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Abstract: This paper presents the quantification of uncertainties in the prediction of settlements
of embankments built on prefabricated vertical drains (PVDs) improved soft soil deposits based
on data collected from two well-documented projects, located in Karakore, Ethiopia, and Ballina,
Australia. For this purpose, settlement prediction biases and settlement distributions were statistically
computed based on analyses conducted on two Class A and Class C numerical predictions made
using PLAXIS 2D finite element modelling. From the results of prediction bias, Class C predictions
agreed well with the field measured settlements at both sites. In Class C predictions, the computed
settlements were biased to the measured values. For Class A predictions, the calculated settlement
values were in the range of mean and mean minus 3SD (standard deviations) for Karakore clay, and
they were within mean and mean minus 2SD limit for the Ballina soil. The contributing factors to
the settlement uncertainties of the Karakore site may include variability within the soil profile of the
alluvial deposit, particularly the presence of interbedded granular layer within the soft layers, and
the high embankment fills, and the limited number of samples available for laboratory testing. At
the Ballina test embankment site, the uncertainties may have been associated with the presence of
transitional layers at the bottom of estuarine clay and sensitivity of soft soil to sample disturbances
and limitations in representing all the site conditions.

Keywords: uncertainty; random variables; Monte Carlo simulation; predicted settlement; prediction
bias; Karakore clay; Ballina clay

1. Introduction

Infrastructure construction over soft soil deposits often involves pre-construction improvement of
the soil to increase the strength and stiffness, so that anticipated risks of excessive post-construction
settlement and associated instability can be minimized. Among the available ground improvement
methods for soft soils, the installation of prefabricated vertical drains (PVDs) accompanied by preloading
is one of the most widely used and cost-effective stabilization techniques. The provision of PVDs
facilitates faster rates of consolidation allowing the presumed vertical and horizontal settlements to be
completed in a reasonably short period of time. A number of theoretical, analytical [1–4] and numerical
models [5–10] are available for estimating ground movement parameters such as ultimate settlement,
degree of consolidation, and excess pore water pressure. However, reliable predictions of the rate and
magnitude of consolidation settlement remain a challenging task due to several uncertainties associated
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with input parameters, variability in soil profiles, properties of PVDs and prediction methods and
constitutive material models affecting the outcome of the estimations [11–14].

Alluvial deposits are formed over flood plain areas and along river terraces where the terrain
is flat and drainage conditions are poor. These deposits are mainly formed in four different
facies models [15]. Alluvial sediments are characterized by distinctively orthotropic stratigraphy
situations [16]. Estuarine clays are coastal region formations with thick deposits that are characterized as
very low overconsolidation ratio and preconsolidation pressure and large consolidation settlements [17].

Soft ground improvement has become an important part of geotechnical engineering practices. The
improvement methods generally can offer technical, economic, environmental, and time benefits [16,18].
A number of soft ground improvement techniques have been used in practice. The classification of
these methods is based on different criteria. An optimum method of ground improvement is typically
selected based on grainsize distribution of the soil, depth of improvement, type of the structure to
be built on it, simplicity in construction, speed of consolidation process, environmental constraints,
availability of materials and equipment, cost of construction and maintenance, reliability and durability
compared to other ground improvement techniques [18]. Sand drains (SD), deep mixing method
(DMM) using lime and cement [18,19], PVDs and deep vibro-compaction (DVC), are among the
most widely used methods to improve soft soil deposits. Other methods such as sand compaction
piles (SCP), stone columns (SC), horizontal drains (HD), vibro-concrete column (VCC), dynamic
consolidation (DC), geotextile encased columns (GEC), and jute drain (JD) are also used widely as
ground improvement techniques in many parts of the world for different conditions. However, PVDs
associated with surcharge and/or vacuum preloading is the most common, easy construction and
economically effective method of ground improvement for railway and highway structures for its
fast consolidation process [18–21]. The PVDs technology were originally band-shaped drains, each
drain made of a cardboard core and a paper filter jacket [18]. However, nowadays, PVDs are typically
manufactured from a combination of corrugated polypropylene material core, which is enclosed in a
polyethylene geotextile filter [19].

Intensive studies have been done on the numerical modelling of the deformation behavior of
PVD-improved soft grounds accompanied by surcharge preloading and/or vacuum preloading for the
coastal regions. Chai et al. (2001) studied the multilayer problem of Ariake clay deposit with finite
element method (FEM) emphasizing equivalent vertical hydraulic conductivity [22]. Indraratna and
Redana (2002) modelled the behavior of Bangkok and Muar clays incorporating the smear and well
resistance [23]. Voottipruex (2014) came up with solutions for PVD-improved Bangkok clay coupled
with vacuum preloading problems using a new numerical simulation of PVDCON software [24]. Yildiz
(2009) studied a three-dimensional (3D) numerical analysis of PVD-improved soft clays using a newly
developed constitutive model. A transformation of 3D problems into two-dimensional (2D) problems
using matching techniques has been presented by the several authors [25,26]. The work of matching
techniques was reported by other authors too [7,27,28]. Kelly et al. (2018) and a number of other
engineers have reported on the numerical modelling development of a trial embankment built on
PVD-improved estuarine soft clay of Ballina, Australia [10,29–33].

