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Uncertainty analysis of corrugated skins has been performed for random perturbations in geometric and

elastic parameters of a chosen baseline model. The corrugated skins are particularly suitable for morphing

applications in aerospace structures and their sensitivity to the various input uncertainties is a major con-

cern in their design. The various sources of uncertainty include random perturbations of the geometrical

parameters of the corrugation units, surface roughness and parametric uncertainty of the elastic parameters.

These uncertainties are described here within the probabilistic framework and have been incorporated into

the discretized stochastic finite element model used for their analysis. The propagation of these uncertainties

to the dynamic response of the structure is a computationally intensive exercise especially for high dimensional

stochastic models. Such high dimensional models have been resolved with statistical methods such as Gaussian

Process Emulation and polynomial interpolation based sparse grid collocation techniques. The brute force

Monte Carlo simulation technique results have been used as benchmark solutions. A global sensitivity analysis

has been performed to identify the key uncertainty sources which affect the system response and the equivalent

models using Sobol’s importance measure.

I. Introduction

SIGNIFICANT research endeavor has been directed at designing light weight, highly compliant structures to imple-

ment the concept of ’shape morphing’ in morphing aircraft technology. The requirement of almost contradictory

elastic behavior of the materials, such as high flexibility along with sufficient rigidity has led to investigation into

novel design of components with innovative microstructural arrangements to provide passive solutions (such as hon-

eycomb composites, corrugated skins) along with smart technologies such as shape memory alloy actuators, embedded

piezoelectric patches or shape memory polymers. The geometric and parametric modelization of small length scale

structural features and variations are essential for simulation studies and can potentially have significant influence on

their performance efficiency. Also, the equivalent low fidelity models, which are created for these structural com-

ponents especially when representing them at higher length scales, needs to be able to provide an estimate of the

sensitivity of the performance indicators to the various input parameters.

Studies of various composite structures offering enhanced mechanical and aerodynamic load bearing capacity

have been reported in the literature. The concept of variable stiffness laminates is essential in this respect.1 They

utilize various local fibre orientation angles,2 or curvilinear fiber path in laminates3, 4 to extend the range of elastic

behavior of conventional materials. A review of the optimization algorithms for the variable stiffness composites is

given by Ghiasi et al.5 The state of the art research into morphing technology with various multifunctional composite

materials having novel microstructural characteristics has been studied actively for their wide range of mechanical
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behavior. These belong to the class of passive methods which aim to define the material properties, their geometry,

topology a-priori as per the predetermined design requirements. The objective functions in the optimization of these

structural components incorporates compliance, rigidity, weight, damping and dynamic aeroelasticity among other

factors. The auxetic honeycombs with varying cell geometry and infill stiffness has been studied6 which produce

high Young’s modulus and damping loss. Morphing aircraft skins for passive applications using an elastomer-fibre-

composite surface supported with flexible honeycomb structures have shown a high increase in surface area while

maintaining aerodynamic load bearing capacity.7 The various passive/active morphing technologies employed in

aerospace applications has been reviewed.8, 9 Additionally, cellular honeycomb core composites have been used to

design compliant members which have been reported to produce enhanced elastic behavior.10

In the domain of smart materials, the use of shape memory materials11 to produce adaptive structures for morphing

applications has also received significant attention12–15 and have been studied in context of various aerospace imple-

mentations.16–18 These composites offer the advantage of a light-weight actuation system with efficient aerodynamic

load bearing capability. Smart materials with active actuators embedded in them have been widely applied to noise19, 20

and vibration control21, 22 in aerospace applications. Piezoelectric actuators has been used for morphing wing flight

control,23 in composite laminates,24, 25 with carbon fibre/epoxy composites with bonded piezoelectric actuators26 in

order to meet a wide range of performance demands under operating conditions. A review of the active solutions used

in morphing structures is given by Barbarino et al.27

The current research focuses on the use of a corrugated skin as a passive compliant member with sufficient load

bearing capacity as a potential shape morphing solution. A review of the morphing skins has been provided by

Thill et al .28 which includes corrugated structures as low modulus membranes, hence as possible candidates for

morphing skins. Numerical and experimental studies with corrugated skins29–31 and the deformation characteristics of

the morphing wings with corrugated composites and skins have been studied in the literature.32, 33 Corrugated carbon

fibre composites have been used as candidate materials for morphing wings.34 However, due to the intricate design

of the corrugated skins, the parametric and geometrical properties of the skins required in the mathematical models

can not be known for certain. Often these uncertainties are irreducible due to the cost associated with their precise

measurement. The present work aims to quantify these uncertainties with a probabilistic description and propagate

these uncertainties to the dynamic system response of the corrugated skins. Thus, the countable set of random variables

used to model the input uncertainty would form the stochastic input space of the mathematical model. Propagating

this input randomness of the physical system to the response quantities (such as displacement, pressure, velocity) can

be tackled with various uncertainty propagation techniques.

