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Dengue fever is currently the most important arthropod-borne viral disease in Brazil. Mathematical modeling of
disease dynamics is a very useful tool for the evaluation of control measures. To be used in decision-making,
however, a mathematical model must be carefully parameterized and validated with epidemiological and
entomological data. In this work, we developed a simple dengue model to answer three questions: (i) which parameters
are worth pursuing in the field in order to develop a dengue transmission model for Brazilian cities; (ii) how vector
density spatial heterogeneity influences control efforts; (iii) with a degree of uncertainty, what is the invasion
potential of dengue virus type 4 (DEN-4) in Rio de Janeiro city. Our model consists of an expression for the basic
reproductive number (R0) that incorporates vector density spatial heterogeneity. To deal with the uncertainty
regarding parameter values, we parameterized the model using a priori probability density functions covering a
range of plausible values for each parameter. Using the Latin Hypercube Sampling procedure, values for the
parameters were generated. We conclude that, even in the presence of vector spatial heterogeneity, the two most
important entomological parameters to be estimated in the field are the mortality rate and the extrinsic incubation
period. The spatial heterogeneity of the vector population increases the risk of epidemics and makes the control
strategies more complex. At last, we conclude that Rio de Janeiro is at risk of a DEN-4 invasion. Finally, we stress the
point that epidemiologists, mathematicians, and entomologists need to interact more to find better approaches to
the measuring and interpretation of the transmission dynamics of arthropod-borne diseases.
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In the end of 1981, dengue fever (DF) reemerged in
Brazil after 58 years of absence (Osanai et al. 1983). Coming
from Central America and the Caribbean Islands, dengue
virus type 1 and 4 (DEN-1 and DEN-4) caused 11,000
confirmed cases of DF in Boa Vista, Roraima. In 1986, DF
emerged in Ceará (Northeast of Brazil) and Rio de Janeiro
(Southeast), triggering large outbreaks. By the year 2000,
all 26 Brazilian states had reported DF cases. In recent
years, outbreaks have increased in frequency, with a higher
proportion of dengue hemorrhagic fever cases (DHF). DF
is the most important arthropod-borne viral disease in the
country, being responsible for more than 2 million
accumulated cases and 200 deaths. The success of DF
invasion has two main reasons: (i) re-infestation of the
country by its mosquito vector Aedes aegypti, and (ii)
unplanned urbanization (Tauil 2001).

Rio de Janeiro city (RJC) has reported the largest
numbers of DF cases in Brazil. Five large epidemics have
occurred since 1986 (Fig. 1), when the virus was first
detected. In the 1986/1987 epidemics, 93 thousand cases
of DEN-1 were notified, the actual number of infected
individuals might have reached 1 million (Guia de doenças

Financial support: CNPq and Faperj
+Corresponding author. Fax: +55-21-2270.5141. E-mail:
pluz@procc.fiocruz.br
Received 20 December 2002
Accepted 13 August 2003

- dengue 2002). In April 1990, the second epidemic was
triggered by the arrival of DEN-2 through Niterói, a
neighbor city. In the 1995 and 1998 epidemics, both DEN-
1 and DEN-2 were responsible for more than 30 thousand
cases each virus (Nogueira et al. 1999). In 2001, DEN-3
was identified in the neighbor city of Nova Iguaçu
(Nogueira et al. 2001).

Despite the effort, dengue control has been a difficult
task. The overall dissemination of the mosquito  is evident
(Travassos Da Rosa et al. 2000, Teixeira et al. 2001), and
traditional (chemical) vector control measures do not seem
to make a real difference. Failure of the Ae. aegypti
eradication goal has prompted a change in the paradigm
of dengue control from a chemical-oriented strategy to
a more systemic approach that includes population
awareness, appropriate garbage disposal, surveillance
and vector control (Programa nacional de controle da
dengue 2002).

As control strategies become more complex, ap-
propriate assessment of risk, evaluation of control efforts,
and comparison of alternative strategies become more
dependent on mathematical models (Focks et al. 1995,
Esteva & Vargas 1998). A dengue mathematical model
would be very useful for the evaluation of the Brazilian
dengue control effort. To be used in decision-making,
however, a mathematical model must be carefully
parameterized and validated with epidemiological and
entomological data. Unfortunately, despite the research
effort on dengue in Brazil, information required for model
parameterization still lacks.
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The first aim of this work is to determine which
parameters are worth pursuing in the field in order to
develop a dengue transmission model for Brazilian cities.
Secondly, we analyze how much vector density spatial
heterogeneity influences control efforts. Finally, we
estimate, with a degree of uncertainty, the invasion
potential of  DEN-4 in RJC.

