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The blocking phenomenon is one of the most enduring issues in the study of learning. 

Numerous explanations have been proposed, which fall into two main categories. An 

associative analysis states that, following A+/AX+ training, cue A prevents an associative 

link from forming between X and the outcome. In contrast, an inferential explanation is that 

A+/AX+ training does not permit an inference that X causes the outcome. More specifically, 

the trials on which X is presented (AX+) are often argued to be uninformative with respect to 

the causal status of X because the outcome would have resulted on AX trials whether X was 

causal or not. If participants are uncertain about X, their ratings on test might be particularly 

sensitive to the overall base rate of the outcome. That is, a blocked cue, about which one is 

uncertain, should be rated as a more likely cause when most cues lead to the outcome than 

when most cues do not. This hypothesis was supported in two experiments. Experiment 1 

used an overshadowing control and Experiment 2 used an uncorrelated control (to 

demonstrate a redundancy effect). Variations in the ratings of the blocked cue as a result of 

manipulating the outcome base rate can be explained if participants are uncertain about the 

status of the blocked cue. Experiment 3 showed that participants are uncertain about blocked 

cues by using a direct self-report measure of certainty. These data are consistent with the 

inferential account, but are more challenging for the associative analysis.   
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Introduction 

In many causal learning experiments, participants are presented with multiple 

potential causes of an outcome. The job of the participant is to work out which events are 

most likely to cause the outcome to occur. For example, in the allergist task participants 

assume the role of a doctor and are shown a series of meals eaten by a fictional patient. Each 

meal consists of one or more foods, followed on some occasions by an allergic reaction, with 

participants required to decide which foods cause this reaction. Aitken, Larkin, and 

Dickinson (2001) used this paradigm to demonstrate cue competition; that is, they found that 

learning about a given food was dependent to some extent on the status of the other foods that 

were present in the same meal. More specifically, Aitken et al. demonstrated blocking. In 

their experiments, a single food A was paired with the allergic reaction (A+, where the + 

denotes the presence of the reaction). On subsequent trials, a compound of A and another 

food, X, was also paired with the allergic reaction (AX+). Participants were then asked to rate 

the likelihood of the allergic reaction following consumption of each individual food. Ratings 

for X were lower here than in a control condition in which A had not been paired separately 

with the outcome. Informally, we say that A ‘blocked’ X.  

This resembles the blocking effect observed in non-human animals (e.g. Kamin, 

1969) and is consistent with the model of learning proposed by Rescorla and Wagner (1972). 

In this model cues compete to become associated with the outcome because the prediction 

error that governs learning takes into account all cues that are present. Following A+ training, 

the outcome is predicted by A and is therefore less able to support learning about X on AX+ 

trials. However, while this model can readily explain blocking, it is less successful at 

explaining the fact that blocking is often far from complete, particularly in human learning 

experiments (Lovibond, Been, Mitchell, Bouton, & Frohardt, 2003). In its simplest form, 
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Rescorla and Wagner’s model predicts not just that learning about X will be restricted to 

some extent, but that X will be virtually unable to become associated with the outcome as a 

result of learning about A.  

 One way of solving this problem is to assume that each cue shares a common element 

that becomes associated with the outcome in the same way as any other feature. This 

approach has been used to reconcile Rescorla and Wagner’s (1972) model with other findings 

that, at first glance, do not seem to be compatible with it (e.g. Haselgrove, 2010). In the case 

of blocking, this assumption allows the model to predict a substantial amount of associative 

strength for the blocked cue. This is because the common element competes with the 

distinctive features of A on A+ trials, and becomes associated with the outcome as a result. 

Since the common element is also present when X is tested alone, the association between the 

common element and the outcome supports an expectation that the outcome will occur.  

This explanation relies on the assumption that blocking occurs because the blocked 

cue has only a weak association with the outcome. Low probability ratings on test are a 

reflection of the weakness of this link.  But does reduced learning necessarily imply a weak 

association? A quite different interpretation has been suggested by Cheng and her colleagues 

(Cheng, 1997; Cheng & Holyoak, 1995; Waldmann & Holyoak, 1992). She proposed that, 

rather than restricting the extent to which the blocked cue X becomes associated with the 

outcome, the blocking cue A prevents participants from making a valid inference about the 

causal status of X. Their argument is that, since participants only encounter cue X during 

AX+ trials, and since A caused the allergic reaction by itself on A+ trials, there are two 

possibilities with respect to the causal status of X. Firstly, the reaction that occurred on AX+ 

trials may have been due solely to A and not to X. Secondly, both A and X might be causes 

of the outcome. The potential effect of X alone is therefore unknown; participants do not 
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have enough information about this cue to conclude that the allergic reaction will occur. This 

theory also accounts for the incomplete nature of blocking, since participants also lack 

evidence that X is not a cause of the allergic reaction, and should therefore give intermediate 

probability ratings for X during test.   

The above logic, in which the causal status of X is ambiguous, applies well to the 

usual causal scenario in which the allergic reaction either occurs or does not occur on each 

trial. However, under other conditions, it is possible for a valid inference to be drawn about 

cue X following A+ and AX+ training. Lovibond et al. (2003; see also De Houwer, Beckers 

& Glautier, 2002) achieved this by allowing allergic reactions of different strengths to occur. 

As well as the standard allergic reaction, the fictional patient sometimes suffered from a 

severe reaction (denoted “++”). For one group of participants, an initial phase of training 

demonstrated that this severe reaction followed the consumption of two foods (IJ++) that 

individually caused the normal allergic reaction (I+ & J+). This rule can be termed additivity, 

because the magnitude of the reactions to individual foods I and J ‘added together’ when they 

were consumed in the same meal to produce a strong allergic reaction. If participants 

extracted this rule and applied it to subsequent A+/AX+ training, ambiguity about the causal 

status of X should have been reduced. This is because if both A and X were causes of the 

normal allergic reaction, their joint consumption should have resulted in the severe allergic 

reaction (AX++), which it did not. Cue X could not therefore have been a cause of allergic 

reaction by itself. Lovibond et al. demonstrated that probability ratings for X were indeed 

lower (and the blocking effect was larger) for participants who had received additivity 

training, when compared to a group of participants for whom allergic reactions were non-

additive.  
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To return to the standard blocking effect in the absence of additivity training, if the 

status of X is ambiguous, then participants are required to guess the status of X based on 

whatever evidence is available. One line of evidence that might be relevant is the extent to 

which, in general, cues are followed by the outcome – the base rate of the outcome. In the 

usual causal learning scenario, participants might ask themselves, “To what extent do other 

foods usually produce an allergic reaction in this patient?” If the base rate of the outcome is 

high (the patient is allergic to most foods), then an ambiguous cue about which one has no 

information (the blocked cue X) is more likely to be followed by the outcome than when the 

base rate is low. If this is true, changing the overall base rate of the outcome should change 

the ratings given for the blocked cue, and in turn the size of the blocking effect. Some support 

for the idea that base rates influence predictions when cues are uncertain, albeit from a 

somewhat different paradigm, comes from Kahneman and Tversky (1973). They asked 

participants to predict whether a fictional person was an engineer or a lawyer, either when 

there were more engineers than lawyers in the population, or when lawyers were more 

prevalent. Some of the participants were also given a short vignette that was designed to be 

representative of either engineers or lawyers. Kahneman and Tversky found that when 

participants were given a vignette, judgments of the probability that the fictional person was 

an engineer or a lawyer were not affected by the base rates. However, when they were not 

given a vignette, and hence had no information to use other than the base rates, probability 

judgments followed the base rates closely. It follows that this effect might be observed for 

blocked cues, about which no other information is available. 