In order to model the behaviors and performances of embankment structures built on
PVD-improved soft grounds, two common approaches have been used after Lambe [34], in relation to
the information of input parameters. Class A prediction is employed before the field monitoring data
are known. In this prediction, the information obtained from laboratory tests is used for the numerical
modelling [35], while Class C is used once the field measured data that represent the real condition are
known. Class C prediction is performed using back-analysis techniques [24,30,36]. In the back-analysis
technique, parameters are adjusted systematically until the predicted settlement agreed reasonably
well with the field measurement data.

However, many previously studied solutions for PVD-improved soft ground accompanied by
surcharge preloading problems are based on deterministic approaches. Due to randomness and spatial
variability of soil profiles under an embankment, deterministic procedures are not satisfactory for
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estimating the settlement performance of overlaying structures [12]. So, it is essential to quantify the
uncertainties of predicted settlements in a simpler and understandable manner. Understanding the
concepts of the subject would provide a means of quantifying uncertainties and properly handling
them [37]. If the predicted values produce considerably lower or higher than the expected values, it
would help the client for subsequent decision-making processes so that it can assign risk and allocate
the required fund and to take corrective actions. Proper decision and early action minimize risks and
anticipated associated costs and maximizes opportunities [31,38].

Karakore railway embankment was completed for soft soil improvement as a part of the Awash-
Kombolcha-Haragebaya (AKH) railway project, Wollo Province, Ethiopia. The railway project covers
390 km length and traverses on several topographic conditions, including soft grounds found in
Karakore and its vicinity [39]. Muhammed et al. [39] presented the deterministic settlements using
Class A and Class C predictions for the Karakore soft soil. The Ballina test embankment is located in
Ballina, New South Wales (NSW), Australia. It is a soft soil Field Test Facility that was established
by the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering
(CGSE). The background information and field monitoring details are reported by Kelly et al. [21]. Site
investigation, laboratory tests, and field instrumentation data from the Ballina project can be accessed
online at [40] or references and further studies [41].

This study aimed at evaluating the uncertainties associated with the settlement predictions and
prediction biases of embankments built on soft alluvial Karakore clay and coastal area deposit of
estuarine Ballina clay. It also examined the main parameters and factors that contributed to the
uncertainties in estimating the consolidation settlements. Systematic comparisons were also made in
the predictions and uncertainties for the two different soft soil deposits.

2. Uncertainties in Settlement Predictions

Uncertainty, risk, and safety are common themes encountered in geotechnical engineering analysis
and design. Despite a detailed and highest quality location-specific soil investigations and field
monitoring data and with the best modeling method, it is recommended that the analyses shall
be accompanied by uncertainty evaluations and quantifications [42]. In geotechnical engineering,
uncertainties are mainly inductive [37]. Aleatory (temporal or spatial inherent variability) and
epistemic (measurement errors, statistical, and transformation uncertainties) are the two broad types of
uncertainties. Reliability analyses are performed to deal with the effects of uncertainties on the output
results. Reliability-based analyses are carried out based on principles of probability and statistics.
Statistics and probability are useful tools for the quantification of the mean (most probable, expected)
value and the possible range of values of an input soil parameter and output results [43]. Statistical
and probabilistic methods can be used to quantify uncertainties making it possible to account for the
randomness of variables more rationally and consistently.

The observational method is a widely accepted effective way to deal with the uncertainty behavior
of geo-materials [37]. For Karakore and Ballina soft clays, field observation data were utilized to predict
the best fit values with the field conditions and to perform uncertainty analyses on the possible range of
output results. Statistics of soil properties estimated from a limited number of test data and insufficient
observations would lead to uncertainty. Such uncertainty is named as statistical uncertainty [44].
Since limited data was available for the project work undertaken at Karakore, predictions can suffer
from statistical uncertainties in the soil parameters. In contrast, in Ballina, where data from the
investigation were available for research and study purposes, the statistical uncertainties could be
minimal. According to Liu et al. (2018), in Ballina test embankment, soil parameters of layers, spatial
variabilities, disturbance around drains, groundwater variation, layer thickness, shear deformation
modelling, pore pressure prediction, and approximation of modelling in 2D are the major contributing
factors for the uncertainty of predictions of subsoil behaviors [42].
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2.1. Probabilistic Techniques

There are several probabilistic approaches to perform statistical analyses of random variables. In
this study, the two most popular probabilistic techniques were used to evaluate the statistical analysis of
mean and standard deviation (CoV) of settlements. These are Taylor series reliability analysis [45] and
the Monte Carlo (MC) simulation method [42]. The Taylor Series method is a first-order second moment
(FOSM) analysis in which the first two moments, such as the mean and the standard deviation (SD)
and CoV, are considered in the analysis. It consists of two distinct steps in the analysis. The first was to
determine the CoV for the computed settlements and to assume a normal or lognormal distribution for
the computed results; second, to determine the probability of failure or biasness using the computed
values [46]. For this study, a lognormal distribution was assumed for the soil parameters obtained
from test results, and a normal distribution was assumed for the randomly generated variables.

The MC simulation method is an advanced numerical technique for estimating the statistical
properties of random input and response variables in a model. MC simulation is often used to solve
stochastic problems, where random samples are taken from the distribution of a variable to generate a
series of values. It can also be used to address deterministic, mathematical, and empirical problems
in which the variables within the computation contain uncertainties with presumed probability
distributions [44]. The MC simulation approach is also applicable to both linear and non-linear
problems with a large number of simulations to provide reliable distribution of the response [42].

