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Abstract

We utilize a more accurate range noise model for 3D
sensors to derive from scratch the expressions for the
optimum plane fitting a set of noisy points and for
the combined covariance matrix of the plane’s param-
eters, viz. its normal and its distance to the origin.
The range error model used by us is a quadratic func-
tion of the true range and also the incidence angle.

Closed-form expressions for the Cramér-Rao uncer-
tainty bound are derived and utilized for analyzing
four methods of covariance computation: exact max-
imum likelihood, renormalization, approximate least-
squares, and eigenvector perturbation. The effect of
the simplifying assumptions inherent in these meth-
ods are compared with respect to accuracy, speed,
and ease of interpretation of terms.

The approximate least-squares covariance matrix
is shown to possess a number of desirable properties,
e.g., the optimal solution forms its null-space and its
components are functions of easily understood terms
like the planar-patch’s weighted centroid and scatter.
It is also fast to compute and accurate enough in
practice. Its experimental application to real-time
range-image registration and plane fusion is shown
by using a commercially available 3D range sensor.
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1 Introduction

Spatial cognition is a key capability for autonomous
intelligent robots to be useful in daily life scenar-
ios. The availability of fast 3D sensors is pushing
the envelope of faster algorithms for 3D perception

and mapping. The algorithms developed for 2D map-
ping using Laser Range Finders (LRF) do not always
scale well to 3D, e.g. the generalization of traditional
occupancy-grid 2D maps to three dimensions is hin-
dered by the disproportionate increase in storage and
computation requirements.

The input data for a typical 3D mapping algorithm
is a “point-cloud” obtained from a range-sensor like
a rotating LRF [16] or a time-of-flight sensor like the
Swiss-ranger [2] and the PMD [12]. Mapping meth-
ods based directly on point-clouds are usually off-line
[7]. There have been recent attempts to use feature-
based 3D mapping, where the features are usually
planar patches [19, 18, 6] extracted from the point-
clouds by a variation of the region-growing algorithm
[13]. This results in a compact semantic representa-
tion of the environment which is faster to compute
and requires much less storage than a voxel-grid.

3D Plane Simultaneous Localization and Mapping
(SLAM) was recently introduced in [9], which utilizes
large planar patches to generate 3D maps. Some ex-
ample maps are shown in Fig. 1. 3D Plane SLAM
consists of the following steps, which are repeated at
each sampling step:

1. Acquisition of 3D range scans.

2. Extraction of planes including uncertainties.

3. Registration of scans based on plane sets (plane-
matching).

4. Embedding of the registrations in a pose-graph.

5. Loop detection and relaxation of pose-graph.

In this article, we concentrate on a discussion of the
second step, i.e., an efficient extraction of the planes
and the related uncertainties, which forms the very
basis for 3D Plane SLAM.

Given a set of noisy points known or hypothized
to lie on a plane, the “optimum” plane can be ex-
tracted from them using methods surveyed in [17].
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(a) (b) (c) Robot collecting
data.

(d) (e)

(f) The top view of the 3D Plane Registration map. The
robot starts at top left and goes clockwise around.

(g) The tilted top view showing the windows at the far end
which are visible in Fig. 1(a).

Figure 1: Figs. 1(a)–1(e) show data being collected in a robot test arena in the form of a multi story
high-bay-rack. Figs. 1(f)–1(g) show the resulting plane-based 3D map. The robot’s location is shown in
the map by its to-scale 3D avatar with a red chassis. The color of the planar surfaces was chosen by the
plane-matching algorithm to show surface-correspondence across scans.
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The main methods are that of least-squares [19, 17]
and renormalization [5, 4]. The latter uses a more
detailed error-model for the 3D points which results
in better estimations with respect to the assumed
model. This is achieved, however, at the cost of
a computationally expensive iterative method which
is not suited for a real-time application. The main
drawback of this method is the use of an outdated
range resolution model which does not incorporate
the effect of incidence-angle, and wherein the range
standard-deviation is a linear rather than a quadratic
function of the true range. Another aspect which
needs reexamination is the computation of covariance
matrix of the estimated plane parameters from the
point of view of a trade-off between accuracy and
computation-time.

This article is organized as follows: in Sec. 2, we
formulate the maximum likelihood and least-squares
plane extraction problems and derive useful prop-
erties of the exact solution based on an accurate
range noise model. In Sec. 3, we derive an ap-
proximate solution suitable for real-time applications
along with analytical expressions for the its covari-
ance. In Sec. 4 another analytical solution for the
covariance is derived using the eigenvector pertur-
bation method. These two methods are numerically
compared to the method of renormalization in Sec. 5.
Finally, an application of the plane covariance matri-
ces for plane fusion using real-world data is presented
in Sec. 6 followed by conclusions in Sec. 7.

