
J. Earth Syst. Sci. (2019) 128:113 c© Indian Academy of Sciences
https://doi.org/10.1007/s12040-019-1154-1

Uncertainty analysis of rainfall depth duration frequency
curves using the bootstrap resampling technique

Jing Lin Ng1,*, Samsuzana Abd Aziz2, Yuk Feng Huang3, Majid Mirzaei4,
Aimrun Wayayok2

and M K Rowshon2

1Department of Civil Engineering, Faculty of Engineering, Technology & Built Environment, UCSI University,

Kuala Lumpur, Malaysia.
2Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, Selangor, Malaysia.
3Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul

Rahman, Selangor, Malaysia.
4Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

*Corresponding author. e-mail: ngjl@ucsiuniversity.edu.my

MS received 26 March 2017; revised 28 May 2018; accepted 25 December 2018; published online 8 May 2019

Rainfall depth duration frequency (DDF) curves are used extensively in many engineering designs.
However, due to the sampling error and the uncertainty associated with the parameter estimation process,
the DDF curves are subjected to parameter uncertainty. In this study, an evaluation of the uncertainty
of the DDF curves in the Kelantan river basin was performed using the bootstrap resampling method.
Annual maximum rainfall series for durations of 24, 48, 72, 96 and 120 h were derived from the stochastic
rainfall model outputs and fitted to the generalised extreme value (GEV) distribution. The bootstrap
samples were generated by resampling with replacement from the annual maximum rainfall series. The
relationships that describe the GEV parameters as a function of duration were used to establish the
DDF curves. The 95% confidence intervals were used as an indicator to quantify the uncertainty in the
DDF curves. The bootstrap distribution of the rainfall depth quantiles was represented by a normal
probability density function. The results showed that uncertainty increased with the return period and
there was significant uncertainty in the DDF curves. The suggested procedure is expected to contribute
to endeavours in obtaining reliable DDF curves, where the uncertainty features are assessed.

Keywords. Depth duration frequency curves; uncertainty; bootstrap resampling; generalised extreme
value distribution.

1. Introduction

Rainfall depth duration frequency (DDF) curves
are graphical representations of the rainfall depths
at a given duration having desired probabilities of
exceedance or return period. They are particularly
needed to model the extreme rainfall characteris-
tics for hydrological and engineering applications,
such as the design of sediment control structures,

management of storm water facilities, risk
analysis for flood hazards and the operations for
urban drainage works (Brath et al. 2003; Jiang
and Tung 2015; Sarhadi and Soulis 2017). This
is especially true in Malaysia, which experiences
extreme rainfall events (flash flood and monsoon
flood) nearly every year, resulting in high economic
losses, significant damages to property, degradation
of water quality and loss of lives. However, the
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quantification of uncertainty associated with the
DDF curves is often neglected or simply dis-
regarded. This may affect the reliability of the
hydrological modelling and leads to significant
errors that may affect the decisions drawn from
the research analysis. Therefore, it is important
to assess and incorporate the uncertainty features
when deriving the rainfall DDF relationships to
obtain reliable estimations of extreme rainfall.

In general, the rainfall DDF curves are con-
structed based on extreme rainfall series at the
location of interest for various durations. The typ-
ical steps involved are as follows: (i) fitting of
the probability distribution function to the annual
maximum rainfall series for a specific duration;
(ii) estimating the quantile function of extreme
rainfall for each duration with the correspond-
ing return period and (iii) deriving rainfall DDF
relationships between the rainfall depth and dura-
tion. Previously, the Gumbel distribution has been
widely used to fit and describe the characteristics
of annual maximum rainfall (Wotling et al. 2000;
Borga et al. 2005; Nadarajah and Choi 2007). How-
ever, several studies have shown that the Gumbel
distribution tends to underestimate the extreme
rainfall quantiles and extreme events like floods
appear to have heavier tails than the Gumbel dis-
tribution (Coles et al. 2003; Malamud and Turcotte
2006; Sisson et al. 2006; Papalexiou and Kout-
soyiannis 2013). This may consequently lead to the
inaccurate estimation of hydrological risk, particu-
larly for the design of hydraulic structures or water
resource projects that involve high return peri-
ods. Alternatively, the generalised extreme value
(GEV) distribution is used as a consistent proba-
bilistic model, where the additional parameter can
describe better the upper tail of the extreme rain-
fall. For this reason, GEV distribution was applied
in this study. GEV distribution has been applied in
several regions to model the rainfall extremes and
shown to be the appropriate distribution to model
the behaviour of the extreme events, such as in
Malaysia (Zalina et al. 2002), Korea (Nadarajah
and Choi 2007), India (Guhathakurta et al. 2011),
Canada (Burn 2014), Iran (Mirzaei et al. 2015) and
China (Yin et al. 2016).