In this study, to evaluate the reliability of predictions on short-term and long-term settlement
responses of embankments built on PVD-improved soft deposits of Karakore and Ballina, several
factors were considered. Uncertainties associated with input parameters and prediction methods were
assessed in detail. On Ballina clay, previous probabilistic studies have been carried out to quantify
uncertainties in the prediction of settlements, pore water pressure, and lateral deformation of the soft
estuarine clay [10,31,38,42]. These previous works have been used here to compare with the current
settlement prediction results. The comparison is presented under Section 5.

2.2. Measure of Dispersion of Data

Statistical dispersions of random variables are measured by standard deviation, coefficient of
variation, skewness, and kurtosis. The coefficient of variation (CoV) the relative distribution of data
sets in terms of their standard deviation and mean. CoV measures the confidence level associated
with input soil parameters. A low CoV value indicates that the confidence level of model parameters
is relatively high and vice versa. The CoV value for input model parameters was determined from
laboratory tests, and the results are presented as in Table 1. For both Karakore and Ballina, the authors
judged a minimum of 0.10 for the CoV of the field measured settlement. For Ballina clay, it was found
that the CoV value for the vertical settlement ranged between 0.10–0.29 [21,31,47].

Table 1. Compression and hydraulic parameters of two soft soils (laboratory test results).

Layer Soil Depth
(m)

Cc Cr eo kv (m/day)

Mean CoV Mean CoV Mean CoV Mean CoV

Karakore Soil

Silty Clay-1-1 0.50–3.25 0.32 0.26 0.04 0.12 1.10 0.16 1.59E−04 0.50
Silty Clay-1-2 3.50–6.25 0.90 0.34 0.09 0.54 1.60 0.49 3.09E−04 0.56

Gravelly Sand-GS-2 6.50–9.25 - - - - - - 0.5 -
Silty Clay-3 9.5–12.50 0.17 0.32 0.03 0.39 1.10 0.04 2.99E−04 0.13

Stiff Silty Clay-4 12.75–18.25 0.19 0.58 0.03 0.69 0.97 0.15 2.22E−04 0.19
Ballina Clay

Alluvial Sandy Clayey Silt 0.20–1.50 0.52 0.60 0.03 0.60 1.30 0.33 1.38E−03 1.237
Estuarine Silty Clay 1.50–10.10 1.70 0.17 0.09 0.17 2.68 0.10 3.35E−04 0.571

Transition (Clayey Sand) 10.1–13.8 0.10 0.65 0.01 0.82 0.80 0.32 3.15E−04 0.865
Sand 14–18.20 - - - - 1.10 - 0.50 -
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There are several random variables involved in the estimation of settlement analytically or using
FE modeling. These parameters would contribute to a combined effect on the output of predicted
settlement. So, one can compute the standard deviations of the variables involved in the estimation of
model settlement [45].

SD =

√

(

∆S1
2

)2
+

(

∆S2
2

)2
+ . . .+

(

∆Sn

2

)2
(1)

where ∆S1, ∆S3, ∆Sn, are the change in settlement values of mean −SD (1, 2, . . . , n) and + SD (1,2, . . . , n)
from parameters 1, 2, and n respectively at a given time of observation.

Coefficient of variation of settlements from the combined effects of all parameters can be obtained as:

CoV =
SD

SMP
(2)

where SMP is the most probable predicted settlement value at a specific time of observation.

2.3. Bias in Settlement Predictions

Prediction bias or settlement error can be represented by settlement ratio (R). R can be computed
from the ratio of predicted settlement to measured settlement.

R =
Predicted value

Measured value
(3)

Model bias or model error is another uncertainty associated with the model used for the prediction
of settlements. Logically, uncertainties about the input random variable lead to uncertainty about
the model output [48]. Hence, both input soil parameters and modeling techniques contribute to
the uncertainty of settlement estimation. For Class A and Class C predictions, settlement bias was
considered. For Class A, the predicted settlement usually deviates from the measured values due to
high uncertainty associated with laboratory test results for the model input parameters. Therefore,
it is not easy to differentiate the contribution of the model uncertainty from the uncertainty in input
soil parameters. However, model bias was evaluated for Class C prediction with respect to the
field measured settlement values. Bias for model uncertainty was based on the judgment from the
experience with predictions of the behavior of soft grounds under an embankment.

3. Statistical Soil Properties

3.1. Description of the Soft Soil Profiles, the Embankments and Field Measurements

The background information for the Karakore preloading embankment and Ballina test
embankment including vertical soil profile, in-situ and laboratory test data, and results from field
instrumentation and monitoring are found in [39] and [21], respectively. The soft layers of Karakore
are mainly characterized by ancient alluvial Quaternary deposits, and the soil profile at deeper depths
is formed from an older Tertiary Eocene deposits. The vertical profile varies from soft to very soft silty
clay and has variable thicknesses. It can be characterized as a heterogeneous soil profile, and the soft
portion is interbedded by granular and very compressible organic matter (where the natural moisture
contents significantly exceed the liquid limits).