2 Problem Formulation

In this section, we briefly rederive the optimum plane
parameters from scratch because this serves to high-
light the various assumptions made along the way and
the effects of using a new range sensor noise model.
The equation of a plane is n̂ · r = d, where n̂ is the
plane’s unit normal and d the distance to the ori-
gin. Assume that the sensor returned a point-cloud
rj = ρjm̂j , j = 1 . . . N , where, m̂j are the mea-
surement directions for the sensor, usually accurately
known, and ρj are the respective ranges which are
noisy.

2.1 Maximum Likelihood and Least

Squares Plane Estimation

We make the assumption of radial Gaussian noise,
i.e. ρi ∼ N

{

ρ̄i, σ
2{ρ̄i, n̂ · m̂i}

}

, where {·} encloses
function arguments, and ρ̄i = d/(n̂ · m̂i) is the true

range of i -th measurement. This implies a covariance

matrix of rj of the form

Cr,j = σ2{ρ̄j , n̂ · m̂j} m̂jm̂
T
j , (1)

where the range standard-deviation σ{ρ̄j , n̂ · m̂j} is
explicitly a (usually quadratic) function of ρ̄j and has
been found to be inversely proportional to n̂ ·m̂j , i.e.
the cosine of the incidence-angle [1].

The likelihood of plane-parameters (n̂, d) given
range sample ρi along measurement direction m̂i is

p(ρi | n̂, d, m̂i) =

1√
2πσ{ρ̄i, n̂ · m̂i}

exp

{

−1

2

(ρi − d/(n̂ · m̂i))
2

σ2{ρ̄i, n̂ · m̂i}

}

(2)

Then, considering a sequence of samples i = 1 . . . N ,
ignoring constant terms, and defining a binary switch

β = 0/1, the log-likelihood function to be maximized
is as follows

max
n̂,d

LGMLP = −β
N
∑

i=1

log σ{ρ̄i, n̂ · m̂i}

− 1

2

N
∑

j=1

(ρj(n̂ · m̂j) − d)
2

(n̂ · m̂j)2σ2{ρ̄j , n̂ · m̂j}
, (3)

where, GMLP stands for General Maximum Likeli-

hood Problem for β = 1. The General Least Squares

Problem (GLSP) can be obtained from GMLP by
simply setting β = 0. For GLSP, the above can be
equivalently rewritten as

min
n̂,d

N
∑

j=1

(ρj(n̂ · m̂j) − d)
2

(n̂ · m̂j)2σ2{ρ̄j , n̂ · m̂j}
. (4)

We note that the above expression is exactly the
same as the weighted least-squares cost function in
[5, Eq. (8)], except that it is rewritten in our nota-
tion on substitution of (1). No particular functional
dependence has been enforced on σ2{ρ̄j , n̂ · m̂j} yet.

The optimization (3) cannot be handled analyti-
cally, especially as σ is a function of ρ̄j = d/(n̂ · m̂i)
and n̂ · m̂i. One approach is to handle the problem
numerically using iterations– as is done in the renor-
malization method of [5]. It has the advantage of
having higher accuracy. Additionally, it assumes a
linearly varying standard-deviation σ{ρ̄j , n̂ · m̂j} =
κ1ρ̄j , independent of the incidence-angle, and simul-
taneously estimates the value of κ1 during the itera-
tions. However, there are two main reservations re-
garding this approach.

Firstly, an iterative method is usually not suit-
able for real-time applications. Secondly, and more
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importantly, as shown in [14, 1, 8], the standard-
deviation of commonly available 3D sensors like the
Swiss-ranger and Laser-range-finder (LRF) is more
accurately modeled by a function of the form

σ{ρ̄j , n̂ · m̂j} =
σ̂{ρ̄j}
|n̂ · m̂j |

, where,

σ̂{ρ̄j} , κρ̄2
j ≡ κd2

|n̂ · m̂j |2
(5)

where n̂ is the local normal to the surface the point
rj lies on. The coefficient κ > 0 can be estimated by
doing initial calibration experiments with the sensor.
In fact, on substitution of the LHS of (5) in (3), we
get,

max
n̂,d

LEMLP = −β

N
∑

j=1

log
σ̂{ρ̄j}
|n̂ · m̂j |

− 1

2

N
∑

j=1

(n̂ · rj − d)
2

σ̂2{ρ̄j}
,

(6)

where, EMLP stands for Exact Maximum Likelihood

Problem. If β = 0, we get the Exact Least Squares

Problem (ELSP). The ELSP expression is both more
accurate and simpler-looking than the cost function
considered in [5], which is equivalent to the cost in (4)
with σ{ρ̄j , n̂ · m̂j} ≡ κ1ρ̄j . On expanding (6) using
RHS of (5), and ignoring constants, we get

max
n̂,d

LEMLP = −2βN log d + 3β

N
∑

j=1

log |n̂ · m̂j |

− 1

2

N
∑

j=1

(n̂ · m̂j)
4 (n̂ · rj − d)