The notion that the base rate of the outcome might be related to the size of the 

blocking effect has already been suggested by Livesey, Lee, and Shone (2013). They pointed 

out that, while the base rate of the outcome should affect ratings for a blocked cue X, this 

effect should be smaller for the standard “overshadowing” control cue (e.g. Y from the 
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trained compound BY+). This is because, while participants will be uncertain about which of 

the overshadowing cues B and Y cause the outcome, they know that at least one of these cues 

must be a cause. It follows that, even when the base rate for the outcome is low, the average 

probability of B or Y causing the outcome cannot be lower than 0.5. At low base rates, 

blocking will be substantial because ratings for the blocked cue will be very low, whereas 

high outcome rates will result in high ratings for both blocked and overshadowing control 

cues and consequently less blocking. However, this prediction assumes that participants will 

use conditional probabilities to infer the likelihood of the outcome occurring for each cue, 

which (as Livesey et al. found) they may not do.  

Although the inferential account summarised above predicts an effect of base rate on 

the size of blocking, a modified version of Rescorla and Wagner’s (1972) model that 

incorporates a common element can also explain the effect in the following way. When the 

base rate of the outcome is high, the common element will have many opportunities to 

become associated with the outcome and will acquire a large amount of associative strength. 

Since the common element will compete with the distinctive features of each cue, those 

distinctive features will acquire a small amount of associative strength and the differences 

between cues will be correspondingly small. Conversely, when the base rate of the outcome 

is low, the common element will gain less associative strength and the distinctive features 

will gain more, allowing for larger differences between cues. As a consequence, the blocking 

effect (the difference in probability ratings between the control and blocked cues) should be 

smaller when the base rate is high than when it is low.  

Given that both inferential and associative accounts predict less blocking when the 

base rate is high than when it is low, we were somewhat surprised that we could not find a 

published demonstration of this effect. Experiment 1 in the current paper tested this 
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prediction by training participants on a version of the allergist task containing blocking and 

control cues. Additional trials were added with alternative cues in order to manipulate the 

base rate of the outcome. It was predicted that reducing the outcome rate would result in a 

larger blocking effect. More specifically, low base rate will reduce probability ratings more 

for the blocked cue X than for the overshadowing controls B and Y. 

Experiment 1  

We used a typical allergist task in which participants were required to learn which 

foods caused an allergic reaction in a fictitious patient.  The design of the experiment is 

shown in Table 1. Two groups of participants were given blocking training comprising A+ 

and AX+ trials. In addition, the BY+ trials served as an overshadowing control. The 

remaining ‘filler’ trials were included so that the overall proportion of trials on which the 

outcome occurred could differ between the two groups. For participants in the 75% group, 

stomach ache occurred for six of the nine ‘filler’ trial types. As a result, stomach ache 

occurred on 9 trials out of 12, or 75% of all trials. For participants in the 25% group, no trials 

other than A+, AX+, and BY+ included the stomach ache outcome. As a result, stomach ache 

occurred on only 3 of the 12 types of trials, or 25%. For both groups, ‘filler’ trials included 

both single foods and two-item compounds. Participants were therefore unable to learn a 

response rule based on the number of items present. Following this training stage, 

participants were asked to rate the likelihood of stomach ache for A, B, C, X, Y & Z. If 

participants base their ratings of the blocked cue on the overall outcome rate, then 

participants in the 75% group should give higher ratings for X than participants in the 25% 

group. Following the arguments summarised in the Introduction, we predicted that any effect 

of outcome rate on ratings for the overshadowing controls B and Y should be smaller. 
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Consequently, a more substantial blocking effect was predicted for the 25% group than for 

the 75% group. 

Method 

Participants. Forty Psychology undergraduate students (20 per group) at Plymouth University 

took part in this experiment. They were aged 18-53 (M = 22.28, SD = 6.71) and ten were 

male. They received course credit for their participation.  

Materials. Participants were tested individually in cubicles at Plymouth University. The 

experiment was presented on a 22-inch desktop computer with a 1280 x 1024 screen 

resolution. The experiment was designed, presented, and responses recorded, using E-prime 

2.0 software (Psychology Software Tools, PA, US). Pictures of 19 foods served as cues in the 

experiment: apple, banana, broccoli, cabbage, cherries, corn, grapefruit, grapes, kiwi, mango, 

orange, peach, pear, pepper, pineapple, pomegranate, pumpkin, strawberries, and 

watermelon. Each food was presented against a white square, measuring 300 x 300 pixels. 

The foods were randomly assigned to each type of cue (A, B, C, D, E, F, G, H, I, J, K, L, M, 

N, O, P, X, Y, Z) for each participant. The outcomes were stomach ache, signified by text and 

a sad face on a red background, and no stomach ache, indicated by text and a happy face on a 

green background. Cues and outcomes were presented on a black background with white text. 

Participants responded using the mouse.  

Procedure. The instructions for the learning task were adapted from Uengoer, Lotz and 

Pearce’s (2013) causal learning task, and were presented on the screen as follows:  

This study is concerned with the question of how people learn about relationships between 

different events. In the present case, you should learn whether the consumption of certain 

foods leads to stomach ache or not.  
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Imagine that you are a medical doctor. One of your patients often suffers from stomach ache 

after meals. To discover the foods the patient reacts to, your patient eats specific foods and 

observes whether stomach ache occurs or not.  

The results of these tests are shown to you on the screen one after the other. You will always 

be told what your patient has eaten. Sometimes he has only consumed a single kind of food, 

and other times he has consumed two different foods. Please look at the foods carefully.  

Thereafter you will be asked to predict whether the patient suffers from stomach ache. For 

this prediction, please click on the appropriate response button. After you have made your 

prediction, you will be informed whether your patient actually suffered from stomach ache.  

Use this feedback to find out what causes the stomach ache your patient is suffering from. 

Obviously at first you will have to guess because you do not know anything about your 

patient, but eventually you will learn which foods lead to stomach ache in this patient and 

you will be able to make correct predictions.  

For all of your answers, accuracy rather than speed is essential. Please do not take any notes 

during the experiment.  