The evaluation of uncertainty is often overlooked
for the typical estimation of the DDF curves. The
main limitation of the typical DDF procedure is
that the parameter uncertainty is not determined.
In hydrological modelling, uncertainty is impor-
tant to provide information on the hydrological
models for future risk assessments. The bootstrap

resampling approach has been adopted for
uncertainty assessment in hydrology due to its
simplicity and versatility. Overeem et al. (2008)
assessed the uncertainty associated with the DDF
curves by using the bootstrap method and obtained
the uncertainty bands and the bootstrap distri-
bution of uncertainty. Hailegeorgis et al. (2013)
utilised the bootstrap method to analyse the sam-
pling uncertainty associated with the quantile esti-
mation of extreme rainfall events in Norway. The
rainfall samples were drawn with replacement from
original rainfall series and the confidence intervals
were derived from the resamples. The confidence
bounds of the rainfall quantiles showed that the
uncertainty was high in the estimates. Similar find-
ings were reported by Mirzaei et al. (2015) who
assessed the uncertainty associated with the DDF
curves in Iran by using the bootstrap method and
calculated the confidence bands of the DDF curves.
It was observed that the uncertainty increases with
the return periods. Hu et al. (2015) estimated
the uncertainty of hydrological design values by
making use of the bootstrap method to estimate
the standard deviation. The bootstrap method can
be used to evaluate uncertainty in terms of bias,
standard deviation and confidence bands. It is fre-
quently applied in various fields, such as flood
forecasting, water resources planning and climate
change modelling (Prudhomme et al. 2003; Tiwari
and Chatterjee 2010; Noguchi et al. 2011).

Another notable issue in the uncertainty assess-
ment is the lack of adequate sample informa-
tion, such as small sample sizes and short max-
imum rainfall series. The insufficient information
inevitably leads to inaccurate quantification of the
uncertainty related to the whole hydrological pro-
cess, especially in the modelling of extreme rainfall
values where the available observation data sets are
scarce. For this reason, a long and complete series
of rainfall output generated from the stochastic
rainfall model is particularly useful. The stochastic
rainfall model is a statistical tool used to gener-
ate arbitrarily long and complete synthetic rainfall
series, enabling a more thorough representation
of rainfall variability. The stochastic generation of
rainfall is based on a random process where the
sequences of random numbers simulated from com-
puter algorithms are transformed into sequences
of synthetic data which are statistically similar
to the historical data. There are wide varieties
of the stochastic weather generator developed in
different regions, consisting of different simulation
procedures according to the weather condition of
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the location of interest. The common examples are
WGEN (Richardson 1981), LARS-WG (Semenov
and Brooks 1999), MV-WG (Fodor et al. 2010) and
WeaGETS (Chen et al. 2012).

Extreme rainfall event that leads to flooding is
the most significant natural hazard in Malaysia
which occurs due to very high intensity mon-
soon rainfall, heavy convective tropical rainstorms,
rapid construction of buildings and other local fac-
tors. The Kelantan river basin is one of the areas in
Malaysia where the monsoon flood has been occur-
ring annually due to the northeast monsoon that
brings heavy rainfalls and strong winds. The DDF
curves or intensity duration frequency (IDF) curves
have been established to describe the character-
istics of the extreme rainfall and the information
is used to aid in the design of flood mitigation
infrastructures and assessment of flooding risk. The
procedures of DDF and IDF curves construction
are similar, except the former uses the maximum
rainfall depth whereas the latter uses the maxi-
mum rainfall intensity. It is always important to
evaluate the uncertainty of the DDF/IDF curves
as the uncertainty is equally vital as the estimates
themselves in any hydrological modelling. While
many studies have been carried out to develop the
DDF/IDF curves in this region (Ariff et al. 2012;
Chang et al. 2013), researches on the evaluation
of the uncertainty associated with the DDF/IDF
curves are still rare. Lacking of the uncertainty
information may lead to misleading predictions
in the hydrological models and consequently pose
much higher risk of failures in infrastructure design
and implementation. It is crucial to carry out
a comprehensive assessment of uncertainty esti-
mates after the DDF model is constructed. Limited
work on the uncertainty quantification of stochas-
tic rainfall output had been done. In this study
area which experiences tropical climate, no work
on such matters has ever been carried out. The
existing uncertainty analysis approaches usually
quantify the uncertainty based on the histori-
cal rainfall series. For this study, the stochastic
realisations of synthetic rainfall series were gen-
erated from the historical rainfall series using the
stochastic rainfall generator. Therefore, the results
of the uncertainty quantification or the estimated
uncertainty were also from the stochastic rainfall
generator. This paper is about the bootstrap-based
methodological framework to investigate and eval-
uate the uncertainty of DDF curves based on
the synthetic rainfall series. The bootstrap resam-
pling technique was chosen due to its ease of

implementation, conceptual simplicity and
capability to provide accurate inferences without
any distributional assumptions. The synthetic rain-
fall series were generated from a stochastic rainfall
model, which was developed to generate the com-
plete sequences of synthetic rainfall in the Kelantan
river basin, Malaysia. The uncertainty analysis was
carried out for 17 selected rainfall stations of the
Kelantan river basin. The outcomes from this study
can be used as a reference for the hydrological fore-
casting, infrastructure design, risk assessment and
agricultural planning.