2

κ2d4
. (7)

As m̂j are the measuring directions of the sensor,
from arguments of geometric consistency of points
on a plane observed along these directions we take
|n̂ · m̂j | ≡ n̂ · m̂j in what follows.

2.2 Properties of the Solution

We denote the ground-truth values of n̂, d by n̄, d̄. To
save space, we define the error in the plane-equation
for some estimate n̂, d at sample rj as

ǫj , n̂ · rj − d. (8)

Although only a numerical solution of (7) is pos-
sible, we can show that unless β = 0, the solu-
tion is biased. To this end, we define a Lagrangian
L = LEMLP − 1

2
λ(n̂T n̂ − 1), where λ is the usual

Lagrange multiplier. Since at the optimum estimate

n̂⋆, d⋆, the gradient vanishes,

∂L
∂d

= −2βN

d
+

1

κ2d4

N
∑

j=1

(n̂ · m̂j)
4

(

ǫj +
2ǫ2j
d

)

,

(9a)

∂L
∂n̂

= −λn̂ + 3
N
∑

j=1

β
m̂j

n̂ · m̂j

− 1

κ2d4

N
∑

j=1

(n̂ · m̂j)
3
(

2ǫ2jm̂j + ǫj(n̂ · m̂j)rj

)

.

(9b)

At n̂⋆, d⋆, the above expressions equate to zero and

λ⋆ = 3βN − 1

κ2d4

N
∑

j=1

(n̂ · m̂j)
4
(

2ǫ2j + ǫj(n̂ · rj)
)

.

(9c)

The Hessian of (7) at λ = λ⋆, n̂ = n̂⋆, d = d⋆ can
be computed as follows after some algebra

∂2L
∂d2

= − 1

κ2d4

N
∑

j=1

(n̂ · m̂j)
4

(

1 +
8ǫj

d
+

10ǫ2j
d2

)

+
2βN

d2
(10a)

∂2L
∂d ∂n̂

=
1

κ2d4

N
∑

j=1

4ǫj(n̂ · m̂j)
3

(

1 +
2ǫj

d

)

m̂j

+
1

κ2d4

N
∑

j=1

(n̂ · m̂j)
4

(

1 +
4ǫj

d

)

rj , (10b)

∂2L
∂n̂2

= −λ⋆I −
1

κ2d4

N
∑

j=1

(n̂ · m̂j)
4rjr

T
j

− 4

κ2d4

N
∑

j=1

ǫj(n̂ · m̂j)
3
(

m̂jr
T
j + rjm̂

T
j

)

− 6

κ2d4

N
∑

j=1

ǫ2j (n̂ · m̂j)
2m̂jm̂

T
j

− 3β

N
∑

j=1

m̂jm̂
T
j

(n̂ · m̂j)2
(10c)

HEMLP ,





∂2L
∂n̂2

(

∂2L
∂d ∂n̂

)

(

∂2L
∂d ∂n̂

)T
∂2L
∂d2



 . (10d)

Using results from [15, 4], we can find the 4 × 4
plane-parameter covariance matrix

CEMLP ≡ −H+
EMLP

, (11)
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i.e., the negative of the Moore-Penrose generalized

inverse of the Hessian. The generalized inverse is
necessary because the Hessian may be singular.

2.2.1 The Cramér-Rao Lower Bound on Co-

variance

The Cramér-Rao (CR) lower bound, denoted C̄EMLP,
is applicable only to unbiased estimators [4], for
which the optimum solution is the ground-truth n̄, d̄.
It can be computed as the negative inverse of the
expected-value of the Hessian derived in (10). Since
the ground-truth is not known in practice, this bound
cannot be found. However, in simulations this ideal
value can be used to compare the estimated covari-
ances found using various methods. We note that its
derivation in [10] was not complete: we now proceed
to derive the correct expression for it.