To begin with, it is assumed that there is a baseline model of the corrugated skin which is deterministic in nature.

Within this model, a probabilistic description is incorporated into the various elastic (such as the bending stiffness, vol-

ume density) and the definitions of the geometric parameters (such as the height, width, angles of corrugation, surface

topology). The description is typically provided with a set of random variables which introduce random perturbations

into the geometry and elastic properties of the skin. Various uncertainty propagation techniques for a wide variety

of stochastic structural dynamic systems exist in the literature which range from non-intrusive statistical simulation

methods (such as the crude Monte Carlo simulation (MCS) and its variants35, 36) to non-statistical analytical methods

which provide explicit functional relationships between the independent random variables used to model the problem

(such as the perturbation methods,37 the Neumann expansion method38 and the Galerkin-based finite order chaos ex-

pansion methods39). Alternatively, there are sparse-grid stochastic collocation methods which rely on constructing the

random solution using polynomial interpolation functions with a set of random responses evaluated at the zeros of

these multidimensional stochastic interpolation functions.40, 41 This requires resolution of the random system response

at the sparse grid collocation points in a Monte Carlo sense and hence is non-intrusive and trivially parallelizable. For

high-dimensional stochastic problems, adaptive sparse-grid collocation techniques have been proposed which aims to

represent the problem with few lower order terms.42, 43 The computational evidence indicates the effectiveness of the

sparse grid stochastic collocation method compared to full tensor and Monte Carlo approaches.

We have compared the performance of the collocation technique to a metamodeling strategy, known as Gaussian

process emulation.44 It is based on the analysis and design of computer experiments45, 46 and on the concepts of

Bayesian statistics. The non-expensive approximation to the output is made after evaluating a small number of points

in the input space, hence reducing the required computer processing time. After conditioning on these training runs and

updating a prior distribution, the mean of the resulting posterior distribution approximates the output of the simulator at

any untried input, whereas it reproduces the known output at each design point. Gaussian process emulation has been

implemented in various scientific fields with encouraging results, such as structural dynamics,47 multi-scale analysis,48

stochastic finite elements,49 and domain decomposition50 among many others.

Once the input geometric and/or the (elastic) parametric uncertainty has been propagated to the system response,
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it would be essential to have a quantitative measure of the sensitivity of the solution to the various input uncertainty.

This helps to identify the parameters which are most sensitive to the response statistics. This is accomplished with

a sensitivity analysis which is carried out using the concept of Sobol indices51 which gives a quantitative estimate of

the sensitivity of the solution to each source of uncertainty for a large input stochastic dimension. Thus it is possible

to make an informed decision about which uncertainties can be ignored safely and the threshold values of the input

variability for an uncertainty to become significant.

II. Stochastic dynamical system with uncertain elastic and geometrical parameters

II.A. Description of stochasticity in a structural dynamic system

Consider a damped corrugated skin whose baseline model is given in figure 1. Such corrugated skins are prone to

geometric uncertainties (due to manufacturing) and material uncertainties, such as a random bending stiffness. A

deterministic model of this composite corrugated skin has been studied previously.52 Figure 1(a) shows a sketch of

(a) Sketch of one corrugated unit (b) Meshed corrugated skin

Figure 1. Model of the corrugated skin employed in the analysis. (a) Unit cell; (b) Finite element model of the corrugated skin. The dimensions are: 300 mm

in length, 75 mm in width, and 10 mm in height.

the side view of a unit cell with the corresponding geometry. Figure 1(b) shows the meshed geometry of the corru-

gated skin that has been employed in the analysis. This highly compliant skin is particularly important in morphing

applications as discussed in section I.