2. Study area

The Kelantan river basin is located at the north-
eastern part of Peninsular Malaysia between the
latitudes 4◦40′−6◦12′N and longitudes
101◦20′−102◦20′E (figure 1). The region has a typ-
ical tropical climate due to the maritime exposure
and proximity to the equator. The weather is hot
and humid all the year round with uniform high
temperature between 21◦C and 32◦C and high
relative humidity ranging from 82% to 86%. It
has an annual rainfall of about 2700 mm, which
is mainly caused by the northeast monsoon that
occurs from November to February. The northeast
monsoon usually brings heavy rain to the study
area and consequently leads to the monsoon floods.
The southwest monsoon is considered as a drier
period because the area is virtually sheltered by the
Titiwangsa Range which runs down the peninsula.
There are two inter-monsoon periods from March
to April and September to October and convec-
tional rain is expected during these periods.

3. Methodology

3.1 Stochastic generation of rainfall series

In this study, the historical daily rainfall series of
17 rainfall stations of the Kelantan river basin,
Malaysia, were acquired from the Malaysian Mete-
orological Department (MMD). The spatial loca-
tion and the summary statistics of all stations
are given in figure 2 and table 1, respectively. A
stochastic rainfall model was developed to stochas-
tically generate a long and complete series of syn-
thetic rainfall series based on the statistical char-
acteristics of the historical rainfall series. Firstly,
a simple but parsimonious two-state, first-order
Markov model was used to simulate the rainfall
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Figure 1. Location of the Kelantan river basin in Malaysia.
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Figure 2. Location of 17 rainfall stations in the Kelantan
river basin.

occurrence by generating the sequences of the wet
and dry days. The probability of the occurrence
of rainfall depends on the condition of the previ-
ous day, which can be expressed by two transition
probabilities:

P01 = Pr {precipitation on day t |
no precipitation on day t − 1} , (1)

P11 = Pr {precipitation on day t |
precipitation on day t − 1} . (2)

Based on the simulated wet days, the rainfall
amounts were simulated by using two-parameter
log-normal distribution. Its probability density
function is given as

f (x) =
1

xq
√

2π
exp

(
−(In x − s)2

2 q2

)
, q > 0, s > 0,

(3)

where q and s are the standard deviation and
mean of the logarithmic transformed precipitation
amount, respectively.

The parameters of the distributions were esti-
mated using the maximum likelihood approach
and subsequently used to simulate the synthetic
daily rainfall series of five times the length of the
historical rainfall series. In order to preserve the
low-frequency variability of the rainfall, a spectral
correction method suggested by Chen et al. (2010)
was used to correct the monthly and interannual
variability of the synthetic rainfall series.

The annual maximum rainfall series for event
durations (D) of 24, 48, 72, 96 and 120 h (hour)
were extracted from the synthetic rainfall series.
Since the frequency analysis of the hydrological
time series is based on the stationarity assumption,
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Table 1. List of rainfall stations used in this study.

Station code Station name Record period Latitude Longitude

40431 Pos Blau 1978–2013 04◦39′N 101◦41′E

40432 RPS Kuala Betis 1974–2013 04◦42′N 101◦45′E

40433 Pos Hau 1978–2013 04◦42′N 101◦32′E

40470 Pos Lebir 1978–2013 04◦56′N 102◦23′E

40502 Pos Bihai 1978–2013 05◦00′N 101◦341′E

40510 Pos Tehoi 1978–2013 05◦03′N 101◦45′E

40512 Pos Wias 1978–2013 05◦07′N 101◦49′E

40516 Pos Gob 1978–2013 05◦17′N 101◦38′E

40547 Mardi Jeram Pasu 1984–2013 05◦48′46′′N 102◦20′40′′E

40546 Pusat Ternakan Haiwan Tanah Merah 1980–2013 5◦48′40′′N 102◦00′33′′E

40588 Pusat Pertanian Melor 1968–2013 05◦58′N 102◦18′E

40660 Pusat Pertanian Bachok 1974–2013 6◦03′N 102◦24′E

40663 Pusat Pertanian Pasir Mas 1976–2013 06◦02′N 102◦07′E

40664 Pusat Pertanian Lundang 1974–2013 06◦06′N 02◦14′E

40666 Mardi Kubang Keranji 1982–2013 06◦05′N 102◦17′E

48615 Kota Bharu 1954–2013 06◦10′N 102◦18′E

48616 Kuala Krai 1986–2013 05◦32′N 102◦12′E

the augmented Dickey–Fuller test (Dickey and
Fuller 1979) was used to examine the stationar-
ity of the annual maximum series. The augmented
Dickey–Fuller test examines the temporal trends
of the annual maximum series and tests for the
presence of unit roots. The null hypothesis of the
augmented Dickey–Fuller tests stated that there
is a unit root for the data sets, indicating non-
stationarity of the annual maximum series. The
tests were conducted at the level of 5% significance.