We would first need to compute the following ex-
pected values. Using Eqs. (1), (5), and (8), we can
compute the following expectations

E(ǫj) = 0, (12a)

E(ǫ2j ) = n̄T Cr,jn̄ ≡ σ̂2
j ≡ κ2d̄4

(n̄ · m̂j)4
, (12b)

E(rj) ≡ r̄j =
d̄ m̂j

n̄ · m̂j
, (12c)

E(rjr
T
j ) = E(Cr,j) + r̄j r̄

T
j

≡
( κ2d̄4

(n̄ · m̂j)6
+

d̄2

(n̄ · m̂j)2

)

m̂jm̂
T
j , (12d)

E(ǫjrj) = E((rjr
T
j )n̂ − d rj) ≡

κ2 d̄4

(n̄ · m̂j)5
m̂j .

(12e)

We now substitute the above expectations in (10),

and after some tedious algebra, we obtain

E(λ⋆) = 3βN − 3N, (13a)

E
(∂2L

∂d2

)

= − 1

κ2d̄4

N
∑

j=1

(n̄ · m̂j)
4 − N(10 − 2β)

d̄2
,

(13b)

E
( ∂2L

∂d ∂n̂

)

=
N
∑

j=1

(n̄ · m̂j)
3

κ2d̄3
m̂j +

N
∑

j=1

12

d̄(n̄ · m̂j)
m̂j ,

(13c)

E
(∂2L

∂n̂2

)

= −
N
∑

j=1

(n̄ · m̂j)
2

κ2d̄2
m̂jm̂

T
j

−
N
∑

j=1

15 + 3β

(n̄ · m̂j)2
m̂jm̂

T
j , (13d)

E(HEMLP) ,





E(∂2L
∂n̂2 ) E

(

∂2L
∂d ∂n̂

)

E
(

∂2L
∂d ∂n̂

)T

E(∂2L
∂d2 )



 . (13e)

The first terms on the right hand side of Eqs. (13b),
(13c), (13d) are the ones which were given in [10].
They need to be corrected by the corresponding sec-
ond terms. We can write these terms as

E(HEMLP) = H̄1 + H̄2, (14)

where, H̄1 contains the first terms and H̄2, the sec-
ond. As noted in [10], H̄1 has the interesting property
that [n̄T , d̄]T lies in its null-space.

Finally, the Cramér-Rao covariance bound is

C̄EMLP ≡ −E(HEMLP)+. (15)

Note that −E(HEMLP) is also called the Fisher In-
formation matrix F.

Another way of finding this bound is using the
terms in the Gaussian of Eq. (2). We define the pa-
rameter vector θ ,

(

n̂

d

)

, and compute

− F ≡ E(HEMLP) =

−
N
∑

k=1

[

∂ρ̄k

∂θ
σ−2

k

(

∂ρ̄k

∂θ

)T

+
1

2
σ−2

k

∂σ2
k

∂θ
σ−2

k

(

∂σ2
k

∂θ

)T
]

(16)

We have verified that this leads to the same results
as in Eqs. (13). Furthermore, the first summation
in (16) turns out to be H̄1 and the second H̄2. For
the noise-model considered, the contribution of H̄2 is
numerically found to be significantly less than that
of H̄1, and thus it continues to be true that eigen-
vector corresponding to the smallest eigenvalue of
E(HEMLP) is almost parallel to [n̄T , d̄]T .
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3 Approximate Solution and

Computation of Covariance

Matrix

The objective of this work is to explore if, under
reasonable simplifying assumptions, one can obtain
a fast estimation of the plane parameters and their
covariance matrix without iterations. When extract-
ing planar patches from a range-image using region-
growing, the plane-fitting algorithm is called many
times per range-image, and an iterative algorithm is
unsuitable for this. The solution of ELSP cannot
be done analytically– hence, in the sequel we explore
ways of solving it in an approximate but fast manner.

To proceed with the approximate solution, we
make the assumption that σ̂(ρ̄j) ≈ σ̂(ρj). We de-

fine σ̂i , σ̂(ρj) and note that σ̂i is now no longer a
function of ρ̄j and hence of n̂ and d. Using Eq. (6)
and setting β = 0, we get

max
n̂,d

LALSP = −1

2

N
∑

j=1

(n̂ · rj − d)
2

σ̂2
j

, (17)

where ALSP stands for Approximate Least Square

Problem.

3.1 Solution of ALSP and Covariance

Estimation

ALSP is a well studied problem, see for example [18].
Although the solution is well-known, the covariance
matrix computation is done in various ways in the
literature. The method presented in [18] is particu-
larly redundant as it solves the optimization problem
twice: It first finds the optimum plane in the (n̂, d)
space, then rotates the plane such that the z axis is
parallel to n̂, and subsequently translates the plane
such that d = 0. Finally, another best-fit is done us-
ing the plane-equation of the form z = β0+β1x+β2y.
The problem is essentially re-solved for this form
by least-squares to obtain the covariance matrix for
β0, β1, β2. The procedure is justified by saying that
it provides an analytical way of obtaining the covari-
ance and it avoids the matrix singularity in (n̂, d)
space.

