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Abstract 

The present paper addresses the question: “What are the general classes of uncertainty and error 

sources in complex, computational simulations?” This is the first step of a two step process to 

develop a general methodolog for quantitatively estimating the global modeling and simulation 

uncertainty in computational modeling and simulation. The second step is to develop a general 

mathematical procedure for representing, combining and propagating all of the individual sources 
through the simulation. We develop a comprehensive view of the general phases of modeling and 

simulation. The phases proposed are: conceptual modeling of the physical system, mathematical 

modeling of the system, discretization of the mathematical model, computer programming of the 
discrete model, numerical solution of the model, and interpretation of the results. This new view is 

built upon combining phases recognized in the disciplines of operations research and numerical 

solution methods for partial differential equations. The characteristics and activities of each of these 
phases is discussed in general, but examples are given for the fields of computational fluid 

dynamics and heat transfer. We argue that a clear distinction should be made between uncertainty 

and error that cah arise in each of these phases. We believe that the present definitions for 
uncertainty and error are inadequate and. therefore. we propose comprehensive definitions for 

these terms. Specific classes of uncertainty and error sources are then defined that can occur in 

each phase of modeling and simulation. The numerical sources of error considered apply 
regardless of whether the discretization procedure is based on finite elements, finite volumes, or 
finite differences. To better explain the broad types of sources of uncertainty and error, and the 

utility of our categorization, we discuss a coupled-physics example simulation. We then discuss 

how the methodological ideas developed can be applied in the modeling and simulation of a 
weapon in an abnormal environment. Specifically. we consider the conceptual problem of a 

damaged weapon in an aircraft crash and fuel fire environment. 
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I. Introduction 

During the last several years there has been an increasing level of attention to critically 

assessing the accuracy and credibility of computational simulations. Although the fields of fluid 

dynamics, heat transfer, and structural mechanics do have same level of interest in this topic, the 

general trend is a welcomed one. It shows that computational simulation is maturing from a 

research activity to a useful tool that impacts the design of engineered systems of all types. The 

primary method of assessing the accuracy of simulations has been to compare computational 
predictions with experimental data. This is known as the process of validation of computational 

simulations. One of the difficulties of experimental validations, however, is the continually 

increasing cost and time required to conduct these experiments. With the rapidly decreasing cost of 

computer power, there is great economic and competitive pressure to conduct simulations with 

fewer comparisons with experiments. Terminology such as “virtual prototyping” and “virtual 

testing” are now being used to describe the numerical simulation of “testing” of new hardware and 

even entire systems. An additional difficulty with experimental validation is that certain types of 

validation experiments can not be physically or safely conducted. Various examples are: matching 

the aerothermodynamic environment of an atmospheric reentry vehicle in a wind tunnel; structural 

failure of the containment vessel of a nuclear power plant; failure of a bridge or dam during an 

earthquake; and exposure of a nuclear weapon to an accident environment such as an aircraft b e l  

fire. Physical events such as these cannot be conducted with full fidelity for the purpose of 

validation, thus assessing the accuracy of simulations for these events is crucial. 

The issues, methodologies and terminology for assessing the accuracy of complex simulations 
are being discussed and debated in the literature in a very wide variety of engineering disciplines 

[ 1-91. These topics are closely related to code verification and validation (V&V). It is our view that 

all of these topics, at a high level, can be considered as part of the field of uncertainty estimation. 
Uncertainty estimation has its roots in probability theory and statistics and has primary application 

in areas such as quality control in manufacturing process, estimation of experimental uncertainty, 
and probabilistic risk assessment of large systems. Many of the same mathematical tools of 

uncertainty estimation can be used to represent different types of uncertainty in modeling and 

computational simulation. 

Uncertainty due to different sources in computational simulations are also now being addressed 

by a number of researchers [ 10-151. Examples include; numerical solution error estimation in finite 

element simulations, use of Richardson’s extrapolation method for estimating grid convergence 
errors, uncertainty due to different turbulence models in computational fluid dynamics, and Monte 

Carlo estimation of structural response due to stochastic uncertainty in material properties. All of 

these are examples of different types of contributors to uncertainty in various computational 
simulations. Some of these can be categorized as modeling uncertainties and others as numerical 

solution errors. The computational simulation literature has done little to categorize the different 

types of sources of uncertainty and error. Indeed, there is little discussion, much less agreement, 

as to what is included in uncertainty, and how that is related to error. 

We believe the estimation of total modeling and simulation uncertainty can be divided into two 
parts. First is the identification of all the possible types or classes of sources of uncertainty and 

error, Second is a general mathematical procedure for combining, integrating and propagating 
individual sources of uncertainty and error through the entire modeling and simulation process. At 

present, neither of these steps has been developed in any general sense. The field that has probably 

made the most progress on both of these steps deals with the thermal-hydraulic analyses for safety 



of nuclear power plants. For example, many failure scenarios and event tree analyses for these type 

systems have been constructed, along with probabilistic assessment of events and their 

consequences. We believe, however, there are three short comings to this previous work. First, 
there has not been clear delineation of the classes of sources of uncertainty, or a distinction 

between uncertainty and error in the modeling and simulation. Second, very little effort has been 

devoted to the impact on total system uncertainty due to uncertainty in the model itself, also 

referred to as model form uncertainty. However, recent work by Draper [16] and Lasky [ 171 

suggests an increasing focus on this issue. Third, the vast majority of this work is based on 

statistical, or probabilistic, mathematical representations of uncertainty. The primary emphasis has 

been on uncertainty distributions in input parameters, initial conditions, and boundary conditions. 

