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data. The theoretical foundation and tools for uncertainty
analysis in LCA are published [3–6]. However, there is still a
lack of case studies analyzing consequences of uncertainty in
LCA results and implications for decision support.

Of the manifold sources of uncertainty in LCA, Huijbregts
[4] distinguishes between
• Parameter uncertainty due to imprecise knowledge of LCI and LCIA

parameters (e.g. mass flows and substance properties, respectively);
• Temporal and spatial variability in LCI and LCIA parameters;
• Variability between sources in the LCI (e.g. different processes

supplying the same output) and between objects of the assess-
ment in the LCIA (e.g. humans);

• Uncertainty in the models used (e.g. the strongly simplified de-
scription of the environment by multimedia fate models); and

• Uncertainty due to choices in LCA (e.g. which allocation method
to apply).

Uncertainty and variability in parameters is conveniently
propagated into LCA results using Monte-Carlo simulation,
while model and choice uncertainty is accessible by calcu-
lating LCA results for different scenarios [3–5]. The term
uncertainty generally refers to random errors, for instance
imprecision in measurements, whereas variability accounts
for stochastic variation in data, e.g. seasonal and spatial
variation of precipitation.

Typically, large amounts of published data are used in LCA
case-studies to set up the LCI and to carry out the LCIA. A
prerequisite for an uncertainty analysis is the availability of
information quantifying the uncertainty mentioned above
in such published data. No specific factors for uncertainty
in individual LCI or LCIA parameters are available today,
with the exception of ecoinvent 2000 [7] that recently pub-
lished uncertainty estimates for LCI parameters. To handle
this lack of specific uncertainty data, the use of generic uncer-
tainty factors has been proposed for groups of parameters (e.g.
air emissions, characterization factors). Concerning the LCI,
such generic uncertainty factors were derived by Finnveden
and Lindfors [8] in a comparison of LCI datasets on PVC
production from different sources. For characterization fac-
tors of LCIA methods, generic uncertainty factors have been
published by method developers (e.g. Huijbregts et al. [9] con-
cerning the CML-baseline method [2]).

In this work, we assess the uncertainty of an LCA comparing
two plant-protection products. Generic uncertainty factors for
parameters in LCIs of chemical production are derived and
compared to factors published. A simple format for the pres-
entation of uncertain LCA results is proposed. It is discussed
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Abstract

Goal, Scope, and Background. Uncertainty analysis in LCA is im-
portant for sound decision support. Nevertheless, the actual influ-
ence of uncertainty on decision making in specific LCA case-stud-
ies has only been little studied so far. Therefore, we assessed the
uncertainty in an LCA comparing two plant-protection products.

Methods. Uncertainty and variability in LCI flows and charac-
terization factors (CML-baseline method) were expressed as ge-
neric uncertainty factors and subsequently propagated into im-
pact scores using Monte-Carlo simulation. Uncertainty in
assumptions on production efficiency for chemicals, which is of
specific interest for the case study, was depicted by scenarios.

Results and Discussion. Impact scores concerning acidification,
eutrophication, and global warming display relatively small dis-
persions. Differences in median impact scores of a factor of 1.6
were sufficient in the case study for a significant distinction of
the products. Results of toxicity impact-categories show large
dispersions due to uncertainty in characterization factors and in
the composition of sum parameters. Therefore, none of the two
products was found to be significantly environmentally prefer-
able to the other. Considering the case study results and inher-
ent characteristics of the impact categories, a tentative rule of
thumb is put forward that quantifies differences in impact scores
necessary to obtain significant results in product comparisons.

Conclusion. Published LCA case-studies may have overestimated
the significance of results. It is therefore advisable to routinely
carry out quantitative uncertainty analyses in LCA. If this is not
feasible, for example due to time restrictions, the rule of thumb
proposed here may be helpful to evaluate the significance of
results for the impact categories of global warming, acidifica-
tion, eutrophication, and photooxidant creation.

Keywords: Acidification; decision making; eutrophication; glo-
bal warming; impact categories; Monte-Carlo simulation; pes-
ticides; plant protection products; photooxidant creation; sig-
nificance of data sources; uncertainties

Introduction

Life Cycle Assessment (LCA) is a method to analyze the envi-
ronmental performance of products, for instance via product
comparisons [1, 2]. Decision support by LCA, however, may
be misleading due to uncertainty in LCA results. Quantifying
such uncertainty is therefore an important step towards reli-
able and transparent decision support. Further, it allows the
identification of improvement potentials in LCA models and
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to what extent a full uncertainty analysis is necessary to ob-
tain reliable results in the routine application of LCA, taking
into account implications of uncertainty for decision making.