We show that the covariance matrix can be ob-
tained analytically also in the (n̂, d) space. We see
the fact that the null-space of the covariance matrix
consists of the optimal solution as an asset which
can be used to efficiently fuse planes. In fact, we
show that this covariance matrix also contains other
summarized information about the point cloud from
which it was extracted, like its center and scatter.

As before, we have a constrained optimization
problem which can be solved using Lagrange mul-
tipliers. Defining the Lagrangian

L = LALSP + λ(n̂Tn̂ − 1) (18)

Setting ∂L/∂d = 0 gives the well-known solution

d⋆ = n̂⋆ · rG, rG ,
(

N
∑

j=1

σ̂−2
j

)−1
N
∑

j=1

(

σ̂−2
j rj

)

,

(19)

where rG is the weighted center of the point-cloud.
Substituting the above in (17) gives

n̂⋆ = arg min
‖n̂‖=1

n̂T
(

N
∑

j=1

σ̂−2
j (rj − rG)(rj − rG)T

)

n̂

, arg min
‖n̂‖=1

n̂T Sn̂, (20)

where, S is the positive semi-definite weighted scat-
ter matrix. The solution n̂⋆ is then the eigenvector
corresponding to the minimum eigenvalue of S.

As done in Sec. 2.2, the covariance matrix of the
optimal solution can simply be obtained by finding
the Hessian of the Lagrangian (18) at n̂⋆, d⋆, λ⋆. Its
expressions are

λ⋆ =
1

2
n̂T

⋆ Sn̂⋆, (21a)

∂2L
∂d2

= −
N
∑

j=1

1

σ̂2
j

, −µ, (21b)

∂2L
∂d ∂n̂

=

N
∑

j=1

rj

σ̂2
j

≡ µ rG, (21c)

∂2L
∂n̂2

= −
N
∑

j=1

rjr
T
j

σ̂2
j

+ 2λ⋆I,

≡ −S − µ rGrT
G +

(

n̂T
⋆ Sn̂⋆

)

I. (21d)

Using the above, the ALSP Hessian is computed by

HALSP =

[

∂
2
L

∂n̂
2

∂
2
L

∂d∂n̂

( ∂
2
L

∂d∂n̂
)T ∂

2
L

∂d2

]

=

[

Hnn Hn̂d

H
T

n̂d Hdd

]

ALSP

(21e)

Finally, the covariance matrix is

CALSP = −H+
ALSP

. (21f)

Using Eqs. (21), it is easily verified that

HALSP

[

n̂⋆

d⋆

]

= 0, ⇒ CALSP

[

n̂⋆

d⋆

]

= 0. (22)

It is a remarkable property of the ALSP solution,
i.e. it lies precisely in the null-space of its covariance
matrix.
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4 Method of Eigenvector Per-

turbation for Covariance

Computation

Another method to compute covariances was derived
in a different context in [20]. We would like to confirm
the computation of Hessian based covariance with
their method. For this, however, we need to refor-
mulate the problem similar to [5]. We define a unit
vector in parameter space

ν̂ =
(

ν1 ν2 ν3 ν4

)T
=

1
√

‖n̂‖2 + d2

(

n̂

d

)

.

(23)

Then the equation of the plane is

ν̂ ·
(

r

−1

)

, ν̂ · ̺ = 0, C̺,i =

(

Cr,i 0

0 0

)

, (24)

where (1) has been used. Then, the ALSP (17) can be
reformulated to the Eigenvector Perturbation Prob-

lem (EVPP)

min
‖ν̂‖=1

LEVPP =

N
∑

j=1

ν̂
T ̺j̺

T
j

σ̂2
j

ν̂ , ν̂
T
Mν̂. (25)

The solution ν̂⋆ is simply the eigenvector correspond-
ing to the minimum eigenvalue of the symmetric pos-
itive semi-definite matrix M. The uncertainty in ν̂⋆

can be computed using the method of [20]. The spe-
cialization of this method to the present problem is,
however, derived by us, and we have not found it
elsewhere.

The symmetric positive semi-definite matrix M has
the decomposition M = VΛVT , where the orthonor-
mal matrix V contains the eigenvectors correspond-
ing to the eigenvalues λi in the diagonal matrix Λ.
The eigenvectors are assumed to be sorted in ascend-
ing order, so that λ1 is the eigenvalue corresponding
to ν̂⋆. If M is perturbed by a small disturbance ∆M ,
ν̂⋆ is perturbed by

δν̂⋆
= V∆1V

T ∆M ν̂⋆, where, (26)

∆1 = diag{0, (λ1 − λ2)
−1, (λ1 − λ3)

−1, (λ1 − λ4)
−1}.