3.2 Bootstrap resampling technique

In this study, the bootstrap resampling technique
was employed to estimate the sampling distribu-
tion of statistics and quantify the uncertainty of
the rainfall DDF curves. The main idea of the boot-
strap is to generate large samples with replacement
by resampling from the original samples based
on the assumption that the samples are indepen-
dent and identically distributed. The sample values
are treated as similarly as possible to the under-
lying true distribution from which it is drawn.
This method has been advocated not just because
of its computational efficiency, but as an easy-
to-implement approach that generates bootstrap
replications without relying on the assumption of
true distribution. It is applicable by just depend-
ing on the information obtained from the sample
values.

The steps of the bootstrap method employed in
this study are described as follows:

(1) Assume that the annual maximum rainfall
series for the durations of 24, 48, 72, 96
and 120 h are the original samples, which
are denoted as X = (X1, X2, . . . , Xn) for
n = total length of annual maximum rainfall
records.

(2) Produce bootstrap samples of annual maxi-
mum rainfall series by the bootstrapping pro-
cess, which involves randomly picking values
with replacement from the original sample.
Resampling was carried out at all rainfall sta-
tions for each duration under consideration.

Repeat the bootstrap resampling process 104 times
to generate 104 bootstrap samples, which are X∗ =

(X
∗(i)
1 , X

∗(i)
2 , . . . , X

∗(i)
n ), where i = 1, 2, . . . , m and

m is the size of the resampling (104). Such a large
sample size of the bootstrap replications can ensure
a reliable and accurate estimation of the statistical
parameter of interest.

3.3 Frequency analysis of extreme rainfall series

3.3.1 Fitting the GEV distribution

To perform the uncertainty analysis of the DDF
curves, a very crucial step is the frequency anal-
ysis of extreme rainfall events. Therefore, GEV
distribution was adopted in this study to fit the
104 bootstrap samples of the annual maximum
rainfall series. The cumulative distribution func-
tion of GEV distribution (Jenkinson 1955) can be
expressed as
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F (x) = exp

{
−

[
1 +

γ (x − µ)

σ

]
−

1

γ

}
for γ �= 0,

(4)

F (x) = exp

{
−exp

[
−(x − µ)

σ

]}
for γ = 0, (5)

where x is the rainfall amount, γ,µ and σ are the
shape, location and scale parameters, respectively.
The quantile function of GEV distribution with the
cumulative probability z is defined as

xz = µ +
σ

γ
[1 − (−ln (z))γ ] , for γ �= 0, (6)

xz = µ − σ ln (− ln (z)) , for γ = 0. (7)

3.3.2 Parameter estimation using L-moments

The selection of the parameter estimation method
usually considers the description of a wider range of
distributions with the least computational efforts.
The method of L-moments is preferable over the
conventional moments because it is more robust
to the sampling variability and outliers of data,
relatively less biased in the estimation process,
and free from sample-size-related bounds (Hosk-
ing 1990; Kyselý and Dubrovský 2005; Borujeni
and Sulaiman 2009; Ngongondo et al. 2011; Hai-
legeorgis et al. 2013). Therefore, the method of
L-moments was used in this study to derive the
parameters of the GEV distribution as it can
describe the location, skewness, kurtosis, shape and
other aspects of the probability distribution. The
L-moments are based on the probability weighted
moment which can be expressed as (Hosking 1990)

Pr = (r + 1)−1

{
µ +

σ

γ

[
1− (r + 1)−γ Γ (1 + γ)

]}
,

(8)

where Γ is the gamma function. The unbiased esti-
mator of Pr is expressed as (Landwehr et al. 1979;
Hosking and Wallis 1995)

P̂r =
1

n

n∑

i=1

(i − 1) (i − 2) ... (i − r)

(n − 1) (n − 2) ... (n − r)
xi, (9)

where xi is the data value of the annual max-
imum arranged in ascending order. The sample
L-moments are given as

ℓ1 = P̂0, (10)

ℓ2 = 2 P̂1 − P̂0, (11)

ℓ3 = 6 P̂2 − 6 P̂1 + P̂0. (12)

The estimates of the GEV parameters are subse-
quently estimated as

γ̂ = 7.8590c + 2.9554c2, (13)

σ̂ =
ℓ2γ̂

Γ (1 + γ̂) (1 − 2−γ̂)
, (14)

µ̂ = ℓ1 +
σ̂

γ̂
[1 − Γ (1 + γ̂)] , (15)

where

c =
2

3 + ℓ3/ℓ2
− ln 2

ln 3
. (16)

For the present study, ∝̂ = σ̂/µ̂ was considered.
The annual maximum rainfall series of durations
24, 48, 72, 96 and 120 h at all stations were fitted
to the GEV distribution by means of L-moments.