We believe, however, that non-probabilistic mathematical representations may be more appropriate 

when the uncertainty derives from lack of knowledge or errors, such as numerical solution errors. 

The present paper deals with the first part of the estimation of total modeling and simulation 

uncertainty; identification of all possible classes of sources of uncertainty and error. We begin by 

developing a new structure of the general phases of modeling and simulation. The phases proposed 

are: conceptual modeling of the physical system, mathematical modeling of the system, 

discretization of the mathematical model, computer programming of the discrete model, numerical 

solution of the model, and interpretation of the results. This new view is built upon combining 

phases recognized in the disciplines of operations research and the numerical solution of partial 

differential equations. Characteristics and activities of each of these phases is discussed with regard 

to a variety of disciplines in computational mechanics and thermal sciences. 

Building on this structure, we argue that a clear distinction should be made between uncertainty 

and error that can arise in each of these phases. We believe that the existing distinctions between 

uncertainty and error are inadequate and. as a result, we propose comprehensive definitions for 

these terms. Specific classes of uncertainty and error sources are then defined that can occur in 

each phase of modeling and simulation. The present discussion generally shows how uncertainties 
and errors in one phase might propagate to subsequent phases, but this paper does not address the 

technical issues involving propagation of uncertainty and error. The numerical sources of error 
considered apply regardless of whether the discretization procedure is based on finite elements, 

finite volumes, or finite differences. We also propose a term, modeling and simulation dubiety, to 

represent the level of doubt in the total simulation caused by both uncertainty and error. To better 

explain the broad types of sources of uncertainty and error, and the utility of our categorization, we 
discuss a coupled-physics example simulation. We discuss how the methodological ideas 

developed can be applied in the modeling and simulation of a weapon in an abnormal environment. 

We consider the conceptual problem of a damaged weapon in an aircraft crash and fuel fire 

environment. This example considers the widest possible range of a fully coupled thermal-material 
response simulation with regard to detonation safety of the weapon. 

2. Modeling and Simulation 

Before we review the literature. we will define what we mean by modeling and simulation. We 

will use broad definitions for these terms because the issues we address in this paper will cover a 

wide range of computational mechanics, thermal sciences, and physics. We use the definition of 

model given by Neelamkavil [ 181: “A model is a simplified representation of a system (or process 

or theory) intended to enhance our ability to understand, predict, and possibly control the behavior 
of the system.” By inodelhg we mean the construction or improvement of a model. Different 
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types of models will be defined in later sections. We also use Neelamkavil’s definition of 
simulation [ 181: “A simulation is the process of imitating (appearance, effect) important aspects of 

the behavior of the system.” In other words, simulation is the exercise of a model. Here we are 

specifically interested in the exercise of computer models, i. e., computer codes built from 

mathematical models. 

I 

2.1 Review of the Literature 

In attempting to identify all possible classes of sources of uncertainty and error we spent 

significant time reviewing a broad range of literature in modeling and simulation. Modeling and 

simulation is conducted in essentially every technical discipline. The operations research 

community, because it deals with the widest range of system types and processes, has developed 

many of the general principles and procedures for modeling and simulation. Researchers in these 

fields have made significant progress defining and categorizing the various phases of modeling and 
simulation [19-221. The areas of emphasis in OR include problem entity definition, conceptual 

model definition, data and information quality, and how simulation results are intended to aid in 

decision making. From an engineering perspective, however, many feel this work is extraneous 

because it does not deal with solving partial differential equations. We have found the OR research 

very helpful in providing a constructive philosophical approach for identifying uncertainty sources 
and errors and some of the basic terminology. In addition. the OR literature has developed the 

fundamental principles for verification, validation, and accreditation for modeling and simulation, 

although we do not discuss this topic in depth. 

In 1979, the Society for Computer Simulation Technical Committee on Model Credibility 

developed a diagram identifying the primary phases and activities of modeling and simulation [23] 

(Fig. 1). The diagram shows that analysis is used to construct a conceptual model of reality. 

Programming converts the conceptual model into a computerized model. Then computer simulation 
is used to predict reality. Also shown in the diagram are the activities of model qualification, model 

verification, and model validation. Although simple and direct. the diagram clearly shows the 

relationship of two key phases of modeling and simulation to each other, and to reality, i. e., the 

system or process being considered. When complex engineering systems or physical processes are 

considered, the diagram ignores some major activities, specifically the solution of the partial 
differential equations describing the system. 

Through the 1980’s Sargent [24,25] made some improvements to this view of modeling and 
simulation, but no fundamental changes to the ideas in Fig. 1 were made. His major contributions 
were primarily in the areas of procedures for verification and validation of models and simulations. 
Nance [26] and Balci [27] also made a significant expansion to the phases of modeling and 

simulation. Fig. 2 shows their concept of the life cycle of a simulation study. Major phases added 
to the earlier description were System and Objectives Definition, Communicative Models, and 

Simulation Results. Communicative Models were described as “a model representation which can 

be communicated to other humans, can be judged or compared against the system and the study 

objective by more than one human” [26]. These three additions helped clarify important phases in 
modeling and simulation. 

As can be seen from Figs. 1 and 2, the emphasis in these descriptions is in assessing the 

credibility of the model and simulation, and in its improvement. The primary methods to 
accomplish this are verification, validation, qualification and testing of nearly all phases of the 

process. Theemphasis in the present work is on estiinntion of total modeling and simulation 
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uncertainty with limited experimental data. With this emphasis, Figs. 1 and 2 lack two key 
features, First, the inability to clearly identify where sources of uncertainty and error might 

originate. Second, the notion of propagation of different types of uncertainties and errors through 

the modeling and simulation process. 