∴ Cν̂⋆
= E [δν̂⋆

δT
ν̂⋆

] = V∆1V
TE [∆M ν̂⋆ν̂

T
⋆ ∆T

M ]V∆1V
T

= V∆1V
T C∆M ν̂⋆

V∆1V
T , (27)

where E [·] is the expectation operator. Let the per-

turbation ri = r̄i + δri
, δri

≡
(

δxi
δyi

δzi

)T
. One

can easily derive that

∆M =
N
∑

i=1

1

σ̂2
i









2δxi
xi xiδyi

+ yiδxi
xiδzi

+ ziδxi
−δxi

xiδyi
+ yiδxi

2δyi
yi yiδzi

+ ziδyi
−δyi

xiδzi
+ ziδxi

yiδzi
+ ziδyi

2δzi
zi −δzi

−δxi
−δyi

−δzi
0









.

(28)

Using this one can derive a matrix Ni{ν̂⋆}, a function
of ν̂⋆, such that,

∆M ν̂⋆ =
N
∑

i=1

1

σ̂2
i

Ni{ν̂⋆}δri
, which gives the result

C∆M ν̂⋆
=

N
∑

i=1

1

σ̂2
i

Ni{ν̂⋆}Cr,iN
T
i {ν̂⋆}. (29)

On substitution in (27), we get the required covari-
ance Cν̂⋆

.

We can now recover our optimum solution in the
(n̂, d) space by applying the following reverse trans-
form to ν̂⋆

(

n̂

d

)

= g{ν̂} ,
1

√

1 − ν̂2
4

ν̂. (30)

Transforming Cν̂⋆
to the (n̂, d) space by the usual

Jacobian method presents an interesting paradox,
which has not been addressed by previous researchers
[5], who have used a similar transform.

4.1 A Paradox In Covariance Matrix

Transformation

Given a symmetric positive semi-definite matrix C,
its eigenvectors are the unit-directions ν̂ in the space
of definition, where the quadratic product ν̂

T
Cν̂

achieves a minimum or maximum [3]. Since a unit-

vector is identical in the (n̂, d) space as well as in
the space of ν̂ of (23), we expect that Cν̂⋆

will have
the same eigenvectors (though not eigenvalues) as the
covariance Cn̂,d in (n̂, d) space. We have verified nu-
merically that this is true (details in Sec. 5, Figs. 2(b),
3(b), 2(c), 3(c)). However, these two matrices are also
supposed to be related by

Cn̂,d = JCν̂⋆
JT . (31)
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An obvious way to compute the Jacobian J is

J ,
∂g

∂ν̂
= (1 − ν̂

2
4)

−1/2













1 0 0 ν̂1ν̂4

1−ν̂
2

4

0 1 0 ν̂2ν̂4

1−ν̂
2

4

0 0 1 ν̂3ν̂4

1−ν̂
2

4

0 0 0 1

1−ν̂
2

4













. (32)

The same Jacobian was used in [5], but with the bot-
tom right corner element negated as they had defined

ν̂ = (‖n̂‖2+d2)−1/2

(

n̂

−d

)

instead of as in (23). How-

ever, unless ν̂4 = 0, this Jacobian rotates the eigen-
vectors of Cν̂⋆

, which contradicts our earlier obser-

vation that the eigenvectors should remain unrotated.
In fact, this Jacobian is incorrect because it assumes
that the components of ν̂ can be independently per-
turbed, whereas this is not true as ‖ν̂‖ = 1. The
correct Jacobian is

J , (1 − ν̂
2
4)

−1/2I4, (33)

which merely scales and which will be used in this
paper along with (31) to transform the covariance to
the (n̂, d) space.

5 Comparison of Methods

We will compare four methods: renormalization [5],
ALSP (Sec. 3), EVPP (Sec. 4), and the EMLP
(Sec. 2.2 with β = 1). The comparison is done
in simulation because the “ground-truth” is known
accurately in simulation and hence the lower-bound
covariance matrix C̄EMLP of Sec. 2.2.1 can be com-
puted.

Let the eigen-pair of C̄EMLP in which the eigen-
vector is almost parallel to the solution be denoted
as λ̄0, τ̄0, and the rest of the eigen-pairs are sorted
according to the eigenvalues and and denoted as
λ̄j , τ̄j , j = 1 . . . 3.