3.4 Development of the rainfall DDF curves

In this section, the rainfall DDF curves were
derived from the relationships incorporating the
GEV parameters as functions of duration. The
rainfall depth, x (mm) was plotted against all con-
sidered durations for return periods of 2, 5, 10, 20,
50 and 100 yr. The general linear regression model
was used to model the GEV parameters

Table 2. Results of the validation tests (Mann–Whitney, K–S and squared ranks tests).

Monthly Yearly

Mann–Whitney Squared ranks Mann–Whitney Squared ranks

tests K–S tests tests tests K–S tests tests

Wet spells 204/204 202/204 202/204 16/17 14/17 6/17

Dry spells 204/204 202/204 202/204 16/17 11/17 8/17

Rainfall amounts 203/204 189/204 202/204 17/17 15/17 17/17
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λ = Xβ + e, (17)

Table 3. Augmented Dickey–Fuller test results for the
annual maximum rainfall series (D = 24 h).

Station name P -value

Pos Blau <0.0001

RPS Kuala Betis 0.0002

Pos Hau 0.00271

Pos Lebir <0.0001

Pos Bihai <0.0001

Pos Tehoi 0.0006

Pos Wias 0.0044

Pos Gob <0.0001

Mardi Jeram Pasu 0.0005

Pusat Ternakan Haiwan Tanah Merah <0.0001

Pusat Pertanian Melor 0.0003

Pusat Pertanian Bachok 0.0010

Pusat Pertanian Pasir Mas 0.0002

Pusat Pertanian Lundang <0.0001

Mardi Kubang Keranji <0.0001

Kota Bharu 0.0001

Kuala Krai <0.0001
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Figure 3. Trends of annual maximum rainfall (D = 24 h) at
eight randomly selected stations.

where

X =

⎛

⎝
1 ln D1

. .
1 lnD6

⎞

⎠ , (18)

β =

(
β1

β2

)
. (19)

In general, λ is a (n × 1) vector of the GEV param-
eters of length n, X is a (n × k) known matrix of
full rank, β is a (p × 1) vector of regression coeffi-
cients, e is a (n × 1) vector of random errors and
D is the rainfall duration. The regression coef-
ficients (β1 and β2) were determined by using
the generalised least-squares method (Madsen and
Rosbjerg 1997; Madsen et al. 2002; Haddad et al.
2010). The generalised least-squares method is
able to consider the sampling variability explicitly
and give an accurate estimation of the parameter
sampling variances and parameter estimators. The
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Figure 4. Histograms of annual maximum rainfall series
(D = 24 h) fitted to the GEV distribution at eight randomly
selected stations.
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Table 4. Estimated GEV parameters for D = 24, 48, 72, 96, and 120 h at eight randomly selected stations. Their corre-
sponding standard deviations are given in brackets.

D (h)

Pos Blau Pos Tehoi

γ̂ μ̂ ∝̂ γ̂ μ̂ ∝̂

24 0.081 (0.057) 108.369 (3.011) 0.320 (0.018) 0.094 (0.068) 99.321 (2.817) 0.325 (0.020)

48 0.098 (0.060) 123.550 (3.274) 0.312 (0.018) 0.042 (0.046) 116.300 (2.710) 0.290 (0.023)

72 0.172 (0.104) 131.640 (3.701) 0.314 (0.020) −0.003 (0.049) 127.008 (3.226) 0.310 (0.019)

96 0.186 (1.255) 135.740 (3.261) 0.325 (0.019) −0.028 (0.059) 130.006 (3.724) 0.340 (0.018)

120 0.143 (0.072) 132.857 (4.060) 0.380 (0.028) −0.044 (0.060) 125.222 (4.126) 0.385 (0.021)

D (h)

Pusat Pertanian Bachok Kuala Krai

γ̂ μ̂ ∝̂ γ̂ μ̂ ∝̂

24 0.174 (0.06) 182.750 (5.875) 0.389 (0.023) 0.233 (0.078) 134.390 (4.340) 0.348 (0.028)

48 0.152 (0.059) 215.851 (6.506) 0.372 (0.022) 0.165 (0.071) 166.216 (5.315) 0.349 (0.027)

72 0.109 (0.046) 237.338 (7.003) 0.364 (0.021) 0.165 (0.065) 186.402 (6.116) 0.356 (0.026)

