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Uncertainty Analysis in
MCP-Based Wind Resource
Assessment and Energy
Production Estimation
This paper presents a mathematical framework to properly account for uncertainty in
wind resource assessment and wind energy production estimation. A meteorological
tower based wind measurement campaign is considered exclusively, in which measure-
correlate-predict is used to estimate the long-term wind resource. The evaluation of a
wind resource and the subsequent estimation of the annual energy production (AEP) is a
highly uncertain process. Uncertainty arises at all points in the process, from measuring
the wind speed to the uncertainty in a power curve. A proper assessment of uncertainty is
critical for judging the feasibility and risk of a potential wind energy development. The
approach in this paper provides a framework for an accurate and objective accounting of
uncertainty and, therefore, better decision making when assessing a potential wind en-
ergy site. It does not investigate the values of individual uncertainty sources. Three major
aspects of site assessment uncertainty are presented here. First, a method is presented for
combining uncertainty that arises in assessing the wind resource. Second, methods for
handling uncertainty sources in wind turbine power output and energy losses are pre-
sented. Third, a new method for estimating the overall AEP uncertainty when using a
Weibull distribution is presented. While it is commonly assumed that the uncertainty in
the wind resource should be scaled by a factor between 2 and 3 to yield the uncertainty
in the AEP, this work demonstrates that this assumption is an oversimplification and also
presents a closed form solution for the sensitivity factors of the Weibull parameters.
�DOI: 10.1115/1.2931499�

1 Introduction

Wind energy site assessment gauges the potential for a site to
produce energy from wind turbines. When wind energy develop-
ment is under consideration, a site assessment is undertaken. Spe-
cifically, it is the process of evaluating the wind resource at a
potential wind turbine or wind farm location, then estimating the
energy production of the proposed project. The wind resource at a
site directly affects the amount of energy that a wind turbine can
extract and, therefore, the success of the venture. The wind re-
source is primarily quantified by the mean wind speed at the site
although the turbulence intensity, probability distribution of the
wind speed, and prevailing wind direction are also important fac-
tors. Once the wind resource is assessed at a site, the expected
annual energy production �AEP� of a selected wind turbine is
calculated. This calculation combines the expected wind resource
with the wind turbine�s� power curve and the expected energy
losses in order to estimate how much energy the wind turbine�s�
will actually produce at the site. The AEP ultimately helps deter-
mine the profitability of the undertaking.

The precision of the wind resource assessment and AEP calcu-
lation must also be determined when evaluating a potential site.
Wind resource evaluation is an uncertain process, and a large
number of factors ranging from wind speed measurement errors to
the inherent physical variations in the wind contribute to this un-
certainty �1�. These various individual sources of error must all be
accounted for in order to provide an estimate of the total uncer-

tainty of the wind resource. Furthermore, power curves and en-
ergy loss terms are uncertain as well �2�. When the wind resource,
power curve, and energy losses are combined to estimate AEP,
uncertainties from all the factors contribute to an overall AEP
uncertainty. This uncertainty is critical in estimating the risk asso-
ciated with the potential venture.

The goal of this paper is to present a logical and rigorous ap-
proach for handling uncertainty in the site assessment process.
Specifically, it considers the site assessment process in which me-
teorological towers �met towers� equipped with cup anemometry
and vanes are the primary method for evaluating the wind re-
source, which is the most common method in the US, and
measure-correlate-predict �MCP� is used to estimate the long-term
wind resource �3,4�. This paper also assumes that measured data
are used to create a shear model �i.e., numerical models for shear
extrapolation are not considered�. Alternative methods for site as-
sessment are not considered. The new methods for uncertainty
analysis presented in this paper are in contrast to those recom-
mended in IEC 61400-12, which recommends a bin method �5�.

This paper does not present recommended values or estimation
tools for various uncertainty sources. Rather, it offers an analytical
method for categorizing uncertainty sources in all steps of the site
assessment process and then combining the uncertainty sources to
yield an overall estimate of the AEP uncertainty. This work aims
to provide a framework for site assessment uncertainty analysis
founded on a sound mathematical basis.

1.1 Weibull Distribution. This paper utilizes the Weibull dis-
tribution as an approximation of the wind speed distribution. The
Weibull distribution is commonly used to model wind speed dis-
tributions and often provides a good approximation. It relies on

two parameters: the scale factor c and the shape factor k �these
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two parameters are also related to the mean wind speed according
to Eq. �7��. The Weibull probability density function, where U is
the wind speed, is as follows �6�:

p�U� = �k/c��U/c�k−1 exp�− �U/c�k� �1�

A statistical model approximation to the wind speed distribu-
tion, as opposed to simply using the measured time series or the
frequency distribution of the measured data, is useful for several
reasons. First, a statistical model allows the shape of the distribu-
tion of the wind resource and, therefore, the potential to produce
energy from a wind turbine at the site to be quantified by the
parameters of the model. In the case of the Weibull distribution,
the shape of the distribution of the wind resource is easily sum-
marized by the values of c and k. Second, a statistical model is
extremely useful for handling uncertainty both in wind resource
assessment and in AEP estimation. Many of the statistical tech-
niques presented in this paper rely on the ability to express the
wind speed distribution in a functional form.

On the other hand, a statistical model approximation can intro-
duce error into the process, especially when the model does not
provide a good fit to the data. The effect of using a statistical
model to represent the wind speed distribution compared to using
the actual frequency distribution is investigated and proceeds as
follows:

1. 30 different sites, with at least three years of data, are se-
lected.

2. For each site, the mean wind speed and the Weibull param-
eters are calculated.

3. The actual frequency distribution is also determined, using
0.5 m /s bins.

4. The energy production for a General Electric �GE� 1.5 MW
wind turbine is calculated using the actual wind speed fre-
quency distribution, as well as the Rayleigh and Weibull
approximations to the wind speed distribution. The Rayliegh
distribution is simply the special case of the Weibull distri-
bution with k=2. The actual method for calculating energy
production is not described here.

The results are determined by comparing the energy production
estimates for the two statistical models to the estimate using the
actual frequency distribution. The actual frequency distribution is
considered the “true” value. The important results are as follows:

• On average, using the Weibull distribution causes a 0.5%
overestimation of the energy production compared to using
the actual frequency distribution. The error in the estimate
has an approximately 1% standard deviation.