A random field a(r, θ) : D × Θ over a spatial domain D ∈ R
d, may be expressed in a series expandable form

following a spectral decomposition of the associated covariance kernel with the random field as

∫

D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1, 2, · · · (1)

The above is a homogeneous Fredholm integral equation of the second kind. If Caϕ is defined as (Caϕ)(r2) =∫
D
Ca(r1, r2)ϕ(r1)dr1, r1, r2 ∈ R

d, it can be verified that Ca : L2(Rd) → L2(Rd) is a linear operator on a vector

space. Hence Eq. (1) can be expressed as Caϕ = νϕ. A non-trivial solution to the above homogeneous equation exists

only for those values of ν which make (I−νCa) singular, where I is the identity operator. The covariance functions Ca

are usually bounded and symmetric, hence the associated linear operator Ca is compact and self-adjoint. The solution

of the eigenvalue problem in (1) yields ordered real eigenvalues ν = {νi : νi ≥ νi+1 ∀i and ‖Ca‖2L2

(

R
d

×R
d
) =

∑
i ν

2
i } and mutually orthogonal eigenfunctions ϕ(r1) in L2(Rd). Thus, from Mercer’s theorem we can write

CaM
(r1, r2) =

M∑

i=1

νiϕ(r1)ϕ(r2) (2)

where CaM
converges uniformly to Ca as M → ∞.

The covariance function might not always be a continuous function of the spatial domain, and it is possible to

have a correlation between the various parameters which can only have discrete indices. For example, the width or

height of the corrugation between different corrugation units or the angles of corrugation φi within one corrugation

unit and across various units. The description of these uncertainties requires a discrete covariance function. For these

cases, the linear operator Ca has finite dimensional eigenvectors as its solution of Eq. (1). Thus the random field can be
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represented with a denumerable set of eigenvalues and eigenvectors of the covariance kernel using the Karhunen-Loève

(KL) expansion as

a(r, θ) = a0(r) +

M∑

i=1

√
νiξ̃i(θ)ϕi(r), (3)

where a0(r) = E [a(r, θ)] is the mean, and ξ̃i(θ) are the mutually independent random variables with zero mean

(E
[
ξ̃i

]
= 0) and unit variance (E

[
ξ̃i

2
]
= 1) for i = 1, . . . ,M . The above expansion is valid for Gaussian random

fields. General non-Gaussian random fields are expressed in a mean-square convergent series using the Wiener-Askey

chaos expansion scheme,53, 54 where the basis functions are constructed with a denumerable set (M ) of indepen-

dent random variables ξ = [ξ1, ξ2, . . . , ξM ]⊺ ∈ Θ(M) where Θ(M) ⊂ Θ. These basis functions span the stochas-

tic Hilbert space and hence the problem can be equivalently formulated on a finite dimensional probability space(
Θ(M),F(M), P (M)

)
where Θ(M) = Range(ξ), F(M) is the associated Borel σ-algebra and P (M) is a probability

measure. The formulation presented in this paper is applicable to this kind of general decomposition of the random

field.

II.B. Stochastic partial differential equation for the dynamical system

The corrugated skin presented in the previous section is taken to have uncertainties both in the material and geometric

properties which have been described probabilistically. This requires the uncertainty to be expressed with a set of finite

number of independent random variables. These random variables constitute the input stochastic space. We present

here the analysis of the parametric and geometric uncertainties in separate discussions.

II.B.1. Parametric uncertainty

A randomly parametrized structural dynamic system is defined on the domain D ⊂ R
d (d ≤ 3), with piecewise

Lipschitz boundary ∂D, subject to an externally applied deterministic excitation f0. The equilibrium condition gives

the following stochastic partial differential equation (SPDE)

ρ
∂2u

∂t2
+ Lη

∂u

∂t
+ div(σa(u)) = f0 on D, t ∈ R

+ (4)

with the associated Dirichlet boundary condition

u = 0 on ∂D.

where σa(u) is the stress related to the displacement field u, ρ is the mass density, and t is the time. Lη denotes

the damping operator, with η as the damping parameter, and can be used to represent different damping models such

as strain rate dependent viscous damping or velocity dependent viscous damping. (Θ,F, P ) is a probability space

where θ ∈ Θ is a sample point from the sampling space Θ, F is the associated Borel σ-algebra and P is a probability

measure. The constitutive equations relating the stress field to the displacement u is given as

σa(u) = a(r, θ) : ε(u)

where a is the Hooke’s elasticity tensor and is a second order, stationary, square integrable random field such that

a : Rd × Θ → R. Here ‘:’ denotes the standard tensor inner product of second order tensors. Depending on the

physical problem, the random field a(r, θ) can be used to model different physical systems.

For the harmonic analysis of the system Eq. (4) is written in the frequency domain (using Fourier transformation)

as

− ω2ρũ+ iω (Lηũ) + div (σa(ũ)) = f̃0(ω) ω ∈ Ω, (5)

where Ω denotes the frequency space of the problem. Here f̃0(ω) and ũ(ω) are the frequency dependent complex

amplitudes of the harmonic input excitation and the system response respectively.