If you have any questions, please ask them now. If you do not have any questions, please start 

the experiment by clicking the mouse.  

The training phase consisted of 24 blocks of trials. Each of the 12 trial types was 

presented once per block in a random order. The order of trials within each block was 

random, except for the constraint that the first trial of a block could not be of the same type as 

the last trial of the preceding block. Each trial started with the presentation of either one or 

two images of foods at the top half of the screen, below the phrase “The patient ate the 

following food(s)”. For trials with two images, one was located on the left and one on the 
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right. The left-right allocation of positions for pairs of images was balanced, with each of the 

two possible arrangements occurring once in each sequential pair of blocks. The sentence 

“Which reaction do you expect?” was presented below the images. Participants responded by 

clicking one of two response buttons placed at the bottom of the screen. The left-hand button 

was labelled “No stomach ache”, and the right-hand button was labelled “Stomach ache”. As 

soon as the participant responded, the response buttons and the sentence above them were 

replaced by a statement and picture showing the outcome of the trial, while the images of the 

cues and the sentence “The patient ate the following food(s):”, remained. When the outcome 

was stomach ache, the statement was “The patient has stomach ache” and the picture of the 

sad face was shown. When the outcome was no stomach ache, the statement was “The patient 

has no stomach ache”, and the picture of the happy face was shown. This feedback display 

remained on the screen for 3000 ms, followed by a 500-ms blank screen after which the next 

trial began. After 12 blocks of trials, participants were given the option to have a short break.  

At test, participants were asked to provide outcome probability ratings for the cues of 

interest (A, B, X, Y) as well as two cues presented in compound but with no outcome (C, 

Z).They were given the following instructions:  

Now, your task is to judge the probability with which specific foods cause stomach ache in 

your patient. For this purpose, single foods will be shown to you on the screen.  

In this part, you will receive no feedback about the actual reaction of the patient. Use all the 

information that you have collected up to this time.  

The test stage then began. On each trial, the sentence “What is the probability that the 

food causes stomach ache?” was shown above a single food image. Participants responded by 

clicking on an 11-point rating scale ranging from 0 (Certainly not) to 10 (Very certain). The 

rating scale was located in the lower half of the screen, oriented horizontally. Each cue was 
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presented twice in a random order, except for the constraint that no cue could be presented 

twice in succession. For each participant, average probability ratings were calculated for the 

two presentations of each cue. 

For all experiments reported here, training data were divided into a series of 

successive epochs, with each epoch containing two trials of each type. For all figures and 

analyses, data were collapsed for equivalent trials (e.g. test trials with C and Z in Experiment 

1) by calculating the participant-level mean. Estimates of effect size for each Analysis of 

Variance (ANOVA) are given as partial eta squared, estimates of effect size for paired t-tests 

are given as Cohen’s dav, and estimates of effect size for between-subjects t-tests are given as 

Cohen’s ds (as recommended by Lakens, 2013). Bayesian t-tests were used to evaluate the 

strength of support for the null hypothesis where appropriate, using a Cauchy prior with a 

width of .707. The resulting Bayes factors (B01) indicate the level of support for the null and 

alternative hypotheses. Values higher than 3 can be regarded as support for the null 

hypothesis, whereas values lower than 1/3 can be regarded as support for the alternative 

hypothesis. 

Results 

Figure 1 shows the proportion of trials on which participants predicted stomach ache. 

Training proceeded smoothly, with participants in the 75% group predicting the correct 

outcome on 98% of trials during the final epoch, and participants in the 25% group achieving 

99% accuracy. To ensure that there were no differences between the groups that might have 

carried over to the test phase, we conducted a two-way Trial Type x Group ANOVA using 

ratings from the final epoch for A+, AX+, BY+, and CZ-. This revealed a significant effect of 

trial type, F(3, 114) = 674.97, p < .001, η2
p = .95, no effect of group, F(1, 38) = 3.04, p 

= .089, η2
p = .07, and no interaction between these variables, F < 1.  
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Ratings from the test stage are shown in Figure 2. Participants in the 75% group 

appear to have rated X as a more likely cause of stomach ache than participants in the 25% 

group, but ratings for other cues were similar in the two groups. A two-way ANOVA 

comparing ratings for all four cue types in the two groups demonstrated a significant effect of 

cue type, F(3, 114) = 226.77, p < .001, η2
p = .87, no effect of group, F(1, 38) = 1.40, p < .245, 

η2
p = .04, and a significant interaction, F(3, 114) = 3.08, p = .030, η2

p = .08. To compare 

ratings for the blocked and control cues, a separate two-way ANOVA was conducted using 

only the ratings for B/Y and X in the two groups. This revealed a significant effect of cue 

type, F(1, 38) = 10.23, p = .003, η2
p = .21, no effect of group, F(1, 38) = 2.35, p = .134, η2

p 

= .06, and a significant interaction between cue type and group, F(1, 38) = 4.25, p = .046, η2
p 

= .10. Ratings for X were higher for the 75% group than for the 25% group, t(38) = 2.09, p 

= .044, ds = .66, but ratings for B/Y were equivalent in the two groups, t < 1, B01 = 3.21. 

Ratings for B/Y were higher than for X in the 25% group, t(19) = 3.18, p = .005, dav = .90, 

demonstrating blocking. There was no significant difference in the ratings for B/Y and X for 

the 75% group, t(19) = 1.01, p = .324, ds = .21, although a Bayesian t-test suggested that the 

evidence in favour of the null result was insufficient, B01 = 2.74.  

Discussion 

The results demonstrate that ratings of the blocked cue, X, are dependent on the 

overall outcome base rate, in accordance with our predictions. This is consistent with an 

inferential account, according to which the causal status of the blocked cue is ambiguous, and 

so participants are forced to seek additional evidence when asked to make a probability rating 

of this cue on test. One source of additional evidence is the extent to which, in general, foods 

cause an allergic reaction in this patient – the outcome base rate. Therefore, in the absence of 

any other information, participants tend to assume (at least to some extent) that the blocked 

cue X is like other cues; it is more likely to be causal when most other foods are causal (the 
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75% group) than it is when most other foods are safe (the 25% group). At first glance it might 

appear puzzling that the outcome base rate had no impact on the overshadowing control cues, 

B and Y. Participants could not be certain of the outcome of B or Y alone, so it seems 

reasonable to suppose that the chance of both of these cues causing an allergic reaction 

should have been higher if the patient was allergic to most foods (the 75% group) than if 

most foods were safe (the 25% group). However, as Livesey et al. (2013) point out, 

participants’ estimates of the probability of the outcome for B and Y should have been 

affected by the outcome rate to a lesser extent than for X. This is because the causal status of 

X is completely unknown, whereas participants know that at least one of the overshadowing 

cues B and Y must be causal. This restricts the range of possibilities, at least somewhat, for 

the overshadowing cues. Perhaps the procedure used here was sensitive enough to detect the 

effect of outcome base rate on the blocked cue X, but not the (presumably smaller) effect on 

the overshadowing controls B and Y. 

