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Uncertainty Analysis of Feature Extraction From
Expired Gas Traces

Marco Parvis, Member, IEEE, Carlo Gulotta, and Roberto Torchio

Abstract—Noninvasive medical analyses are a convenient
method to study several pathologies even though their indirect
nature often requires a complex processing to determine the
relevant health “indicators.” The usefulness of such indicators
depends on the employed model, but also on the uncertainty that
is connected to the complex processing involved in the indicator
determination. This paper deals with the problems related to the
estimation of the uncertainty when the indicators are computed
by means of a nontrivial processing on recorded traces of clinical
parameters. The paper is focused on the analysis of expired gas
traces, but the procedure can also be applied to many other cases
where the processing involves manual or automatic selection of
suitable “key points” on repetitive traces.

Index Terms—Biomedical signal processing, feature extraction,
medical diagnosis.

I. INTRODUCTION

M
ANY medical analyses employ noninvasive procedures

to reduce both the cost and morbidity associated to

the tests. Examples of noninvasive procedures are ECG, EEG,

EMG, and expired gas analysis. Although these methods

belong to rather different fields, a common denominator is the

processing sequence which is required to emit the diagnosis.

The processing starts with a measurement session where the

time evolution of one or more clinical parameters is recorded.

Then, the recorded streams are analyzed to extract some

relevant “features” or “indicators” and eventually the physician

emits the diagnosis by employing his/her knowledge and

practice to combine different indicators and his/her knowledge

about the patient’s status and history.

While the accuracy of the last step can be validated by em-

ploying well-assessed medical procedures, the uncertainty of

each indicator has to be determined by analyzing the instru-

ments and processing involved in its determination.

Unfortunately, such an analysis is not easy since, in most

cases, the processing involves a manual, “by sight” selection

of “key” points that identify specific values on the stream, and

therefore the obtained values are, to some extent, operator-de-

pendent.

Automatic methods to extract the required features have often

been proposed, especially for the most common and often used

tests (e.g., [1]–[3]), but problems still remain regarding the re-

liability and robustness of the obtained results.
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Fig. 1. Trace examples: collaborating patient (top) and noncollaborating
patient (bottom).

This paper investigates the possibility of estimating the indi-

cator uncertainty for both manual and automatic processing and

tries to validate the results by means of an analysis based on

subsequent estimations taken from the recorded data stream.

The proposed solution can be applied both to manual and au-

tomatic feature extraction, even though its application to the

manual scenario can be rather time-consuming. The solution

is tailored to the analysis of expiratory traces of either natural

or artificial gases, but the proposed approach can be applied

to other medical fields where similar measuring procedures are

employed.

II. EXPIRED GAS ANALYSIS

The analysis of gas concentrations at the mouth during normal

breathing is a powerful and noninvasive way of inferring the state

of the “body machine” [4], [5]. Important data regarding the state

of the lungs and the general conditions of a patient can be ob-

tained by analyzing the expired gas composition when a mix-

ture of artificial insoluble and soluble gases is inspired [6]. Other

metabolic data can be obtained by measuring the concentrations

of oxygen and carbon-dioxide in the expired gas both at rest and

during increasing working conditions [5].

The measurement problem, however, is the analysis of the gas

concentration changes to derive a compact indicator of the re-

quired functionality. Unfortunately, the trace aspect greatly de-

pends on the patient’s collaboration and on his/her ability to

follow predefined breathing maneuvers. Fig. 1 shows an ex-

ample of natural gas traces which have been recorded from both

a collaborating and a noncollaborating patient. Each plot is com-

posed of three to ten breaths, depending on the breathing speed,

and shows three traces that correspond to expired volume ( ),

measured with a unidirectional-valve plethysmograph, oxygen

( ) and carbon dioxide ( ) concentrations, measured with

0018–9456/01$10.00 © 2001 IEEE
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Fig. 2. Ideal trace and key point positions.

a mass spectrometer. The irregularities of the traces recorded

for the noncollaborating patient are clearly visible and make the

trace analysis problematic.