In the computational fluid dynamics literature Mehta [7] appears to be the only one to have 

incorporated some of the OR concepts of modeling and simulation. Figure 3 shows Mehta’s 

diagram for the phases of modeling and simulation. As can be seen, it has features similar to Figs. 

1 and 2, but now the emphasis is on sources of uncertainty and total modeling and simulation 

uncertainty. Although specific types of sources of uncertainty are not identified in Fig. 3, Mehta 

does describe several sources. He lists general uncertainties in the fluid dynamics models and in 

the computational analysis. 

A large number of other investigators have investigated sources of uncertainty and error, but 

they have not made direct associations to the various phases of the modeling and simulation 

process. Several of these investigators will be referred to in Section 3: Sources of Uncertainty and 

Error. 

2.2 Phases of Modeling and Simulation 

Figure 4 shows our representation of the phases of modeling and simulation appropriate to 

systems or processes analyzed by the numerical solution of PDE’s. The initial phase is called the 

definition of the physical system. This phase also includes the specification of the requirements or 
objectives of the modelins and simulation, as described by Nance [26] and Balci [27]. The 

physical system can be either an existing system or process, or a proposed system or process, for 

example a proposed design. The physical system could be as simple as laminar flow through a 
pipe, or it could be as complex as fire spread through an aircraft cabin. 

ConceDtual Modeling The conceptual model phase determines what scenarios of physical 
events, or sequence of events, will be considered and what types of coupling of different physical 

processes will be considered. These determinations are based on the requirements determined in 

the first phase. During this phase, no mathematical equations are written, but the fundamental 

assumptions of the events and physics are made. Only conceptual issues are considered. with 

heavy emphasis on determining all possible factors that could possibly affect the requirements set 

for the modeling and simulation. An additional important feature of this phase is that all possible 

physics-couplings are listed that may influence the results, even if it is considered unlikely that they 

will be considered later on in the analysis. This is critical because if a possible physics coupling is 

not considered in this phase, it can not be resurrected later in the process. This feature is similar to 
the fault-tree structure in probabilistic risk assessment of high consequence systems, such as in 
nuclear reactor safety analyses. Even if a certain sequence of events is considered extremely 

remote, it should still be included as a possible event sequence in the fault-tree. Whether or not the 
event sequence will eventually be analyzed is not a factor in including it in the conceptual modeling 

phase. 

Mathematical Modeling The next phase is the mathematical modeling phase. During this phase 

the precise mathematical. i. e., analytical. statement of the problem, or series of event-tree-driven 

problems, to be solved is developed. Any complex mathematical model of a problem, or physical 
system, is actually composed of many mathematical submodels. The complexity of the models 

depends on the physical complexity of each phenomena being considered, the number of physical 
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I 
phenomena considered, and the level of coupling of different types of physics. The mathematical 

* 

model formulated in this phase is considered to be the complete specification of all of the partial 

differential equations for all elements of the system. For example, if the problem being addressed 

is a fluids-structure interaction, then all of the coupled fluid-structures PDE’s must be specified, 

along with any material property changes either the fluid or structure might undergo because of 

their interaction. The integral form of the equations could also be considered, but this type 

formulation will not be addressed in the present discussion. Along with the PDE statement of the 

mathematic@ model, all of the appropriate initial and boundary values, and the required auxiliary, 

or closure, models must be specified for the physical events considered. 

Our emphasis on comprehensiveness in the mathematical model should not be confused with a 

model’s attempt to represent physical complexity. The predictive power of a model depends on its 

correct identification of the dominant controlling factors and their influence, nor upon its 

completeness. A model of limited, but known, applicability is generally more useful than a more 

complete model. This dictum of engineering seems to be forgotten in modem times because of 
rapidly increasing computing power. The clear tendency, seen in all fields of engineering, is to use 

more complex models and then “beat it to death” with the computer. Examples are abundant, but 

just to mention a few: use of Navier-Stokes equations to compute the lift on a streamlined body at 
low angle of attack; use of time iterative Navier-Stokes equations to compute attached supersonic 
flow over a vehicle; and use of finite elements to compute stresses in thin shells. 

An additional point concerning incompleteness of models should be made. Any mathematical 

model, regardless of its physical level of detail, is by defilzitiorz a simplification of reality. Any 

real-world system, or even individual physical processes, contain phenomena that are not 

represented in the model. Statements such as “full physics simulations” can only be considered as 

marketing jargon. Our point was succinctly stated by George Box [28]: “All models are wrong, 

some are useful.” 

Discretization of the Model The next phase is the conversion of the PDE form of the 

mathematical model into a discrete, or numerical, model. This phase takes into account the 

conversion of the mathematics from a calculus problem to an arithmetic problem. In the 

discretization phase, all of the spatial and temporal differencing methods, discretization of the 
boundary conditions, discretization of the geometric boundaries, and grid generation methods are 
specified in analytical form. In other words, algorithms and methods are prescribed in 

mathematically discrete form, but the spatial and temporal step sizes are not specified. This step 

focuses on the conversion from continuum mathematics to discrete mathematics, not on numerical 
solution issues. We strongly believe that the continuum mathematical model and the discrete model 
should be separately represented in the phases of modeling and simulation [29]. This phase deals 

with questions such as consistency of the discrete equations with the PDE’s, mathematical 

singularities, and differences in zones of influence between the continuum and discrete systems. 