The invasion potential of a new pathogen is expressed
by the basic reproductive number (R0). R0 is understood
as the number of secondary infections that would be
generated by an index case, after its introduction into a
large susceptible population (Anderson & May 1991,
Massad et al. 2001). Considering homogeneous mixing of
the human population, we can restate R0 as the expected
number (or average number) of contacts that an infectious
individual has during its entire infectious period
(Hernandez-Suarez 2002). If  R0 >1, more than one
individual is infected on average by the index case. How
large the outbreak will be depends upon the magnitude of
R0. Knowledge of R0 is important for the assessment of
control strategies.

The model - Risk of dengue transmission between
humans is directly related to the density of infected
vectors. Although the vector is a necessary element of
the chain, state models can be used to represent the
dynamics without clear mention of the vector, assuming
that vector density is constant. In classical epidemic state
models, the population is subdivided into susceptible (X),
infected (Y), and recovered (R) states. The transition of
individuals between states occurs at a constant rate, and
individuals in the same state interact homogeneously.

Considering that vector density, in reality, varies
geographically, we opted for developing a simple model
with spatial heterogeneity of transmission risk. The areas
are classified into two types: one with high transmission
risk due to high vector density (h) and another with low
transmission risk due to low vector density (l). Infectious
individuals in area h are “more infectious” than individuals
in l areas because the risk of infecting a mosquito is greater
in area h. Geographical commutation of individuals  between
areas h and l is implicitly modeled as the movement of
individuals between the two infectious states.

The outbreak potential, R0, is computed as follows:
the index case starts its infectious period in either area h
or l. During this period, he commutes between the two
areas with daily probability δ. The expected number of
secondary cases produced by this person during the entire
infectious period (R0) is estimated as the expected daily
number of secondary cases produced in area h (λh), times
the time spent in h (Dh), plus the expected number of
cases produced daily in area l (λl), times the time spent in
that area (Dl). In mathematical notation: 0 h h l lR D Dλ λ= + .

Estimating Dh and Dl - Hernandez-Suarez (2002)
proposed an algorithm to estimate the time spent by an
infectious individual within different infectious states. Our
model is equivalent to case B described in his paper. In
this paper, we give a brief description of the method; we
refer the reader to the cited reference for further details.

Consider a continuous-time Markov chain model with
state space Ω = {X, Yh, Yl, R, Λ} where X, Yi and R are the
susceptible, infected and recovered populations, and
i = l or h. Λ represents the individuals who die from
dengue. Now, let Ω be partitioned into two subsets: ω =
{Yh, Yl} is the set of infective states and ∆ = {X, R, Λ} is
the set of reflecting states. An individual starts his
infectious period when he leaves ∆ to enter ω. He remains
in ω for a certain period of time until he recovers or die,
returning to ∆. The embedded Markov chain, T, for this
model is:

Where δ is the daily probability of commutating, r is the
daily probability of infection recovery, hΓ  and lΓ  are the
probabilities of the index case starting his infectious period
in h or l, respectively. The expected times spent in Yh and
Yl are defined as (Hernandez-Suarez 2002, equation 4):

                                                         where

are elements of the stationary distribution of matrix T
(Hernandez-Suarez 2002):
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Fig. 1: number of reported cases of dengue in the state and
municipality of Rio de Janeiro, from 1986 to 2001. Source: Centro
Nacional de Epidemiologia, Fundação Nacional de Sáude, Ministério
da Saúde and Secretaria Municipal de Saúde do Rio de Janeiro.
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Estimating λh and λl – R0 for vector-borne diseases has
traditionally been defined as (Anderson & May 1991,
Massad et al. 2001):

0R Dλ= ×where                         (1)        (2)

In this formulation, M and H are the densities of female
adult mosquitos and humans, respectively. M/H is the
average number of female mosquitos per person. a is the
daily bitting rate of female mosquitos, which makes
a×M/H the daily average number of bites received by an
individual. The probability of virus transmission from
human to mosquito is c, so the expected number of infected
mosquitos is a×M/H×c. Mosquitos, after taking an
infected blood meal, spend a period of time during which
they cannot transmit the virus to humans. This is called
the extrinsic incubation period τ. This period is long
compared to the mosquito life expectancy (1/µ), and only
a small fraction exp(-µt) of the initially infected mosquitos
survives this latency period. The fraction of infected
mosquitos that survives the incubation period will remain
infectious for the rest of their lives. These infectious
mosquitos will bite and infect humans at a daily rate of
a×b, where b is the probability of virus transmission from
an infected mosquito to susceptible human per blood meal.
In addition to the mosquito acquisition of the virus
through the bite on an infected human host, the virus
may also be passed on to other mosquito generations
through transovarial transmission. However, there is no
estimate in the literature of how efficient this transmission
is; we opted to not include this form of virus transmission
in our model.