III. BASIC INDICATORS AND KEY POINT SELECTION

The feature extraction is performed on a breathing basis
and consists of the computing of various quantities related to
changes in the and concentrations of the expired air
with respect to the expired volume.

The processing relies on the identification of three “key
points” that mark expiration start (ES), expiration end (EE),
and the so-called “end-tidal” (ET).

Fig. 2 shows an example of ideal, simulated traces and of the
three key points. ES and EE end are usually defined referring
to the volume trace, while ET is selected as the point where the

concentration stops increasing.
Many trace-derived parameters have been proposed as indica-

tors [5], [7], [8]. If only the traces of oxygen and carbon-dioxide
are considered, most of the indicators are traditionally obtained
by combining four basic quantities: the average oxygen and
carbon-dioxide concentrations over one breath , and
the oxygen and carbon–dioxide concentrations at ET ,

. If the gas concentrations are sampled at a fixed fre-
quency and and are the samples corresponding
to oxygen and carbon–dioxide concentrations, the four indica-
tors are obtained as

(1)

(2)

where , , and are the sample numbers that corre-
spond to the identified key points.

All four of the indicators therefore rely on the key point po-
sitioning, which is usually performed by a trained physician.

The manual key point positioning is performed by selecting
“by sight” their positions on one or more breaths. Since the
selection is a time-consuming task, the selection is often per-
formed on one breath, which is chosen, again by sight, as being
the most representative.

In order to reduce the amount of subjectiveness of the anal-

ysis, the authors have developed an automatic procedure that an-

alyzes the traces and selects the points according to a two-step

procedure.

The first step identifies the useful breaths according to the

following procedure:

1) The expired volume trace is differentiated to determine

the expired flux.

2) Each breath is identified around each interval with an ex-

pired flux greater than zero.

3) The trace is then analyzed starting from the end

of expiration until the concentration abruptly de-

creases, signaling the start of a new inspiration.

4) Breaths too short or too long and breaths with low expired

flux are marked as useless and discarded.

The second step identifies the key points of each identified

breath. Such an identification is made difficult by the different

shapes which arise according to the breathing maneuvers. Sev-

eral approaches can be followed to tackle this problem, such as

pattern recognition techniques, or neural networks, but a simple

recursive solution was found to give satisfactory and reliable re-

sults.

The approach is based on a local corner approximation of the

traces around the interesting points. As an example, the ES point

is obtained by computing two regression lines: one for volume

samples between the minimum volume and 2% of the total ex-

piration, and the other for volumes between 5% and 10%. The

actual volume at the corner point is then used to adjust the in-

tervals for a new regression couple. This approach allows both

slowly starting and abruptly starting traces to be correctly iden-

tified. Similar recursions are employed for EE and ET.

The automatic selection is performed on all the identified

breaths so that up to ten estimations for each of the four quan-

tities are obtained from each record. All of the results are pre-

sented to the physician, who can manually correct the key point

positions, if necessary.

IV. UNCERTAINTY ANALYSIS

The uncertainty connected to the extracted features depends

on three main causes: 1) the instrument uncertainty ; 2) the

uncertainty connected to the key point selection ; and 3) the

uncertainty connected to the breath-to-breath repeatability .

A. Instrument Uncertainty

The instruments employed in the determination are calibrated

each day the measuring apparatus is used. All of the measure-

ments are digitized by employing a PC-based 12-bit conversion

system and using a sampling rate of 50 Hz. Low-pass filters en-

sure the measurements are not aliased and greatly reduce the

noise that is present on the samples so that it can be neglected

with respect to the other uncertainty causes. Gas concentrations

are measured by means of a mass spectrometer whose chan-

nels are calibrated using two gas cylinders containing known

gas mixtures. A linear approximation is used to identify channel

sensitivities , , and offsets ,

(3)
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The expired volume is measured by means of a water-filled

spirometer equipped with an unidirectional valve. The volume

channel is calibrated by injecting a known volume into the

spirometer by means of a calibrated syringe. A linear transduc-

tion function is then identified starting from the volume changes

(4)

where and are volume channel sensitivity and offset.