 Our results are also consistent with Rescorla and Wagner’s (1972) model, provided 

we assume that there is a stimulus element that is common to every cue. As with the 

inferential account, this associative account predicts an effect of the base rate on B and Y, as 

well as on X. Although we did not see this effect, Rescorla and Wagner’s model can be 

reconciled with our data in a similar way to the inferential account, i.e. by assuming that any 

between-groups difference for B and Y was not evident in the observed probability ratings 

because it was smaller than the difference for X. 

Another phenomenon in which a blocked cue plays an important role is the 

“redundancy effect”, recently described by Pearce and colleagues (Jones & Pearce, 2015; 

Pearce, Dopson, Haselgrove, & Esber, 2012; Uengoer, Lotz, & Pearce, 2013). In the 

redundancy effect, a blocked cue (A+/AX+) is compared not to an overshadowing control, 
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but to an uncorrelated cue Y, where training is given with two compounds BY+/CY-. Like X, 

cue Y is informationally redundant because it provides no information about the occurrence 

of the outcome that is not provided by its companion cues. However, when participants are 

subsequently asked to give outcome probability ratings for individual cues, they give higher 

ratings for X than for Y. This effect is often viewed as contrary to Rescorla and Wagner’s 

(1972) model. However, as Vogel and Wagner (2017) have pointed out, the addition of a 

common element allows Rescorla and Wagner’s model to predict the redundancy effect. To 

understand this idea, it is perhaps instructive to start by considering why, in the absence of 

the common element, the redundancy effect is not compatible with their model. The simplest 

version of the model predicts that X will gain little associative strength because it is blocked 

by A. In contrast, Y is predicted to become associated with the outcome on BY+ trials (cue B 

is not trained alone, unlike cue A). The associative strength gained by cue Y on BY+ trials 

will result in a negative prediction error on CY- trials. As a consequence, C should become 

an inhibitor for the outcome and will protect Y from undergoing complete extinction. The 

model therefore predicts that Y will maintain some association with the outcome, and will be 

judged as a more likely cause of the outcome than X, which is the opposite result to that 

observed. Vogel and Wagner provided simulations that show that the addition of a common 

element to each trial type results in a reversal of the associative strengths of X and Y (X 

comes to be rated as higher than Y on test – as observed). This happens for the same reason 

that this modification predicts weaker blocking; the common element gains associative 

strength on A+ trials that subsequently mediates a higher expectation of the outcome for X 

alone.  

Similarly, according to the inferential account the lack of information about the causal 

status of X provides a possible explanation for the redundancy effect. If participants do not 

know whether the patient will suffer an allergic reaction following consumption of X, then a 
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common sense approach suggests that they should rate X as a more likely cause of the 

reaction than Y, because Y was presented in the absence of any outcome on CY- trials. 

Additionally, in past demonstrations of the redundancy effect, participants may have reason 

to suppose that the blocked cue is causal. In Uengoer et al.’s (2013) experiments, for 

example, most training trials ended with the allergic reaction (71% of trials in Experiment 1, 

75% in Experiment 2, and 67% in Experiment 3). This is similar to the outcome base rate in 

the 75% group in Experiment 1 and would, therefore, be expected to promote high 

probability ratings of cue X on test. It follows that lowering the base rate of the outcome 

should reduce the size of the redundancy effect, although it seems likely that the redundancy 

effect would persist due to ongoing uncertainty about the status of X. 

It is noteworthy that Vogel and Wagner (2017) also provided simulations 

demonstrating a profound effect of changing the outcome base rate on the redundancy effect. 

They showed that decreasing the base rate should reverse the effect, as probability ratings for 

X fall below those for Y. Hence, we should expect to see higher probability ratings for X than 

for Y when the outcome base rate is high, but lower ratings for X than for Y when the base 

rate is low. This is in contrast to the inferential account, which predicts an effect of the 

outcome base rate on ratings for X, but a redundancy effect in either case. Experiment 2 was 

designed to test these predictions.  

Experiment 2 

The purpose of Experiment 2 was twofold. Firstly, we aimed to confirm that varying 

the overall outcome base rate will affect ratings for a blocked cue, as seen in Experiment 1. 

Secondly, we sought to determine whether uncertainty about the blocked cue might, at least 

in part, be responsible for the redundancy effect. The design of the experiment is shown in 

the bottom half of Table 1. As in Experiment 1, a between-subjects design was used in which 
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two groups of participants received a single stage of training. For both groups, 12 types of 

trial were intermixed during the training stage. Four of these trial types were A+, AX+, BY+, 

and CY-. Cue X served as a blocked cue and Y served as an uncorrelated cue. The remaining 

‘filler’ trials were the same as for Experiment 1, so that participants in the 75% and 25% 

groups saw the stomach ache on 75% and 25% of trials respectively. Following this training 

stage, participants were asked to rate the likelihood of stomach ache for A, B, C, X, and Y. 

As in Experiment 1, it was predicted that ratings for X would be higher in the 75% group 

than the 25% group. If this effect is a result of a lack of any other information on which to 

base an assessment of X, then any similar effect for Y should be smaller because participants 

have evidence that Y is non-causal. The inferential account therefore predicts that the 

redundancy effect (X>Y) should be larger in the 75% group than the 25% group. The 

associative account based on Rescorla and Wagner’s (1972) model, however, makes a 

different prediction. We conducted simulations of Experiment 2, with the addition of a 

common element to all trials, using the parameters provided by Vogel and Wagner (2017). 

The results of these simulations are shown in Figure 3. They confirmed the prediction that the 

redundancy effect should be found for the 75% group, but the reverse pattern should be 

observed in the 25% group. This reversal is due to a marked effect on X of variations in the 

outcome base rate. 

Method  

Participants. Participants were 58 (7 male) Psychology undergraduate students at Plymouth 

University, aged 18-50 (M = 22.07, SD = 7), who received course credit for participation. There 

were 29 participants in each group. 

Materials. The materials and procedure were the same as Experiment 1 except with regard to 

the number and identity of the stimuli used. The stimuli were 18 images of foods. The foods 
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were: apple, banana, broccoli, cabbage, cherries, corn, grapefruit, grapes, kiwi, mango, 

orange, peach, pepper, pineapple, pomegranate, pumpkin, strawberries, and watermelon. 

They were randomly assigned to each cue (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, X, 

Y) for each participant.  

Procedure. The procedure was the same as that used in Experiment 1, apart from two changes 

to the design of the experiment. Firstly, the trial types used in the training stage were those 

shown in Table 1. Secondly, at test, participants were asked to provide probability ratings for 

cues A, B, C, X, and Y.  