The final model - The final model is a composition of
the time spent in each area multiplied by the local force of
infection:

0 h h l lR D Dλ λ= × + ×    (3)
where the local force of infection for each area (  and h lλ λ )
is:

                                                                                        (4)

The assumption is that the two regions are similar in all
aspects but the vector-to-host relative density, which is
higher in h. This implies that, h lλ λ> . Note that the
condition for an epidemic in the presence of vector density
spatial heterogeneity remains the same: R0 >1. Moreover,
note that the model assumes that mosquito-to-person ratio
is constant. This is a reasonable assumption if only short
term dynamics is of interest (approximately 1 month).

Parameter values - Similarly to humans, mosquitos
differ among themselves in terms of their life history traits.
Besides individual variations, the environment
(temperature and humidity) also has strong effect on the
life history. Another source of uncertainties regarding
appropriate parameter values is the scarcity of the data
available for the Brazilian mosquito population, and the
diversity among the international data. These un-
certainties and variations can be incorporated into the
model by associating a range of possible values to the
parameters. Probability density functions (pdf) were
specified for each parameter. The shape of each pdf

represents our current knowledge about an aspect of the
disease natural history (Blower & Dowlatabadi 1994). The
bibliographical review we performed for the choice of the
pdf was not comprehensive and it is likely that more
information could be used to design less uncertain pdf.
However, the aim was not to propose the most adequate
pdf, but to indicate parameters that should be targeted by
field research in Brazil. In the Table, we briefly describe
the parameters, the information available in the literature
and the pdfs used for each parameter. Please refer to original
articles for any further information.

Estimating vector density spatial heterogeneity - In
Brazil, urban vector infestation is expressed as the
percentage of edifications positive for immature forms of
the vector (the house index). The RJC health department
publishes regularly a map classifying the neighborhoods,
by the house index, into three groups: 0.01-2%, 2-5%, and
5-12%. In 2001, the house index of RJC per neighborhood
varied from 0.01% to 12%, with most neighborhoods not
exceeding the 5% level (Combate à dengue - Índice de
pendência dos imóveis 2002). Based on the maps, we
classified the neighborhoods of RJC into two classes,
according to their level of mosquito infestation. The areas
classified as h in the model correspond to neighborhoods
with house index exceeding 2%. Areas classified as l in
the model correspond to neighborhoods with house index
less than 2%. A person with dengue in h will generate
more secondary cases than one staying in l. I.e., a person
restricted to h would generate R0h new infections. A
person restricted to l, would generate R0l cases. Since the
force of infection is greater in h, the following relationship
holds: R0h > R0l.

Uncertainty analysis - For the uncertainty analysis,
we used a Monte Carlo sampling procedure, the Latin
Hypercube Sampling (Mckay et al. 2000). This sampling
procedure has been described and used in deterministic
models of disease transmission (Blower & Dowlatabadi
1994, Porco & Blower 1998). The procedure is as follows:
each probability density function created for the
parameters is divided into 1000 intervals of equal marginal
probability (1/1000). Then, one value from each of these
intervals is randomly sampled. This approach produces
1000 sets of different parameter values, which are mixed at
random to produce input parameters for 1000 different
calculations of R0. As a result, we obtain 1000 different
values of R0. For each scenario proposed, the parameters
were re-sampled from their distributions. The distribution
of the output can be used to indicate the parameter space
in which the R0 assumes the characteristics of interest
(values above unity).

RESULTS

Infectious person stays in the h area - Suppose that
an individual infected with DEN-4 arrives in an h area of
RJC and stays there during his entire infectious period
(i.e., δ = 0, h = 1). After D days of infection, he will have
produced R0h new human infections. Although
uncertainty regarding the true ranges of the parameters
of dengue transmission in RJC precludes a precise
estimation of R0h, we can use the a priori pdf to find a
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confidence interval for this number. We calculated the
value of R0h for all set of parameters sampled from the a
priori pdfs, and found a 95% CI for R0h of [0.66-22.4].  Fig.
2 shows the results comparing the parameter values
that lead to prediction of outbreak (R0 > 1) and disease
extinction (R0 < 1). Successful transmission was obtained
for an average lifespan of at least 7.7 days, i.e. a mosquito
death rate of less than 0.13 day-1, and an extrinsic
incubation period of at most 17 days. Since low mortality
and short extrinsic incubation period are associated with
warm temperatures (Costero et al. 1998), this may well be
the situation in the h area of RJC. Parameters a, b and D
did not differ between the two qualitatively different
predictive scenarios.