Programming of the Discrete Model The next phase, which is common to all computer 

modeling, is the computer programming phase. This phase converts the algorithms and solution 

procedures defined in the previous phase into a computer program. This phase has probably 

achieved the highest level of maturity because of many years of programming development and 
software quality assurance efforts [30. 3 11. These efforts have made a significant impact in areas 
such as commercial graphics, mathematics, and accounting software. telephone circuit switching 

software, and flight control systems. Little impact, however, has been made in corporate and 

university developed software developed for computational fluid dynamics, solid dynamics, and 

heat transfer simulations. 
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Numerical Solution of the Discrete Model The next phase is the numerical solution of the 

programmed computer model. In this phase, individual numerical solutions are obtained. This 
phase should be thought of as the most specific of all phases of modeling and simulation. In this 

phase there are no quantities left arithmetically undefined or continuous. For example, grid 

spacing is uniquely defined, all parameters such as Reynolds number and chemical reaction rate 

constants are specified, and time and space exist only at points. If multiple computational solutions 

are required for the analysis, as is commonly the case, then the numerical solution would not be 

unique, but would mean many solutions. Consider, for example, a conduction heat transfer 

analysis where the thermal conductivity is specified by some probability distribution. Then 

hundreds or thousands of Monte Carlo solutions may be required to address the question posed in 

the definition of the problem. 

Intemretation of Results The final phase concerns the interpretation of computational results. 

This phase involves determining the methods for presentation of computed results into a form that 

is usable by a human. This phase can also be described as the construction of continuous functions 

based on the discrete solutions obtained in the previous phase. Here the continuum mathematics 

formulated in the mathematical modeling phase is approximately reconstructed. This phase is 
specifically called out because of the sophistication of the software that is being developed to 

comprehend modem complex simulations. This area includes graphical visualization of results, 

animation of results, use of sound for improved interpretation, and the analysts “going into the 
solution space” using virtual reality. Some may argue that this phase is simply “post-processing” 

of the computational data. We believe, however, this description does not do justice to the rapidly 

growing importance of this area. In addition, by referring to this phase as interpretation of results, 

we are able to include types of errors that are not simply due to the modeling and simulation of the 

system, but to the conclusions drawn from the simulation results. These topics will be discussed in 
the next section. 

3. Sources of Uncertaintv and Error 

We will now discuss the types of uncertainties and errors that are associated with each phase of 
modeling and simulation. As one might suspect, developing the definition for each of the phases 

was not done independently from developing the ideas for types of uncertainties and errors. 
Essentially all of the individual sources of uncertainty and error described below have been pointed 

out by researchers in the past. Some, like computer round-off error, are very well understood. 

even to the point that most computational analysts do not make note of it. Others are poorly 

understood or characterized; for example, should a deficiency be treated as an uncertainty or an 

error. In the sections that follow we first develop comprehensive definitions for uncertainty and 

error that are appropriate for modeling and simulation. Second, we describe a hypothetical 

modeling and simulation sample problem which will be used as an example during the description 
of uncertainties and errors. Third, we describe a general framework for classes, or types, of 

uncertainties and errors for each phase of modeling and simulation. In addition, we use the 

example problem to give specific examples for each class of uncertainties and errors. We strongly 

believe that a more comprehensive taxonomy for uncertainties and errors must be developed in 

order to mathematically estimate total simulation uncertainty for complex systems. 
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. 3.1 Definitions of Uncertainty and Error 

As we attempted to identify general types of uncertainty and error, we found ourselves asking 

more and more fundamental questions as to what is the distinction between uncertainty and error. 

Although the meaning of these terms seems to be intuitive, upon careful thought it is found their 

meaning is not precise, or very context specific. We observed that the majority of text books and 

research papers do not define what they mean by uncertainty and error. Only a few authors 

carefully define uncertainty and error, but their definitions are in the restricted context of their 

subject. The most developed definition or understanding of uncertainty is in regard to experimental 

measurements. Although this is helpful, we require definitions that apply to the much broader topic 

of modeling and simulation. 

We define uncertainty as a potenrial deficiency in any phase or activity of the modeling 

process that is due to lack oflotowledge. The first feature which our definition stresses is 

“potential”, meaning that the deficiency may or may not occur. In other words, there may be no 

deficiency, say in the prediction of some event, even though there is a lack of knowledge. Whether 

the deficiency occurs or not is most commonly represented by some type probability distribution of 

occurrence. The second key feature of uncertainty is that its fundamental cause is incomplete 

information. Following Klir [32 1, incomplete information can be caused by vagueness, 
nonspecificity, or dissonance. By vagueness we mean lack of precise definition, unclearness and 

indistinctness. Nonspecificity refers to the variety of alternatives in a given situation that are left 

unspecified. Dissonance refers to the disagreement resulting from the attempt to classify an element 

of a given set into two or more disjoint subsets of interest. Since the cause of uncertainty is partial 
knowledge, increasing the knowledge base can reduce the uncertainty. When uncertainty is 
reduced by an action, such as observing, performing an experiment, or receiving a message, that 

action is a source of information. The amount of information obtained by the action is measured by 

the resulting reduction in uncertainty. This concept of information is called “uncertainty-based 
information.” Examples of this are: improving the accuracy of prediction of heat flux in a steel bar 

by improving the knowledge of the thermal conductivity of the bar in the predictive model; 
improving the prediction of the convective heat transfer rate in turbulent flow by improving the 
turbulence model; and improving the prediction accuracy for melting of structure in a open-pool 

fuel fire by improved knowledge of the atmospheric winds. 