• The Rayleigh distribution overestimates the energy produc-
tion by 3% on average, with a standard deviation of 7%.

Clearly, the Weibull distribution is the superior statistical
model, as it results in a lower bias and uncertainty than the Ray-
leigh distribution. The Weibull distribution is used exclusively in
this paper to model the wind speed distribution. The uncertainty
associated with the use of the Weibull distribution is small, and so
it is neglected in all later analyses.

By using a Weibull distribution to represent the wind speed
distribution, the uncertainty in the wind resource can be expressed
as uncertainty in the values of c and k. On the other hand, it is
often easier to conceptualize and estimate uncertainty in the mean
wind speed rather than c. Thus, the uncertainty in the mean wind
speed and k is determined first, and then the uncertainty in c is
calculated from these values.

2 Brief Review of Error Types and Measurement Un-

certainty Analysis

All measurements, no matter how carefully done, are subject to
errors, which results in a measured value differing from the true
value. The size of the error is unknown, and so all measurements

are subject to some uncertainty. In this paper, the term “uncer-
tainty” is used as a general measure of the size of the error. The
error in a measurement is comprised of two components: the ran-
dom error and the systematic error �7�.

2.1 Random Error and Uncertainty. Random error is pro-
duced by variability in the quantity being measured or in the mea-
surement procedure. For example, when measuring the duration of
an event using a stopwatch, random error may arise when multiple
measurements are made. The reaction time of the stopwatch op-
erator can vary, causing each measurement to differ. The standard
deviation of the measurements is a measure of the uncertainty of a
single measurement due to random error. These errors are usually
assumed to have normal distributions about the true value.

Often, the mean of the measurements is the quantity of interest.

The uncertainty of the mean of the measurements, �x̄, is equal to
the standard deviation of the measurements, �x, divided by the
square root of the number of measurements N, assuming that the
measurements are independent. This relation is shown below �8�:

�x̄ = �x/
�N �2�

The uncertainty in the estimate of the mean decreases as the
number of measurements increases. Furthermore, this uncertainty
is normally distributed for a large N, even if the distribution of the
measurements is not normal. The sources of random error are
categorized as Type A uncertainty.

2.2 Systematic Error and Unknown Bias Uncertainty. Sys-
tematic errors, or biases, are constant over a set of identical mea-
surements �8�. These errors are often due to an error in a calibra-
tion constant. An example of a systematic error is a stopwatch that
runs slowly. Any measure of the duration of an event with that
stopwatch results in a value that is smaller than the true value.
Systematic errors cannot be revealed by repeated measurements
because they are constant over the set of measurements, assuming
that the same instruments are used.

Whenever a measurement is performed, effort should be made
to identify the systematic errors and to either remove the source of
the errors or to adjust the measurements by the value of the bias.
An estimate of the bias of an instrument often requires a compari-
son to an unbiased instrument or a comparison to measurements
from multiple instruments.

The issue is complicated when the bias in a measurement is
unknown. However, the bias, while unknown, is constant across
every measurement, and so it does not behave like a random error,
which varies with each measurement and so can be calculated
from the measured data. The uncertainty due to unknown system-
atic errors is typically estimated based on experience �1�. It has
been noted that unknown bias uncertainty can be characterized by
a normal distribution, and so the standard deviation is the mea-
surement of the uncertainty �1,5�. In some cases, unknown bias
uncertainty is more easily characterized by an uncertainty limit.
That is, the estimated distribution is rectangular, with values ex-
isting over some range, �R, with a probability of 1. In these
cases, the uncertainty limits can be converted to an equivalent
standard deviation. The standard uncertainty �x is equal to R di-
vided by the square root of 3, shown below �5�:

�x = R/�3 �3�

The standard deviation of the unknown bias can be measured if
multiple instruments are used simultaneously. However, when
only a single instrument is used, then the uncertainty has to be
approximated. The uncertainty due to unknown bias is categorized
as Type B uncertainty.

2.3 Combination of Uncertainties. This paper assumes that
all Type A and Type B uncertainties are independent and normally
distributed �1,8�. Uncertainties are characterized by the fractional
standard uncertainty. The fractional standard uncertainty is the
uncertainty of a parameter divided by the absolute value of the
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expected value of the parameter. In contrast, the absolute standard
uncertainty of a quantity is simply the uncertainty of the param-
eter, and so it has units. Throughout this paper, a superscript * is
used to denote absolute uncertainties. Fractional uncertainties do
not have a * superscript.

When multiple uncertain quantities are used to calculate some
parameter, the uncertainties in the component quantities combine
to yield a total uncertainty in the parameter. For a parameter f ,
which is a function of several variables, f = f�x1 , . . . ,xn�, the un-

certainties of the variables, �x
1
* , . . . ,�x

n
*, are combined to yield an

overall uncertainty, �f*. �f* is calculated using Eq. �4� as long as
the uncertainties are independent,

�f* =�� �f

�x1

�x
1
*�2

+ ¯ + � �f

�xn

�x
n
*�2

�4�

Equation �4� is the standard method for combining independent
uncertainties �8�. It can be nondimensionalized so that the uncer-
tainties are expressed as fractional uncertainties. The nondimen-
sional form of Eq. �4� is shown in Eq. �5�. The partial derivatives
and the fractions, which multiply the fractional uncertainties, are
referred to as “sensitivity factors” since they measure how sensi-
tive changes in f are to changes in the variables. The sensitivity
factors may be positive or negative in order to indicate if a change
in the individual variable causes an increase or a decrease in f .
The sign is not particularly important though since the terms are
then squared. The sensitivity factors are also nondimensional. As
an example, anytime f has a linear dependence on a variable, the
sensitivity factor for that variable is 1. When all of the sensitivity
factors are 1, then Eq. �5� reduces to a simple “root-sum-square”
�RSS� technique,

�f =�� �f

�x1

x1

f
�x1�2

+ ¯ + � �f

�xn

xn

f
�xn�2

�5�

Type A and Type B uncertainties can be combined together
using Eq. �5� as long as they are each expressed using the standard
deviation as a measure of uncertainty. It must be emphasized that
there is no definitive method for combining Type A errors and
Type B errors. This method is likely the best available option,
assuming that the individual uncertainty sources are independent
�1,8�. Also, by the central limit theorem, the distribution of the
total uncertainty tends toward a normal distribution, regardless of
the distribution of the individual sources of uncertainty. In this
paper, all sources of uncertainty are assumed to be normally dis-
tributed, so the distribution of the total uncertainty is also normal.