The FE treatment of the governing SPDE involves spatial discretization of the continuum D ∈ R
d into do-

mains with polygonal boundaries Dh where h is the mesh space parameter. From the Doob-Dynkin lemma for the

parametrized equation in Eq. (4), where the input randomness is expressed in terms of a finite dimensional vector ξ(θ)
(as in (3)), the solution can be expressed entirely in terms of the same random variables. Thus the solution of the

discretized FE system is sought in the Hilbert space H(Dh×Θ). This space can be expressed in a separable form with
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the Hilbert spaces H1 and H2 such that H ≃ H1 ⊗H2. The well established techniques of variational formulation of

the displacement-based deterministic finite-element method then gives us the following form of the stochastic system

matrices55 using the stochastic discretization technique illustrated in section II.A. The system matrices inherit the

randomness of the input stochastic parameters and hence the stochastic linear system for structural dynamics takes the

form

[
−ω2M(θ) + jωC(θ) + K(θ)

]
ũ(ω, θ) = f̃0(ω)

or,

(
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

)
ũ(ω, θ) = f̃0(ω) (6)

where M(θ), C(θ) and K(θ) are the random mass, damping and stiffness matrices respectively, which have been

combined to obtain the complex frequency dependent coefficient matrices Ai(ω), i = 0, 1, . . . ,M . Also,

M(θ) = M0 +

p1∑

i=1

µi(θ)Mi ∈ R
n×n and K(θ) = K0 +

p2∑

i=1

νi(θ)Ki ∈ R
n×n (7)

Here (M0 and K0) are the deterministic mass and stiffness matrices while (Mi and Ki) are the corresponding per-

turbation components obtained from discretizing the mass and stiffness parameters with finite number of random

variables (µi(θ) and νi(θ)). The total number of random variables utilized to represent the stochastic system matrices

is M = p1 + p2. We have chosen the proportional damping model in the present work where the damping parameter

is expressed as a linear combination of the mass matrix and the system stiffness matrix.

For the proportional damping model considered here C(θ) = ζ1M(θ)+ ζ2K(θ), where ζ1 and ζ2 are deterministic

scalars. Hence the expressions for the coefficient matrices are given by

A0(ω) =
[
−ω2 + jωζ1

]
M0 + [jωζ2 + 1]K0 (8)

and, Ai(ω) =
[
−ω2 + jωζ1

]
Mi for i = 1, 2, . . . , p1 (9)

Ak(ω) = [jωζ2 + 1]Kk for k = p1 + 1, p1 + 2, . . . , p1 + p2

The solution methodologies of the system given in Eq. (6) is presented in the following section.

III. Methodology and Results

The problem of structural vibration of the corrugated skin presented in figure 1 with random elastic and geometrical

parameters has been considered here. As discussed earlier corrugated laminates offer a plausible solution for morphing

aircraft skins due to their extremely anisotropic behaviour. The corrugation direction (chordwise direction) offers

compliance and the spanwise direction (transverse to corrugation) makes the structure much stiffer. Corrugated skins

are prone to geometric uncertainties (due to manufacturing) or material uncertainties, such as a random bending

stiffness. We analyze such a composite corrugated skin52 whose Young’s modulus is taken as 16 GPa and its Poisson’s

ratio as 0.225.

Here we take the elastic parameters (such as the bending stiffness and the axial stiffness of the plate) to be modeled

as random quantities. We model these parameters as the stationary Gaussian random field

α(r, ξ(θ)) = α0(1 + ǫ(r, ξ(θ)) (10)

where α is the random parameter of the corrugated skin, r is the length along the physical dimensions of the corrugated

skin and ǫ(r, ξ(θ)) is a zero mean stationary Gaussian random field. The autocorrelation function of this random field

has been assumed to be exponential. Thus if r1 6= r2 then

Cǫ(r1, r2) = σǫ exp {−(|r1 − r2|)/µr} (11)

where µr is the correlation length defined along the physical dimensions of the skin and σǫ is the standard deviation

associated with the random elastic parameters.

Figure 2 shows a few chosen eigenvectors associated with the KL expansion of the covariance kernel. Note that the

random elastic parameters and the KL eigen modes are scalar quantities over the spatial domain. In order to facilitate

better graphical representation of these quantities, they have been plotted as sidewise displacements (y-direction) of
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(a) 2
nd KL eigenvector (b) 3

rd KL eigenvector (c) 4
th KL eigenvector (d) 5

th KL eigenvector

Figure 2. Four different KL modes of the random field with an exponential covariance function for the random field. The eigenfunctions have been plotted as

the sideways displacements of the skin to graphically highlight their nature.