We define error as a recognizable deficiency in any phase or activity of modeling and 

simulation that is not due to lack of knowledge. Our definition stresses the feature that the 
deficiency is identifiable or knowable upon examination, that is, the deficiency is not determined 

by lack of knowledge. By this we mean that there is an agreed-upon approach which is considered 

to be more accurate. If divergence from the correct or more accurate approach is pointed out, the 
divergence is either corrected or allowed to remain. This implies a segregation of error types; error 

can be either inrentional or imintentional. Examples of intentional errors are: finite precision 

arithmetic in a computer; physical approximations made to simplify the modeling of a physical 
process; a specified level of iterative convergence of a numerical scheme; conversion of the 
governing PDE’s into discrete equations. When the analyst introduces these intentional errors into 

the modeling or simulation process, there is typically some idea of the magnitude of the error 

introduced. Unintentional errors are blunders, or mistakes. That is, the analyst intended to do one 

thing in the modeling and simulation. but, for example, due to human error, did another. There are 

no straightforward means to estimate or bound the contribution of unintentional errors. Sometimes 
the unintentional error is capable of being discovered by the person who committed it; e.g., a 

double check of coding reveals that tivo digits have been reversed. Sometimes blunders are due to 



inadequate human interactions, and can only be resolved by communication. For example, one 
person misunderstood the required input format for a code written by another person. In this case, 

a rigorous review process by both individuals should uncover the error. 

3.2 Description of the Example Problem 

Consider the coupled thermal-material analysis of a weapon in an open-pool fuel fire 

environment. Assume that the weapon may be damaged, but the level of damage is unknown. This 
example would be characteristic of a weapon carried by an aircraft, that crashed during take-off or 

landing. Assume that the type of weapon is known, but no other information about the weapon 

before the accident is known. The weapon contains high explosive that is normally a solid and it 
has an integrated electrical-mechanical arming, fusing, and firing system. And finally, assume that 

the purpose of this analysis is to compute a probabilistic estimate of whether the high explosive 

will detonate. Stated somewhat differently, compute the probabilistic risk assessment of the 

detonation safety of the weapon in this crash and bum scenario. 

The purpose of our example is to point out the myriad of factors and possibilities that enter into 

a complex, real world, engineering simulation. We will only list aspects of this example in our 
discussion of uncertainties and errors in the conceptual modeling and mathematical modeling 

phases. These phases require the resolution of many specific probabilistic issues. Although we 

make no computations here, the magnitude of the computing effort required should become clear. 

3.3 Conceptual Modeling Uncertainties 

From the description of the conceptual modeling phase given in Section 2. we believe that the 

dominant “deficiency” is uncertainty, as opposed to “error”. Deficiencies can occur in any of the 

phases of modeling and simulation, but the credibility of each phase is primarily limited either by 

uncertainties or errors. Conceptual modeling uncertainties arise in the formulation of the analysis of 

the event, or process, and in the lack of knowledge of the event. Figure 5 shows the two types of 
uncertainties associated with conceptual modeling; scenario abstraction and lack of system 

knowledge. By scenario abstraction we mean the determination of all possible physical events, or 
sequence of events, that may affect the goals of the analysis. For relatively simple systems, such as 

fluid flow not interacting with any structures or materials, scenario abstraction can be straight 

forward. For complex engineered systems exposed to a variety of interacting factors, scenario 
abstraction is a mammoth undertaking. The best example we can give for how this should be dune 

for complex systems is the probabilistic safety assessment of nuclear power plants. As the many- 
branched event tree is constructed for complex scenarios, the probability of Occurrence of certain 

events becomes extremely low. Typically little analysis effort is expended on these extraordinarily 

rare possibilities. If one is dealing with very high consequence systems, however. these extremely 

improbable scenarios must be examined. Not including or recognizing these branches of the event 
tree can cause substantial loss in the credibility of the modeling and simulation. 

The second class of uncertainty listed, lack of system knowledge, refers to uncertainties that 

are primarily due to limited information about the system. This class clearly affects and interacts 
with the scenario abstraction effort, but here we stress lack of information for a branch of the tree 

rather than the possible existence of the branch. Two important examples for this class of 

uncertainty should be mentioned. First is the lack of knowledge of the initial state of key elements 

of the system. If it is a complex engineered system then knowledge of the factors. such as the 

follotving. becomes important: was the system incorrectly manufactured or assembled. how well 
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. was the system maintained, and was the system damaged in the past and not recorded. Second, is 

lack of knowledge of future conditions impacting the system. Examples of these are atmospheric 

environmental conditions and human interaction with the system during the event. These are 

examples where it is not possible to reduce lack of knowledge, and reduce the uncertainty, by 

improved sampling of past events. However, the uncertainty can sometimes be reduced by certain 

action taken with respect to the system that limits or further defines the state of key elements of the 

system. Often these are policy or procedural decisions. 

For the example problem of a weapon in a fire we list a number of scenario abstraction and lack 

of system knowledge sources of uncertainty. Rather than attempt to list all of the possibilities, we 

just give an indication of the types of uncertainties that should be be considered in this phase. 