Results 

Figure 4 shows the proportion of trials on which participants predicted stomach ache 

during the training stage. Training proceeded smoothly, with participants learning quickly to 

predict the occurrence of the stomach ache outcome. During the final epoch participants in 

the 75% group correctly predicted the outcome on 97% of trials, and participants in the 25% 

group correctly predicted the outcome on 98% of trials. As in Experiment 1, we wanted to 

confirm that there were no differences between the groups that might have influenced 

performance on the test. A two-way Trial Type x Group ANOVA was conducted using 

ratings from the final epoch for A+, AX+, BY+, and CY-. This revealed a significant effect 

of trial type, F(3, 168) = 599.11, p < .001, η2
p = .92; no effect of group, F <1; and no 

interaction between these variables, F(3, 168) = 1.00, p < .393, η2
p = .02. 

Figure 5 shows ratings from the test stage. Casual inspection of this figure suggests 

participants in the 75% group rated X as a more likely cause of the outcome than did 

participants in the 25% group, but that the two groups gave similar ratings for other cues. A 

two-way ANOVA comparing ratings for the two groups and for all cues revealed a 

significant effect of cue, F(4, 224) = 182.06, p < .001, η2
p = .77; no effect of group, F < 1; 
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and a significant interaction, F(4, 224) = 4.72, p = .001, η2
p = .08. To examine the ratings for 

X and Y, a separate ANOVA was conducted for just these cues. This demonstrated that 

ratings for X were higher than for Y, F(1, 56) = 73.95, p < .001, η2
p = .57, that the effect of 

group failed to reach significance, F(1, 56) = 3.77, p = .057, η2
p = .06, and that there was a 

significant Cue x Group interaction, F(1, 56) = 5.43, p = .023, η2
p = .09. Ratings for X were 

higher for the 75% group than for the 25% group, t(56) = 2.85, p = .006, ds = .75, but ratings 

for Y were equivalent in the two groups, t < 1, B01 = 3.65. Ratings for X were higher than for 

Y in both the 75% group, t(28) = 9.12, p < .001, dav = 1.84, and the 25% group, t(28) = 3.92, 

p = .001, dav = .86. Puzzlingly, participants in the 25% group rated B as a more likely cause 

of the outcome than those in the 75% group, t(56) = 2.19, p = .033, ds = .58. This effect was 

not predicted by either of the theories discussed earlier, and is in the opposite direction to any 

effect we might expect if participants used the outcome base rate to estimate the likelihood of 

the outcome. It should be noted that we have not replicated this effect and that, although 

statistically significant, it is an unexpected effect and would not survive a correction for 

multiple exploratory comparisons.  

Discussion 

The results of Experiment 2 are a good match for the predictions of the inferential 

account. Participants rated X as being a more likely cause of the outcome when the outcome 

rate was high than when the outcome rate was low. This is consistent with the idea that AX+ 

trials provided little information with respect to the causal status of X, and so participants 

were required to seek other information on which to base their ratings of this cue. The 

redundancy effect was larger in the 75% group than the 25% group, although a redundancy 

effect was still observed in the 25% group. This is the first time that the redundancy effect 

has been demonstrated when the outcome occurred on a minority of training trials. There are 

several reasons why participants in the 25% group might have persisted in rating X as a more 
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likely cause of the outcome than Y, despite the low outcome rate. One possibility is that 

participants might have inferred that there was a 25% chance of the outcome occurring for X, 

but that the probability of the outcome for Y was even lower. Alternatively, our manipulation 

might have been only partially effective because some participants did not use outcome rate 

to judge the likely status of X, perhaps because participants had some knowledge about the 

relationship between X and the outcome. For instance, participants might have remembered 

that each presentation of AX was followed by the outcome, and concluded that the likelihood 

of the outcome occurring for X was higher than the overall outcome rate. Our data do not 

allow us to decide between these possibilities, but, like the data from Experiment 1, they 

support the idea that participants were at least somewhat uncertain about the status of X, and 

therefore incorporated outcome rate in their judgments.  

 By contrast, the results of Experiment 2 are only partially consistent with the 

predictions of Rescorla and Wagner’s (1972) model. As the simulations shown in Figure 3 

demonstrate, the model only predicts a redundancy effect when the outcome base rate is high. 

When the base rate is low, probability ratings for Y should be higher than those for X. 

Additionally, the model predicts a marked effect of changing the base rate not just for X, but 

for all cues. Our data, however, show an effect of base rate for X only. This is consistent with 

the inferential account because there is presumably enough information available about other 

cues for participants to make their probability estimates without incorporating base rates.   

Experiment 3  

In Experiments 1 and 2, participants’ probability ratings for blocked cues were 

determined partly by the base rate of the outcome. The inferential account of these 

experiments suggests that this could reflect a lack of certainty about X, but we do not yet 

have direct evidence for this lack of certainty. To test this idea, in addition to the probability 
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ratings for each cue, self-reported confidence in those ratings was also collected. The use of 

multiple test tasks to asses different aspects of participants’ knowledge has been used to 

uncover the psychological processes involved in associative learning in the past. For 

example, studies have examined cue-outcome memory (e.g., Mitchell, Lovibond, Minard & 

Lavis, 2006), the ability to categorise cues with outcomes (e.g., Mitchell, Livesey & 

Lovibond, 2007) and, most relevant to the current study, participants’ confidence in their 

knowledge about the cue-outcome relationship (e.g., Vandorpe, De Houwer & Beckers, 

2005). This approach has not yet, however, been used in the context of the redundancy effect. 

Experiment 3 was designed primarily to test the idea that participants lack confidence 

in their probability ratings for blocked cues. This time, as well as probability ratings on test, 

they were also asked to give their confidence in each rating. For comparison, an 

overshadowing control (as used in Experiment 1) and an uncorrelated cue (as used in 

Experiment 2) were included. The full design of Experiment 3 is shown in Table 2. The 

blocked cue X (A+/AX+) was compared to an uncorrelated cue Y (BY+/CY-) and 

overshadowed cues P and Q (PQ+). If A+/AX+ training is an effective treatment for 

producing blocking, then X should be rated as a less likely cause of stomach ache than P and 

Q. As in Experiment 2, the redundancy effect would be evidenced by higher ratings of X than 

Y on test. The D- and EF- filler trials were included to prevent participants from developing a 

strong tendency to predict stomach ache on each trial, or to learn a rule that single foods 

always cause stomach ache. We expected probability ratings to be lower for the blocked cue 

than for the overshadowed control (blocking), but higher than for the uncorrelated cue (the 

redundancy effect). According to the inferential account, differences in confidence ratings for 

these cues should also be evident. Since the effect of base rate was evident for a blocked cue 

but not an overshadowed cue (Experiment 1) or an uncorrelated cue (Experiment 2), 

confidence ratings should be lower for X than for P/Q or Y. However, confidence ratings for 
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P/Q might also be restricted because, while participants were expected to learn that the 

outcome will occur when the patient consumed PQ, PQ+ trials do not include any 

information about which of P and Q is the cause. Confidence ratings for P/Q were therefore 

expected to be equivalent to or higher than confidence ratings for X.   

