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PREFACE

Since the International Institute for Applied Systems Analysis began its study of

water quality modeling and management in 1977, it has been interested in the relations

between uncertainty and the problems of model calibration and prediction. The work has

focused on the theme of modeling poorly defined environmental systems, a principal topic

of the effort devoted to environmental quality control and management.

Accounting for the effects of uncertainty was also of central concern to our two case

studies of lake eutrophication management, one dealing with Lake Balaton in Hungary

and the other with several Austrian lake systems.

Thus, in November 1979 we held a meeting at Laxenburg to discuss recent method­

ological developments in addressing problems associated with uncertainty and forecasting

of water quality. This book is based on the proceedings of that meeting.

The last few years have seen an increase in awareness of the issue of uncertainty in

water quality and ecological modeling. This book is relevant not only to contemporary

issues but also to those of the future. A lack of field data will not always be the dominant

problem for water quality modeling and management; more sophisticated measuring

techniques and more comprehensive monitoring networks will come to be more widely

applied. Rather, the important problems of the future are much more likely to emerge

from the enhanced facility of data processing and to concern the meaningful interpretation,

assimilation, and use of the information thus obtained.

JANUSZ KINDLER

Chairman

Resources and Environment Area

IIASA
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FOREWORD

From the point of view of analysis and prediction, environmental systems can be

said to lie midway between the two extremes of electrical circuit systems and social sys­

tems. This situation presents special problems in the analysis of environmental and, more

specifically, water-quality and ecological systems. On the one hand, a priori theory, with

its basis in the physical and biological sciences, would seem to be capable of predicting

observed behavior relatively accurately. On the other hand, however, it is especially diffi­

cult to conduct planned experiments against which a priori theory can be tested. Under

these somewhat ambivalent conditions there has arisen a growing incompatibility between

what can be simulated in principle with a model and what can be observed in practice. To

a great extent this accounts for the gap that has developed between the "larger" simulation

models, with which there is little hope of conducting rigorous calibration exercises given

currently available field data, and the much "smaller" models that have been so calibrated.

There is, in short, a pressing need to reconcile such incompatibility in the current develop­

ments in water quality modeling.

The purpose of these proceedings, as with the meeting on which they are based, is

therefore to present and discuss applicable methods both for identifying (calibrating)

water quality models from uncertain experimental data and for analyzing prediction-error

propagation. There are three themes on which the book places special emphasis:

• Identification. This has special emphasis because many previous publications

that have dealt with the subject have not addressed some of the more challenging

methodological questions and because many methods that might appear attrac­

tive in theory are neither easy nor useful to apply in practice.

• Relation Between Identification and Prediction. Few publications consider this

relation in any detail, although it is clear that the uncertainties in a model and

its predictions are a function of how the model has been identified and calibrated.

• Interaction Between Case Studies and Methodological Development. There are

many problems generated in the course of a case study, so much so that it be­

comes almost redundant to demonstrate the applicability of a technique by

means of an abstract example. It is the accumulation of experience from case

studies that is the genesis of new methodological advances.

The book is divided into four parts: an introduction (consisting of two papers); a

part on uncertainty and model identification or calibration (consisting of eight papers); a

part on uncertainty, forecasting, and control (consisting of seven papers); and a final com­

mentary. Throughout the book there is an emphasis on the interaction between developing

approaches and methods and applying them to cases.

In Part One, two papers (by Beck and by Young) provide an historical perspective

and the synthesis of a methodological framework for the book. Both papers draw upon
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the use ofrecursive estimation algorithms in the context of time-series analysis as the basis

for much of their discussion. Quantitative, theoretical aspects of these algorithms, how­

ever, are not introduced in detail; rather, it is the conceptual representation of the prob­

lems, their solution, and the interpretation of case-study results that are of primary im­

portance. Broadly speaking, therefore, Parts Two and Three of the book include the case

studies, and the problems of analysis thereby generated, which Part One uses here as the

raw material for methodological developments and the synthesis of a frahlework for

modeling and forecasting environmental systems behavior.

Part Two contains eight papers. Although there is an intimate relationship between

identification (calibration) and prediction, as argued in Part One, these papers have been

collected together in one section because they all focus principally on the problem of cal­

ibration. Three of the papers (by Hornberger and Spear, by Halfon and Maguire, and by

Chahuneau et a1.) discuss the application of techniques of Monte Carlo simulation for the

purposes of model calibration. There are also two papers in Part Three that deal with

Monte Carlo simulation methods and they are closely related to these three papers.