96 0.067 (0.048) 251.735 (7.761) 0.390 (0.024) 0.113 (0.068) 203.179 (6.679) 0.350 (0.023)

120 0.029 (0.047) 263.998 (8.565) 0.412 (0.025) 0.055 (0.071) 213.516 (7.598) 0.386 (0.029)

D (h)

Pusat Pertanian Lundang Mardi Kubang Keranji

γ̂ μ̂ ∝̂ γ̂ μ̂ ∝̂

24 0.161 (0.059) 178.908 (5.329) 0.371 (0.023) 0.112 (0.064) 194.166 (7.449) 0.412 (0.022)

48 0.076 (0.057) 214.702 (6.906) 0.396 (0.022) 0.094 (0.066) 239.076 (8.172) 0.386 (0.024)

72 0.061 (0.056) 242.296 (7.492) 0.389 (0.021) 0.052 (0.054) 270.115 (8.775) 0.373 (0.025)

96 −0.001 (0.049) 262.682 (8.161) 0.397 (0.023) −0.012 (0.055) 290.522 (10.878) 0.415 (0.023)

120 −0.022 (0.052) 274.365 (9.277) 0.425 (0.025) −0.030 (0.058) 314.369 (12.237) 0.438 (0.028)

D (h)

Pos Bihai RPS Kuala Betis

γ̂ μ̂ ∝̂ γ̂ μ̂ ∝̂

24 −0.075 (0.063) 100.220 (3.567) 0.425 (0.025) 0.119 (0.052) 107.422 (2.863) 0.335 (0.021)

48 −0.066 (0.067) 118.227 (3.972) 0.407 (0.025) 0.115 (0.057) 126.338 (3.140) 0.315 (0.020)

72 −0.089 (0.074) 132.460 (4.576) 0.418 (0.026) 0.099 (0.061) 139.931 (3.462) 0.313 (0.019)

96 −0.136 (0.055) 143.379 (5.136) 0.423 (0.024) 0.047 (0.063) 151.545 (3.929) 0.328 (0.019)

120 −0.114 (0.054) 151.243 (5.196) 0.410 (0.023) −0.012 (0.054) 156.039 (4.240) 0.345 (0.020)

generalised least-squares estimate of the parameter
vector is given as

β̂gls =
(
XTC−1X

)−1
XTC−1λ, (20)

where C is the covariance matrix of λ. The gener-
alised least-squares method was applied to the 104

bootstrap samples to obtain the regression coeffi-
cients and subsequently establish the relationship
between the GEV parameters for various duration
periods. Subsequently, the relationship between the
GEV parameters as functions of the duration to
derive the DDF curves is defined as:

x̂ (T ) = exp
(
β̂1µ + β̂2µ ln D

)
×

⎛

⎜⎜⎝1 +
(
β̂1∝ + β̂2∝ ln D

)
{

1−
[
−ln

(
1−T 1

)](β̂1γ+β̂2γ ln D)
}

(
β̂1γ + β̂2γ ln D

)

⎞

⎠ . (21)

3.5 Uncertainty quantification of the rainfall DDF
curves

Based on the steps of modelling the rainfall DDF
relationships as shown above, the estimation of
the GEV parameters is subjected to uncertainty,
which is known as the parameter uncertainty.
The parameter uncertainty is due to the sampling
error or the inability of the GEV distribution to
describe the model inputs and parameters com-
pletely. For each duration (24, 48, 72, 96 and
120 h) of time step 1 h, there are 104 rainfall
depths derived from the 104 rainfall DDF curves
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Table 5. Estimated regression coefficients of eight randomly selected stations.

GEV parameter

Pos Blau Pos Tehoi

β̂1 σ (β̂1) β̂2 σ (β̂2) β̂1 σ (β̂1) β̂2 σ (β̂2)

ln μ 4.426 0.012 0.146 0.002 4.275 0.011 0.156 0.003

∝ 0.295 0.016 −0.001 0.004 0.100 0.021 0.055 0.004

γ 0.113 0.062 −0.053 0.013 0.380 0.047 −0.088 0.011

GEV parameter

Pusat Pertanian Bachok Kuala Krai

β̂1 σ (β̂1) β̂2 σ (β̂2) β̂1 σ (β̂1) β̂2 σ (β̂2)

ln μ 4.548 0.037 0.214 0.010 3.953 0.021 0.298 0.003

∝ 0.126 0.054 0.063 0.013 0.328 0.023 0.007 0.004

γ 0.726 0.094 −0.150 0.021 0.386 0.097 −0.059 0.019

GEV parameter

Pusat Pertanian Lundang Mardi Kubang Keranji

β̂1 σ (β̂1) β̂2 σ (β̂2) β̂1 σ (β̂1) β̂2 σ (β̂2)