Infectious person stays in the l area - Now, let’s suppose
that the DEN-4 index case starts of in an area of type l and
stays there during his infectious period (i.e., δ = 0, h = 0).
After D days, he will have produced R0l- new human cases.
Calculating the R0l for all set of parameters sampled from
the a priori pdf, we found a 95% CI for R0l of [0.03-14.4].
Almost half of the parameter space (48.6%) resulted into
an R0 > 1. This 48% of the parameter space corresponds

to a probability of 48%, given the sampling algorithm used.
Fig. 3 shows the results comparing the parameter values
that lead to prediction of outbreak (R0 > 1) and disease
extinction (R0 < 1). Similarly to the h scenario, outbreak in
area l was related to a low mosquito death rate and short
extrinsic incubation period.  Parameters a, b, c and D did
not differ between the two qualitatively different predictive
scenarios.

Infectious person commutes between h and l areas -
At last, let’s suppose that the index case arrives at either
the l or h area and commutes, at a rate δ, between areas
during his infectious period. The number of secondary
cases he will produce will be the sum of cases generated
in l and in h. If the index case initiates his infectious period
in l, and δ = 5, the 95% CI for R0 is [0.05 17.9]. If the index
case starts in h, and δ = 5, the 95% CI for R0 is [0.05 18.1].
The longest the time spent in h, the greater the number of
secondary cases produced, resulting in a greater parameter
space with R0 > 1 (Fig. 4). When commutation is high, a
steady state situation is achieved where the index case
stays 50% of his time in h and 50% in l. At this point,
R0 > 1 was observed in approximately 58% of the parameter

TABLE
Description of the parameters used in the model, information gathered in the literature regarding parameters values and

probability density functions used in the model

Parameter Symbol Information gathered in the literature A priori probability density
function

Duration of infectious period in humans D Focks (1995): 5 days Uniform probability
(days) Newton & Reiter (1992): 3 days density function within

the interval [3, 5]

Biting rate a Scott et al. (2000): 0.76 in Thailand Uniform probability
(bites/female day-1) and 0.63 in Puerto Rico density function within

Newton & Reiter (1992): 0.5 and 1 the interval [0.6, 1.2]
Focks (2000): 0.75 at 26oC and 1.2 at 32oC,
considering three blood meals per
gonothropic cylcle

Mosquito to human transmission b Focks (1995): 0.9 for b Uniform probability density
efficiency (ad) Watson & Kay (1999): 0.9 for b function within the interval
Human to mosquito transmission We found no information [0.5, 0.9] for each parameter
efficiency (ad) c  regarding parameter c

Extrinsic incubation period τ Focks (1995): 8 days at 30oC Triangular probability
(days) Watts et al. (1987): 7 days at 32 to 35oC. density function within

At 30oC: 12 days for high viral doses [7, 25] with mode at 12
and 25 days for low viral doses

Death rate of adult female mosquitos µ Focks (1993): S = 0.91 Uniform probability density
 estimated based on the daily survival Watson & Kay (1999): S = 0.85 function within [0.04, 0.17],
probability (S), exponential model Harrington et al. (2001): S = 0.73 which corresponds to the
(days-1) (Puerto Rico) and S = 0.82 (Thailand)  interval [0.83, 0.96] for S

Trpis & Hausermann (1986): S = 0.85
Muir & Kay (1998): S = 0.91
Costero (1998): S = 0.96

Mosquito per person density in the h Focks (2000): 0.34 to 2.75 Uniform probability density
high density area (h) and in the low l pupae per person function within [0.12, 11.2]
density area (l). Using the relationship for area h [0.09, 1.02] for
proposed by Focks (2000) to estimate area l
mosquito per person as a function of
pupae per person
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space. These 58% were, again, characterized by low
mosquito death rate (µ < 0.09 day-1) and low extrinsic
incubation period (τ <13 days) (data not shown).

DISCUSSION

The importance of the parameters µ (mortality rate)
and τ (extrinsic incubation period) can be inferred from
equation 3 since they enter the equation exponentially.
Our work shows that these two parameters continue to be
the most important parameters even in the presence of
vector density spatial heterogeneity and, therefore, are
worth estimating in field works. These parameters greatly
influence the number of secondary cases produced by an
index case, i.e. the basic reproductive number. At this
point it is important to bring attention to the fact that the
parameter values used in the model were not measured
for the current mosquitos infesting Brazil. It is extremely
necessary that we analyze our Ae. aegypti, its survival
and incubation period in the climate of RJC. In addition,
the other parameters which compose equation 4 also need
to be estimated in field works. Analysis of the spatial
variation of the vector capacity and biting rate of our
mosquito strains would greatly aid the modeling of the

disease. At last, we believe that other forms of virus
transmission in the mosquito population, such as
transovarial transmission, also need to be quantified in
field works since they may play a role in the dynamics of
the infected mosquito population.