The inferential account also predicts a relationship between probability and 

confidence ratings. If the intermediate probability ratings usually given to a blocked cue 

reflect uncertainty about whether or not it is a cause of the outcome, then participants who are 

least confident should give ratings that are closest to the middle of the rating scale. The same 

pattern should be evident for other cues.  

 

Method 

Participants. Twenty-one Psychology undergraduate students at Plymouth University took 

part in this experiment in return for course credit. They were 18-39 years old (M = 20.71, SD 

= 4.37) and seven were male. 

Materials. Ten images served as cues: apple, banana, cherries, grapes, kiwi, mango, orange, 

pineapple, strawberry, and watermelon. The foods were randomly assigned to each type of 

cue (A, B, C, D, E, F, P, Q, X, Y) for each participant.  

Procedure. During the training stage, participants were presented with 12 blocks of trials, in 

which each of the different trial types (A+, AX+, BY+, CY-, D-, EF-, PQ+) appeared once.  

The procedure was the same as in Experiment 1 with one addition to the test trials. 

Once the participant had provided a probability rating for the food presented on test, a second 

rating scale appeared together with the sentence “How confident are you that this rating is 
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accurate?” This scale ranged from 0 (Not at all) to 10 (Extremely). For each participant, 

average causal and confidence ratings were calculated for the two presentations of each cue.  

Results 

The proportion of trials on which participants predicted stomach ache for each trial 

type during the training stage is shown in Figure 6. Training proceeded smoothly, with all 

participants learning quickly to predict the outcome of each trial. During the final epoch, the 

outcome was predicted correctly on 99% of trials.  

Data from the test stage are shown in Figure 7. The left panel of Figure 7 shows the 

mean ratings of the likelihood that each type of cue (A, B, C, D, E/F, P/Q, X, and Y) would 

be followed by stomach ache. A one-way ANOVA demonstrated a significant effect of cue 

type, F(7, 140) = 132.09, p < .001, η2
p = .87. Paired comparisons indicated that ratings for 

P/Q were higher than for X, t(20) = 2.67, p = .015, dav = .58, demonstrating blocking. The 

redundancy effect was also observed: ratings for X were higher than for Y, t(20) = 4.61, p 

< .001, dav = 1.00. 

The right panel of Figure 7 shows mean confidence ratings for each cue type. 

Although participants’ ratings of their confidence was generally high, these ratings differed 

between cue types, F(7, 140) = 11.78, p < .001, η2
p = .37. Of most interest were the ratings 

for the blocked cue X, the overshadowed cues P/Q and the uncorrelated cue Y. A paired 

comparison indicated that participants were less confident for X than for Y, t(20) = 3.18, p 

< .001, dav = .69, but that confidence ratings for P/Q and X did not differ, t < 1, B01 = 3.26. 

Confidence ratings were also lower for P/Q than for E/F, t(20) = 2.84, p = .01, dav = .62. In 

other words, participants were less certain about the causal status of one cue from a two-item 

compound if that compound had been predictive of stomach ache than they were if the 

compound had been predictive of no stomach ache. We will return to this point in the General 
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Discussion, but for now it should be noted that there appears to be a difference in how 

participants learn about the presence and absence of stomach ache. 

 Figure 8 shows individual participants’ probability and confidence ratings for P, Q, X, 

and Y. As predicted by the inferential account, confidence ratings were lowest when 

participants gave intermediate probability ratings. To test whether this relationship was 

statistically significant, each probability rating was converted to a decisiveness rating, based 

on the magnitude of the difference between the rating and 5. Using this method, probability 

ratings of 5 corresponded to a decisiveness rating of 0, whereas probability ratings of 0 or 10 

produced decisiveness ratings of 5. Spearman’s rank correlations were then performed for 

each cue, to find out whether the decisiveness ratings predicted confidence ratings. We found 

that this relationship was statistically significant for each of the 10 cues; smallest ρ = .575, 

largest p = .006. 

Discussion 

The first key finding from Experiment 3, with regard to the confidence measure, is 

that ratings of the blocked cue X were equivalent to those of the overshadowing control P/Q. 

In fact the same result was observed by Vandorpe et al. (2005) in their Experiment 2, no-

information condition. The absence of any difference between these cues is unsurprising 

given that there is not sufficient information about any of these cues for participants to be 

sure of whether or not they cause the outcome. However, it is interesting in light of the fact 

that a blocked cue, but not overshadowing control cues, was affected by the manipulation of 

outcome base rate in Experiment 1. We had expected that cues about which the participants 

were uncertain would be most affected by the base rate manipulation in Experiments 1 and 2. 

This is exactly the pattern we see with regard to the redundancy effect. Hence, participants 

were more certain about their ratings of the uncorrelated cue Y than the blocked cue X in 



25 
 

Experiment 3, and Y was less affected than X by the base rate manipulation in Experiment 2. 

Finally, we found that participants gave the lowest confidence ratings for those items to 

which they gave intermediate probability judgments. This is consistent with the idea that 

probability judgments are based at least in part on participants’ certainty about whether or not 

each cue causes the outcome, and supports the inferential account of blocking as resulting 

from a lack of certainty about the status of the blocked cue.  

General Discussion 

The current experiments suggest that participants are uncertain about the causal status 

of blocked cues, and that probability ratings for blocked cues are influenced by the overall 

number of trials on which the outcome is presented. When the overall outcome rate was high, 

ratings of a blocked cue were higher than when the overall outcome rate was low. The 

consequence of this variation was that in Experiment 1, the higher outcome rate led to a 

reduced blocking effect; ratings of the blocked cue X were no lower than to the 

overshadowing cues P and Q. Also, in Experiment 2, the higher outcome rate was associated 

with a larger redundancy effect; the blocked cue X was higher than the uncorrelated cue Y 

regardless of the outcome rate, but this difference was greatest when the outcome rate was 

high.  

These results are difficult to reconcile with Rescorla and Wagner’s (1972) model of 

learning. Although the addition of a common element to each cue allows the model to predict 

the effect of base rate variation on blocking seen in Experiment 1, it also predicts that the 

redundancy effect should be reversed when the base rate is low. This is not what we observed 

in Experiment 2. It should be noted that the failure of Rescorla and Wagner’s model to 

account for our data does not necessarily imply the failure of the broader associative 

approach; alternative associative models might be a better fit for our data. For instance, 
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models that explain blocking as a consequence of a decline in the amount of attention paid to 

blocked cues (e.g. Mackintosh, 1975; Pearce & Hall, 1980) more easily predict the 

redundancy effect because they allow learning about the blocked cue before any changes in 

attention take place. However, there are two problems with this approach. The first is that it is 

not easy to see why the effect of varying the outcome base rate in the present experiments 

should only apply to the blocked cue, if participants have learned to ignore it. The second 

problem is that previous attempts to explain the redundancy effect as a consequence of 

changes in attention have failed to uncover either differences in overt attention for X and Y 

(Jones & Zaksaite, 2018), or differences in the rate of subsequent learning about those cues 

(Uengoer, Dwyer, Koenig, & Pearce, 2017).  