The soil profile under the Ballina embankment has several layers with variable compression
and consolidation parameters. The geological profile of Ballina clay, which was formed as estuarine
Quaternary sediment, consists of a coastal area deposit. The soil profile at the deeper depths consists
of silty clay. It is a young formation from the Pleistocene age. Ballina soil is dominated by estuarine
clay, which covers 70% of the total soft portion and is relatively uniform, as compared to Karakore soil.
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The Karakore preloading embankment, over PVD-improved soft ground on the AKH railway
project, has a base width of 60 m, 3H:1V slope, and 8 m total height (of which 2 m is an extra fill which
was removed later). It was built to facilitate the consolidation settlement of the PVD-improved subsoil.
The vertical PVDs (CeTeau wick drains) installed into the soft section covers 12 m depth and installed
at 1.3 m square grid, underlain by 0.6 m working platform and 0.5 m drainage blanket and 0.20 m thin
layer to prevent the ingression of fine particles to the drainage layer. The field monitoring was done
at the centerline of the railway line. A surface settlement was measured on the top surface of the fill
where readings were taken once a week.

The Ballina geometry of the test embankment, the crest, is 3 m high and 28 m wide at the base
of the embankment and 80 m longitudinally with 1.5H: 1V side slope. The working platform has 0.6
m thick and 0.4 m sand drainage layer that was placed beneath the embankment. The vertical PVDs
(CeTeau wick drains) were installed into 16 m depth with a 1.2 m square grid. Field settlements were
measured using a magnetic extensometer (Mex1) at the centerline of the embankment. Mex1 had 6
(M0–M6) legs of spider magnets to measure the settlements at different depths vertically. For our case,
the settlement at M0 (at the ground surface below the embankment) was considered for the analyses
and comparisons.

3.2. Soil Properties of Karakore and Ballina

A number of field and laboratory tests were carried out to characterize the engineering properties
of the soft soils. At Karakore, a borehole was drilled to a depth of 26 m at station KM 160 + 750,
whereas at the Ballina site, a borehole was drilled to a depth of about 23 m at MEX01. Common
soil characterization procedures grain-size analysis, Index tests, consolidation, and triaxial tests,
as well as field tests, were conducted at both project sites. Details of the test results for Karakore
and Ballina sites are reported in [21,39,49]. Here, for the purpose of comparison, only grain-size
analysis, compression, and consolidation test parameters are presented as in Figure 1 and Table 1.
Figure 1 presents the distribution of particle size of Karakore and Ballina for the soft soil sections.
Karakore has a significant amount of coarse-grained (gravelly sand) particle proportion than Ballina.
Karakore soil profile is interbedded by a coarse-grained layer (nearly 3 m thick). Nevertheless, the clay
proportion is higher for Ballina than Karakore. Table 1 summarizes the mean and CoV values of basic
compression parameters (compression index (Cc), recompression index (Cr), and initial void ratio (eo))
and consolidation (vertical coefficient of permeability (kv)) which were typically utilized in the finite
element prediction modeling.

Figure 1. Mean value of particle size distribution of soft layers (a) Karakore soil (thickness of the soft
layer h = 12.50 m) and (b) Ballina clay (thickness of soft layer h = 12.26 m).
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3.3. Uncertainty in Model Parameters

One of the challenges often encountered in geotechnical analysis and design involves the selection
of representative values for input soil parameters. The selection of "best estimate," "upper bound," or
"lower bound" is often based on expert judgment and past experience [50]. The associated uncertainties
with the soil properties are limited to the extent to which the parameters could influence the outcome.
In conjunction with conventional statistical estimates, the probabilistic distribution of soil parameters
is employed in some national codes such as Eurocodes [44].

Figures 2 and 3 present the mean values of basic input model parameters for Karakore and
Ballina clay, respectively. The probability distribution of parameters is demonstrated for the most
influential layers. The most sensitive and influential parameters were identified based on previous
work documented in references to [39] and [51] for Karakore and Ballina clays, respectively.

Figure 2. Mean values of model parameters for different layers and probabilistic distribution for the
most influential layer (Silty clay SC-1-2) of Karakore clay (a) Compression index (b) Initial void ratio
(c) vertical coefficient of permeability.
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Figure 3. Mean values of model parameters for different layers and probabilistic distribution for the
most influential layer (estuarine clay)) of Ballina clay (a) Compression index (b) Secondary compression
index (c) vertical coefficient of permeability.

4. Settlement Predictions

4.1. Random Input Variables

The significant random variables associated with the prediction of settlements include input soil
parameters and output settlements. Three model parameters were considered in this analysis for each
soft soil site. For the Karakore site, the most influencing and sensitive parameters, as determined from
previous work [39], were Cc, Cα, and Kv were utilized. For the Silty Clay layer (SC-1-2), which was
found to be highly compressible, these parameters were considered as stochastic variables, while they
were modeled as deterministic values for the other layers. The input parameters, Kv and Cα were
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the most significant model parameters for Ballina clay. The distribution of the data sets for the input
variables was better represented by lognormal distribution [42,45].

4.2. Calibration of MC Simulations

The estimation of MC simulation was carried out by R programming. R is an open-source coding
system with flexible functionalities in statistics and probability [52]. The probabilistic distribution of
soil properties, model parameters, and settlements was simulated using MC. For a general simulation
of random samples from the distribution of random variables, the following procedures were followed.
(a) Random samples were generated (say n = 5000 for this case) based on known statistical parameters
such as mean and standard deviation which were obtained from laboratory or field test data, (b) a new
mean was estimated from the generated samples, (c) the new mean was computed as a cumulative
mean so that the simulated mean values converged to the ‘True Mean’ referring to the initial input
mean value as a target value; alternatively, the convergence can be checked against the expected
variance, such that the values should lay within the range of 1/n–2/n1/2. The simulation was computed
with the ‘replicate’ function in R coding script. Replicate indicates that how times each sample point is
iterated. In this case, the iteration(replication) was done for 1000 times for each sample points.