(a) The eigenvalue spectrum of the Covariance

kernel
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Figure 3. (a) The decay of the eigenvalue spectrum of the exponential covariance kernel of the corrugated plate for different correlation lengths defined as the

L2 norm. Emulation and simulation of the mean frequency response (b) and standard deviation of the frequency response (c). The simulation was performed

for every frequency level in the input domain, based on 10,000 samples. Only 250 samples were necessary to emulate the statistics of the frequency response at

a comparable accuracy.

the skin. The higher modes are more complicated in shape which is similar to the behaviour of higher structural

vibrational modes. However, it must be noted that these KL modes are not the same as the vibrational modes of the

structural finite element system.

In order to decide the number of terms in the KL expansion, the eigenspectrum associated with the exponential

covariance function is shown in figure 3(a) for two different correlation lengths L/1 and L/2 where L is the dimension

of the physical domain of the problem. It is seen that the eigenvalues decay more rapidly for the larger correlation

lengths indicating that fewer KL modes can capture most of the variability of the exponential kernel. For the stochastic

vibration response analysis for (elastic) parametric uncertainty, we have chosen the correlation length to be L/2 and

hence approximated the random field with the most dominant 25 eigen modes of the expansion. This sets the dimension

of the input stochastic space and 25 independent identically distributed (iid) random variables were used to represent

the discretized random elastic parameters in the spatial domain. The standard deviation of the random field is assumed

to be σǫ = 0.1. The analysis described above was repeated across the entire frequency range of 0-300Hz. For every

frequency level ω, the Bayesian uncertainty analysis was performed and statistics of the FRF were obtained. This has

been compared with the brute force MCS simulation. Figures 3(b) and 3(c) shows the emulated mean and standard

deviation of the FRF respectively.

The Bayesian metamodel has been used to compute the system response from a set of sample stochastic solutions

which constitute the training runs. The sample points for the training runs are generated using a space-filling strategy,

such as a Latin hypercube. Each design point is drawn from the input distribution F(ξ), a multivariate standard normal

random variable in the high-dimensional stochastic space. The design points are evaluated and the corresponding

system response is reconstructed. The resulting training runs for each frequency level are of the form
(
ξ(i), ũ(ξ(i), ω)

)

for i = 1, . . . , 250 which are used to obtain the mean, variance and the posterior distribution of the stochastic system

response. Figure 4 exemplifies the accuracy of such an approximation for some fixed frequency levels which compare

the cumulative distribution functions (cdfs) of the simulated and emulated outputs. 95% credible intervals for the

emulated cdfs are also displayed. The advantages of Bayesian emulation become apparent: while every MCS run is
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independent, Bayesian emulation takes advantage of the information that each design point contains about the nearest

design points.
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(a) Empirical cdf at 98Hz
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Figure 4. Comparison between emulated and simulated cdfs for different frequency levels. 95% credible intervals (shaded areas) are shown for the cdfs.

Once the posterior distribution has been computed, any statistical summary of the output distribution can be esti-

mated by drawing a large sample from the input distribution F(ξ) and using the samples generated from the posterior

distribution to estimate the summary. The process is illustrated in figure 5, where samples of increasing size are drawn

from the posterior distribution in order to estimate the mean of the output distribution. The prediction is contrasted

with 10,000 Monte Carlo samples. It can be seen how the variance of the sample mean estimated via Bayesian em-

ulation is reduced. Note however that this variance will always be greater than the Monte Carlo variance, since the

emulator is built upon a finite number of training runs, and there will always be a lack of information due to this smaller

set of simulator evaluations. The choice of the number of random functions is guided by the accuracy requirement
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(b) N = 5000
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(c) N = 10000

Figure 5. Simulated vs emulated mean of the sample distribution. As the number of generated random functions necessary to approximate the solution

increases, the variance of the sample mean decreases. This means that uncertainty about the sample mean results from the lack of information due to the

computational cost of the original simulator.

and consideration for computational cost. Also, the error in the emulation can be quantified based on the emulation

methodology and hence there is a measure of the accuracy of the pdfs obtained in figure 5.

III..2. Geometric uncertainty

Each corrugation unit of the skin given in figure 1 is defined by its width, height and the angle of corrugation. However,

it is impossible to have an exact replication of the prescribed geometrical parameters given in the mathematical model.

The aim here is to account for this uncertainty in the corrugation geometry and investigate its effect on the response

and the equivalent stiffness of the corrugated skin. Additionally there might be random surface roughness present

in the corrugated skin which can be quantified with the correlation of the position coordinates as a function of the

distance between two points. Figure 6 is a graphical representation of the arbitrary perturbation of the height, angle

and width of corrugation superimposed on a random surface topology of the baseline model. The randomness in the

surface topology has been considered to be independent of the variations in the dimensions of the corrugation.