1 Case Study and Methods

Case Study. A case study on two plant-protection products is
used to illustrate consequences of uncertainty in LCA for de-
cision making of pesticide producers. Both products are as-
sessed for their use as plant-growth regulators in winter wheat.
Application of growth regulators leads to reduced stem height
and increased stem thickness in wheat, which avoids yield losses
due to bending or breaking of stems in storms [10]. The prod-
uct Moddus contains trinexapac-ethyl as an active substance
and is relatively new on the market (since 1990). The product
Stuntan has been established since 1960. Stuntan is a fictive
name representing a range of similar products from different
suppliers that contain chlorocholine chloride as an active sub-
stance. The functional unit is the dose applied to 1 ha of crop,
as recommended by pesticide registration authorities [11]. Such
a product comparison is of interest, e.g. for pesticide produc-
ers to benchmark new products against established ones. A
schematic representation of processes considered in the LCIs
of each product is given in Fig. 1.

Published LCIs were used regarding the supply of basic
chemicals and energy as well as transport, distribution and
tractor operation. Detailed information on the data sources
is given in [12]. A specific estimation procedure [13] was
applied to inventory LCIs of fine chemical production,
namely the supply of active substances, formulation ingre-
dients, and their precursors. Since pesticide producers have an
influence on the production efficiency of precursors, we spe-
cifically wanted to illustrate the consequences of neglecting
environmental objectives in supply chain management. There-
fore, production efficiency in the chemical industry was as-
sessed in a best and a worst-case scenario (see below). The full
LCIs concerning the production of the active substances are
published in [12], LCIs for formulation ingredients are docu-

mented in [13]. The LCIA was carried out using relevant im-
pact categories of the CML-baseline method [2]. The case study
was evaluated on the level of characterization.

Uncertainty Analysis. The LCA was calculated in Excel us-
ing a matrix-inversion algorithm proposed by Cano-Ruiz
[14]. Parameter uncertainty was propagated through this
algorithm into impact scores using Monte-Carlo simulation
(@Risk [15], Latin Hypercube sampling, 30,000 iterations).
Correlated sampling was used concerning parameters that
appear in both life cycles of the plant-protection products
compared, with rank order correlation coefficients set to
unity. Scenario uncertainty was depicted by calculating one
Monte-Carlo simulation for each scenario. The influence of
individual parameters on the uncertainty of the impact scores
was assessed by calculating the contribution to variance
(CTV, see Supporting Information, online only at <http://
dx.doi.org/10.1065/lca2004.09.178.1>) for each parameter.

To evaluate the product comparison, we calculated the quo-
tient of impact scores of the two alternatives:

Q = IModdus / IStuntan (1)

where Q is the quotient of impact scores (dimensionless)
and I is an impact score (unit of the impact category). In
calculating such a quotient, uncertainty applying to both
alternatives cancels out to an extent. Percentile distributions
of Q were obtained as output of the Monte-Carlo simulations.
Significant differences between the two alternatives were as-
sumed, if 90% of the values of these distributions of Q were
above or below unity. The choice of this rather strict confi-
dence interval was adequate here, as considerable investments
are involved in decisions concerning the development of pesti-
cides. In other cases, lower significance intervals might be suf-
ficient, for instance, if products are compared that perform
equally with respect to other criteria, such as price. It needs to
be born in mind, however, that a lower confidence interval
bears a higher risk of erroneously classifying a difference be-
tween two alternatives as significant.

The specific form of probability distributions for individual
parameters is generally not known in LCA, because param-
eter values are mostly based on few measurements or on
estimates. Choosing the same probability distribution for
all parameters is therefore reasonable to avoid bias among
parameters. We assumed a lognormal distribution for most
parameters because it yields only positive values and because
its long tail in high values is deemed appropriate for LCA
parameters [9]. The available inventory data for these param-
eters was then assumed to represent the mean value of the
lognormal distribution. The spread of the lognormal distribu-
tions was parameterized using dispersion factors [9,16]:

k = Xi(0.975) / mediani (2)

where k is the dispersion factor, i is the uncertain parameter,
and X is the 97.5th percentile of i. The range of uncertainty
(uncertainty range, UR, dimensionless) in quotients of im-
pact scores (Eq. 1) is expressed as 90% confidence interval:

UR = Xi(0.95)/Xi(0.05) (3)

Fig. 1: Life cycle of a plant protection product, with processes (boxes) and
process outputs (plain text). Data sources are indicated by bold text and
processes covered by these data sources by dashed lines
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Uncertainty Sources. Sources of uncertainty included in the
assessment are shown in Table 1. Concerning LCI flows, un-
certainty and different sources of variability are all depicted in
one single generic dispersion factor per group of flows. Such
factors are published for LCIs on PVC production [8].