Hornberger and Spear present further results for a case study of eutrophication in Peel­

Harvey Inlet (Australia) using a novel approach to the generation of hypotheses under

conditions of sparse field data. Their work plays an important role in the discussion given

by Young in Part One. The paper by Chahuneau et al. is likewise closely related to Spear

and Hornberger's work, exploring questions of uncertainty in the fluid mixing and trans­

port properties of a lake. Somly6dy's paper considers the hitherto little-discussed prob­

lem of uncertainty in the input (forcing function) observations and compares the impor­

tance to parameter variability of such uncertainty with the uncertainty of model calibra­

tion results. He uses a hydrodynamical model for Lake Balaton (Hungary) as an illustrative

case study. The papers by van Straten and by Mejer and J¢rgensen are concerned with

specific problems generated in applying off-line (as opposed to recursive) parameter­

estimation algorithms in lake water quality modeling. van Straten, for example, reports

results for maximum likelihood estimation of the parameters in a fairly complex phyto­

plankton model for Lake Ontario. The last two papers in this part of the book, by Ikeda

and Itakura and by Tamura and Kondo, both discuss the identification of statistical rela­

tionships in a set of field data using as few a pn'on' assumptions as possible about the

structure of these relations. Ikeda and Itakura's paper deals with a study of Lake Biwa

(Japan), whereas Tamura and Kondo concentrate more on the theoretical development of

their algorithm, with some illustrative results for the Bormida River in Italy.

There are seven papers in Part Three. The first two, as already mentioned, discuss

the application of Monte Carlo simulation methods in analyzing the effects of uncertainty

on the confidence attached to model predictions. Gardner and O'Neill's paper reviews

results for the effects of parameter uncertainty and covers part of the substantial contri­

bution that they and their colleagues have made to this field. Fedra adds an important

extension of the earlier work by Spear and Hornberger by emphasizing the significant

relationship between calibration and prediction (see also Beck's paper in Part One); his

work, focusing mainly on the ecological aspects of lake behavior, is applied to a case

study of Attersee (Austria).

The next two papers, by Reckhow and Chapra and by McLaughlin, are complemen­

tary to each other. Both apply a first-order analysis of prediction errors, but, whereas

Reckhow and Chapra treat the specific cases of simple nutrient loading models, McLaughlin
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presents an analysis of error propagation for a general class of distributed-parameter

models. Mclaughlin's results are in fact stated in a form equivalent to that of recursive

estimation and ftltering algorithms, which has important parallels with the discussion of

Beck's paper.

The contributions by Whitehead and by Koivo and Tanttu also draw upon methods

of recursive parameter estimation and prediction, but broaden the discussion of the book

toward management issues. Both papers are concerned with case studies of UK river sys­

tems, the Cam and the Bedford·Ouse (both of which are central to the discussion of Beck's

paper), although Whitehead introduces a wider, and more practice-oriented perspective on

planning and operational management probiems, including the application of Monte Carlo

simulation. Koivo and Tanttu restrict their paper to more theoretical aspects of operational

(real-time) forecasting of water quality.

Fisher's paper, the last in Part Three, continues with and expands the theme of un­

certainty in control and management studies. As opposed to Whitehead's interest in point­

source discharges of waste material, Fisher deals with the problem of managing non-point­

source nutrient inputs for the control of eutrophication in lakes, a problem background

common to nearly all the other papers in the book.

The short Part Four contains a contribution stimulated by the discussion at the

meeting. Sharefkin was prompted to prepare a paper giving a Bayesian interpretation to

certain problems of identification. In particular, he is concerned with how "a priori infor­

mation" and "data information" are combined and mapped into "a posteriori information",

after the identification exercise; he constructs his arguments around the papers presented

by Hornberger and Spear and by Chahuneau et al.

In closing this introduction, a brief comment can be made on the lively discussion

of the meeting. It is typical of IIASA meetings that a large part of the available time is

allocated to the informal exchange of views, experiences, and opinions; in our case it was

generally felt that these deliberations were truly instrumental in the success of the meeting.

It is not an easy task to convey an impression of the discussion to the reader who did not

participate himself. However, many of the themes touched upon then return in a digested

form in the chapter immediately following this introduction. Thus, here we wish to attempt

merely to draw a few conclusions and to evaluate briefly "where we are" and "where we

go" in water quality modeling and prediction.