Given the covariance matrix estimation of method
i as Ci with sorted eigenvalues and their eigenvec-
tors as λi,j , τ̂i,j , j = 0 . . . 3, and i = renormalization,
ALSP, EVPP, and EMLP. We define the following
three error metrics which are plotted for all the meth-
ods in Figs. 2, 3, and 4:

Square of Mahalanobis Distance ε1 This
metric, ideally zero, is defined as follows for the i-
th method

ε1 , (τ̂i,0 − τ̄0)
T C̄+

EMLP
(τ̂i,0 − τ̄0). (34)

Principal Uncertainty Directions Error ε2

Weighted sum of angular errors in the principal un-
certainty directions of the i-th method, which should
be ideally zero.

ε2 ,

3
∑

j=1

wj cos−1(τ̄j · τ̂i,j), wj ,
λ̄j

λ̄1 + λ̄2 + λ̄3

.

(35)

Relative Total Uncertainty ε3 Lower
bounded by unity.

ε3 , (λi,1λi,2λi,3)/(λ̄1λ̄2λ̄3). (36)

We simulated the commercial 3D sensor Swiss-
ranger and took its experimentally determined pa-
rameter κ = 0.0018 (with all lengths in meters) from
[1]. The measuring directions m̂j , j = 176 × 144
were taken to be the same as that of the real device.
Samples were generated using the noise model of (5).
We considered infinite planes at a constant distance
from origin d = 4 meters but with varying normals
as a function of spherical coordinates

n̂ =
(

cos θ cos φ cos θ sin φ sin θ
)T

. (37)

In Figs. 2, 3, and 4, the three error metrics are plot-
ted as a function of θ and φ. The four corners of
the plots have been truncated as they correspond to
samples for which the range is more than the device’s
maximum range of 7.5 meters. The color-scale is dif-
ferent for all plots and should be noted carefully for
proper comparison.

Discussion

Fig. 2 shows that as expected, EMLP, which is
based on iterative constrained nonlinear optimiza-
tion, is the most accurate method. Renormalization
also is relatively accurate, which shows that the so-
lution (though not the estimated covariance) is not
strongly dependent on the noise model. The non-
iterative ALSP and EVPP method have similar ac-
curacy.

Fig. 3 shows that the wrongly assumed model in
renormalization leads to a systematic error pattern
for ε2. The ALSP and EVPP methods are surpris-
ingly accurate in estimating the principal error direc-
tions.

In Fig. 4, one notices that for the Renormalization,
ALSP, and EVPP methods, the ratio of the estimated
uncertainty to the least possible uncertainty steadily
worsens as the incidence angle to the plane increases.
EMLP does not show this effect and is also the most
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method where the ratio stays closest to unity. Inter-
estingly, the ratio sometimes is even slightly less than
unity, which suggests that EMLP may be a biased es-
timator, since the Cramér-Rao bound is only applica-
ble to unbiased estimators. This bias, if any, is quite
small however, as is clear from Fig. 4. Renormal-
ization also sometimes reports ratios less than unity:
however, this is not trustworthy because it is based
on a different noise model.

We compared the computation times for the three
algorithms in MATLAB, although ALSP has been
implemented in C++ also. In MATLAB, the aver-
age computation time (in 840 runs) per sample of
176 × 144 points took 0.0052 secs., renormalization
0.4393 secs., EVPP took 0.3332 secs, and the iter-
ative non-linear optimization for EMLP took about
15 secs. Renormalization is slower as expected be-
cause it is iterative. EVPP is non-iterative and could
possibly be made faster by a more efficient imple-
mentation. For run-times of a C++ implementation
of a full-fledged region-growing algorithm with em-
bedded ALSP, see Sec. 6. In summary, ALSP seems
to be a good alternative for covariance computations
in real-time applications. Another advantage of the
covariance of the ALSP is that its components are
known in terms of easily understood quantities like
point-cloud scatter and their weighted mean– this se-
mantic information is lost in the EVPP covariance,
although numerically its performance is quite close to
that of ALSP. EMLP is the most accurate method,
but also computationally the most expensive. It is
therefore recommended only for offline optimization.