The results presented here are, however, consistent with a different kind of associative 

theory that attributes blocking not to a deficit in learning, but to a performance effect. The 

extended comparator hypothesis (Denniston, Savasatano, & Miller, 2001) states that 

participants should learn about each cue individually, but that probability ratings should be 

based on a comparison of the cue in question and other cues with which it is associated. For 

instance, participants should learn adequately that X is associated with the outcome, but their 

test ratings should be a consequence not just of this direct associative strength, but also a 

comparison with A, since A and X occurred together during the first phase of the experiment. 

Because A is a very good predictor of the outcome, the comparison of A and X should 

decrease probability ratings for X. This approach not only predicts blocking, but can also 

predict an effect of varying the outcome base rate that will have different effects for each cue. 

As well as undergoing comparison with other explicit cues, each cue might be compared to 

the experimental context. Since the base rate determines the extent to which the context 

predicts the outcome, it will also determine how the context moderates probability ratings for 

the cues. The extent to which the context acts as a comparator for each cue will also be 
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influenced by the strength of the association between the context and the cue, which will be 

stronger for A than for other cues because A was presented alone on A+ trials. The effects of 

varying the base rate on each cue are therefore complex, but different effects for different 

cues are possible and the present results might be accommodated. The problem with this 

approach is that, while it accounts for the present data adequately, other attempts to evaluate 

the comparator hypothesis as an explanation for redundancy-effect experiments have proved 

more challenging for the theory. The comparator hypothesis can explain the redundancy 

effect itself very simply, because X is consistently followed by the outcome and Y is not. The 

theory has more trouble accounting for the fact that probability ratings for the predictive cue 

B are consistently higher than those for X, because both are always followed by the outcome. 

The theory can only explain this pattern of results because of the relative associative strengths 

of the comparator cues (A for X, and Y for B), but consequently predicts the abolition of the 

redundancy effect if the status of the comparator cues changes. Zaksaite and Jones (2017), by 

contrast, found that probability ratings were higher for B than for X even after successful A-

/Y+ re-training.   

The current results are easier to explain by assuming that blocking occurs because 

there is insufficient evidence of a causal relationship between the blocked cue and the 

outcome. Lovibond et al. (2003) pointed out that, logically, cue X in a blocking design 

(A+/AX+) is ambiguous. It is not surprising, therefore, that participants were uncertain about 

cue X (Experiment 3) and based their assessment of this cue on the overall likelihood that any 

given cue would produce the outcome (Experiments 1 and 2). In both Experiments 1 and 2, it 

was only the blocked cue X that tracked the overall outcome rate. The effect of the base rate 

on ratings for X can be thought of as generalisation between cues (Pavlov, 1927). Our 

proposal is that the outcome rate only generalised to X because this was the only cue about 

which participants were sufficiently uncertain. With respect to the redundancy effect, this 
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hypothesis received support from the results of Experiment 3, in which participants indicated 

that they were more confident in their ratings for an uncorrelated cue Y (trained BY+/CY-) 

than for X. Confidence in ratings of the blocked cue X did not, however, differ from those of 

the overshadowed cues P/Q.  

The pattern of data with respect to the comparison of blocked cues and 

overshadowing cues across Experiments 1 and 3, present something of a conundrum. In 

Experiment 3, confidence in the ratings of the overshadowing cues was no higher than for the 

blocked cue. In light of this, why was the blocked cue more affected by the base rate of the 

outcome than the overshadowing cues in Experiment 1? One possibility is that participants 

only use base rates when there is little or no other information available, even if they are 

somewhat uncertain. This is consistent with the findings of Kahneman and Tversky’s (1973) 

probability judgment experiment, discussed earlier. In Experiment 1 here, participants could 

have inferred that at least one of the overshadowing cues must have been causal, and 

prioritised this information over the base rate. Alternatively, perhaps the confidence rating 

test in Experiment 3 was simply not sensitive enough to pick up differences between the 

overshadowing and blocked cues. Objectively, participants do know more about the 

overshadowing cues than they do about the blocked cue; they know that at least one of the 

overshadowing cues is causal. It is for this reason that we see an effect of blocking in 

Experiment 1 (when the outcome base rate was low) and in Experiment 3. A more sensitive 

forced choice test, in which participants are asked whether they are more certain about their 

ratings of an overshadowed or a blocked cue might reveal greater certainty about the 

overshadowing cue.     

The findings with respect to the redundancy effect are more straightforward. 

Participants were less certain about the blocked cue X than they were about the uncorrelated 
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cue Y (Experiment 3), and the less certain blocked cue X was more affected by the 

manipulation of the outcome base rate than was cue Y (Experiment 2). In fact, participants 

were reasonably certain that cue Y did not cause the stomach ache. It is worth considering 

why participants should be so certain that Y was non-causal. Confidence that Y did not cause 

the outcome was presumably a result of the omission of the outcome on CY- trials. It appears 

that participants assumed that, if Y had caused the outcome, then the outcome would have 

occurred every time Y was consumed. This inference would very simply explain the 

redundancy effect results seen here. However, low ratings of Y are not a necessary result of 

uncorrelated (BY+/CY-) training. An alternative possibility is that there was no stomach ache 

on CY- trials because C prevented its occurrence. The model proposed by Rescorla and 

Wagner (1972) predicts greater associative strength for Y than for X for exactly this reason 

(and because it predicts that cue X will accrue very little associative strength). According to 

their model, the acquisition of inhibitory associative strength by C protects Y from extinction 

on CY- trials and allows it to retain a modest amount of excitatory associative strength.  

For cue Y to gain associative strength in the uncorrelated design, participants must 

believe that foods (e.g. cue C) are capable of preventing stomach ache. There is, however, 

little reason to suppose that people will do this. Real-world experience of food poisoning is 

likely to contain many more examples of foods causing stomach ache than preventing 

stomach ache. Although there are numerous demonstrations of conditioned inhibition using 

the allergist task (e.g. Larkin, Aitken, & Dickinson, 1998; Melchers, Lachnit, & Shanks, 

2004), these experiments differ from the present experiments in two important ways. Firstly, 

demonstrations of inhibition typically include instructions that require participants to consider 

which cues might prevent the allergic reaction from occurring. The present experiments 

contained no such instructions, and it therefore seems plausible that participants simply failed 

to consider that some foods might prevent stomach ache.  
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The second issue is that experiments designed to elicit conditioned inhibition usually 

contain A+/AX- training or similar, where X becomes an inhibitor of the outcome. In this 

case, inhibition is necessary; since the outcome follows A on A+ trials, its omission on AX- 

trials must be due somehow to the presence of X. In contrast, BY+/CY- training can be 

resolved without inhibition, by simply assuming that B is the only cue that results in the 

occurrence of the outcome. Conditioned inhibition might be less likely to develop when an 

alternative and simpler causal structure is available, e.g. one in which B is causal, but C and 