ln μ 4.349 0.019 0.268 0.004 4.315 0.022 0.299 0.003

∝ 0.254 0.025 0.035 0.005 0.351 0.026 0.012 0.006

γ 0.570 0.087 −0.127 0.017 0.419 0.084 −0.090 0.018

GEV parameter

Pos Bihai RPS Kuala Betis

β̂1 σ (β̂1) β̂2 σ (β̂2) β̂1 σ (β̂1) β̂2 σ (β̂2)

ln μ 3.731 0.026 0.258 0.004 3.811 0.020 0.245 0.002

∝ 0.449 0.020 −0.009 0.003 0.413 0.022 −0.018 0.003

γ −0.035 0.072 −0.016 0.016 0.160 0.039 −0.029 0.010

and ranked in increasing order. The 95% confidence
interval was used as an indicator to quantify the
uncertainty of the estimation. The 95% confidence
interval was denoted as the 2.5th (lower bound)
and 97.5th percentiles (upper bound) of the boot-
strap estimates. Therefore, the 250th and 9750th
values were obtained from the ranked rainfall
depths and plotted to estimate the 95% confidence
interval for the rainfall depth quantile estima-
tion.

Next, the distribution of the bootstrapped
rainfall quantiles was represented by a normal
distribution, which consists of two parameters,
namely, mean and standard deviation. The stan-
dard deviation was generated from the 104 boot-
strap samples and modelled as a function of
the duration and the return period. The fitting
procedure involved five durations (D = 24, 48,
72, 96 and 120 h) and six return periods (T =
2, 5, 10, 20, 50 and 100 yr). The ordinary least-
squares method was adopted to estimate the regres-
sion coefficients. Finally, the lower bounds and
upper bounds of the confidence intervals were fit-
ted to the normal distribution and plotted on the
DDF curves to describe the uncertainty of the DDF
curves.

4. Results and discussions

4.1 Analysis of the synthetic rainfall series

The ability of the stochastic rainfall model to
represent the mean, frequency distribution and
standard deviation of rainfall was evaluated by
using the Mann–Whitney, Kolmogorov–Smirnov
(K–S) and squared ranks tests. The results of the
validation tests for the station–month (17 stations
× 12 months) and station–year (17 stations × 1 yr)
combinations are presented in table 2. It appears
that most of the station–month and station–year
combinations of the rainfall occurrences and rain-
fall amounts passed all three validation tests. For
example, the monthly wet spells and dry spells
of all 204 station–month combinations passed the
Mann–Whitney tests. This indicated that the first-
order Markov model and the log-normal distribu-
tion can reproduce the important properties of the
rainfall occurrences and rainfall amounts, respec-
tively. Therefore, the synthetic rainfall series were
well validated and reliable to be used for further
analysis.

Next, the results of the stationarity of the
annual maximum rainfall series are presented in
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table 3. It can be observed that the computed
P -values of all rainfall stations were lower than the
significance level of 5%. This implied that there
were no unit roots for the annual maximum rainfall
series and the alternative hypothesis that stated
that the time series are stationary was accepted.
Figure 3 further shows that the annual maxi-
mum rainfall series fitted with its temporal trend.
For simplicity and without the loss of generality,
the results are presented for the eight randomly
selected rainfall stations out of the total 17 rainfall
stations. It is apparent from figure 3 that the series
appears to be constant over time. This indicated
that the trend of the annual maximum rainfall
series with time was not statistically significant,
and thus, the stationarity assumption was valid.

4.2 Goodness-of-fit and parameters of the GEV
distribution

GEV distribution has been applied in the fre-
quency analysis of the annual maximum rainfall
series where the main concern is to model the
behaviour of the upper tail. The histograms of the
GEV distribution fit were constructed to inspect
the predictive ability of the distribution. The den-
sity values were plotted as the y-axis values. The
density value D is defined as:

D =
fr

n∗w
, (22)

where fr is the frequency of each interval, n is
the total number of samples and w is the width
of each interval. Figure 4 shows the excellent fit
of the GEV distribution as the histograms of the
annual maximum rainfall series were a good match
with the probability density function of the fitted
GEV model. This confirmed that the selection of
the GEV distribution for the frequency analysis of
this study area is a practically good choice. GEV
distribution has the additional shape parameter
other than the scale and location parameters for a
better description of the upper tail of the extreme
rainfall series. The results are consistent with those
of Zalina et al. (2002) and Win and Win (2014)
who found that GEV distribution gave good per-
formance in fitting the maximum rainfall series in
several areas of Malaysia.