3 Wind Resource Uncertainty

Wind resource evaluation consists of using measured wind
speed data to estimate the long-term hub height wind resource at
the turbine locations. When the Weibull distribution is used to
characterize the wind resource, the goal of wind resource assess-
ment is to estimate the long-term hub height values of the Weibull
parameters, cLT�hub and kLT�hub.

This section describes four categories of uncertainty sources
that arise in wind resource assessment. Within each category of
uncertainty, there are several individual uncertainty sources. A
brief description of each category, including the individual com-
ponent uncertainty sources, is provided. Again, methods for esti-
mating or calculating these uncertainty sources are not discussed.
Rather, this section intends to categorize the uncertainty sources
and describe a method to combine them once the actual values
have been estimated. However, for completeness, numerous refer-
ences that explore each of these uncertainty sources in detail are
provided below.

There are a total of 14 individual component uncertainty
sources identified in this paper. they contribute to the wind re-
source uncertainty, but this list certainty is not necessarily exhaus-
tive and other uncertainty sources are possible. These uncertainty
sources are assumed to be independent. The wind resource uncer-

tainty sources can be expressed as uncertainty in the values of the
mean wind speed and k, and then the uncertainty of c can be
calculated afterward.

3.1 Categories of Wind Resource Uncertainty. The causes
of uncertainty in wind resource assessment can be subdivided into
four categories: wind speed measurement uncertainty, long-term
resource estimation uncertainty, wind resource variability uncer-
tainty, and site assessment uncertainty. These four categories are
labeled with subscripts M, LT, V, and SA. Each category is now
discussed briefly, and the component uncertainty sources within
each category are listed.

3.1.1 Wind Speed Measurement Uncertainty. The wind speed
at a site is usually measured by taking 10 min averages of the
wind speed, sampled at approximately 1 Hz. Wind data at a site
are then presented as a time series of these 10 min averages. Sev-
eral factors can contribute to errors in the measurement of the
wind speed. These factors fall into the category of wind speed
measurement uncertainty. They are as follows:

1. anemometer uncertainty I: calibration uncertainty �9,10�
2. anemometer uncertainty II: dynamic overspeeding �11,12�
3. anemometer uncertainty III: vertical flow effects �2�
4. anemometer uncertainty IV: vertical turbulence effects

�11–13�
5. tower effects �14�
6. boom and mounting effects �15�
7. data processing accuracy

3.1.2 Long-Term Resource Estimation Uncertainty. While
wind resource measurement typically lasts for one year, the mea-
sured resource during this particular year may not be representa-
tive of the actual long-term resource at the site. Twenty to thirty
years is sometimes assumed to be a long enough time period to
characterize the long-term wind resource �16,17�. Since a 20-year
measurement campaign is far too long for practical purposes, the
long-term resource must be estimated from the measured data.

One common method for estimating the long-term wind re-
source utilizes the measured data, along with long-term data from
a nearby site �the “reference site”�, in a process called MCP
�18,19�. While there are other methods as well, MCP is considered
exclusively in this paper. The long-term mean wind speed and

Weibull parameters estimated from MCP can be labeled as ŪLT,
cLT, and kLT, MCP introduces uncertainty into the estimate of the
long-term resource at the site. In general, longer measurement
periods and longer reference site data sets result in less uncer-
tainty in the MCP process �20�.

An additional uncertainty arises when Weibull parameters are
fited to the output of the MCP step. Since the output data of MCP
is not a perfect Weibull distribution, different estimation methods
yield different values of the Weibull parameters. The result is an
additional uncertainty in the values of cLT, and kLT. There are
several methods of estimating the Weibull parameters from a wind
speed time series. These methods include empirical methods,
method of moments, maximum likelihood estimates, least square
linear regression, and chi-squared methods �6�. While the uncer-
tainty in the estimation of cLT is negligibly small, there can be a
significant variation in kLT.

Finally, global climate change may also cause uncertainty in the
estimate as the actual climate at a site may change in the future
�21�.

The three uncertainty sources that arise in a long-term resource
estimation are as follows

1. MCP correlation uncertainty �20�
2. Weibull parameter estimation uncertainty
3. changes in the long-term average �21�

3.1.3 Wind Resource Variability Uncertainty. The wind re-
source varies from year to year, and these interannual variations
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can cause uncertainty in two ways �16,17�. First, the reference site
data used in the MCP step to estimate the long-term parameters
might not, in fact, be representative of the true long-term resource.
Since random error decreases as the number of samples increases,
the longer the reference site data set used in the MCP step to
estimate the long-term parameters, the less uncertainty there is in
these estimates. Second, interannual variability can cause the ac-
tual wind resource that occurs over the lifetime of a turbine to be
different from the true long-term wind resource, which produces
additional uncertainty. These two uncertainty sources are indepen-
dent of the issue of global climate change contributing to changes
in the long-term average, which is discussed above. Instead, these
two uncertainty sources are related to sampling variability in the
long-term wind resource at the site, and not to the large scale
changes in the climate itself. These two uncertainties are therefore
type A uncertainties, and they are

1. reference site inter-annual variability
2. inter-annual variability over a turbine lifetime

3.1.4 Site Assessment Uncertainty. Wind speed measurements
usually take place at heights significantly lower than the hub
height of a typical modern wind turbine. Because wind speeds
typically increase with height, a wind shear model is often used to
extrapolate the estimated long-term wind resource to the hub
height �22�. The wind shear model is usually created using the
measured wind speed data �23�.

The tower used to measure the wind speed is often not at the
exact location of the wind turbine�s�. Topographic effects can
cause the wind speeds at separate locations at a site to differ, and
so flow models can be used to estimate the wind resource at each
turbine location �24�. A variety of different approaches to flow
modeling are possible, and each introduces some uncertainty.