Lack of information concerning the weapon before the accident 

Manufacturing variability of components and the complete system 

Manufacturing, assembly, and handling errors affecting the system 

Maintenance of the weapon and components that effect the state of the weapon before the crash 

Structural damage due to the crash before the start of the fire 

Structural and electrical damage to the arming, fusing and firing system before the start of the fire 

Detonation sensitivity of the explosive affected by age 

Number of weapons carried on-board the aircraft that affect individual weapons 

Adjacent weapon detonating 

Uncertainty in damaged geometry 

Uncertainty in impact area characteristics (e. g., water, trees, city) 

Uncertainty in material properties of components and subsystems 

Fuel source and quantity 

Wind speed, temperature and other environmental conditions 

Fire intensity and duration 

Uncertainty in emissivity of surfaces before and during the fire 
Atmospheric electrical source of energy to the arming, fusing and firing system (e.g.,lightning) 

Undesirable effects of accident response teams to the accident (e.g., additional damage) 

Unintended effects of accident response teams to the accident (e.g., introduction of foams or 

Accident response hampered by unsafe state of the weapons 

Inadequate use of expert opinion in scenario abstraction (e.g., insufficient diversity) 

electrical power to the crash site) 

3.4 Mathematical Modeling Uncertainties 

Mathematical modeling contains both uncertainties and errors, but we believe that uncertainties 

are typically more important than errors in this phase. (Note that for the remainder of the paper 

when we refer to “errors” we will only be referring to itttetztiottnl errors, unless otherwise stated.) 

Uncertainties and errors that occur in this phase arise from three mathematical sources (Fig. 5): the 
continuum equations for conservation equations of mass, momentum, and energy; all of the 

auxiliary equations which supplement the conservation equation; and all of the initial and boundary 

conditions required to solve the PDE’s. The predominant uncertainties that occur in mathematical 
modeling are those due to limited knowledge of the actual physics involved, or inadequate 

knowledge to represent elements in known physics. The primary errors are due to mathematically 

representing the physics in more simplified form that is appropriate for the results required from 

the modeling and simulation. Both of these together are sometimes referred to as “model form 

errors” or “model structural errors”. 
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Examples of uncertainties that occur in the conservation equations are: limited knowledge of the 

physics of multiphase flow, limited knowledge of turbulent reacting flow, and uncertainty if a 
boundary layer will be laminar or turbulent. Auxiliary physical equations in the mathematical model 

are equations, such as, expressions for thermal conductivity, turbulence models, and chemical 

reaction equations. Examples of uncertainties in these models are poorly known probability 

distributions of material properties due to manufacturing variability and unreliable turbulence 

models. It may be argued that accuracy turbulence models should be considered as errors instead 

of uncertainties. This is based on the argument that the accuracy of turbulence models could be 

ordered. e. g., algebraic models, two equation models, and Reynolds stress models. In a general 

sense, this ordering could be accepted, but for individual flow fields there is no guarantee that any 

one model will be better than any other model. Examples of uncertainties in initial and boundary 

conditions are: inaccurately known initial temperature distribution in a solid, imprecisely known 

geometry of materials because of manufacturing and assembly variances, and poorly known wind 

conditions in a pool fire. 

Errors in mathematical modeling can also be identified. Some examples are; assumption that a 

flow field can be modeled as a two-dimensional flow when three-dimensional effects are 

important, assumption of a steady flow when the flow is actually unsteady, assumption of 

continuum fluid mechanics when non-continuum effects are important, and the assumption of a 

rigid boundary when the boundary in flexible. It is observed that all of these examples are of the 

character that physical modeling approximations were made to simplify the mathematical model and 

the subsequent solution. 

For the example problem of a weapon in a fire we list a number of mathematical modeling 

uncertainties and errors: 

Use of 2D models for 3D problems 

Use of steady state models for non-steady state solutions 

Poorly known fluid dynamic turbulence models coupled with combusting flow 

Uncertainty in coupled mechanics - interaction of structural and thermal and possibly electrical 

Uncertain thermodynamic and transport properties of all materials 

Inaccurate probability distributions of the geometry of components because of small sample sizes 

Use of different submodels - crack propagation, joints, thermal conductivity 

Possibility of missed interactions at low levels of details, especially in damaged node 

Errors in coupled solution procedures; ex: structural, thermal, structural. thermal interact via 

Inadequate temporal coupling between thermal and structural mechanics coupling 

Use of transport, thermodynamic, and material properties outside the range of validity 
Ignoring electrical resistance heating in components due to unexpected activation of a power 

Insufficient level of spatial and temporal modeling for physics involved 

Inaccurately known thermal contact resistances due to both manufacturing. assembly, and crash 

Incomplete modeling of interaction of non-linearities (e. g., turbulence and combustion) 

Inaccurate interpolation of transport, thermodynamic, and material properties 
Inappropriate statistical models to represent non-deterministic phenomena 

forces 

supply 

damage 
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3.5 Discretization Errors 

The discretization phase converts the continuum model of the physics into a discrete 

mathematics problem. Since this is fundamentally a mathematics approximations topic, errors and 

not uncertainties are the dominate issue in this phase. Some may question why this conversion 

process should be separated from the solution process. We argue that this conversion process is 

the root cause of more difficulties in the numerical solution of PDE’s than is generally realized. Our 

view is based on the increasing difficulty of the nonlinear features of PDE’s being numerically 

solved. Taking a historical perspective, early numerical methods and solutions were developed for 

linear PDE’s, such as simple heat conduction, Stokes flow, and linear structural dynamics. 

Modem numerical solutions have attacked nonlinearities such as high Reynolds number laminar 

flow and shock waves and, in hindsight, these have proven more difficult than anticipated. 

Additional nonlinear physics such as turbulent flow, combustion, multiphase flow, phase changes 

of gases, liquids and solids, fracture dynamics, and chaotic phenomena are also being attacked, 

most with limited success. When strongly nonlinear features are coupled, the mathematical 

underpinnings become very thin and the successes become few. Recent investigators [33-351 have 

clearly shown that the numerical solution of nonlinear ordinary and partial differential equations 
can be quite different from exact analytical solutions even when using well established methods 

well within the numerical stability limits of the methods. Yee et al [36] have referred to this 
phenomena as the “dynamics of numerics” as opposed to the “numerics of dynamics.” It is 
becoming increasingly clear that the mathematical features of strongly nonlinear and chaotic 

systems can be fundamentally different between the continuous and discrete form, regardless of the 

grid size [37,38]. Oberkampf and Blottner [29] have pointed out that the zones of influence 

between the continuum and numerical counterparts are commonly different, even in the limit as the 

mesh size approaches zero. 