Figure 4 presents the number of simulated samples for the settlement of Karakore soft soil on
the 310 days of observation. In the MC simulation technique for random variables converged at 4000
number of samples. This indicated that increasing the number of simulations beyond 4000 samples did
not affect the probabilistic distribution of the population data and did not bring significant change to
the outcome of the dataset. The simulation of random samples was assessed for random model inputs,
settlement outputs, and settlement ratio. From Figure 4, the minimum sample size for the random
variable to reach an acceptable accuracy was found to be 4000. This random sample number agreed
well with the recommendation made by Phoon (2015) for MC simulations [46].

Figure 4. Generation of random samples and convergence of the number of samples (adopted from
Class A prediction of the Karakore site—the settlement on 310th day).

4.3. Modeling Techniques and Input Parameters

The probabilistic settlement predictions were performed based on settlements from Class A and
Class C predictions. Soil parameters were updated in Class C consolidation settlement prediction
before probabilistic analysis was carried out. The settlement behavior was modeled using the PLAXIS
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2D Finite Element computer program. From the output of the modeling, probabilistic analyses were
performed using the computed statistical values of mean and coefficient of variation (CoV).

Class A predictions were performed using laboratory test data for input soil parameters while
Class C predictions were made after settlement data were obtained through field monitoring. A plane
strain condition (2D) with a discretization of 15-node of triangular elements was employed. Soft Soil
Creep (SSC) constitutive material model was employed for the soft layers for both sites. The other
layers were modeled by relatively simple soil models such as Mohr-Coulomb (MC) for the fill and
coarse-grained layers while Modified Cam-Clay (MCC) model was for the stiffer clay layers. The
embankment fill, working platform, the drainage layers, and the sand layers were modeled as ‘drained’
condition, while the other soft and stiff silty clay layers were modeled as ‘undrained’.

The parameters adopted in FE modeling for Class A and Class C predictions are summarized in
Tables 2 and 3. Some of the basic input parameters (layer thickness, unit weight, angle of frictions)
were obtained from investigation tests while the others were derived from literature (Young’s modulus,
Poisson’s ratio, cohesive strength). Class A input parameters were obtained from laboratory tests. The
stiffness parameters (Cc, Cr, OCR) and consolidation parameter (kv, eo) were obtained from Oedometer
consolidation tests using the incremental loading (IL) for Karakore and Ballina clay and constant rate
of strain (CRS) with a loading rate of 10-7/second method (Ballina clay).

Table 2. Basic input parameters for FE modeling.

Parameters
Thickness

(m)
Material
Model

Drainage
Condition

γb

(kN/m3)
E

(kN/m2)
ν

c
(kN/m2)

φ′ (◦)

Karakore Soil

Surcharge fill 8.0 MC drained 20 45000 0.25 1 40
Working platform and

drainage layers
1.3 MC drained 20 30000 0.25 1 40

Silty clay (SC1-1) 3.0 SCC undrained 17 - 0.35 20 0
Silty clay (SC1-2) 3.0 SCC undrained 17 - 0.35 4 26
Loose Sand (GS2) 3.0 MC drained 17 5000 0.30 1 33

Silty clay (SC3) 3.0 SCC undrained 17 - 0.35 50 0
Eocene silty clay (ESC4) 13.5 MCC undrained 17 - 0.35 70 0

Ballina Clay

Surcharge fill 2.0 MC drained 20 45000 0.25 1 35
Working platform and

drainage layers
1.0 MC drained 20 30000 0.25 1 35

Alluvial crust 0.9 SSC undrained 17 20000 0.25 10 30
Estuarine clay 9.0 SCC undrained 14 - 0.35 2 32

Transition (clayey Sand) 3.7 MC undrained 19 10000 0.30 5 30
Sand 4.5 MC drained 19 20000 0.30 1 34

Pleistocene clay 4.5 MC undrained 18 15000 0.30 5 28

Note: γb = bulk unit weight, E = Young’s modulus, ν = Poisson’s ratio, c = cohesive strength, φ’ = effective internal
angle of friction.

Table 3. SSC model mean soil parameters for Class A and Class C predictions.

Parameters λ* κ* µ* eo kv (m/day) Kh (m/day)

Karakore Soil

Silty clay (SC1-1) 0.068 a/0.189 b 0.0265 a/0.0378 b 0.0021 a/0.0057 b 1.03 a/1.3 b 2.00E−04
2.25E-05 a

/3.5E-05 b

Silty clay (SC1-2) 0.15 a/0.236 0.03 a/0.0496 b 0.0045 a/0.0071 b 1.6 a/2.5 b 2E−04
a/1E−04 b

2.25E-05
a/2.5E-05 b

Loose Sand (GS2) - - - - 0.5 0.5
Silty clay (SC3) 0.037 a/0.13 b 0.013 a/0.0124 b 0.0011 a/0.0019 b 1.1 3.00E−04 4.00E-05

Eocene silty clay (ESC4) 0.083 0.026 0.0024 0.97 2.84E−04 4.14E-05
Ballina Clay

Alluvial crust 0.10 a/0.15 b 0.01 a/0.02 b 0.0039 a/0.006 b 1.3 1.38E−03 2.07E-03