Uncertainty arises when modeling both the wind shear and the
topographic effects on wind speed at a site and, therefore, when
estimating the long-term, hub height mean wind speed and

Weibull parameters at the probable turbine location, ŪLT�hub,
cLT�hub, and kLT�hub. The models may not, in fact, be accurate, and
so error can be introduced into these transformations. The two
factors contributing to this uncertainty are

1. topographic model uncertainty �24�
2. wind shear model uncertainty �22,23�

3.2 Estimation of the Wind Resource. Once the wind speed
measurements at the site are completed, an estimate can be made
of the long-term hub height wind resource and the associated un-
certainty in this estimate. This section describes a process for
estimating the long-term hub height mean wind speed and Weibull

parameters, ŪLT�hub, cLT�hub, and kLT�hub. The next section dis-
cusses the associated uncertainty. The process for estimating the
wind resource informs the process for estimating the uncertainty.
The steps used to determine the long-term hub height wind re-
source are listed below.

1. Correct for any known bias in the measured wind speed. The
anemometer vertical sensitivity, the anemometer overspeed-
ing, the anemometer vertical turbulence effects, and the
tower effects may introduce a bias into the measurement of
the wind speed. The measured wind speed data should be
scaled to remove these biases.

2. Use the measured wind speed data to determine the appro-
priate shear parameter. If the power law is used, then solve
for �. If the log law is used, then solve for z0 �a stability
correction may also be necessary for the log law�.

3. Use the measured wind speed data and data from a long-
term reference site in a MCP algorithm. The outputs of the
MCP algorithm are estimates of the long-term mean wind
speed and long-term Weibull shape factor at the measure-

ment height and location, ŪLT and kLT. Any of several meth-

ods for estimating kLT from time series data can be
used, including empirical methods or maximum likelihood
methods.

4. Apply the chosen shear model to ŪLT, the output of the
MCP step. For example, if one utilizes the power law, then
after determining � in step 2, Eq. �6� is used to calculate

ŪLT�hub. h3 is the hub height, and h2 is the highest measure-
ment height.

ŪLT�hub = ŪLT�h3/h2�� �6�

5. Apply a shear model to extrapolate the estimated long-term
shape factor kLT to the hub height. k typically increases with
height, although generally much less strongly than the mean
wind speed. While various models exist for extrapolating k
with height, the predictions from these models are highly
variable, with little predictive value �25,26�. Furthermore,
for common measurement heights ��50 m� and modern tur-

bine hub heights ��80 m�, the models predict small in-

creases in k on the order of 5% �26�. To date, no shear model
for k is recommended here, and one can also either assume
that k remains constant with height or apply a small correc-
tion factor on the order of 5–10%, which is typical. Future
work may investigate alternative models for k extrapolation.

6. Apply a topographic correction, if necessary, to determine
the hub height wind resource at each of the turbine locations
�24�.

7. Correct for any known bias in the shear extrapolation and
topographic correction. These processes can introduce bias,

and so the estimated value of ŪLT�hub and kLT�hub should be
scaled to remove these biases �22,24�.

8. Calculate the value of cLT�hub at each turbine location from

the values of ŪLT�hub and kLT�hub at each turbine location.
This can be done using Eq. �7�, where � is the gamma func-
tion �6�

cLT�hub = ŪLT�hub/��1 + 1/kLT�hub� �7�

It must be emphasized that because of topographic corrections,

the values of ŪLT�hub, cLT�hub, and kLT�hub are likely different for
each turbine location.

3.3 Wind Resource Uncertainty. Once the long-term wind
resource is determined, the uncertainty of the long-term wind re-
source is then estimated. The estimates of the individual uncer-
tainty values for the mean wind speed are labeled �Ui, and for the
shape factor they are labeled �ki. The steps to determine the un-
certainty are as follows:

1. Use Eq. �5� to combine the uncertainty values within each
category of uncertainty for the mean wind speed. This is
shown in Eq. �8�. The subscripts M, LT, V, and SA corre-
spond to uncertainty in the four categories of uncertainty.
Within each category of uncertainty, the sensitivity factors
are equal to 1 because each uncertainty source contributes
equally and linearly to the overall uncertainty of the cat-
egory, and so a simple RSS method can be used.

I: �UM = ���U1�2 + ��U2�2 + ��U3�2 + ��U4� + ��U5�2 + ��U6�2 + ��U7�2

II: �ULT = ���U8�2 + ��U9�2 + ��U10�
2

III: �UV = ���U11�
2 + ��U12�

2

IV: �USA = ���U13�
2 + ��U14�

2 �8�

2. The general equations to determine �U is derived from Eq.
�5�. The result is shown in Eq. �9�. The sensitivity factors for
the mean wind speed for each category of uncertainty are
SFU,M, SFU,LT, SFU,V, and SFU,SA,
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�U = ��SFU,M�UM�2 + �SFU,LT�ULT�2 + �SFU,V�UV�2 + �SFU,SA�USA�2

�9�

3. Determine the sensitivity factors for each category of uncer-
tainty. The sensitivity factor for the wind resource variability
uncertainty and the site assessment uncertainty are both
equal to 1 since they contribute linearly to the overall uncer-
tainty. Thus, SFU,V=SFU,SA=1.

If a linear model is used in the MCP step, then the sensi-
tivity factor for the long-term resource estimation for the
mean wind speed, SFU,LT, is also equal to 1. The Renewable
Energy Research Laboratory �RERL� uses a linear MCP
model, dubbed the “variance ratio” method, which has been
shown to perform well relative to other models �27�. From
an uncertainty perspective, using a linear model simplifies
the calculation of the overall wind resource uncertainty.

The sensitivity factor for the measurement uncertainty,
SFU,M, is not equal to 1, because the measured wind speed is
used to calculate the shear parameter and the shear param-

eter is then used to estimate ŪLT�hub. The result is that error
in the measurement of the wind speed causes error in the
shear parameter calculation, which then causes additional

error in the estimate of ŪLT�hub �28�. Thus, the contribution
of measurement uncertainty to the total uncertainty is mag-
nified due to shear extrapolation, and so the sensitivity factor
for the measurement uncertainty is greater than 1. It is im-
portant to emphasize that this effect is not due to any error in
the wind shear model. Rather, it is a mathematical by-
product of using uncertain data to determine an extrapola-
tion parameter.

SFU,M can be calculated as follows: h1, h2, and h3 are the
heights of the lower measurement anemometer, the higher
measurement anemometer, and the hub height, respectively.