The uncertainty after calibration can be estimated by com-

bining

• the uncertainty of the gas standard mixtures;

• the residual linearity error, which is obtained from the

manufacturer specifications;

• the amount of noise, which is estimated by measurements

in steady conditions;

• the short-term drift of the calibration parameter, which is

estimated by repeated calibrations.

The resulting standard uncertainty of the gas concentration

channels and is of less than 0.5% concentra-

tion and the uncertainty of the volume channel is of less

than 0.05 dm .

B. Key Point Related Uncertainty

The uncertainty connected to the key point selection depends

on both the shape of the breaths and the selection procedure.

An estimation of the uncertainty of the th indicator

can be obtained by determining: 1) the indicator sensitivity with

respect to each point position and 2) the uncertainty of

the point positioning.

If the uncertainty of the point positioning is small, so that a

linear approximation of the function which expresses the

relation between point and indicator can be used, the resulting

uncertainty is1

(5)

where is the number of key points.

The uncertainties of the manual placement can be eval-

uated by repeated measurements by the same or by different

physicians of the same breath. The uncertainty connected to the

automatic key point selection can be evaluated by comparing

the automatically generated results with the mean of the results

obtained by repeated measurements of different physicians on

the same breath of the same trace set.

C. Breath-to-Breath Repeatability

The uncertainties connected to the breath-to-breath

repeatability can be evaluated by determining the experimental

standard deviation of the indicators obtained by analyzing all

the available breaths of a single patient

(6)

1Equation (5) does not contain cross correlation coefficients since the three-
point positioning can be considered to be statistically independent.

where

number of breaths in the considered stream;

indicator computed on the th breath;

average indicator value.

In order to correctly estimate , the indicators used

in (6) should be obtained by employing the “correct” values for

the key points, i.e., the values obtained by averaging the posi-

tions selected by different physicians. If such average values are

not available and simple key point positions are employed, (6)

overestimates the breath-to-breath repeatability. Attempts could

be made to separate the contribution connected to the key points,

but the reduced number of available breaths and the possible

correlation between the positioning of the key points on sequen-

tial breaths make these attempts difficult to employ.

In addition, one should note that all the indicators have a

sensitivity with respect to several parameters (breath duration,

breath speed, etc.) [5], which are not considered in this analysis.

Equation (6) therefore produces a value that could be reduced

by applying corrections for these parameters.

D. Feature Uncertainty

The combined uncertainty of a single measurement can even-

tually be obtained by combining the three uncertainty contribu-

tions

(7)

If more measurements of the same stream are available, a better

indicator estimation can of course be obtained by averaging the

available measurements

(8)

In this case, the expected uncertainty is lower, even though not

all the uncertainty contributions can be reduced by the aver-

aging. In particular, a high correlation of the instrument-con-

nected uncertainties , , and is expected

for measurements on the same stream. By assuming a complete

correlation of the instrument related uncertainty and no correla-

tion between the other uncertainty sources, the uncertainty can

be expressed as

(9)

V. EXPERIMENTAL RESULTS

The proposed algorithm has been applied to traces obtained

from 378 patients monitored during 1999. Fig. 3 shows the

histogram of the number of breaths identified in the different

streams by the automatic placement program. The automatic

placement system has been able to recognize at least one breath

in 369 (98%) patients and more than two breaths in 342 (90%)

of the patients.

The estimation of the uncertainty connected to the manual

point positioning has been performed by asking three physi-

cians to place the key points on 13 different breaths of 11 dif-

ferent patients. The 13 breaths have been randomly and anony-
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Fig. 3. Number of breaths detected by the automatic system.

Fig. 4. Sensitivity of the four indexes with respect to ES, EE, and ET.

mously presented to the physicians in two sessions over two

days eventually collecting 95 placements. Standard deviations

of 19 ms, 32 ms, and 64 ms were observed, respectively, for ES,

EE, and ET. Such values correspond to an uncertainty of about

one sample for ES and EE and to about three samples for ET.