It was of interest here to derive such factors for processes of
basic chemical production, which exhibit a major contribu-
tion to the LCI of the production of active substances in the
case study [13]. Therefore, we derived generic dispersion
factors from the differences between elementary flows for
the production of benzene and sodium hydroxide. Six and
nine LCIs were compared for the production of benzene and
sodium hydroxide, respectively (see Supporting Information,
online only at <http://dx.doi.org/10.1065/lca2004.09.178.1>).
Many data sources are interdependent, e.g. versions from
different years or data adapted to specific needs of second-
ary data providers. Hence, only two to three primary data
sources underlie the LCIs compared. Still, temporal vari-
ability in processes and uncertainty due to choices of data
suppliers (e.g. allocation methods or system boundaries) are
recorded even by an analysis of such interdependent datasets.
Calculating dispersion factors for comparable elementary
flows in these different LCIs therefore yields information on
all sources of uncertainty in the LCI assessed here (Table 1).
A specific model uncertainty in the LCI stems from the use
of the estimation procedure for LCIs of chemical produc-
tion-processes in the supply of the active substances and for-
mulation ingredients [13]: Knowledge on the efficiency of
production processes is uncertain. This model uncertainty
was assessed in a best and a worst-case scenario of produc-
tion efficiency in the chemical industry ([13]; Table 1). Fi-
nally, probability distributions of LCI data acquired specifi-
cally for this study (e.g. applied doses of the products) are
documented in the Supporting Information (online only at
<http://dx.doi.org/10.1065/lca2004.09.178.1>).

To depict uncertainty in characterization factors of the CML-
baseline method [2], generic dispersion factors were used as
published by Huijbregts et al. [9] (values see Supporting In-
formation, online only at <http://dx.doi.org/10.1065/
lca2004.09.178.1>). Sources of uncertainty comprised in
these factors are parameter uncertainty and variability in
exposure assessment parameters (e.g. human characteristics,

Table 1). Sum emissions such as AOX, PAH, metals, etc.
carry an additional uncertainty, because their composition
is not known quantitatively. We chose a 2-step procedure
for such sum emissions. In Fig. 2A we illustrate this proce-
dure using the example of PAH (polycyclic aromatic hydro-
carbons) with regard to freshwater ecotoxicity. First, we se-
lected all emissions that belonged to such a sum parameter
and for which the CML-baseline method [2] provided char-
acterization factors. The minimum and the maximum of
these characterization factors represent a best- and worst-
case scenario, respectively, to be seen in Table S3 (see Sup-
porting Information, online only at <http://dx.doi.org/
10.1065/lca2004.09.178.1>). Since no quantitative informa-
tion about the composition of sum parameters was avail-
able, we assumed that the total impact of the sum emissions
would follow a uniform distribution between this minimum
and maximum characterization factor. Second, in addition
to this uncertainty in the composition of sum parameters,
the uncertainty of characterization factors themselves was
modeled for sum parameters with lognormal distributions
as for any other characterization factor. Instead of this ap-
proach, we also could have taken all single substances of a
sum parameter and assumed that their share to the sum emis-
sion be a uniform distribution between 0 and 1. As the sum
of all emissions must equal 100%, we need to divide the share
of each substance by the sum of all substances (Fig. 2B). In a
second step, the amounts of all these substances could be
multiplied to the respective log-normally distributed char-
acterization factors and summed up. It should be noted that
the share of each substance in the sum emission is not a
uniform distribution because of the normalization. For in-
stance, A can only be equal to 100% if at the same time all
other substances are simulated to have a content of 0%;
otherwise, the content of A gets reduced. Therefore, the dis-
tribution for each substance is not a uniform distribution
but rather a distribution that has a peak value towards the
left center (the more substances, the more to the left is this
peak). The overall uncertainty therefore tends to be smaller
than according to the first approach. For reasons of simplic-
ity and in order not to underestimate possible uncertainties,
we did not choose the latter approach (see Fig. 2B) but the
former (see Fig. 2A).

Source \ phase LCI LCIA 

Parameter uncertainty Imprecise calculation of flows; 
Unknown composition of sum parameters 

Imprecise knowledge on properties of substances  
and the environment 

Model uncertainty Assumptions on production efficiency in estimation of 
LCIs [13] 

N/a a 

Uncertainty due to choices Different allocation methods, system boundaries, etc. N/a a 

Temporal variability Variation of parameter values between years N/a a 

Spatial variability Variation of parameter values between production sites N/a a 

Variability between 
objects/sources 

Different production processes for the same product Variability in exposure assessment parameters 

a N/a – not assessed 

 

Table 1: Sources of uncertainty [4] related to phases of LCA, and uncertainty covered in this work. Font styles indicate the method of analysis used
(bold – scenario analysis; italic – stochastic modelling)
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2 Results

Generic Uncertainty Factors for LCIs. Dispersion factors for
elementary flows were derived from the comparison of LCIs
on the production of sodium hydroxide and benzene. Most
elementary flows display dispersion factors between 1.1 and
5.0 (Table 2). Considerably higher spreads of up to 1100
appear in a few cases. Such extreme dispersions are often
due to large differences at rather low absolute levels of flows
(e.g. in the benzene datasets, inputs of oil for energy genera-
tion are low as well as emissions of ammonia and benzene
to air). Energy flows have median dispersion factors of 2 in
both products compared. Oil used as feedstock in the cu-
mulated LCIs of benzene production has a similar disper-
sion factor as the total energy demand. The air emission
mass-flows show median dispersion factors of three for both

products. There is no relevant difference between disper-
sion factors for sum parameters and specified emission mass-
flows. Water emissions comprise mainly sum parameters and
specific metals. Median dispersion factors for water emis-
sions are similar to those for air emissions.