The estimated GEV parameters (γ̂, μ̂, ∝̂) and
their corresponding standard deviations are pre-
sented in table 4. The values of the standard
deviation reflect the presence of possible uncer-
tainty arising from sampling variability. It was
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Figure 5. Parameter µ plotted against duration D at the
eight randomly selected stations.

shown that the values of parameter μ̂ increased
with the event durations. This is in good agree-
ment with the findings of Overeem et al. (2008)
and Mirzaei et al. (2013). For the parameters γ̂
and ∝̂, they were unlikely to decrease with decreas-
ing duration. The mean and standard deviation
of the estimated regression coefficients were calcu-
lated and are presented in table 5. It was shown
that there were systematic variations of the GEV
parameters with the durations as the estimates of
two slopes (β1 and β2) were not zero. This is further
displayed in figure 5 that the parameter µ increased
with the durations.

4.3 Uncertainty features of DDF curves

The DDF curves relate the rainfall depth, duration
and frequency to generate the rainfall frequency at
any intermediate duration and return period. The
resulting DDF curves are presented in figure 6 for
the eight randomly selected stations. It was shown
that the rainfall depths increase with the durations
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Figure 6. Rainfall DDF curves (solid lines) and 95% confidence intervals (dashed lines) for the return periods of 2, 5, 10,
20, 50, and 100 yr at eight randomly selected stations.
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Figure 7. Rainfall DDF curves (solid lines) and the normal probability density functions (dashed lines) which describe the
bootstrap distribution at D = 48 and 96 h.
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of all return periods. For example, as shown in the
Pos Blau station, for a duration of 24–120 h within
a 100-yr return period, the rainfall depths showed
an increase from 295 to 443 mm.

From the confidence bounds of the DDF curves,
it was apparent that with the increasing return
periods, the lower bounds and upper bounds of
the 95% confidence interval were getting larger. For
instance, as shown at the Pos Blau station, the 95%
confidence interval of the rainfall depth quantiles
for a duration of 24 h varies from 119 to 125 mm
for a return period of 2 yr to 280 to 312 mm for a
return period of 100 yr. The uncertainty increased
with the increase of the return period, implying
significant uncertainty present in the extreme rain-
fall quantiles of the DDF curves. Also, the level
of uncertainty at each station is different as there
are different topography and characteristics at each
particular location.

As shown in figure 7, the normal probability den-
sity functions of the DDF curves were plotted at
T = 5 and 20 yr to describe the uncertainty of
the DDF curves. The results indicated that the
uncertainty regarding the parameter estimation in
the DDF curves owing to the sampling error can
be considerable, especially for long return periods.
These uncertainty ranges need to be addressed in
any hydrological analysis and may have an adverse
impact on the design of the hydraulic structures
and decision-making for extreme hydrologic events
if they are not seriously taken into consideration.

5. Conclusions

The quantification of uncertainty in DDF curves is
crucial to investigate the implication of uncertainty
on the performance reliability of the hydrologic risk
analysis and design. This is especially important for
a country like Malaysia where floods are considered
the most devastating natural disaster. Thus, the
DDF curves with quantified uncertainty bounds
would help in the estimation of reliable rainfall
DDF relationships and quantify the uncertainty
associated with the flood risk assessment tasks.

This study presents the bootstrap procedure to
evaluate the uncertainty features of DDF curves
in the Kelantan river basin. The annual maximum
rainfall series of durations between 24 and 120 h
were derived from the stochastic rainfall model
outputs. The bootstrap samples were fitted to the
GEV distribution and the relevant parameters were
determined through the L-moments approach. The

GEV parameters were modelled as a function of
duration and these relations were used to establish
the rainfall DDF curves. Finally, the uncertainty
in DDF curves due to sampling variability is quan-
tified in terms of 95% confidence intervals based
on bootstrap resampling and the bootstrap distri-
bution was represented by a normal distribution.
The computation results showed that with the
increase of the return period, the lower and upper
bounds of the 95% confidence intervals were getting
larger, which indicated that the uncertainty of the
DDF curves was increasing. It was also shown that
there was a significant uncertainty in the extreme
rainfall quantile estimation due to the sampling
of data. This implies that neglecting the uncer-
tainty can result in great risks associated with the
hydrological modelling and subsequent design deci-
sions.

In summary, the proposed bootstrap procedure
is effective, easy to implement and able to quantify
the uncertainty in a statistic. It can be applied for
other rainfall frequency analysis to derive the rain-
fall DDF relationships but the concluding remarks
may not be applicable because the results may
vary among different model structures. It should be
noted that this study only considers the parame-
ter uncertainty, which may not completely describe
the uncertainty in a modelling process. In a thor-
ough uncertainty analysis, a comprehensive assess-
ment of various sources of uncertainty should be
performed. Therefore, further investigations are
needed to study other sources of uncertainty, such
as the data uncertainty that includes measure-
ment errors, the operational uncertainty caused by
human factors that often are being neglected in a
modelling procedure and the natural uncertainty
due to the intrinsic randomness of the natural pro-
cess.
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