For any scalar field (such as the elastic parameters, or the position coordinates) and irrespective of the correlation

length, the eigenfunctions obtained for the KL expansion of the covariance kernel have the exact shape as those given

in figure 2.
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Figure 6. Perturbation of a corrugated unit for arbitrary randomness of the various geometrical parameters and random surface topology.

For the above random geometry, obtaining the system matrices with polynomials of the random variables used to

model the perturbation of the positional coordinates, is mathematically quite cumbersome. Hence the spectral Galerkin

methods, where the solution is expressed with a set of orthogonal polynomials of the input random variables, is not the

obvious first choice. We have solved the random surface topology corrugated skin problem with stochastic collocation

techniques where the system has been solved at a set of quadrature points in the input stochastic space. Hence the

solution can be reconstructed in the high dimensional (M ) stochastic space with polynomial basis functions of the

random variables as

U
i1 ⊗ . . .⊗ U

iM =

mi1∑

j1=1

. . .

miM∑

jM=1

f(xi1
j1=1, . . . , x

iM
jM=1) ·

(
ai1j1 ⊗ . . .⊗ aiMjM

)
(12)

where U
ik(f) =

ni∑

j=1

f(xik
j ) · aikj

is the approximation of the random field along each stochastic dimension. The above tensor product formula requires

evaluation of the stochastic objective function at (mi1 . . .miM ) grid points. For very high dimensional problems,

i.e. large M , the above method becomes computationally intensive and a sparse grid technique is implemented using

Smolyak’s algorithm as56

A(q,M) =
∑

q−M+1≤|i|≤q

(−1)q−|i| ·
(
M − 1

q − |i|

)
· Ui1 ⊗ . . .⊗ U

iM (13)

where A(q,M) are linear combinations of product formulas given in Eq. (12), q ≥ M and i = (i1, . . . , iM ) with

|i| = i1 + . . . + iM which requires fewer realizations of the stochastic response in order to obtain the complete

response statistics. Hence to compute A(q,M) the response has to be evaluated at the sparse grid points

X(q,M) =
⋃

q−M+1≤|i|≤q

(
Xi1 × . . .×XiM

)
(14)

with Xik =
{
xik
1 , . . . , xik

mi

}
denoting the set of points used by Uik . Here we have used the Smolyak formulas that

are based on polynomial interpolation at the extrema of the Chebyshev polynomials. This gives a nested set of nodes

which can be used to approximate the stochastic quantity.

(a) Random Sample 1 (b) Random Sample 2 (c) Random Sample 3

Figure 7. Random realizations of the corrugated skin with stochastic geometrical properties. Here the geometry of the corrugation such as the length, width

and height has been considered as random and has been modeled with 25 iid Gaussian random variables.

Hence for each point x ∈ X(q,M), the finite element system to be solved is given by the random realizations of the

position coordinates obtained using the KL eigen modes. We present in figure 7 some realizations of the random ge-

ometry of the corrugated skin where the geometrical parameters of the corrugation (such as the width, angle, height of
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corrugation) have been perturbed. Figure 8 gives the corrugated skin which has random dimension of the corrugations

obtained for a model of random surface roughness along the length-wise direction (x-axis). Here the correlation length

has been taken as a 100th of the length of the skin. Careful observation reveals that the major difference between the

perturbations introduced in figures 7 and 8 is that in the former case the perturbation is introduced in the corrugation

geometry while the latter case constitutes a model of surface roughness.

(a) Random Sample 1 (b) Random Sample 2 (c) Random Sample 3

Figure 8. Random realizations of the corrugated skin with stochastic geometrical properties for random surface topology. Here the surface roughness has been

modeled with 100 random variables with a correlation length of one-hundredth of the length of the original skin.

We have obtained the solution of this system with the dimension-adaptive stochastic collocation method where the

finite element solver has been employed to obtain the solution at a set of points in the stochastic space. The random

geometry has been approximated with 25 iid random variables. When dealing with high-dimensions in the stochastic

space, such as this, a full tensor grid solution of the stochastic problem becomes prohibitively expensive. Hence we

have utilized dimension-adaptive sparse grids which adaptively refine the interpolant with respect to the dimensions

that are most important. This is determined from the hierarchical surpluses calculated at a small sets of points.

It is known that the propagation of multiplicative input uncertainty to the system response leads to the stochastic

solutions which can be expressed as polynomials of random variables. The accuracy of finite order polynomial inter-

polation of course depends on the smoothness of the function. Under the assumptions of moderately smooth response

functions, we have used the Chebyshev-Gauss-Lobatto grid56 to approximate the response. This is based on polyno-

mial interpolation of the objective function in the stochastic space and hence produces good approximations of the

solution. Additionally, this scheme has the benefit of nesting of nodes which has substantial computational advantage.