The dispersion factors from Table 2 are compared to disper-
sion factors from Peereboom et al. [17], Finnveden and
Lindfors [8], with additional modifications by Huijbregts et
al. [9] in Table 3. In general, dispersion factors from litera-
ture correspond fairly well with the factors found here.
However, median dispersion factors smaller than 2 are not
supported by the results of this work (Table 2). Minimum
factors of 3 are generally used here in order not to underes-
timate uncertainty. Further, no relevant difference between
median dispersion factors for air and water emissions were

0.5                           3900

0                    1

0                    1

0                    1

.

.

.

*

Lognormal distribution 
(µ=x, CV=10)

Uncertain characterization 
factor

Uniform distribution

Characterization factor x
of uncertaint composition

Overall distribution A
(PAH, freshwater ecotoxicity)

/ sum(a,b,c,...)

/ sum(a,b,c,...)

/ sum(a,b,c,...)

Substance a

Substance b

Substance c

*

*

*

0 1

0 1

0 1

.

.

.

.

.

.

A)

B)

Overall distribution B 
(PAH, freshwater ecotoxicity)

Characterization
factor a

Characterization
factor b

Characterization
factor c

su
m

Fig. 2: Two procedures for modelling the uncertainties of sum emissions (example: PAH emissions, freshwater ecotoxicity). Above (A): Procedure
followed in this work. Below (B): Alternative procedure

Energy demands Air emissions Water emissions 

 NaOH  Benzene   NaOH  Benzene   NaOH  Benzene  
 k na k na  k na k na  k na k na 
Coal 1.7 8 1.3 5 Chlorine 11 5 7.2 2 Mercury 13 7 49 3 

Oil 1.3 9 190 2 Mercury 10 7 6.0 3 Metallic ions 3.5 7 7.9 5 

Natural gas 1.9 8 1.3 5 Benzene 1.1 6 68 2 TOC 2.1 6 31 2 

Hydropower 1.5 9 8.8 5 CO2 1.4 9 2.6 6 BOD 4.3 9 1.4 5 

Nuclear 
energy 

1.6 9 1.8 5 N2O 3.3 7 30 4 COD 2.3 9 1.4 6 

Total energy 1.4 9 4.0 6 Ammonia 2.6 6 1100 4 AOX 1.4 6 – 1 

     Metals – 1 2.8 3 Nitrate 2.1 7 6.4 5 

Oil (feedstock) None  2.2 6 Heavy 
metals 

3.1 6 1.4 2 NH4
+ 9.2 2 1.4 5 

     VOC 5.0 9 2.8 6 N-tot 1.5 7 1.5 4 

     SOx 3.4 9 1.5 6 Phosphate 1.1 6 13 2 

     NOx 2.8 9 1.3 6 P2O5 – 1 1.9 2 

Median 2  2   3  3   2  3  
a Total number of datasets documenting the elementary flow. 

 

Table 2: Dispersion factors (k; Eq. 2) for selected elementary flows derived from the comparison of LCIs of sodium hydroxide and benzene production
(Table S1 Supporting Information, online only at <http://dx.doi.org/10.1065/lca2004.09.178>). Median dispersion factors were calculated from all elemen-
tary flows per group
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found here. Therefore, a considerably lower dispersion factor
for water emissions was used compared to the other sources.
We assigned a dispersion factor of ten to most air and water
emissions, which is somewhat higher than the median factors
found for the corresponding groups in Table 2. Such a con-
servative choice is reasonable, because median uncertainty
may be underestimated in the dispersion factors derived here
due to interdependencies among datasets (see above). No
dispersion factors for technosphere flows were calculated,
because most datasets analyzed were cumulated. Dispersions

of energy flows were assumed to be similar to those of air
emissions from fossil fuel consumption, such as CO2 and
SOx. Material flows were assumed to show the highest pre-
cision of all flow groups [8,9].

Case-Study Results. Impact scores of the two plant-growth
regulators are compared in Fig. 3, displaying distributions
of quotients of impact scores (see Eq. 1). Results are juxta-
posed in the best and worst-case scenario of production ef-
ficiency [13] for active substances, formulation ingredients
and their precursors. The results are less favorable for

Flow group Flow name Flows included Generic dispersion factors 

   [17]a [8] and [9] This study 
(Table 2) 

Factors used in 
the case study 

Technosphere flows 
  Energy Energy flows 1.1–1.3 2 – 3 

  Materials Energy inputs to energy supply 
processes are counted as 
materials 

 1.05 – 2 

  Wastes Any solid waste output  100 – 100 

Elementary flows 
 Resources Central Nuclear and fossil fuel energy 

and mass flows 
1.2–2 2 Median 2 3 

  Non-central Any other resource input 1.6–32 10 1.5–8.8 10 

Air emissions CO2  1.4 1.05 Median 3 3 

  SOx, NOx  2.0–2.2 2 Median 3 3 

 Any other  1.6–220  
median 11 

10 1.1–1100 10 

Water emissions Any  1–940  
median 7.6 

100 1.1–49 10 

a Peereboom et al. [17] provide minimum and maximum values of inventory flows. We assumed that these values would enclose 95% of all values of 
a lognormal distribution. Median values were calculated as the square root of the product of the minimum and maximum value (calculation derived 
from Slob [16]). Dispersion factors were then calculated according to Equation 2. 