Not surprisingly a substantial amount of time was devoted to the technical details

of both the models and the methods and there is little purpose in repeating such details

here. Of greater interest is the observation that the debate about which models to build

and which methods of analysis to apply was sometimes obscured by unspoken differences

in the objectives of modeling and analysis. There is no doubt that the objective of using

modeling as a tool for structuring information, with the ultimate aim of gaining an im­

proved understanding of the complexity of a system, demands an attitude different from

that required when the goal is to apply models for control, or, even more ambitious, for

design and management. Whereas for operational-control purposes it may be completely

satisfactory to have a purely data-based, simple model, even a black-box model that is

well-calibrated within the range of presently observed states, an application for design and

management requires a different approach because in these cases answers are expected for

situations often deviating very significantly from the presently observed conditions. This,

then, can be our first conclusion: that prior to any technical analysis it is important to

ask "why is it all being done?", and "what do we wish to do with it?".
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Following the organization of this book, the next issue for consideration is model

structure identification, which was discussed largely in relation to model calibration and

parameter estimation. Especially when management applications are the ultimate aim, a

preference can be observed among modelers to construct their models on the basis of

some assumed a priori physical, chemical, and biological theories. However, this perhaps

necessary step may lead to problems of over-parameterization and surplus content when

the model is calibrated against field data, although such a condition is by no means easy to

recognize. While techniques have been developed for determining the order of a model for

certain classes of linear models, any general theory seems to be lacking for the type of

commonly-met nonlinear models derived from a priori theory. And although analysis of

the parameter variance-covariance structure and, in association, a sensitivity analysis may

provide some insight, there are numerous pitfalls in such analyses. Thus, we may perhaps

conclude that a definite need exists for developing techniques to detect which components

of the models can be considered to be "hard" and which "soft", when confronting the

model response with the field data.

The problems encountered in model structure identification are closely related to

the problems of prediction and forecasting. Propagation of uncertainty is an important

issue for study, and there was quick agreement among the participants that any model­

based prediction should be accompanied by error-budget calculations. The controversy

between models based largely on empirical observations and models based on a priori

theory leads to the dilemma pointed out by Beck in the first paper: that with the former

we may predict the "wrong" future with great confidence, and with the latter the "correct"

future might be predicted but without any confidence whatsoever. Or, as one of the

participating biologists tersely put it: "model predictions are either false or trivial". Al­

though certainly excessive, this statement may serve as a warning that one should be aware

of the limitations of modeling in the field of water quality systems. It should not be over­

looked, however, that this awareness can only arise from the development and application

of methods for quantifying the extent of these limitations, examples of which are amply

supplied in the remainder of this book. Indeed, the issue of model credibility is perhaps

the most important challenge for future work on water quality modeling. Therefore, the

final conclusion to be drawn from the stimulating discussion of the meeting is that im­

provement of predictive power is to be expected only if we succeed in finding proper

methods to bring together the rigor of data-based analysis with adequately designed experi­

mentation and the achievements of a priori theory derived from past experience.

BRUCE BECK

GERRIT VAN STRATEN
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UNCERTAINTY, SYSTEM IDENTIFICATION, AND THE

PREDICTION OF WATER QUALITY

M.B. Beck

Intemationallnstitute for Applied Systems Analysis, Laxenburg (Austria)

INTRODUCTION

There would be little disagreement among water quality modelers with the opinion

of Orlob (1983a) that virtually all the significant developments since the (now) classical

work of Streeter and Phelps (1925) have occurred within the past two decades. During

the 1960s and early 1970s there was a very substantial investment in model-building

associated with water quality management projects, particularly in the United States. The

main legacy of this initial investment is a well-established interest in the development of

progressively larger and more complex simulation models. "Large" is admittedly a rather

imprecise description of a model, although a glance at some of the recent literature on

water quality modeling will give some impression of the intended meaning (for example,

Russell, 1975; Patten, 1975, 1976; 1 ~rgensen and Harleman, 1978; Scavia and Robertson,

1979). There is no doubt that the immense scope for complex system simulation created

by the advent of electronic computers has fostered the rapid growth of "large" water

quality models.

Relatively little attention, however, has been given to the problems of uncertainty

and errors in the field data, of inadequate num bers of data, of uncertainty in the relation­

ships between the important system variables, and of uncertainty in the model parameter

estimates. It is only during the last seven or eight years, for example, that an increasing

but still comparatively small number of detailed studies in system identification (model

calibration and verification) have been reported. These later developments might be

summarized by the statement that only "small" models have so far been calibrated

rigorously against in situ field data (see Beck, 1980, for a survey of the literature). The

reasons for this are naturally of concern in this study, as are the intimated distinctions

between "large" and "small" models and the emerging recognition of "uncertainty";

these topics will be discussed in more detail later in this paper.