6 Application: Plane Fusion af-

ter Scene Registration

In this section, we provide an application of the co-
variance estimate provided by ALSP for fusing two
estimates of plane-parameters. Let the point-clouds
corresponding to the same physical plane be sampled
from two sensor reference frames Fℓ and Fr. The co-
ordinates of the same physical point observed from
these frames are denoted by rℓ and rr respectively,
and are related by

rℓ = Rrr + t, (38)

where R is the relative rotation and t is the relative
translation, both assumed known. The plane param-

eters vector ξ ,
(

n̂T d
)T

found in the two frames
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Figure 2: Squared Mahalanobis distance ε1 from the
ground-truth based on the Cramér-Rao bound on the
covariance.
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Figure 3: Principal Uncertainty Directions Error ε2.
The obviously strong effect of the different range
noise model assumed by renormalization on the prin-
cipal uncertainty directions.
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Figure 4: Relative Total Uncertainty ε3. In Fig. 4(a),
note that lowest value is below the theoretically least
value of unity because the algorithm assumes a dif-
ferent sensor error model. Note also from the color-
scale that the values are much worse than the other
two methods.10



are related by the transform

ξr = U ξℓ, U ,

(

RT 03×1

−tT 1

)

. (39)

There are two intermediate problems which are not
covered in this article, but have been addressed by the
authors in other works

1. Planes extraction from range-images by region-
growing [13].

2. Finding which planes in one scene correspond
to which planes in the second, and subsequently
finding the least squares scene registration. This
issue has been addressed in [11].

Once the planes have been matched and registered
together, we want the corresponding plane param-
eters to be probabilistically fused together as well.
The estimated plane parameters and their ALSP co-
variances satisfy Cℓξℓ = 0 and Crξr = 0, as shown
earlier.

Now, Uξℓ with covariance UCℓU
T , and ξr with

covariance Cr can be considered to be two obser-
vations in frame Fr for the same plane. The usual
equation for fusing two Gaussians estimates, which is
analogous to the Kalman filter update, would give

C+
1 = (UCℓU

T )+ + C+
r , (40)

ξ1 = ξr + Cr(Cr + UCℓU
T )+(Uξℓ − ξr). (41)

This approach has two problems: first, there is no
guarantee that the first three components of ξ1 form
a unit vector, and secondly, the property C1ξ1 =
C+

1 ξ1 = 0 may not be satisfied. We therefore pro-
pose that the fused covariance matrix be found by
modifying the matrix in (40) as

C+

f = C+
1 − λmin{C+

1 } ν̂f ν̂
T
f , where, (42)

λmin{C+
1 } is the minimum eigenvalue of C+

1 and the
corresponding normalized eigenvector is ν̂f . Then
the fused plane parameters ξf are found by using the
reverse transform (30).

In fact, C+

f is the matrix closest in Frobenius norm

to C+
1 which satisfies both of the aforementioned

properties and Cf is positive semi-definite. All fused
quantities are with respect to the right frame. An-
other reason for preferring (42) over (41) is that the
latter does not work if ξ is negated, which represents
the same plane.

The results of the application of the above fu-
sion strategy to real-life data is shown in Fig. 7(b).
The plane-patches were extracted using the ALSP

(a) (b)

(c) (d)

(e) (f)

Figure 5: Intensity images for successive views cap-
tured from a Swiss-ranger.

method coupled with a region-growing algorithm for
point-clouds obtained from a Swiss-ranger mounted
on a robot turning in-place. About ten such suc-
cessive views were analyzed by a registration algo-
rithm and corresponding planes identified. The de-
tails of the registration algorithm, which makes ex-
tensive use of the computed covariance matrices, can
be found in [11]. Finally, the corresponding plane-
patches were rotated in the global frame and fused
using the method described in this section. There
were on an average 10 planar patches per view. The
average time per view-pair for plane-patch extraction
by region-growing, registration, and fusion was about
0.25 seconds by a C++ implementation on a Pentium
4 HT, 3 GHz, with 1 GB of memory.

7 Conclusions

We presented several new results for the best-fit plane
using a new range noise model. The covariance ma-
trix for the plane parameters is derived in several dif-
ferent ways, all of which are entirely analytical. Some
important properties of the null-space of this matrix
are derived and used for plane fusion. Both simu-
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(a) Registered planes. Front view. (b) Registered and fused planes. Front view.

(c) Registered planes. Top view.
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(d) Registered and fused planes. Top view.

Figure 7: Results for planes extracted from the views of Fig. 5. In Fig. 7(a), planes were matched and aligned
using our registration algorithm. Corresponding matched planes are drawn with the same color. Unmatched
and filtered out planes are shown grayed out. Fig. 7(b) shows the result of applying plane fusion based on
the methodology described in in Sec. 6 on Fig. 7(a).
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(a) Front-view. The color corresponds to intensity.

(b) Zoomed in side-view to show noise normal to the
planar surface.

Figure 6: Swiss-ranger point-cloud views correspond-
ing to Fig. 5(c).

lation and real sensor data were presented to sup-
port our theoretical results. We conclude that the
approximate least-squares plane-fit (ALSP) is a suit-
able method for real-time applications.
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