The dynamic response of the corrugated skin with geometric uncertainty is given in figure 9 with the sparse grid

collocation scheme outlined above. The stochastic dimension is 25 and comprises of iid Gaussian random variables.

The stochastic sparse grid for this problem with 25 dimensions, and with just 2 points along each direction would
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(b) Standard deviation of the response

Figure 9. (a) Mean frequency response function in the ensemble of the various reponse functions obtained for each sample realization of the random geometrical

configuration of the corrugated skin. The sample realizations frequency response functions have been obtaained with a dimensional-adaptive sparse grid

collocation techique using Chebyshev interpolation functions. The random geometry has been approximated with 25 independent identically distributed

random variables. (b) Standard deviation of the response and the corresponding non-dimensional standard deviation obtained by normalization with the mean

response.

amount to a staggering 3.36×107 points in the stochastic space. In contrast, the proposed adaptive sparse grid method

produces a solution of accuracy ≈ 10−4 with as few as 8, 000 sample points.

Figure 9 shows that the variability of the frequency response of the corrugated skin with random geometry is

more pronounced at resonance frequencies beyond 50 Hz. The plot for the non-dimensionalized standard deviation
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Figure 10. Probabilty density functions of the dynamic reponse of the corrugated skin at different (a) resonance and (b) non-resonance frequencies. The

density functions have been constructed from the system response approximated with the dimension adaptive collocation technique and compared to the direct

Monte Carlo simulation results.

of the frequency response shows that the fundamental mode at ≈ 10 Hz does not have a very large variability due

to input random geometry. However, beyond 50 Hz, the resonance and anti-resonance modes generally have high

values of standard deviation associated with them. Also, the general level of variability in the response increases

at higher frequencies. This observation leads to the conclusion that the geometric variability in the form of surface

roughness, as shown in figure 8, affects the more complicated higher vibration modes than the fundamental modes.

This is understandable since the vibration energy is more localized at higher frequencies and hence is affected by the

surface randomness present in the corrugated skin.

The probability density functions of the response at various frequencies (resonant and non-resonant) are shown in

figure 10. The set of figures in the upper row, Figure 10(a)–10(d), correspond to the response at resonance frequencies

while those in the lower row, figure 10(e)–10(h), give the same for non-resonant frequencies. It can be seen that a better

approximation of the response is obtained with the collocation technique near the non-resonant frequencies. A higher

number of grid points is necessary to obtain a better approximation of the response and to match the pdf obtained for

the brute force Monte Carlo method. 25,000 samples have been used to obtain the MCS simulation results.

We now focus on the relative importance of the set of 25 random variables which model the random geometry by

analyzing the sensitivity of the response to each of them. To begin with, the scatter plot of the dynamic response with

respect to the second, fifth and the eleventh random variable is shown in Figure 11. The scatter plots are shown for two

different frequencies 40 Hz and 152 Hz. The various sample responses were obtained by interpolating the stochastic

system response with the above mentioned sparse grid collocation method. The clearly identifiable pattern from these

plots indicates that the response is more sensitive to the second and fifth random variables compared to the eleventh.

The ordering of the random variables is based on the decreasing eigenspectrum of the covariance function (as detailed

in section II.A) describing the surface roughness of the corrugated skin.

A quantitative estimate of the sensitivity of the response to these various random variables is provided by the Sobol

indices.51 Considering that the random samples x are found in x ∈ X where X is a rectangle of RM , the first order

Sobol indices of the stochastic response ũ : X ⊂ R
M → R are defined as

Si(ũ) =
Var [E(ũ(x)|xi)]

Var [ũ(x)]
, i = 1, . . . ,M (15)

This quantity can be evaluated from a set of sample solutions using either Monte Carlo based approaches or other

schemes usually employed in the uncertainty propagation for randomly parametrized systems such as the stochastic

spectral Galerkin or the collocation scheme. Alternatively, Gaussian Process Emulation is also readily applicable to

the above equation. First we assume a prior about ũ in the form of a Gaussian process characterized by a covari-

ance function with a set of parameters. We use a set of training runs to obtain the mean, variance and the posterior

disrtibution of the stochastic system and the Sobol indices are based on only a few evaluations.
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(a) 2nd r.v. @ 40 Hz (b) 5th r.v. @ 40 Hz (c) 11th r.v. @ 40 Hz

(d) 2nd r.v. @ 152 Hz (e) 5th r.v. @ 152 Hz (f) 11th r.v. @ 152 Hz

Figure 11. Scatter plots of the dynamic response of the corrugated skin with respect to the second, the fifth and the eleventh random variable modeling the

random geometry at specific frequency steps. The y-axis gives the log value of the response where as the x-axis has the random variable values.