ŪM1 and ŪM2 are the measured mean wind speeds at the
lower and upper anemometers, respectively. When the
power law is used, the measured data can be used to calcu-
late the shear parameter � using

� = ln�ŪM2/ŪM1�/ln�h2/h1� �10�

The predicted mean wind speed Ūhub at height h3 can then
be calculated using

Ūhub = ŪM2�h3/h2�ln�U¯ M2/U
¯

M1�/ln�h2/h1� �11�

If it is assumed that the uncertainties in the mean wind
speeds are independent and normally distributed and if there
is no uncertainty in the three heights, then the uncertainties
can be related using

�Ū
hub
* =�� �Ūhub

�ŪM1

�Ū
M1
* �2

+ � �Ūhub

�ŪM2

�Ū
M2
* �2

�12�

Next, it is assumed that the fractional standard uncertainty

of ŪM1 and ŪM2 ��ŪM1 and �ŪM2� are both equal to the
fractional standard measurement uncertainty �UM, as shown
in Eq. �13�. That is, it is assumed that the measurement
uncertainties at both heights are identical,

�UM = �ŪM1 = �ŪM2 = �Ū
M1
* /ŪM1 = �Ū

M2
* /ŪM2 �13�

Finally, after substituting Eq. �13� into Eq. �12� and after
some algebraic manipulation, the ratio of the fractional un-

certainty in the predicted mean wind at height h3, �Ūhub, to
the fractional standard measurement uncertainty �UM can be
written using Eq. �14�. This ratio is also equal to SFU,M,

SFU,M =
�Ūhub

�UM

=�� �Ūhub

�ŪM1

ŪM1

ŪM2

�2

+ � �Ūhub

�ŪM2

�2

· � ŪM2

Ūhub

�
�14�

The partial derivatives and the ratios ŪM1 / ŪM2 and

ŪM2 / Ūhub can be calculated using Eq. �11�. When these cal-
culations are substituted into Eq. �14�, SFU,M can be written
as an analytic function of only the three measurement
heights. The final result for SFU,M is shown in

SFU,M =�2�ln�h3

h2

��2

+ �ln�h2

h1

��2

+ 2 ln�h2

h1

�ln�h3

h2

�
�ln�h2

h1

��2

�15�

As an example, for a met tower with measurement heights
of 35 m and 50 m, and a turbine hub height of 80 m,
SFU,M=2.7. The result is that the measurement uncertainty
can contribute significantly more to the overall wind re-
source uncertainty than its actual value would indicate, due
to this shear extrapolation effect.

4. Calculate the overall uncertainty in the long-term hub height
mean wind speed �U. This is accomplished using Eq. �9�.
Because SFU,LT=SFU,V=SFU,SA=1, the equation for �U can
be written as

�U = ��SFU,M�UM�2 + ��ULT�2 + ��UV�2 + ��USA�2

�16�

5. Determine �k. The RSS method can be used to combine the
uncertainty values within each category of uncertainty for k,
as shown in

I: �kM = ���k1�2 + ��k2�2 + ��k3�2 + ��k4� + ��k5�2 + ��k6�2 + ��k7�2

II: �kLT = ���k8�2 + ��k9�2 + ��k10�
2

III: �kV = ���k11�
2 + ��k12�

2

IV: �kSA = ���k13�
2 + ��k14�

2 �17�

6. The general equation for �k is shown in Eq. �18�. The sen-
sitivity factors for k for each category of uncertainty are
SFk,MSFk,LTSFk,V, and SFk,SA,

�k = ��SFk,M�kM�2 + �SFk,LT�kLT�2 + �SFk,V�kV�2 + �SFk,SA · �kSA�2

�18�

7. Determine the sensitivity factors for each category of uncer-
tainty for k. As is the case for the mean wind speed,
SFk,LT=SFk,V=SFk,SA=1, as long as a linear MCP model is
used. The value of SFk,M depends on the method used to
extrapolate k. If k is assumed to be constant with height, or
if a simple scale factor is utilized, then SFk,M is simply 1.
However, if measured data are used to calculate a shear pa-
rameter for a shear model for k, then SFk,M is larger than 1
since uncertain data are used to calculate the shear model
parameter. A similar analysis as that performed in step 3
above would then be necessary to determine SFk,M.

8. �c can then be calculated based on �U and �k using Eq. �7�.
The general equation for �c is shown in

�c = ��SFc,U�U�2 + �SFc,k�k�2 �19�

SFc,U is simply equal to 1 due to the linear dependence shown
in Eq. �7�. The formula for SFc,k is shown below in Eq. �20�,
where � is the psi function,
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SFc,k =
�c

�k

k

c
= ��1 + 1/k�/k �20�

In general, other sources of uncertainty are possible in the site
assessment process. Furthermore, alternative methods of perform-
ing a site assessment are also viable approaches; for instance,
mesoscale and microscale modeling can be used instead of MCP
�18�. These alternative site assessment methods necessitate modi-
fication to the uncertainty analysis approach outlined above. How-
ever, many of the above techniques are applicable.

4 Wind Turbine Power Production and Uncertainty

Like the wind resource, the determination of the power curve
and power production of a wind turbine is also potentially subject
to error, which then causes uncertainty in the estimate of AEP.

4.1 Wind Turbine Power Production Uncertainty Sources.
Three sources of power production uncertainty are identified. A
detailed discussion of the causes and sizes of these uncertainty
sources is not presented. Rather, the three uncertainty sources are
listed and a brief discussion is provided. For completeness, refer-
ences to more detailed descriptions of these uncertainty sources
and their values are provided. The three sources of power produc-
tion uncertainty are labeled �P1, �P2, and �P3. They are

1. wind turbine specimen variation �1,29�
2. wind turbine power curve uncertainty �1,5,29�
3. air density uncertainty

Wind turbine specimen variation is caused by variations of in-
dividual turbine power curves within a particular model from the
“reference” power curve quoted by the manufacturer �1,29�. These
variations are likely due to manufacturing variations.

The power curve uncertainty is typically significantly larger
than the other two uncertainties. When power curves for wind
turbines are measured by the manufacturer, several factors con-
tribute to the uncertainty in this “measured power curve.” The
primary factor is uncertainty in the wind speed to which the tur-
bine responds because the uncertainty in the actual power being
produced is quite small. While the wind speed at the hub height is
known to a fairly high accuracy, the effects of turbulence and
shear across the rotor face are not taken into account, and conse-
quently the mean wind speed averaged over the rotor face is un-
certain �1,5,29�.