As shown in Fig. 5, we identify three sources of discretization error; discretization of the 

conservation laws, the boundary conditions. and the initial conditions. The types of errors we are 

pointing out here are typically very difficult to isolate. One method of identifying these type errors 
is to analytically prove whether the finite difference method is consistent, that is, does the finite 

difference method approach the continuum equations as the step size approaches zero. For simple 
differencing methods, this is quite straightforward. For complex differencing methods such as 

essentially non-oscillatory (ENO) schemes and second order, multidimensional, upwind schemes. 

the determination of consistency of the algorithms for a wide range of flow conditions and 

geometries is difficult. Related issues dealt with in this phase: are the conservation laws satisfied 

for finite grid sizes, does the numerical damping approach zero as the mesh size approaches zero. 
and do aliasing errors exist for zero mesh size. Discretization of PDE’s are also involved in the 

conversion of von Neumann and Robin’s, i. e., derivative, boundary conditions to difference 
conditions. We include the conversion of continuum initial conditions to discrete initial conditions, 

not because there are derivatives involved, but because spatial singularities may be part of the initial 
conditions. An example of this is the decay of vortex whose initial condition is given as a 
singularity. Our point is also valid, indeed much more common, when singularities or 

discontinuities are specified as boundary conditions. Some may argue that these discontinuities and 

boundary singularities do not actually occur in nature, so the issue of accuracy of representation of 
these is superfluous. This misses the point completely. If these nonlinear features exist in rlre 

matlrer~rarical model of the physics, the issue is whether the discrete model represents them 

accurately; not whether they exist in nature. In other words, it is the difference between verification 
(solving the problem right) and validation (solving the right problem). 
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. 3.6 Programming Errors 

The credibility of the programming phase is most influenced by unintentional errors, i.e., 

mistakes. In Fig. 5 we have categorized these mistakes into two types; input and programming 

errors. We will only briefly discuss these type errors because this topic is thoroughly covered in 

many software quality assurance texts [30,3 I]. 

Computational researchers and analysts experienced only with model problems, even large 

scale model problems, typically do not appreciate the concern with input errors. They feel it is 

simply a matter of carelessness that can easily be remedied by quality assurance practices. This, 

however, is not the case with very large codes, particularly coupled multi-physics codes, that 

heavily rely on sophisticated computer aided desigdsolid modeling codes for input. The 

complexity of the input data and the resulting room for error with these type codes, is 

extraordinary. This has been recognized for some time in the nuclear reactor safety thermal- 

hydraulic analysis field. Formal, structured, and rigorous procedures have been developed to 

ensure the input data accurately reflects the intended input. 

The capturing and elimination of programming errors, although not generating much 
excitement with computational researchers, remains a major cost factor in producing highly verified 

software. Even with the maturity of the software quality assurance methods. the difficulty of 

assessing software quality is becoming more difficult because of massively parallel computers. The 

complexity of optimizing compilers for these machines, the complexity of message passing, and 

memory sharing is, in our opinion, increasing faster than the capability of software quality 

assessment tools. As a case in point, debugging computer codes on massively parallel computers is 

moving toward becoming a non-deterministic process. That is, the code does not execute the same 

from one run to another because of other jobs executing on the MP machine. It is still a 
fundamental theorem of programming that the correctness of a computer code cannot be proven. 

except for trivial codes. Credibility can only be built by structured coding practices and continued 

testing, i. e., verification that the coding correctly represents the discrete model. 

3.7 Numerical Solution Errors 

Numerical solution errors have been investigated longer and in more depth, than any of the 

errors associated with the numericalsolution of PDE’s. Indeed, they have been investigated since 

the beginning of numerical solutions; Richardson in 1910 [39]. These deficiencies in the solution 
of the discrete equations are properly called errors because they are approximations to the solutions 

of the original PDE’s. As shown in Fig. 5 ,  we categorize these errors into four categories: spatial 

grid convergence, time step convergence, iterative convergence, and computer round-off. Of these, 
perhaps the only one that needs explanation is iterative convergence. By this we mean the finite 

accuracy to which nonlinear algebraic, or transcendental, discrete equations are solved. Iterative 

convergence error normally occurs in two different phases of the numerical solution. First is the 

iterative convergence that must be achieved within a time step. Examples are: intra-time step 

iteration to solve the unsteady heat conduction equation when the thermal conductivity depends on 

temperature; intra-time step iteration to determine the liquid-solid boundary in a melting or 
solidification problem; and the iterative solution for nonlinear analytic expressions for transport or 

thermodynamic properties. On finite volume schemes, for example, consenation of mass, 
momentum, and energy can be violated with inadequate iterative convergence at each time step. 
The second type iterative convergence addresses the accuracy of global iterative convergence of an 

elliptic PDE. Tolerance specifications must be given for the convergence accuracy of each iterative 
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. procedure used in a code. 

Although we categorize four sources of solution error, it should be noted that they are of two 

types. The first type is due to the finite discretized solution of the PDE’s; spatial grid convergence 

and time step size convergence are of this type. The second type is due to the approximate solution 

of the discrete equations, that is, what errors are made in the solution to the given discrete 

equations. Iterative convergence and round-off error are of this type and they account for the 

difference between the exact solution to the discrete equations and the computer solution obtained. 