The history of water quality modeling has been shaped by a number of quite

separate and almost independent contributions from various different scientific and

engineering disciplines. It is instructive, therefore, to review some of the major individual
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trends of the past, since this will help us to define the gaps remaining in the subject

today.

Hydrological sciences. The hydrological sciences have only recently become more

involved with problems of water quality. It is significant that the Intemational Associ­

ation of Hydrological Sciences convened its first meeting on water quality in 1978

(IAHS, 1978) and that a subsequent meeting on hydrological forecasting (IAHS, 1980)

attracted only six papers on water quality from a total of more than 70 contributed.

There is, nevertheless, a strong tradition of research in stochastic hydrology. Calibration,

parameter estimation, and uncertainty in rainfall-runoff and streamflow-routing models

have all been studied extensively. However, as will become apparent later, system identi­

fication in quantitative hydrological modeling is substantially different from system

identification in water quality modeling.

Systems ecology. Developments in systems ecology display a strong concern with

the stability and structural properties of a model once it has been developed (see, for

example, Adachi and Ikeda, 1978; Goh, 1979; Siljak, 1979). The problems of "uncertain­

ty" are now also widely recognized (Argentesi and Olivi, 1976; O'Neill and Gardner,

1979; Reckhow, 1979; Scavia et al., 1981), although research is generally concentrated on

prediction error analyses of models which are once again assumed to have been developed

and calibrated previously. There appears to be a distinct separation of the problems of

calibration and prediction, and a lack of detailed studies in data analysis and the identi­

fication of models by reference to in situ field observations. This point of view seems to

be held by others: in 1975 Eberhardt responded to the question "whither systems ecology?"

with the remark that "we should be very careful to avoid letting our computers run too

far ahead of what statistical methods and data tell us about the real world" (Eberhardt,

1977). Ulanowicz (1979) would also appear to be in agreement when he speaks favorably

of "... modeling in an a posteriori fashion, allowing the data to define interactions

[between variables] ".

Sanitary engineering. Unlike both the ecological and the hydrological sciences, sani­

tary engineering has until recently been reluctant to adopt the techniques of mathematical

modeling (Andrews, 1977; Andrews and Stenstrom, 1978; Olsson, 1980). This is partly a

function of different objectives - the interest is in new process designs and process con­

trol rather than "scientific understanding" - and partly a function of different traditions ­

sanitary engineers do not generally present their knowledge and hypotheses in a mathe­

matical format. Consequently, while routine operating data from wastewater treatment are

readily available, the majority of studies in time-series analysis have been confined to

"black box" modeling approaches (see also Beck, 1980). This is quite the opposite of the

situation in systems ecology, where models have flourished despite a relative dearth of field

observations.

System identification. This topic is usually associated with control theory, statistics,

and econometrics, and may perhaps be considered an intruder in water quality modeling
(Astrom and Eykhoff, 1971; Eykhoff, 1974). An impressive array of techniques has been

developed for the analysis of relatively conventional, well-posed problems, such as those

encountered in identifying models for aircraft dynamics, chemical unit processes, and

physiological systems (see Isermann, 1980), but water quality model identification

involves problems that are not at all well-posed so that these techniques may not· be

applied in any straightforward way.

This survey suggests that one of the major areas which needs investigation is the
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problem of uncertainty. There are two key issues: first, the problem of uncertainty in

the structure of the mathematical relationships hypothesized for a particular model; and

second, the uncertainty associated with the predictions obtained from models. These two

issues are discussed briefly and qualitatively in a companion paper (Beck, 1981); a more

detailed and quantitative statement of the same arguments is given here.

The questions posed by the issue of uncertainty are clearly questions about the

reliability of models and their forecasts. In particular, this paper is concerned with the

intimate relationship between the two aspects of uncertainty introduced above. In other

words, it emphasizes the importance of the relationship between calibration and predic­

tion, a relationship that is largely ignored in systems ecology. It is therefore assumed that,

in addition to providing a concise representation of existing knowledge about a system's

behaVior, mathematical models are intended for forecasting, which in turn implies a

concern with management. If decisions are to be made on the basis of the model's fore­

cast, how confident can one be that this forecast is correct, and what is the risk of making

a wrong decision? These have become familiar questions in water quality modeling and

management.

Two subsidiary topics underpin the central theme of uncertainty in calibration and

prediction; they are both related predominantly to problems of calibration (system

identification). First (in Section 3.1), we characterize some limiting properties of the field

data available for calibration of water quality models, compare our results with quantita­

tive hydrological system identification, and examine why there has been little progress in

the identification of wastewater treatment process dynamics. This leads, second (in

Sections 3.2 and 3.3), to an extensive discussion of the identification of model structures

using experimental field data. It is then possible to identify the desirable properties and

some probable limitations of algorithms for ill-posed problems in system identification.