 

Table 3: Generic dispersion factors (Eq. 2) for groups of LCI flows: Values published by Peereboom et al. [17], Finnveden and Lindfors [8] and interpreted
as dispersion factors by Huijbregts et al. [9], factors derived here by comparing LCI datasets for the production of benzene and sodium hydroxide, and
factors used in the case-study
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Moddus in the worst-case scenario compared to the best-
case scenario, because Moddus is penalized more strongly
by the worst-case assumptions, as the production of Moddus
involves more process steps than the production of Stuntan
(Fig. 3). The spreads in the distributions are caused by un-
certainty in LCI flows (see Table 3) and in characterization
factors (Table 1 and Supporting Information, online only at
<http://dx.doi.org/10.1065/lca2004.09.178.1>). Spreads are
considerably higher regarding the toxicity impact-catego-
ries than for the other midpoints. Significant differences be-
tween the two products occur only in the worst-case sce-
nario, with regard to acidification, photooxidant creation
and human toxicity impacts: Moddus shows significantly
higher impact scores than Stuntan according to the signifi-
cance criterion chosen (Methods).

The sources of uncertainty in the quotient of impact scores
are assessed by their contribution to variance (Supporting
Information, online only at <http://dx.doi.org/10.1065/
lca2004.09.178.1>), which is shown for groups of param-
eters relevant to the case study (Table 4).

The applied doses of the two plant-protection products have
high contributions to variance in all impact categories (up
to 90%). This strong influence occurs because the applied
dose is the reference flow of the functional unit, and there-
fore uncertainty in this parameter has an effect on all other
parameters in the life cycles compared. The doses are uncer-
tain, because, in pesticide registration, a dose range is set
permitting some flexibility to the farmer. The utilization of

this dose range by farmers is influenced by various factors,
e.g. differences in prices between products or different atti-
tudes of farmers against the risk of lodging when using low
doses or the risk of crop damage when using high doses.
While uncertainties in functional units are, in general, com-
mon in LCA, it is rather exceptional that such uncertainties
can be modeled as distribution functions. In most cases, they
will be accessible only as scenarios.

Uncertainty in the LCIs of basic chemical and energy sup-
ply, expressed as dispersion factors (Table 3), shows consid-
erable contributions to variance of up to 48%. The latter
uncertainty sources are of lower relevance concerning the
toxicity impact-categories in both scenarios, because here
characterization factors show high contributions to variance.
Specifically, the uncertain composition of sum parameters
plays a major role for uncertainty in these impact categories
(contribution to variance 15 to 69%). Concerning single
substances, the characterization factor for emissions of
chlorocholine chloride to air and water has high contribu-
tions to variance in freshwater ecotoxicity impact-scores.
This contribution to variance of impacts of chlorocholine
chloride emissions explains the large uncertainty range in
freshwater ecotoxicity in Table 1, because the generic un-
certainty factors for the characterization factors of
chlorocholine chloride are as high as 50 (emission to air)
and 100 (emission to water, Supporting Information, online
only at <http://dx.doi.org/10.1065/lca2004.09.178.1>).
Additionally, air emissions of substrates in chemical pro-

Group Subgroup Global 
warming 
potential 

Acidification 
potential 

Eutrophication 
potential 

Photooxidant 
creation 
potential 

Human toxicity 
potential 

Freshwater 
ecotoxicity 
potential 

Terrestrial 
ecotoxicity 
potential 

  Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Best 
case 

Worst 
case 

Applied doses 79 90 62 69 41 38 18 64 17 11 2 8 31 24 

Basic chemical 
and energy 
supply 

13 8 32 19 41 48 16 19 9 1 2 4 16 6 

Elementary 
or techno-
sphere flows 

Tractor 
operations 

4 < 0.5 < 0.5 6 4 3 < 0.5 1 1 1 < 0.5 < 0.5 1 < 0.5 

 Transport and 
packaging 

1 < 0.5 3 < 0.5 2 < 0.5 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1 < 0.5 

 Waste 
treatment 

1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 

Sum 
parameters 

N/ab N/ab N/ab N/ab N/ab N/ab 62 13 69 31 66 56 15 21 Characteri-
sation 
factors 

Chlorocholine 
chloride to air 

N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab 7 6 N/ab N/ab 

 Chlorocholine 
chloride to 
water 

N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab 20 19 N/ab N/ab 

 Mercury to air N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab 21 1 

 Substrates to 
air 

N/ab N/ab N/ab N/ab N/ab N/ab N/ab N/ab < 0.5 55 < 0.5 3 < 0.5 33 

 Other single 
elementary 
flows 

< 0.5 < 0.5 1 4.4 10 9 1 2 2 < 0.5 1 2 13 13 

a Rounding in the Excel-software may lead to deviations of +/– 1 % in the table 
b Parameter does not contribute to this impact category 