All texts dealing with the numerical solution of PDE’s address the topic of estimating the 

magnitude of the spatial grid convergence error. Some of these deal with the errors associated with 

temporal convergence, iterative convergence, and round-off error. Even though grid convergence 

error is fairly well understood, it is our view that it is commonly the largest contributor to error in 

numerical simulations. The reason for this paradox is simple: cost. The grid size used for a 

numerical solution is usually at the limit of computer time or budgetary constraints; sometimes the 

grid used is simply considered “good enough” for the simulation at hand. If modeling and 

simulation is to achieve the level of credibility it is capable of, the lack of careful attention to grid 

convergence must be corrected. 

3.8 Results Interpretation Errors 

Figure 5 gives our categorization of types of results interpretation errors: post processor input 

errors, programming errors, data misrepresentation errors, and data interpretation errors. Post 

processor input errors and programming errors are the same type of unintentional errors. i.e. 

mistakes. as pointed out earlier under programming errors. Data misrepresentation errors and data 

interpretation errors, however, should be considered as intentional errors. By data 

misrepresentation errors we mean inaccurate or inappropriate construction of continuous functions 

from the discrete solution in the post-processor. Examples of these are; oscillations of the 

continuous function in between discrete solution points due to the use of a high order polynomial 

function in the post-processor; extrapolation of solution variables outside the discrete solution 

domain of independent variables; and inappropriate interpolation of the discrete solution between 

multiblock grids. We believe that these should be called intentional errors based on the question: 

“What is the mathematically correct reconstruction of the continuum functions from the PDE’s 

using the discrete solution points?’ When viewed from this perspective, one becomes concerned 

about the issue because this is not the perspective taken in modem visualization packages. The 

view of these general purpose packages is that there is no connection between the two. 

Reconstruction is done based on speed, convenience, and robustness of the package. 

By data interpretation errors we mean errors made by the interpreter, i. e., the user. based on 

observation of the results. In other words, an error made by the user in interpreting the results. By 
this we do not refer to errors in decision made by the user based on the results, such as incorrect 

design choices or inappropriate policy decisions based on the data. An example of this type of error 

is the conclusion that a predicted solution is chaotic when it is not (and vice versa). 

3.9 hlodeling and Simulation Dubiety 

The last issue to address in this paper is a final recommendation on terminology. We have 

defined and pointed out a large number of uncertainties and errors that occur in different phases of 

modeling and simulation. The distinction between an uncertainty and an error is, we believe. 
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crucial for correct representation and propagation, and for possible reduction or elimination in 

modeling and simulation. This distinction, however, is not useful when the effect of all of the 

uncertainties and errors are combined into a measure of total simulation result. We propose the 

term dubiety to mean the total level of doubt or variability in the simulation caused by all sources 

of uncertainty and error in the simulation. 

The quantification of dubiety, since it is a mixture of uncertainty and error, should have the 

following three features. First, it will present a plausible interval consistent with the available 
information, in which the predicted value is believed to lie. It will include the characteristic of lack 

of knowledge which is normally represented as probability distributions. Probability distributions 

are used to describe uncertainty in code input parameters, and multiple solutions from the 

simulation also generate probability distributions. As the number of solutions is increased, or when 

techniques such as Latin Hypercube is used, the confidence in the probability distributions will 

improve. Second, dubiety will also include the effects of intentional errors, i. e., mathematical 

approximations, as measured by the exact solutions to PDE’s. Use of high quality experimental 

data for code validation and the use of specialized exact analytical solutions for code verification 

will build confidence in the numerical solutions. Sensitivity-uncertainty studies with input and 

numerical parameters will produce some indication of total simulation credibility. This type error 

will produce an error with some similarities to precision, or random. errors in experimental 

uncertainty. Third, dubiety can detect unintentional errors, i. e.. mistakes, only when independent 

information is used for comparisons. For example, comparisons with other independent numerical 

solutions, by verification testing, and by experimental validation data. Strategies for detecting 

unintentional errors will be analogous to those for detecting bias errors in experimental data. 

4. Summarv and Conclusions 

We have presented a framework for the phases of modeling and simulation in which the 

physical system, or proposed system, is described by partial differential equations. We have 
carefully defined the meaning of, and distinguished between, uncertainty and error. These 

comprehensive definitions are required to categorize the broad range of deficiencies that can exist in 

modeling and simulation. Using these definitions, we defined a taxonomy for classes of sources of 
uncertainty and error that are appropriate to each of the phases identified in modeling and 

simulation. Our framework applies regardless of whether the discretization procedure is based on 
finite elements, finite volumes, or finite differences. 

With thls structure we believe more comprehensive procedures should be developed for 

representing, combining, and propagating individual sources of uncertainty and error through the 
entire modeling and simulation process. We believe the present work shows that the traditional 

probabilistic representations and propagation procedures will not be sufficient to account for error 

sources. Non-probabilistic mathematical representations, such as possibility theory, fuzzy sets, 
and Dempster-Shafer theory, may be more appropriate for error sources and specialized types of 

uncertainty. Although the advantages of these representations are speculative, it is hoped that 

statisticians and information theorists will become interested in applying these to modeling and 
simulation. From the heat transfer and fluid dynamics analysts Yiew point, most of these 

approaches will appear alien. We believe, however, these new c-pe approaches may be needed to 

more confidently assess the dubiety of modeling and simulation for complex engineered systems. 
For the prediction of high consequence events, particularly those that have little or no experimental 
data. these methods may prove to be critical. 
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