Easturine clay 0.20 a/0.3 b 0.02 a/0.04 b 0.0081 a/0.015 b 2.675
3.35E−04
a/5E−05 b

5.01E-04
a/6E-05 b

Transition (clayey Sand) 0.024 0.001 0.0017 0.82 3.15E-04 4.73E-04
Sand - - - 0.8 0.5 0.5

Pleistocene clay 0.0400 0.0040 0.0016 1.1 2.15E-03 3.23E-03

a parameter in Class A prediction; b parameters in Class C prediction; Note: modified compression index,
λ* = Cc/2.303(1 + eo); modified swelling index, κ* = 2Cr/2.303(1 + eo); modified secondary compression index,
µ* = Cα/2.303(1 + eo), where Cα = secondary compression index; kh = horizontal coefficient of permeability.
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An over consolidation ratio (OCR) of 1.5 and permeability change index (Ck = 0.6eo) was used for
the Karakore soil modeling. For Ballina, OCR of 4 for the top alluvial crust and 1.7 for the estuarine
clay, as well as Ck = 0.5eo, were applied. Besides, a pre-overburden pressure (POP) of 27 kPa was used
as a deterministic input parameter. A groundwater table (GWT) of 1.5 m and 1 m were used for the
Karakore and Ballina soils, respectively.

4.4. Loading Stages and Settlement Readings

The fill placement was carried out stage by stage for both Karakore [39] and Ballina [21,51] soft soil
sites. For the Karakore site, settlement reading was started after the completion of the embankment fill
and lasted for 310 days, while for Ballina soil, the settlement reading was started before the placement
of the embankment and construction of the working platform and was monitored for 1770 days.

5. Result Analyses and Discussions

5.1. Prediction Bias for Class A and Class C Settlements

Prediction bias or settlement ratio (R) was computed using the settlement values obtained from
the Class A and Class C predictions using PlAXIS 2D against field measured values by adopting
Equation (3). Figures 5 and 6 demonstrate the relationship between settlement ratio and time for Class
A and Class C predictions of Karakore and Ballina embankments on PVD-improved soft subsoils.

5.1.1. Class A Predictions

For Karakore clay (Figure 5), Class A under-predicted the field settlement. Correspondingly, from
the settlement ratio-time (R-t) curve, R was found below 1. It showed that the predicted settlement
underestimated the measured values. It also showed that there is high uncertainty in the estimation of
settlements using Class A input parameters. The value of R was small during the early periods of
observation. Then, it increased significantly until it reached an average value of 0.73 during the latter
period of observations. In general, the average prediction bias for Class A prediction was found to be
0.65.

For Ballina clay (Figure 6), generally, Class A also under-predicted the field settlement of the
estuarine clay. But, during the early period of observation (during the loading phase), the predictions
matched well with the field measured settlements and the average R values were closer to 1. During
these early periods of observation, stiffness and consolidation model parameters had a lesser influence
on the settlement response. The applied embankment load was the major contributing factor for the
deformation. This supported the finding reported by Liu et al. [42] that pre-overburden pressure
(POP) was the most influencing random variable on the predicted settlement during the period of
embankment loading. Besides, at the end of filling, the plastic deformation (shear yielding) was the
dominant settlement than the consolidation settlement in which the applied load exceeded POP Chan
et al. [32]. However, beyond 98 days, Class A approach under-predicted the field settlement. The
corresponding average R was found to be 0.87 for Ballina clay.

Concerning Ballina clay and Class A prediction, the current study reasonably agreed with the
works of Josted et al. [30] and Liu et al. [42]. Other predictors such as Lim et al. [51], though the
settlement with Class A was still under-predicted, the authors came up with an improved estimation.
Lime et al. (2018) employed a combined analytical solution of Barron and Hansbo with hand
calculation techniques.

The discrepancies in Class A prediction were likely resulted from the differences in laboratory
test parameters with the field conditions and the rigorous procedure followed during modelling.
Furthermore, model uncertainty could have contributed to the deviations, but it is difficult to estimate
the magnitude of the explicit contribution of the model uncertainty on the prediction.
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Figure 5. Settlement ratio and predicted settlements vs. time for Karakore clay.

Figure 6. Settlement ratio and predicted settlements vs. time for Ballina clay.

5.1.2. Class C Prediction

For Karakore clay (Figure 5), the value of R calculated based on Class C prediction was initially
below 1.0. But it increased to nearly 0.9 in less than 50 days of observation. Then it gradually
approached a ratio of 1.0. Accordingly, Class C prediction simulated the settlement behavior much
better than Class A. The field monitoring settlement-time data by itself was not smooth and consistent.
This may be attributed to the seasonal and environmental variation effects on the field recordings
of the settlement data. However, Class C did not perfectly capture the actual settlement behavior
still. Particularly, during the early period of observations (say up to 121 days), the discrepancies
between the measured and the predicted settlement were considerable. The causes of these differences
were not clear and were probably due to multiple contributory factors. But, one of the probable
reasons is the deformation of the embankment itself which was nearly 8m high and contained some
fine-grained contents. The settlement monitoring was taken on the top of the embankment surface at
the centerline of the railway line. So that the field monitoring would account for the settlement of
the entire embankment system, including both the PVD-improved soft subsoil and the embankment
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itself. The other reason possible due to the presence of an interbedded loose gravelly sand layer with a
significant thickness (3 m).