Table 1. First order Sobol indices and their credible intervals to obtain the sensitivity of the stochastic system response at 40 Hz to the various input random

variables (the 2nd, 5th and 11th). The sample response has been approximated with the sparse grid collocation technique and the response has been interpolated

at the stochastic sample points used for the estimation of the sensitivity indices.

Sensitivity Measure RV Index 2 RV Index 5 RV Index 11

1st order Sobol indices 0.2712 0.5035 0.0016

Credible interval 0.0434 0.0711 0.0032

Utilizing the Sobol indices as the quantitative estimator, the second, fifth and the eleventh random variable at the

frequency of 40 Hz is analyzed as given in table 1. The first order Sobol indices have been evaluated along with

their respective credible intervals which indicate the accuracy of the evaluted indices. It is seen that a satisfactory

accuracy is achieved for the more important (2nd and 5th) random variables. In case of geometric uncertainty, since

the response of the stochastic system is a highly non-linear complex function of the input random variables, it is

not known a-priori which random variables are most dominant. Especially for a high dimensional problem, where

the geometric length scales associated with the input uncertainty (such as the correlation length) are quite small, the

problem is more complicated and computationally intensive. The results here show that the stochastic system response

is more sensitive to the 5th random variable compared to say the 2nd. The credible interval values suggest that they are

around 15% for the dominant components. This denotes an acceptable accuracy for the evaluated sensitivity measures.

IV. Conclusions & Future Work

The corrugated skin serves as a compliant member in a flexible wing design necessary for morphing applications.

Here we have studied a high fidelity model of the corrugated skin to gain a good physical insight into the effect of

material and geometric uncertainties on the system response. The uncertainty analysis of a corrugated skin with ran-

dom elastic parameters and uncertainty in geometric properties such as surface roughness has been analyzed to study

their impact on the stochastic system response. The uncertainty propagation has been performed with the Gaussian

process emulation scheme for random elastic parameters as input to the model. The statistics of the response have been

obtained over the frequency range of interest and density functions have shown a good agreement with the expensive
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brute force Monte Carlo method. The geometric uncertainty of the corrugated skin has been modeled with a covari-

ance function describing the surface roughness of the skin. This is a high dimensional stochastic problem and we have

used the dimension-adaptive sparse grid stochastic collocation technique with a nested Chebyshev-Gauss-Lobatto grid

to obtain the system response with significantly less computational overhead. The influence of the input uncertainty

on the response statistics has been analyzed with first order Sobol indices which gives the dominant components of

the random variables modeling the input uncertainty.

The Bayesian metamodeling technique has been found to produce satisfactory results for the construction of a-

posteriori distribution of the stochastic quantities given an input distribution. Both the Gaussian process emulation

and the stochastic collocation methods rely on the solution of the stochastic system at some random points in the input

stochastic space and constructing the response statistics using these sample responses. However, it must be noted

that while the collocation technique is based on an analytical approximation of the solution obtained at the quadra-

ture points with polynomial interpolation functions, the Bayesian metamodeling technique is a statistical method to

evaluate the system response using the assumption that the observed outputs are realizations of a Gaussian stochastic

process.

It would be interesting to look at the following aspects of uncertainty analysis of the corrugated skins in future

work in this domain

• Sensitivity analysis of the corrugated skins for the various sources of input uncertainty using Sobol’s measure

of sensitivity, or Sobol indices.

• Investigation into the optimization of the design of corrugated skins with inputs from the uncertainty sensitivity

analysis. This can provide a quantitative estimate of the geometrical parameters to which the system is sensitive.

• Propagation of the uncertainty to the equivalent low-fidelity model (ideally a simple two dimensional plate).

• Comparison of the adaptive collocation technique with the Bayesian metamodeling technique with respect to

the solution accuracy and the computational efficacy.

It has to be mentioned that it is important to have an equivalent low-fidelity model of the corrugated skin which in

its final form would be parametrized and used in the conceptual design of a morphing aircraft wing. Thus, we need

to parametrize the response of this stochastic corrugated skin in terms of a set of equivalent elastic parameters. The

propagation of input uncertainty to these equivalent parameters is a complicated exercise and would be tackled with

various uncertainty propagation methods in a computationally efficient solution scheme. The impact of geometrical

uncertainties in the estimation of equivalent parameters would be an important area of study.
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