 

Table 4: Contribution to variance (in %) in the quotient of impact scores (Eq. 1) for groups of parameters. Both scenarios of production efficiency for fine
chemicals [13] are depicted. 99% of the total variance in the quotient is included a
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duction exhibit a considerable contribution to variance in
the worst-case scenario, where the emission factor for such
substances is relatively high [13]. Due to the unavailability
of mammalian no-effect data for these substrates, we ap-
plied a worst-case no-effect value [12] to calculate characteri-
zation factors for the human toxicity potential in USES-LCA
[18]. It is common practice in chemical industry in Western
Europe to combust off-gases containing such highly toxic sub-
stances [13]. The high contribution to variance exhibited by
these substrate emissions therefore gives a conceptual idea of
the consequences of such emissions. Uncertainty in tractor
operations largely cancels out in the product comparison due
to correlated sampling. Remaining sources of uncertainty show
small contributions to variance below 6%.

Using Uncertain Results in Decision Making. Considering
uncertainty in decision making is important, but may sub-
stantially increase the complexity of results. The presenta-
tion of uncertain results to decision makers, however, may
be facilitated by a simplified representation, such as the list
of symbols in Table 5. Qualitative information on the sce-
narios is helpful for decision making. In the case study used
here, scenarios encode uncertainty in production efficiency
of the supply chain for active substances and formulation
ingredients. The worst-case scenario was found to be less
likely than the best case, regarding chemical industry in
Western European countries [13]. Further, using highly un-
certain results of LCA for decision support may not be ad-
visable. For instance, it would not be desirable suppressing
the development of the new product Moddus on the grounds
that the LCA shows no progress compared to the established
product Stuntan concerning freshwater ecotoxicity, as long
as method uncertainty is a major cause for this insignifi-
cance. Therefore, impact-category results carrying extremely
high uncertainty should be marked as such (see Table 5).

3 Discussion

Case Study. The comparison of the plant-growth regulators
showed no significant differences regarding most results (see
Fig. 3). In these cases, either the uncertainty of the quotient
of impact scores (see Eq. 1) may be too large or the differ-
ence in impact scores may be too small to allow a signifi-
cant distinction of the alternative products. The latter possi-
bility applies in the best-case scenario, where the median
quotient takes values equal to or below 1.3 relating to im-
pacts of all categories (see Fig. 3). An exception occurs with
regard to freshwater ecotoxicity impacts, where larger dif-
ferences between Moddus and Stuntan (median quotient of
0.56, see Fig. 3) are superimposed by exceptionally large

uncertainty (two orders of magnitude between 5th and 95th

percentile of the quotient). High uncertainty also superim-
poses relatively large differences between impact scores re-
garding terrestrial ecotoxicity impacts in the worst-case sce-
nario. Measures to reduce uncertainty should be taken before
these toxicity impact-scores are used for decision support.

In spite of large uncertainty in some impact categories, the
case-study results give the important information that Moddus
is not significantly environmentally preferable to Stuntan, re-
garding the more likely best-case scenario (see Table 5). Other
objectives (such as economic ones) therefore would need to be
weighted against environmental objectives to decide between
the two products. Another useful result of the product com-
parison may be the inclusion of environmental objectives in
the supply-chain management of pesticide producers, to avoid
the worst-case scenario (see Table 5).

The ranges of uncertainty of the case-study results (see Fig.
3) are compared with those published by Huijbregts et al.
[9] for a case-study comparing housing insulation options.
This comparison is meaningful, because comparable meth-
ods were used for uncertainty analysis and LCIA in both
case studies. Uncertainty ranges (see Eq. 3) in [9] take val-
ues between 2.2 and 3 concerning toxicity impact-catego-
ries and between 1.1 and 1.6 for other impact categories.
Hence, uncertainty ranges in [9] are considerably smaller
than in this work (see Fig. 3), especially with regard to tox-
icity impact-scores. These can be explained by three factors.
First, sum parameters are more relevant in the current work
(e.g. emissions of hydrocarbons to air) than in [9]. Second,
higher dispersion factors were assumed here compared to
[9] for LCI parameters and characterization factors. These
differences in parameter uncertainty are mainly due to sub-
stantial efforts of Huijbregts et al. [9] to acquire specific dis-
persion factors for parameters in the LCA with a high contri-
bution to variance. Such an iterative approach, however, is
not generally practicable in LCA, because it is very labor in-
tensive and necessitates access to substance data and models
used in the calculation of characterization factors. Third, the
large uncertainty of the functional unit influences all other
parameters as well, and leads to large uncertainty ranges. As
discussed above, it is rather unique to this work that uncer-
tainty in the functional unit can be modeled as a simple distri-
bution function. However, this result indicates that uncertainty
in the functional unit may play an important role in LCA.