This issue is exacerbated when a turbine is placed at a particu-
lar site because the power curve of a wind turbine is site depen-
dent and not solely a function of the hub height wind speed. The
turbulence, air density, and shear characteristics of a site affect the
power curve of a turbine, with the result that a turbine at a specific
site could produce either more or less power than the power curve
indicates at a given wind speed. The measured power curve spe-
cifically corresponds to a site that meets the IEC 61400-12 stan-
dards, which require a flat site with very low turbulence �5�. Thus,
a site-specific power curve is needed to estimate energy produc-
tion at a site, especially when the terrain is complex. The manu-
facturer generally determines this site-specific power curve.

Air density uncertainty is caused by seasonal variations in the
air density over the course of a year, if the average air density at
the site is used to adjust the power curve. This tends to be a small
effect relative to the other two, even at sites with large seasonal
variations in air density.

4.2 Wind Turbine Power Production Uncertainty. The
overall power production uncertainty can be calculated using the
general equation given in Eq. �5�. The three uncertainty sources
are independent, and the sensitivity factor for each is 1. Thus, the
overall power production uncertainty �P is shown in

�P = ���P1�2 + ��P2�2 + ��P3�2 �21�

5 Wind Turbine Energy Production Losses and Uncer-

tainty

This section describes the factors that contribute to uncertainty
in the estimate of energy losses. These factors are distinct from
those described in the previous section, which are related to un-
certainty in the instantaneous power output and are referred to as
“energy loss factors” �ELFs�.

5.1 Energy Loss Factors. Three ELFs have been identified.
Although other losses are also possible, they are not considered
here. Each of these factors reduces the energy production of a
wind turbine or wind farm. They are

1. availability losses �30�
2. fouling �dirt� and icing losses �31,32�
3. array losses �33�

These three ELFs are labeled ELFav, ELFfoul, and ELFarray.
Each ELF is defined as the ratio of the actual energy produced
divided by the ideal energy production if there are no losses. Thus,
ELFav is simply equal to the actual expected energy production of
the wind turbine or wind farm, divided by the hypothetical energy
production if there is no maintenance of the turbine�s� or down
time, whether scheduled or unscheduled. The other two ELFs
have equivalent definitions. ELFarray is typically calculated using a
wake model.

The total reduction to the wind turbine or wind farm energy loss
is simply the product of the three ELFs. Thus, the overall ELF is
shown in Eq. �22�. The ELFs are independent, and a normal dis-
tribution is assumed for each,

ELF = ELFavELFfoulELFarray �22�

5.2 Justification of Normally Distributed Energy Loss
Factors. The assumption of a normal distribution must now be
justified. The ELFs, by definition, have a range between 0% and
100%. A normal distribution is defined at �−� ,��. This is a clear
contradiction because a normally distributed ELF implies the pos-
sibility of a value less than zero or greater than 1. Despite this
contradiction, normally distributed ELFs are used, and there is a
sound mathematical basis for their use.

The yearly availability of a wind farm is not a normally distrib-
uted quantity about its expected value. This can be seen clearly in
the histogram in Fig. 1. The data in Fig. 1 show the number of
occurrences of yearly availability values for 25 different wind
farms, with a total of 104 wind farm years of operation. The mean
availability is approximately 94%, and the distribution is clearly
asymmetrical, with an upper limit of 100%. These data are com-
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Fig. 1 Empirical availability data and Weibull fit
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piled from a variety of North American wind farms �30�.
The data in Fig. 1 can be fitted with a Weibull distribution, for

example. The choice of a Weibull distribution is fairly arbitrary
although it does provide a good fit to the empirical data. The
Weibull approximation to the data is also shown in Fig. 1. The
shape factor has a value of k=1.5.

The yearly availability is not the quantity used in AEP esti-
mates, however. When estimating AEP, the average availability
over the approximately 20-year lifetime of the project is used in
the estimate. Thus, the quantity of interest is the lifetime avail-
ability of the wind farm or the average of the 20 yearly availabil-
ity values. The distribution of the lifetime availability can be de-
termined using a Monte Carlo simulation, assuming that the
yearly availability in any given year is independent of other years.
The simulation proceeds as follows:

1. Twenty values are randomly sampled from a Weibull distri-
bution with an expected value of 0.94 and a k=1.5, which is
the Weibull fit to the empirical availability data. These 20
values represent a random set of wind farm yearly availabil-
ity values.

2. These 20-year availability values are averaged to get the
lifetime availability.

3. This process is repeated 100,000 times.

The distribution of the lifetime availability values can then be
plotted in a histogram. This is shown in Fig. 2. A normal distri-
bution can be fitted to the data and is shown in Fig. 2 as well. The
mean is 0.94 and the standard deviation is 0.009.

Thus, while the distribution of yearly availability values can be
approximated by a Weibull distribution, the distribution of life-
time availability values is very closely approximated by a normal
distribution. This result should not be surprising, and it follows
directly from the central limit theorem. This result makes intuitive
sense as well. The yearly availability distribution from Fig. 1 in-
dicates that there is approximately a 10% chance of getting an
availability value less than 0.90 in a single year. However, the
chance of getting availability values less than 0.90 over the life-
time of the project is extremely small, and this is reflected in Fig.
2. Over a 20-year period, it is unlikely that the average availability
is much different than the expected value.

This result can be applied to all three ELFs. Like the availabil-
ity, the yearly distributions of ELFfoul and ELFarray cannot be nor-
mally distributed. Instead, they most likely follow a similar asym-
metrical distribution, with an upper limit of 1. However, the
distribution of the 20-year average once again follows a normal
distribution due to the central limit theorem.

There is still the possibility for values greater than 1 when
normally distributed ELFs are assumed, and so a contradiction
remains. In general, however, the probability of a value greater
than 1 is so small that it is completely negligible.