For the second question, we conclude that the vector
density spatial heterogeneity affects the dynamics of
dengue since the commuting between areas with different
vector densities promotes the dissemination of the
disease. The reason is that the commuting exposes the
infected individual to different environments, and, as a
result, an epidemic has a greater chance of occurring. This
conclusion is extremely important when analyzing dengue
control strategies for large urban centers, as RJC. RJC is
heterogeneous, vector density varies within the city, and
its population does commute among different neigh-
borhoods. The surveillance and control programs
regarding the mosquito need to be done in large scale,
and with the aid of the population.

Another very important aspect of vector control
programs regards with the type of information gathered.
In 2001, the Brazilian Ministry of Health proposed the
Plan for Intensification of Actions for Dengue Control.

Fig. 2: box plots comparing parameter values that lead to prediction of outbreak (R0 > 1) and disease extinction (R0 < 1) in the scenario
where an infective person arrives and stays in area h. Boxes indicate 25-75 percentiles; whiskers indicate the 5-95 percentiles. EIP is the
extrinsic incubation period. We bring attention to the difference between the box plots for the mortality rate and the extrinsic incubation
period.
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One of the actions proposed in this plan is the im-
provement of the entomological and epidemiological
surveillance in order to increase the ability to predict and
detect outbreaks of the disease (Programa nacional de
controle da dengue 2002). For the entomological part, the
Plan proposes the surveillance of the house index as well
as the proportion of permanent breeding sites per
neighborhood. The goal of the control plan is to reduce
the infestation index to less than 1%. However, estimates
of house infestation do not translate directly into the
density of the mosquito population since it does not take
into account the size and larval capacity of the breeding
sites. For this work, we used the pupae-to-mosquito
relationship proposed by Focks et al. (2000) to estimate
the standing crop from the density of pupae. Fieldwork
would be necessary to validate this relationship in Brazil
or to propose other estimates of standing crop.

In a study carried out in a RJC adjacent municipality,
pupae were surveyed monthly, from Nov 1997 to Oct 1998,
in a set of tires (Honorio & Lourenco-De-Oliveira 2001).
They reported an average production of 0.08 to 5.08 pupae
per tire (all tires positive for larvae and eggs). Using the
relationship proposed by Focks et al. (2000), each tire

should produce from 0.028-20.7 females. If we consider
the relationship proposed by Focks et al. (2000) as valid
for RJC, then the standing crop produced by tires is quite
above the levels used in our model, suggesting that the
situation might be even more complicated. There is an
urgent need for a better analysis of the mosquito density:
number of breeding sites, their sizes and capacities.

At last, we found that RJC is prone to a DEN-4
epidemic. Our model shows that, even regions considered
as having a “low” infestation rate (1% infestation index),
can bear an epidemics. In RJC, most of the mosquito
breeding sites are located in houses. A large fraction of
the population does not allow access of vector control
professionals to their houses. We must rely strongly on
population education and hope that residents take
responsibility regarding the control of breeding sites at
their own houses.

Using ecology terminology, we can say that h and l
neighborhoods are source and sink habitats for the dengue
virus. In source-sink structured environments, some
habitats allow a positive net growth rate of a population
(sources) and a negative net growth rate in the other
fraction (sinks). A population may persist in a sink habitat

Fig. 3: box plots comparing parameter values that lead to prediction of outbreak (R0 > 1) and disease extinction (R0<1) in the scenario
where an infective person arrives and stays in area l. Boxes indicate 25-75 percentiles; whiskers indicate the 5-95 percentiles. EPI is the
extrinsic incubation period. We bring attention to the difference between the box plots for the mortality rate and the extrinsic incubation
period.
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if there is sufficient migration from the source. Theoretical
models with spatial variation suggest that dispersal may
have a strong stabilizing effect on population dynamics
and species interaction, promoting coexistence of
competitors, preventing extinction in host-parasitoid and
predator-prey systems.

We conclude this work stressing the need for a closer
interaction between mathematicians, epidemiologists and
entomologists in order to find better approaches to the
measuring and interpretation of the transmission dynamics
of arthropod-borne diseases. Parameters estimation in field
works will greatly aid the modeling of the disease, making
it more realistic and useful. We believe that the surveillance
and control policies based on careful scenario analysis
will benefit from this interaction.
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