Significance Criterion and a Rule of Thumb. It is impossible
to fully predict uncertainty in LCA results without conduct-
ing a quantitative uncertainty analysis. However, it would
be of interest to derive rules of thumb concerning the sig-

Production 
efficiency 
scenario 

Implication for 
supply chain 

Likeliness Global 
warming 

Acidifica- 
tion 

Acidifica- 
tion 

Eutrophi-
cation 

Photo- 
oxidant 
creation 

Human 
toxicity 

Freshwater 
ecotoxicity 

Terrestrial 
ecotoxicity 

Best case High 
environmental 

standards 

High – – – – – – ~ – 

Worst case Low 
environmental 

standards 

Low – 
� � – 

� � – ~ 

 

Table 5: Simplified representation of the results of the product comparison under uncertainty (� means that the impact score of Moddus is significantly
higher than that of Stuntan, – means that the results are insignificant, and ~ denotes high method uncertainty)
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nificance of LCA results. To this end, it is useful to consider
inherent characteristics of impact categories influencing un-
certainty in impact scores (Table 6).

The global warming, acidification, and eutrophication
potentials exhibit similar characteristics with regard to uncer-
tainty: They depict impact pathways of relatively little variety.
Consequently, generic uncertainty factors are relatively low.
Few elementary flows contribute to these impact categories,
and thus highly uncertain sum parameters (see Table 6) are
not necessary to simplify inventorying. Hence, relatively low
uncertainty is expected concerning impact scores of these three
impact categories. Relatively small differences between prod-
uct alternatives will lead to significant distinctions (see 99%
significance of the case-study result in the acidification poten-
tial, regarding the worst-case scenario, see Fig. 3). Toxicity
impact-categories, by contrast, comprise a relatively high va-
riety of impact pathways and a large number of elementary
flows (see Table 6). High generic uncertainty factors apply and
sum parameters are frequently used. It is therefore expected
that uncertainty in toxicity impact-scores will be relatively high.
This was observed in the case study by uncertainty ranges (see
Eq. 3) spanning one to two orders of magnitude (see Fig. 3).
Hence, large differences between product alternatives are nec-
essary to achieve significant results concerning toxicity impact-
scores (e.g. a median quotient larger than 3 concerning the hu-
man-toxicity result (see Fig. 3), which is realized only because
highly toxic substances are modeled in the worst-case scenario
to be emitted in the life cycle of Moddus). The photooxidant
creation potential takes an intermediate position between tox-
icity impact-categories and categories similar to the global warm-
ing potential, with regard to inherent characteristics influenc-
ing uncertainty (see Table 6). Thus, a relatively small median
quotient in the case study leads to 90% significance concerning
photooxidant creation impact-scores (see Fig. 3).

In deterministic case studies, only expert judgment is avail-
able to set significance criteria for results. We found esti-
mated significance criteria in published case studies ranging
between 1.1 and 2 (e.g. [20, 21]) expressed as quotients of
impact scores and only once as high as 10 [8], expressed as
quotients of elementary flows. In our case study, median quo-
tients (see Eq. 1) are assumed to approximate deterministic
results. Significant differences demanded median quotients
larger than 3 concerning toxicity impact-categories, and around
1.6 concerning other impact categories (see Fig. 3). Compared
to our findings, expert judgments common in literature over-
estimated the significance of LCA results. Our results suggest
that a median quotient of impact scores larger than two may

be considered on the safe side of being significant, concerning
the impact categories global warming, acidification,
eutrophication and photooxidant creation. This rule of thumb
is supported by the similar inherent characteristics of these
impact categories regarding uncertainty (see Table 6). Case-
study results exhibiting smaller differences should be evalu-
ated for significance with a full uncertainty analysis. Regard-
ing toxicity impact-categories, no rule of thumb is proposed,
because large dispersion factors of individual parameters (Ta-
ble 6) cause highly varying uncertainty in individual toxicity
impact-scores (see Fig. 3). A detailed uncertainty analysis seems
indispensable for reliable decision support concerning toxic-
ity impacts assessed by the CML-baseline method.

The case study used here to establish the rule of thumb com-
pared products with relatively similar life cycles. This was
also the case in the work of Huijbregts et al. [9]. Larger
differences between life cycles often lead to larger differ-
ences in impact scores of alternatives. However, strongly
differing life cycles also imply weaker correlations among
input distributions in these life cycles, leading to larger un-
certainty ranges (see Eq. 3). These two trends counteract
each other in their effect on the significance of differences
between impact scores of alternatives.

We conclude that in the absence of better data, the rule of thumb
may be used in LCA if a full uncertainty analysis is out of the
scope of the study. We think that our rule of thumb is a more
qualified value than common expert judgment, as it is based on
a thorough uncertainty analysis. It should be born in mind,
however, that the rule of thumb proposed here has not been
verified for products with very different life-cycles yet (e.g. me-
chanical compared to chemical weed control). Moreover, for
toxicity categories we are not able to propose a rule of thumb.
We suspect that few case studies will actually have significant
results in these categories due to the high uncertainties of char-
acterization factors and sum parameters. In order to enable a
meaningful application of toxicity impact categories in LCA,
these uncertainties need to be reduced in future research.