5.3 Energy Loss Factors and Uncertainty. The ELFs are
independent and normally distributed, and the overall ELF uncer-
tainty �ELF can be calculated using Eq. �5�, as long as the indi-
vidual energy loss factor uncertainties, �ELFav, �ELFfoul, and
�ELFarray, are expressed as fractional standard uncertainties. The
sensitivity factor for each ELF is 1 since the overall ELF is simply
the product of the three individual ELFs. The resulting equation
for �ELF is given in

�ELF = ���ELFav�
2 + ��ELFfoul�

2 + ��ELFarray�
2 �23�

6 Energy Production and Uncertainty

Once the wind resource at a site has been determined, it is
combined with a selected power curve and the ELFs to yield an
estimate of the energy production of the wind turbine or wind
farm. The uncertainty in the wind resource, the power production,
and the ELFs contribute to an overall uncertainty in the energy
production. Often, it is more convenient to use the “capacity fac-
tor” �CF� as a measure of energy production, which is used exclu-
sively as a measure of energy production for the rest of this
section.

This section reviews both one common method for combining
the wind resource, power curve, and ELFs to estimate CF and a
new method for combining the uncertainties of each of these
terms to yield the uncertainty of CF. The methods described in this
section can be applied to either a single wind turbine or a wind
farm. The total wind farm energy production is simply the sum of
the energy productions of each turbine, and the wind farm CF is
simply the average of all the wind turbine CFs. The effect of wake
losses on individual turbines is encompassed in the ELFarray,
which is a measure of the total energy loss of the wind farm due
to wake losses. Topographic effects are accounted for by using a
different value of cLT�hub and kLT�hub for each wind turbine.

6.1 Capacity Factor Estimation. The capacity factor is a
function of the long-term hub height Weibull parameters, which
are simply labeled c and k in this section, along with a wind
turbine power curve PW and the overall ELF. In one common
approach, the value can be calculated by integrating the product of
the wind speed probability distribution and the power curve over
all values of wind speed U, multiplying by the overall ELF, and
dividing by the rated power. The wind speed probability distribu-
tion is the Weibull distribution, given in Eq. �1�, with the long-
term hub height values of c and k used as the Weibull parameters.
This is shown in �6�

CF = PW/PR = �ELF/PR� ·	
0

�

PW�U��k/c��U/c�k−1

�exp�− �U/c�k�dU �24�

The integral in Eq. �24� cannot be performed analytically. In-
stead, it must be approximated numerically. A trapezoid method or
Simpson’s method can be easily implemented to perform this in-
tegral. This formulation is convenient because the entire contribu-
tion of the wind resource to CF is condensed in the values of c

and k.

6.2 Capacity Factor Uncertainty Estimation. A new
method for determining the uncertainty of CF is now presented.
The general equation for �CF is given in

�CF =�
� �CF

�c

c

CF
��c�2

+ 
� �CF

�k

k

CF
��k�2

+ �P2 + �ELF2

�25�
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Fig. 2 Distribution of lifetime availability values
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This is derived from the general uncertainty formula in Eq. �5�.
The terms multiplying �c and �k �the partial derivatives and the
fractions inside the parentheses� in Eq. �25� are the sensitivity
factors for c and k. The sensitivity factors for c and k are labeled
SFCF,c and SFCF,k, respectively. The sensitivity factors for �P and
�ELF are 1 since CF has a linear dependence on these quantities.

The calculation of SFCF,c and SFCF,k begins with Eq. �24�. The
partial derivatives can be taken using the Leibniz integration rule,
shown in Eqs. �26� and �27�. p�U� is the Weibull probability den-
sity function,

SFCF,c =
�CF

�c

c

CF
=

1

CF

ELF

PR
	

0

�

PW�U�
�p�U�

�c
cdU �26�

SFCF,k =
�CF

�k

k

CF
=

1

CF

ELF

PR
	

0

�

PW�U�
�p�U�

�k
kdU �27�

After the derivatives are taken and some algebraic manipulation
is carried out, the sensitivity factors can be written as shown in
Eqs. �28� and �29�. The integrals cannot be calculated analytically,
but once again numerical integration can be used to estimate the
sensitivity factors

SFCF,c =
1

CF

ELF

PR
	

0

�

PW�U�k��U

c
�k

− 1�p�U�dU �28�

SFCF,k =
1

CF

ELF

PR
	

0

�

PW�U��1 + k ln�U

c
��1 − �U

c
�k��p�U�dU

�29�

Finally, �CF can be calculated using the general equation given
in Eq. �25�,

�CF = ��SFCF,c�c�2 + �SFCF,k�k�2 + �P2 + �ELF2 �30�

The utility of this new method for estimating the uncertainty of
the energy production in the site assessment process rests in the
ability to explicitly calculate sensitivity factors using Eqs. �28�
and �29� rather than assume values. The method recommended in
IEC 61400-12, while equally valid, utilizes a bin method, which
may be more cumbersome and less elegant than the method pre-
sented here �5�. Furthermore, the values of the sensitivity factors
give insight into the contribution of the component uncertainty
sources to the overall uncertainty.

6.3 Example Calculation of Capacity Factor and Capacity
Factor Uncertainty. An sample calculation helps to clarify the
process. The important assumptions and values in the example are
given below:

1. The long-term hub height Weibull parameters are c=9 m /s
and k=2.5. This would be considered an excellent site for
wind energy development.

2. A GE 1.5 MW wind turbine power curve is used for this
example. This power curve is shown in Fig. 3. This is a
variable speed, pitch regulated wind turbine.

3. The total energy losses reduce the energy production by
10%, so ELF=0.90. This is a reasonable value for a site that
does not experience heavy icing.

4. The sample uncertainty values of the long-term hub height
Weibull parameters, the power production, and the ELF are
given in Table 1. These values are meant to be representative
of typical values for the uncertainty of the parameters and
are not based on an actual site.

The result of the sample calculation is a value for CF=38.0%.
This is calculated using Eq. �24� and a numerical integration pro-
gram. The values for the sensitivity factors for c and k are
SFCF,c=1.85 and SFCF,k=0.07. Using the sensitivity factors and

the sample uncertainties, the overall CF uncertainty �CF is 17.2%.
To obtain the absolute standard uncertainty, �CF is multiplied by
CF, yielding a value of 0.06. Thus, the estimate of CF is CF
=0.38�0.06.