As explained in the previous section, the mean values of the

key points placed by the physicians have been taken as refer-

ence values for the estimation of the correctness of the automatic

point placement. The values obtained by the automatic system

are consistent with respect to the reference values for ES and EE

(average differences below 8 ms), while a not negligible mean

difference of about 28 ms characterizes ET. The standard devi-

ation of the differences between automatically obtained values

and the physician average has been 16 ms, 28 ms, and 44 ms,

respectively, for ES, EE, and ET.

The sensitivity of each indicator to the key points greatly

depends on the trace aspect and has to be computed each time

a measurement is performed, even though it is interesting to

derive an average value to estimate the importance of the oper-

ator dependent uncertainty. Fig. 4 shows the distribution of the

sensitivity values of the 361 patients with respect to ES, EE, and

ET. The related traces have a greater sensitivity with respect

Fig. 5. Observed inter-breath repeatability.

Fig. 6. Uncertainty for O indexes.

Fig. 7. Uncertainty for CO indexes.

to the ; however, most of the breaths have a sensitivity below

0.03%conc/ms.This implies that thekeypoint relateduncertainty

is generally expected to be below 0.6% of concentration on the

indexes and below 0.2% concentration on the indexes.

The inter-breath repeatability has been computed by ana-

lyzing the results for patients for which more than one breath

has been identified. Fig. 5 shows the inter-breath repeatability

obtained for the four indexes. The inter-breath repeatability is

rather low and almost always lower than 0.5% concentration,

thus being lower than the dispersion which is expected as a

consequence of the key point positioning. This confirms that a

correlation exists between the positions of the key points placed

by the automatic system on subsequent breaths of the same

patient and therefore that (6) is a reasonable way of estimating

the inter-breath dispersion, even though the average key point

values are not available.

The combined feature uncertainty can eventually be esti-

mated according to (7) or (9) depending on the number of

identified breaths. Figs. 6 and 7 show the uncertainty distribu-

tion observed on the 369 patients, respectively, for the and

indexes. The figures contain two distributions for each

index: one distribution refers to the patients where only one

breath was identified, while the other refers to all the other

patients. The uncertainty when only one breath is available
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reaches values above 1% concentration for both and .

Such an uncertainty greatly decreases when more breaths are

considered: in this case uncertainties near the instrumental

uncertainty (0.5%) are observed in most cases. The same

difference is observed also for the ET values, which always

have uncertainties below 1%.

VI. CONCLUSIONS

The uncertainty of health indicators derived from the evolu-

tion of important clinical parameters is connected to the em-

ployed instruments, to the processing and to the intrinsic indi-

cator repeatability. While the first contribution can easily be de-

termined, the other two require a more complex analysis, since,

in many cases, the data processing relies on subjective decisions.

This paper describes a procedure that can compute the overall

uncertainty in the case of indicators derived from expired gas

traces. This is an interesting example since the processing which

is required to compute such indicators relies on a “by sight” se-

lection of three key points on the recorded traces and therefore

is suitable to highlight the operator-related uncertainty contri-

butions. In addition, the recorded traces often contain enough

samples to perform more than one measurement, and therefore

an estimation of the intrinsic uncertainty can be obtained.

A population of 378 patients monitored over one year has

been used to estimate the parameter repeatability, while the ef-

fect of the operator has been estimated by analyzing the values

obtained by different operators that analyzed the same recorded

traces.

The obtained uncertainty values have been eventually used to

estimate the overall uncertainty of the required features when

only one feature determination is available. When more mea-

surements are available, their mean value has been used as indi-

cator, while the uncertainty has been estimated taking the effect

of the average processing into account. The uncertainty estima-

tion has been implemented within the program that manages the

data acquisition and computes the features, so that the final re-

sult is automatically tagged with its uncertainty, thus helping the

physician to evaluate the index importance.
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