For Ballina clay (Figure 6), during early periods of observation, the dominant factor was the
embankment loading rather than the input parameters. That is why the settlements from Class A and
Class C matched well with the field monitoring data up to nearly 98 days. Beyond this period, Class C
best simulated the field behavior of the settlement of Ballina clay. The prediction was biased to the
measured settlement with an R-value of 1.0, and it showed that Class C perfectly simulated the field
settlement behavior. From this, one can understand that the model uncertainty in Class C prediction
was 1.0, and the prediction biased to the true (measured value).

In general, Class C predicted the behavior of the field settlement behavior of Ballina clay much
better than it did for Karakore clay. The distribution of Ballina soil profile is relatively uniform, the
laboratory tests and field monitoring were controlled and well established than Karakore. Figure 7
depicts the relationship between Class C predicted and field measured settlements of Karakore and
Ballina sites. For Karakore area, it can be seen that the points scattered about the line of equality,
indicating that during the earlier observation periods, the prediction underestimated settlements, but
later the predicted and measured values agreed well; whereas for Ballina, the field measured and
PLAXIS 2D model predicted settlements fitted well to the line of equality.

Figure 7. Class C Predicted vs. measured settlement of Karakore and Ballina clay.

5.2. Distribution of Settlement Predictions Bias

The uncertainty of prediction bias, R was computed from Class A and Class C predictions and
presented statistically. R was computed from the mean values of predicted and measured settlements at
the end of the observation period for both sites. Figures 8 and 9 present the histogram and probabilistic
distribution of average settlement bias for Class A and Class C predictions of Karakore and Ballina
sites. The distribution of random variable R was simulated using MC method. From the simulated
histogram and density function curve, the prediction bias was spread over a wider range for the
Karakore clay. This shows that the prediction from this area has significant uncertainty and more
biased against the field measurements. Whereas, for Ballina clay, the data set relatively was spread
over a narrow range. The prediction of the Ballina test embankment settlement has a lesser uncertainty
and biased towards the measured settlement.
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Figure 8. Distribution of settlement prediction bias for average values of R from Class A and Class C
pred.—Karakore clay.

Figure 9. Distribution of settlement prediction bias for average values of R from Class A and Class
C—Ballina clay.

5.3. Probable Limits of Predicted Settlements

Labeling of characteristics values as ‘lower bound’ (LB), ‘most probable’ (MP), and ‘upper bound’
(UB) are essential for use in geotechnical analysis and design. For Karakore and Ballina soft soils, the
most probable value (MP) of settlements was computed from Class C prediction, which is equivalent
to the measured settlement. A FOSM probabilistic analysis was carried out for mean (measured value)
± 1SD, ± 2SD, and ± 3SD of the settlement, and it is shown in Figures 10 and 11. For Karakore, the
analysis was done for 7, 70, 154, and 310 days of observation, while for the Ballina, it was computed
for 34, 98, 314, and 1107 days.



Geosciences 2020, 10, 42 15 of 24

Figure 10. Measured and Predicted settlement for mean values ± 1SD and ± 3SD for Karakore clay.

Figure 11. Measured and Predicted settlement for mean ± 1SD, ± 2SD and ± 3SD for Ballina clay.

From Figures 11 and 12, Class A prediction of Karakore and Ballina was found to be close to the
best estimate of mean—3SD and mean—2SD, respectively. The predicted settlement of Karakore clay
using the laboratory input parameters at the end of observation was found to be 428.4 mm as LB values,
whereas the UP was 795.6 mm. This shows that the prediction was found within a 99.73% confidence
interval of all values. Whereas, Ballina clay, the LB predicted value was 1209.2 mm, whereas the UB
was 1814.4 mm, which is all values laid within a 95% confidence interval.
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For both sites, it was observed that model predictions based on laboratory test results mostly
underestimated the actual field settlements. FEM based prediction of settlements were found equal to
or less than the field measured values. The work of a number of authors on Ballina clay supports this
argument. The predictions of settlements were analyzed using PLAXIS 2D by employing SSC material
model and incorporating LS mesh update option by Lie et al. [42], Josted et al. [30], Chan et al. [32]
and Gong [53]. These studies showed that predicted results were found less than or equal to the field
observation values.

5.4. Evaluation of Settlement Uncertainties

This section presents and discusses the effects of variation of input parameters on settlement
distribution. Influences of input parameters on the output distribution of settlements were evaluated
for both Karakore and Ballina clay. To assess the impact of input parameters on the distribution of
settlements, an uncertainty analysis was executed for Class C prediction. The settlement distribution
was performed by varying the most influencing compression and consolidation parameters namely
Cc, and Cα, eo and kv plus and minus two SD. It led to the settlement distribution of Sp1 (settlement
for mean of a parameter +2SD) and Sp2 (settlement for mean of a parameter −2SD) and presented in
Figure 12, and Figure 13. To compute the settlement distributions, a reasonable CoV of 0.15 for Karakore
field monitoring and 0.1 value of CoV for Ballina [31] were used for the settlement measurement error.
Then, the mean and SD were computed from the generated probabilistic settlement distribution.

Figure 12. Cont.
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Figure 12. Cont.
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Figure 12. Uncertainty distribution of ultimate consolidation settlement for (a) Cc (b) kv (c) Cα and
(d) eo–Karakore site.