6.4 Example Calculation Discussion. The value of CF is de-
pendent on the values of both c and k. This dependency is illus-
trated in Fig. 4, which shows the value of CF for ranges of values
of c and k using the same power curve and ELF value as the
example. Figure 4 clearly shows that CF increases as c increases.
This comes as no surprise, as the value of c is directly propor-
tional to the mean wind speed. Also, CF tends to increase as k

increases, except when c is very small. As k increases, the Weibull
distribution becomes less spread out and therefore more concen-
trated about its expected value. At very low values of c, this
means that the distribution is concentrated about very low values
of the wind speed, and so the turbine produces very little power,
even when it is above the cut-in wind speed. However, for mod-
erate to high values of c, a high k value results in the wind speed
being above the cut-in value for a very high percentage of the time
and, therefore, a high CF.
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Table 1 Sample uncertainty values
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The magnitude of �CF depends predominantly on the value of
�c. In fact, if �k, �P, and � ELF are all 0%, the uncertainty in CF
is still 14.8%. This is due to the large magnitude of SFCF,c. Thus,
reducing �c �or mean wind speed� provides the best opportunity
for reducing the overall CF uncertainty.

SFCF,c is 1.85. This is lower than is generally assumed. It is
common practice to assume that a percentage increase in c �or the
mean wind speed� causes between two and three times the per-
centage increase in CF, i.e., a sensitivity factor between 2 and 3
�1�. This is an oversimplification, however; and the results indi-
cate that this assumption could lead to large errors. For example,
if one had assumed that SFCF,c=2.3, then �CF would be 20.5%
instead of 17.2%. This could mean the difference between an ac-
ceptable and unacceptable risk level for a potential wind energy
venture. In general, the values of the sensitivity factors should be
calculated explicitly and not assumed.

In reality, SFCF,c is highly dependent on the value of c. SFCF,c

decreases as c increases, and it increases as k increases. The de-
pendence of SFCF,c on c and k for this example is shown in Fig. 5.
The plot indicates that SFCF,c approximately decreases proportion-
ally to the square of c. As c increases, the wind speed is above the
rated wind speed more and more frequently. Therefore, any error
in the estimation of c affects the value of CF less since the turbine
produces constant power the above rated wind speed regardless of
the actual wind speed. As k increases, the Weibull distribution
becomes less spread out, resulting in the wind speed being close
to the mean value more frequently. For a given value of c, a
higher value of k results in the wind speed being less than the
rated wind speed more often, and therefore the CF is more depen-
dent on the value of c; hence SFCF,c is larger.

In this example, SFCF,k is fairly small relative to the other sen-
sitivity factors, indicating that CF has a weak dependence on k.
For example, a 10% increase in k would only change CF by 0.7%.
However, SFCF,k is also highly dependent on the value of both c

and k, as shown in Fig. 6, and so in some cases, uncertainty in k
could contribute significantly to the overall uncertainty.

The value of k is often assumed to be approximately 2, al-
though it can vary widely, with values that may be as low as 1.5 or
as high as 3.5 at some sites. The value of k is not insignificant. For
this example, if one assumes that k is equal to 2 but is in fact,
equal to 1.5, the CF would be calculated as 0.374 or 0.357, re-
spectively. This may seem like a small difference, but it corre-
sponds to a 5% change in AEP, which can make the difference
between a successful venture and a failure. Thus, assuming a
value of k may have adverse consequences because it could lead
to an incorrect estimation of CF �or AEP�. This further reinforces

the utility of using the two parameter Weibull distribution to ap-
proximate the wind speed distribution rather than the one param-
eter Rayleigh distribution.

7 Recommendations

The sample calculation above demonstrates that uncertainty in
c is typically the dominant contributor to �CF. Thus, reducing �c
is the logical starting point when attempting to reduce the overall
uncertainty in site assessment. Wind measurement devices capable
of measuring at hub height offer one approach to accomplish this
goal. These devices, such as a LIDAR, SODAR, eliminate errors
due to shear model uncertainty and tower/boom effects �34,35�.
Also, the measurement uncertainty sensitivity factor is one when
measuring at hub height, which further reduces the wind resource
uncertainty. In fact, a LIDAR or SODAR with 5% measurement
uncertainty would reduce the uncertainty in CF to 12.9% from
17.2%, which is a decrease in the uncertainty of approximately
25%. Tall towers can also be used for hub height measurements.
With all of these alternative options, cost and reliability are miti-
gating factors that must be balanced against the potential reduc-
tion in uncertainty. Nonetheless, these results suggest that serious
consideration should be given to these alternative measurement
methods as effective means of reducing the uncertainty in the site
assessment process.

8 Conclusion

Wind energy site assessment is a complex multistep process,
with a high degree of uncertainty. This paper seeks to present a
framework for handling uncertainties in a common approach to
this process when met towers are used to measure the wind re-
source, and MCP is used to estimate the long-term wind resource.
Mathematically rigorous methods for estimating uncertainty are
presented. These methods utilize sensitivity factors to combine
independent sources of uncertainty. Specifically, the wind speed
measurement uncertainty sensitivity factor and the Weibull param-
eter sensitivity factors can be calculated explicitly using the meth-
ods outlined in this paper. This eliminates the need to assume the
values for sensitivity factors or ignore them altogether. The result
is that the uncertainty in the site assessment process can be cal-
culated more accurately.
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Nomenclature
array 	 denotes array losses

av 	 denotes availability losses
c 	 Weibull scale factor

foul 	 denotes fouling losses
k 	 Weibull shape factor
h 	 height

hub 	 denotes hub height quantities
LT 	 denotes long-term quantities or long-term esti-

mation uncertainty
LT�hub 	 denotes long-term hub height quantities

M 	 denotes measured quantities or measurement
uncertainty

N 	 number of measurements
P 	 power

PR 	 rated wind turbine power
PW�U� 	 wind turbine power curve

PW 	 average power output
p�U� 	 wind speed probability density function

R 	 range of a rectangular distribution
SA 	 denotes site assessment uncertainty
SF 	 sensitivity factor
U 	 wind speed

Ū 	 mean wind speed
V 	 denotes interannual variability uncertainty
z0 	 log law wind shear parameter
� 	 power law wind shear parameter
� 	 gamma function

 	 psi function
� 	 denotes uncertainty
� 	 standard deviation
* 	 denotes absolute uncertainties �versus nondi-

mensional uncertainties�
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