0000
21.2032 21.0484 7.9025 6.3721 1.0000 21.0446 20.9762 7.8349 6.8326 1.0000
10.3046 5.3626 15.0000 10.0000 4.4919 10.2850 5.3934 15.0000 10.0000 4.

20.0801 20.5269 3.4174 11.3977 0.9160 20.3093 20.5402 3.3060 12.2779 0.7971
20.7805 20.5269 4.2376 10.2241 0.7090 20.6640 20.5402 4.2220 9.5897 0.8142

1.9359 20.5086 5.5686 0.0000 1.0000 1.8485 20.5514 5.5786 0.0000 1.0000
21.1401 21.0195 7.8611 6.6228 1.0000 21.0838 20.9994 7.8703 6.6147 1.0000
10.2407 5.4629 15.0000 10.0000 4.5154 10.3449 5.2995 15.0000 10.0000 4.
er s
Each of theai is thus related to a single PDF paramet
except fora8, which is related tof̃ g , the momentum fraction
carried by gluons, and is thus determined byA0

g , . . . ,A4
g .

The matrix elements of the transformation from theai coor-
dinates to the eigenvector coordinates are given by

Mil 5
ai~Sl

1!2ai~Sl
2!

2t
~D2!
01401
,according to Eq.~18!, where t55 because that value wa
used to generate theSl

6 . Equations~9! and ~14! imply

(
i 51

d

M il M ik5slskd lk . ~D3!

For lÞk, this becomes( i 51
d Mil M ik50, which can serve as
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TABLE V. Continuation of Table IV: parameters of the eigenvector setsS9
1 ,S9

2 , . . . , S16
1 ,S16

2 .

20.1659 20.5391 3.4265 12.5012 0.9121 20.2243 20.5283 3.2943 11.2121 0.798

20.6220 20.5391 4.2087 9.3472 0.8414 20.8285 20.5283 4.2505 10.4716 0.684

2.0550 20.4456 5.5690 0.0000 1.0000 1.7218 20.6154 5.5785 0.0000 1.000

21.1277 21.0312 7.8798 6.3693 1.0000 21.0969 20.9873 7.8518 6.8764 1.000

10.2997 5.3659 15.0000 10.0000 4.4929 10.2883 5.3927 15.0000 10.0000 4

20.2209 20.5385 3.3464 11.9679 0.8505 20.1581 20.5272 3.3793 11.6700 0.861

20.7087 20.5385 4.2773 10.1973 0.7903 20.7304 20.5272 4.1650 9.4988 0.725

2.0697 20.4336 5.4996 0.0000 1.0000 1.6342 20.6616 5.6741 0.0000 1.000

21.4530 21.0911 7.6927 8.5071 1.0000 20.6805 20.8983 8.1000 4.6459 1.000

10.3080 5.3568 15.0000 10.0000 4.5032 10.2750 5.4097 15.0000 10.0000 4

0.0212 20.4998 3.3685 9.5867 0.8619 20.3963 20.5645 3.3530 14.3021 0.849

20.3803 20.4998 4.5680 9.5749 0.9267 21.0637 20.5645 3.9221 10.1942 0.613

1.8986 20.5295 5.5981 0.0000 1.0000 1.8849 20.5314 5.5516 0.0000 1.000

21.0511 20.9997 7.8935 6.2437 1.0000 21.1519 21.0178 7.8406 6.9762 1.000

10.3431 5.3894 15.0000 10.0000 4.5718 10.2494 5.3702 15.0000 10.0000 4

20.6200 20.6029 3.3322 17.6542 0.8617 0.2128 20.4640 3.3889 7.8121 0.848

21.0990 20.6029 4.4299 18.0058 0.8742 20.3418 20.4640 4.0277 5.2176 0.650

1.9215 20.5171 5.5927 0.0000 1.0000 1.8610 20.5440 5.5546 0.0000 1.000

20.9608 20.9876 7.7202 4.9575 1.0000 21.2706 21.0310 8.0126 8.7623 1.000

10.2885 5.4121 15.0000 10.0000 4.4446 10.2995 5.3462 15.0000 10.0000 4

20.3285 20.5667 3.3800 14.2366 0.9075 20.0441 20.4965 3.3383 9.5883 0.796

20.7740 20.5667 4.3664 12.6923 0.9007 20.6624 20.4965 4.0754 7.4209 0.607

1.8124 20.5621 5.5060 0.0000 1.0000 1.9800 20.4949 5.6501 0.0000 1.000

21.3022 21.0266 8.6732 12.2662 1.0000 20.9707 20.9896 6.9557 3.0774 1.000

10.2946 5.5039 15.0000 10.0000 4.1962 10.2934 5.2389 15.0000 10.0000 4

20.4030 20.5716 3.3718 14.9177 0.8788 20.0012 20.4980 3.3497 9.4869 0.833

20.9934 20.5716 4.1229 11.9127 0.7280 20.4696 20.4980 4.3301 8.2828 0.795

1.9461 20.5128 5.6623 0.0000 1.0000 1.8398 20.5471 5.4902 0.0000 1.000

21.1804 21.0206 8.1430 8.1232 1.0000 21.0571 20.9985 7.6046 5.4285 1.000

10.3763 5.1976 15.0000 10.0000 5.6698 10.2164 5.5506 15.0000 10.0000 3

20.2036 20.5399 3.4062 12.7490 0.8931 20.1860 20.5282 3.3199 11.0884 0.821

20.9051 20.5399 4.0867 9.6572 0.6340 20.5709 20.5282 4.3557 10.1093 0.876

2.0530 20.4819 5.8758 0.0000 1.0000 1.7480 20.5734 5.3071 0.0000 1.000

21.1784 21.0238 7.7670 6.9327 1.0000 21.0517 20.9963 7.9530 6.3518 1.000

11.7435 6.2127 15.0000 10.0000 4.4913 9.0144 4.6435 15.0000 10.0000 4

20.2054 20.5338 3.3661 12.0453 0.8534 20.1853 20.5336 3.3560 11.6819 0.856

20.7110 20.5338 4.2688 10.4095 0.7879 20.7226 20.5336 4.1988 9.5075 0.743

3.2798 20.1380 8.5257 0.0000 1.0000 0.7313 20.8385 3.2571 0.0000 1.000

21.7279 21.1163 7.6289 12.7489 1.0000 20.6889 20.9252 8.0517 3.7937 1.000

9.7697 5.1479 15.0000 10.0000 4.2287 10.7054 5.5609 15.0000 10.0000 4
ct

u
de
t

ns
-
is-

luon

is
a check on numerical accuracy, while forl 5k, it be-
comes ( i 51

d Mil
2 5sl

2 , which can be used to reconstru
s1 , . . . ,sd .

Finally, for the benefit of the reader who is curious abo
them, graphs are shown in Fig. 11 of the differences
scribed by each of the PDF eigenvector sets. One sees
the steeper directions~small values ofl ! mainly control as-
01401
t
-

hat

pects of the quark distribution, while the shallower directio
~high values ofl ) control the gluon distribution, whose ab
solute uncertainty is larger. The variations in the gluon d
tribution show less variety than the quarks because the g
distribution is described by only three parameters~including
normalization! such that the most general variation for it
of the formDg/g5c11c2 logx1c3 log(12x).
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FIG. 11. Displacements of the
u quark and gluon distributions
f 1(x,Q)2 f 2(x,Q) at Q510
GeV corresponding toSl

12Sl
2 .

Length of dashes increases forl
51, . . .,16.
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