For Karakore clay (Figure 12), the settlement distribution from the effect of Cc ± 2SD covered a
wide range with two tails of probability density distribution. It was compared to the distribution of
measured settlement values. From the probable distribution, it showed that Cc is the most dominant
model parameter and significantly influenced the settlement distributions. Furthermore, the second
influencing parameter was the secondary creep coefficient, Cα, Kv and eo have equivalent influence on
the settlement distribution. This may work for the reason that Kv is a function of eo, and kv depends on
the amount of void ratio. PLAXIS 2D also considers the change of void ratio to estimate the coefficient
of permeability during the application of load in the model analysis [54].

Figure 13. Cont.
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Figure 13. Cont.
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Figure 13. Uncertainty distribution of ultimate consolidation settlement for (a) kv (b) Cα (c) Cc and
(d) Cr–Ballina site.

For Ballina clay (Figure 13), next to the vertical coefficient of permeability, the secondary creep
coefficient was the dominant parameter in affecting the settlement predictions. The distribution of the
settlement spread over large area owing to the variation of kv −2SD and +2SD.

5.5. Standard Deviation and CoV of the Predicted Settlements

The CoV of the predicted settlement was estimated from the combined standard deviation of
the change in settlements from the most probable value for each parameter (Figures 12 and 13). The
settlement change from the variation of Cc, kv, Cα, and eo was estimated for both sites. Then, the mean
settlements, the most probable value which was obtained from the prediction at the beginning and end
of the observation, were considered for computing CoV as per Equation (1) and (2). For Ballina clay,
the computed CoV of settlement prediction ranged from 0.22–0.31. And, CoV ranged from 0.1–0.17
for Karakore clay. From this, one can understand that for equal increments of parameters with mean
±2SD, the predicted settlement of Ballina clay was more sensitive to the change of parameters than the
Karakore soft soil.

6. Final Remarks and Conclusions

6.1. Final Remarks

The large degree of variability and uncertainty associated with the input soil parameters pose
special challenges in obtaining reliable results from geotechnical analyses. In such situations,
geotechnical engineers must decide which random variables are most dominant and must be given
special considerations. The study mainly concentrated on utilizing the routinely available statistical
techniques and implemented a number of simplifications in the modeling of the input parameters
and soil profiles. Though the use of probabilistic methods did not avoid the need to conduct a
high-quality laboratory and field tests, installing field monitoring systems, implementing proper model
parameters, and constitutive models, it would provide the advantage of estimating uncertainties in a
more understandable, reliable and practicable way.

For practical engineering projects such as railway and highway embankments to be built on
similar soft geo-materials and improved with PVDs, one can employ this approach to evaluate the
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settlement performance of constructed structures. The approach has the capability of capturing the
range of settlements of alluvial deposits (for Karakore clay) and estuarine deposits (Ballina clay) and to
replicate the method for similar deposits in these regions with some modifications. It would also help
as a useful tool to evaluate the uncertainty conditions of settlements with similar ground formations
and properties by simply using conventional test results. The minimum predicted settlement can
be considered within the range of mean and mean minus three standard deviations and minus two
standard deviations for alluvial and estuarine clays respectively.

In other words, one can use Class A settlement predictions by using model parameters which
can be obtained from laboratory tests. Since Class A usually underestimates the field conditions, it is
recommended that the field settlement can be estimated as Class A predicted values plus two or three
standard deviations. But, as it is difficult to determine the actual standard deviation without having the
field settlement data, alternatively, one can estimate the field settlement by employing prediction bias,
R value (see also Equation (3)) which can be obtained from Class A predictions. The ranges of values
of prediction bias of settlements were presented in Figures 8 and 9. The average values of prediction
bias are 0.65 and 0.86 for Karakore and Ballina soils respectively. Generally, prediction bias values
between 0.65–0.86 may be adopted for soft grounds with their soil properties fall within Karakore and
Ballina clays.

6.2. Conclusions

In consideration of the previous remarks and the objectives mentioned above, the authors have
come up with the following conclusions.

• The results from the numerical analyses (Figure 5–Figure 7) demonstrated that Class C prediction
reliably simulated the field settlement responses of PVD-improved soft deposits than Class A for
both Karakore and Ballina embankments.

• The average prediction bias from Class C prediction for Ballina clay and Karakore was found to
be 1.0 and 0.9 respectively. This showed that the prediction and model uncertainties for estuarine
Ballina clay are lower than that of the Karakore alluvial soil.

• For both sites, the prediction bias was not consistent throughout the observation periods in both
Class A and Class C predictions. This showed that the parameters which influenced the settlement
output depend on the time of observation. This agreed with the work published by Liu et al.
(2018) on Ballina clay [42].

• Cc was found to be the most uncertain random variable in predicting the consolidation settlement
of Karakore alluvial clay deposit, while kv was for Ballina estuarine clay. Cc and kv were also
highly influenced by the distribution of predicted settlements than other parameters for both
Karakore and Ballina sites, respectively.

• Generally, for Karakore soft clay, the uncertainty could stem from the variability of the soil profile,
presence of interbedded granular layers, and high embankment fills and limited samples for the
laboratory tests; whereas for Ballina clay, the contributory factors may include the presence of
transitional layers at the bottom of estuarine clay, sensitivity of the soft soil to sample disturbances.

• Uncertainty based analyses and comparisons have brought advantages over deterministic
approaches by taking into account the uncertainties related to soil properties (Karakore soft
alluvial vs. Ballina estuarine clay), model parameters, and quality of samples in representing the
field conditions.
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