Y are not. In Experiment 2, then, participants may have been confident that Y was not a cause 

of stomach ache because they did not believe that C was preventative. Experiment 3 provides 

some evidence for this view. Participants were more confident in their ratings for E/F (from 

EF-) than P/Q (from PQ+). Why should this be? In both cases, these cues had been presented 

in compound and followed by a given outcome. However, this finding is easy to explain if we 

assume that participants did not think that cues could prevent stomach ache. In this case they 

should have been certain that neither E nor F could be a cause of stomach ache, given that no 

stomach ache occurred on EF- trials. The alternative, that one cue was causal and the other 

preventative, would not have occurred to them. Confidence for P/Q was presumably lower 

because on PQ+ trials no information was available to tell participants whether the stomach 

ache was caused by P, or by Q, or by both foods. If this analysis is correct, then it suggests 

that the redundancy effect is caused not just by uncertainty about X, but also by inflated 

confidence about Y because of the choice of scenario and instructions. Future examinations 

of the redundancy effect could test this idea, firstly by establishing whether participants can 

be trained that foods prevent stomach ache in this version of the allergist task, and 

subsequently by measuring the impact of this training on the redundancy effect. It is possible 

that the redundancy effect will be reduced under conditions that promote conditioned 

inhibition.  
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 Another potential topic of future research is the exact nature of the relationship 

between confidence and probability ratings. According to the inferential account, 

intermediate probability ratings for blocked cues may be the result of inadequate information 

and low confidence. However, the results of Experiment 3 do not conclusively demonstrate 

that participants give medium probability ratings in order to reflect their uncertainty. An 

alternative, which is consistent with the associative approach, is that confidence ratings are 

derived from probability estimates. In other words, participants might first gain the 

knowledge that the probability of the outcome occurring for the blocked cue is neither very 

high nor very low, and subsequently interpret this probability as indicating a lack of certainty. 

One way of unpicking this relationship might be to combine confidence ratings with a base 

rate manipulation, as used in Experiments 1 and 2. If confidence ratings are derived from 

probability estimates, we would expect any effect of base rate variation on probability ratings 

to be reflected in corresponding changes to confidence ratings. Alternatively, if confidence 

ratings are one of the determinants of probability ratings, it should be possible to increase 

probability ratings by increasing the base rate of the outcome, without increasing 

participants’ confidence that those probability ratings are accurate. 

 Since we have argued that our results are more consistent with an inferential account 

of blocking than an associative account, it is worth clarifying what we see as the crucial 

difference between these two approaches. After all, several commentators (Mitchell, De 

Houwer, & Lovibond, 2009; Witnauer, Urcelay, & Miller, 2009) have pointed out that 

complex associative networks can produce outputs that resemble inferential reasoning. Given 

that inferences must reside somewhere in the brain, and that connectionist networks are 

model brains (Clark, 1990), it might be argued that there is little real distinction between the 

inferential and associative approaches. It is not our intention, therefore, to dismiss the idea 

that associations might be responsible for the blocking phenomenon at some level. Our data 
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are only problematic for a specific kind of associative theory that explains blocking by 

proposing that a symbolic representation of the blocked cue fails to become connected to a 

representation of the outcome. Our data suggest that blocking is the result of uncertainty, 

rather than a weak connection between mental representations. 

In conclusion, the current experiments suggest that participants recognise the 

ambiguous status of a blocked cue in standard causal learning tasks. Our findings can be 

explained if the mid-range probability ratings of the blocked cue on test reflect participants’ 

lack of evidence, and hence uncertainty, as to whether there is a relationship between the 

blocked cue and the outcome. The consequence of this uncertainty is that ratings of the 

blocked cue will be labile and susceptible to influences beyond the training trials on which 

that cue was presented. In this case, the degree to which any given cue was likely to produce 

an allergic reaction – the outcome base rate – influenced ratings of the blocked cue, but no 

other cue that was tested. Under these circumstances, the outcome base rate will have, and 

was observed to have, a profound impact on the size of the blocking and redundancy effects 

observed.  
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Table 1 – Experiments 1 and 2 

Group Training Test 

75% (Experiment 1) A+  AX+  BY+  CZ-  D+  E+  F-  GH+  IJ+  KL+  MN+  OP- A  B  C  X  Y  Z 

25% (Experiment 1) A+  AX+  BY+  CZ-  D-  E-  F-  GH-  IJ-  KL-  MN-  OP- A  B  C  X  Y  Z 

75% (Experiment 2) A+  AX+  BY+  CY-  D+  E+  F-  GH+  IJ+  KL+  MN+  OP- A  B  C  X  Y   

25% (Experiment 2) A+  AX+  BY+  CY-  D-  E-  F-  GH-  IJ-  KL-  MN-  OP- A  B  C  X  Y   

 

Table 2 – Experiment 3 

Training Test 

A+  AX+  BY+  CY-  D-  EF-  PQ+ A  B  C  D  E  F  P  Q  X  Y 
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Figure 1. The mean proportion of trials on which participants predicted stomach ache during the Training stage of Experiment 1, for the 

75% group (left panel) and the 25% group (right panel). Error bars represent the standard error of the mean (SEM). 
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Figure 2. Mean ratings of the probability of stomach ache for each type of cue in the Test stage of Experiment 1. Error bars represent the 

SEM. 
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Figure 3. Simulations of Experiment 2 (select cues only; simulations for the 75% group are shown in the left panel, while simulations for 

the 25% group are shown in the right panel). These simulations were produced using Vogel and Wagner’s (2017) modified version of Rescorla 

and Wagner’s (1972) model.  The model parameters were the same as those used by Vogel and Wagner: all cues were assigned equal salience, 

the ratio of β+:β- was 2, and λ was set to 1. 
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Figure 4. The mean proportion of trials on which participants predicted stomach ache during the Training stage of Experiment 2, for the 

75% group (left panel) and the 25% group (right panel). Error bars represent SEM. 
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Figure 5. Mean probability ratings for each cue during the Test stage of Experiment 2. Error bars represent SEM. 
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Figure 6.  The mean proportion of trials on which participants predicted stomach ache during the Training stage of Experiment 3. Error bars 

represent the standard error of the mean, adjusted for within-subjects comparisons according to the method described by Cousineau (2005). 
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Figure 7. Mean ratings from the Test stage of Experiment 3. Probability ratings are shown in the left panel, and confidence ratings are 

shown in the right panel. Error bars represent the standard error of the mean, adjusted for within-subjects comparisons according to the method 

described by Cousineau (2005). 
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Figure 8. Probability ratings and confidence ratings for each participant in Experiment 3, for P (upper left), Q (upper right), X (lower left), 

and Y (lower right).  
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