Method. Several sources of uncertainty are not comprised in
this analysis, namely (a) model uncertainty in LCIA models,
(b) uncertainty due to choices in LCIA (e.g. the choice of time
horizons for the integration of impacts), and (c) uncertainty in
the definition of probability distributions and generic disper-
sion factors. Concerning points (a) and (b), Huijbregts et al.
[9] found that such uncertainty sources were of lower relevance
than parameter uncertainty in their case study. To reduce un-
certainty of type (c), a best practice should be developed con-
cerning the definition of appropriate types of probability dis-

Impact category Variety of impact 
pathways  

(fate, exposure, effect) 

Number of elementary 
flows [19] 

Generic uncertainty 
factor a 

Sum parameters 
relevant?  

Global warming potential Low 43 1.4 No 
Acidification potential Low 16 2.2 No 
Eutrophication potential Low 53 1.8 No 
Photooxidant creation potential Medium 127 1.2–2.1 Yes 
Human toxicity potential High 178 50 Yes 
Freshwater ecotoxicity 
potential 

High 178 50 to 100 a Yes 

Terrestrial ecotoxicity potential High 178 500 to 1000 a Yes 
a Supporting Information (online only at <http://dx.doi.org/10.1065/lca2004.09.178.1>) 

 

Table 6: Inherent characteristics influencing uncertainty in impact-category results of the CML-baseline method [2]
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tributions as well as uncertainty ranges. One possible step to-
wards this goal is the use of the generic dispersion factors for
LCI parameters derived here (see Table 3).

It is infeasible to comprehensively model all uncertainty sources
in the complex systems analyzed by LCA. However, it may be
sufficient to consider only the most important uncertainty
sources. At the current state of research, these appear to be
the various sources of parameter uncertainty depicted in this
and other studies [9,22], as well as specific sources of model
or choice uncertainty that are exceptionally relevant to the
study, such as the production efficiency scenarios modeled here
[13]. International consensus on best LCIA methods to be used
(e.g. [22]) can help to clarify which choice uncertainty needs
to be considered depending on the goals of specific case stud-
ies. In routine applications of LCA, choices and models should
reflect the preferences of decision makers, in order not to bias
results with the preferences of LCA analysts.

Finally, the significance of results depends on the choice of the
significance criterion (Methods), which itself depends on the
goal and scope of a study. For assessments that may trigger
high financial investments, a confidence interval of 90% is
appropriate. By contrast, in cases where the investigated alter-
natives perform relatively equally with respect to all other cri-
teria, lower levels of confidence may be sufficient.

4 Conclusions and Outlook

The case study demonstrated a need for consideration of
uncertainty in LCA to evaluate the significance of results.
High uncertainty in LCI and LCIA may impede obtaining
significant LCA results regarding toxicity impact-scores.
High uncertainties in toxicity categories are not specific to
our case study, but they are method inherent (see Table 6).
The reduction of uncertainties in toxicity characterization
factors and a better definition of sum-emissions are there-
fore a clear future research need.

Concerning the impact categories of global warming, acidifica-
tion, eutrophication and photooxidant creation, a tentative rule
of thumb for the significance of LCA results was derived (factor
of two between impact scores). Lower significance criteria have
been suggested in the past by experts. Thus, the results of many
LCA may have been overestimated in the past. The rule of thumb
is useful to evaluate case studies where quantitative uncertainty
analysis is practically infeasible. However, routine uncertainty
analyses should be aimed at in future LCA practice. To this end,
data and guidelines on the definition of uncertainty in LCI and
LCIA are needed. Parameter uncertainty is relatively easily ac-
cessible to modeling via generic uncertainty factors and stochastic
uncertainty propagation. To further facilitate an uncertainty
assessment, LCI and LCIA data providers should supply quan-
titative uncertainty information including correlation estimates
for individual parameters. By contrast, a large variety of choices
and sources of model uncertainty are less accessible to quanti-
tative analysis. It is suggested that only choice and model uncer-
tainty of specific interest for goals and scopes of case studies be
modeled quantitatively. Choices and model uncertainty gener-
ally applying to LCA should be made transparent to decision
makers in a more simple manner. This enables decision makers
to explicitly accept choices and models employed as being an
adequate basis for decision support. Notwithstanding, an

analysis of choice and model uncertainty is important to guide
LCA research and model development.

The relatively high uncertainty in LCA may also have conse-
quences for its general application: The discriminatory power
of LCA may be much larger in analyses of relatively strongly
differing scenarios than to assess differences of specific, rather
similar products in detail. This would imply a larger useful-
ness of LCA to support strategic compared to operational de-
cisions. However, there is still a need to analyze the influence
of reduced correlations on the magnitude of uncertainty, con-
cerning such fundamentally different scenarios.
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