It will also become apparent why time-series analysis, calibration, and "curve-fitting" ­

perhaps contrary to popular opinion - are concerned with the derivation of models that

are more than simple black-box descriptions.

Overlying the main theme of uncertainty, however, is the question of "large" and

"small" models mentioned briefly above. We shall interpret this as the larger question

of "dominant" and "not-so-dominant" approaches to the subject of modeling in general,

and the whole of Section 3 is therefore a statement of the "not-so-dominant" approach.

However, since we are trying to make a fair assessment of the advantages and limitations

of different approaches to modeling, we should consider both calibration and prediction,

and not calibration alone; Section 4 therefore concentrates on the predictive aspects of

modeling.

First, however, it is necessary to explain what is meant by the "dominant" approach

to water quality modeling, and why there is a need to question it.

2 A DOMINANT APPROACH AND SOME CONCERNS

An obvious barrier in the identification of water quality models has been the lack

of field data suitable for analysis. We suggest that it is partly the vacuum created by this

absence of adequate field data that has led to the predominance of the large simulation

model (broadly speaking, one which contains numerous state variables at many spatial

locations in the system). Large models of this type grew out of the double assumption
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that there are few constraints on numerical complexity and that more detail necessarily

means a better model. The checks and balances provided by readily available data have

not generally seemed to restrain the growth of model complexity. There are, nevertheless,

those who would argue against large models, believing that "small is beautiful" on a

number of grounds: because it is not possible to verify larger models against the available

in situ field data; because the responses generated by large models are not readily intelligi­

ble; and because techniques for optimal management and policy design cannot accommo­

date large models. Indeed, the discussions at recent workshops would have been much less

lively had it not been for these differences in opinion (see, for example, Russell, 1975;

Vansteenkiste, 1975, 1978).

However, it is unwise to rely entirely on the labels "large" and "small" in the

discussion that follows; the use of the terms "dominant" (conventional) and "not-so­

dominant" (unconventional) to describe the two approaches to modeling is to be pre­

ferred, although this again is not altogether satisfactory. In the present case, the more

established conventional approach* involves the (conceptual) subdivision of the field

system into smaller, individual components, whose (conceptual) behavior can usually be

approximated by laboratory-scale replicas (for example, chemostat and open-channel

flow experiments). It is assumed that the submodels describing these components can be

verified against the experimentally observed behavior of the replica; and that the model

for the field system can be assembled by linking together the submodels. Such models

tend to be large. But largeness and the inclusion of great detail do not necessarily imply

accuracy and reliability. It seems obvious that accuracy and reliability can only be assessed

by rigorous tests of the model's hypotheses against in situ field observations. It is at this

point that the problems of calibrating large models arise, although they are rarely ade­

quately recognized (see also Thomann et aI., 1979) and almost never adequately resolved.

The systematic recognition and resolution of these problems presents major, and possibly

insurmountable, difficulties given current methods of analysis. These difficulties are

fundamental to the discussion of this paper.

The above description merely depicts the archetypal form ofthe dominant approach

to modeling. However, those who follow this approach also subscribe, in effect, to a

school of thought that works principally from what may be called a priori theory. Thus

the model is supported by arguments that allow extrapolations from laboratory systems and

equivalent or similar field systems. At the calibration stage it is assumed that a priori theory

is correct unless demonstrably inadequate, and the difficulty clearly lies in demonstrating

inadequacy. For as long as there is a lack of in situ field data, the need to question the

original extrapolations will remain in doubt. Here, then, lies the chief distinction between

the dominant and unconventional (not-so-dominant) approaches to water quality model­

ing. With the unconventional approach the analyst works much more from the in situ

field data. It is assumed that the underlying mechanisms of system behavior can be

identified directly from these data. The model is supported by what is identifiable from

the in situ observations and, if these observations are few, the resulting models would

tend to be small. (It would be a mistake, however, to assume that the field data will

always be few, as we shall see later.) Thus, in the unconventional approach, a priori

* Referred to as "reductionist" by Young (1978,1983).
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theory is considered, at best, as a fertile source of more or less speculative hypotheses.

Moreover, the legitimacy of the extrapolations inherent in the dominant approach would

appear to remain unproven without the directly evaluative properties of this unconven­

tional approach.

2.1 Some Concerns about the Dominant Approach

The items below reflect a number of major concerns about the dominant approach

to modeling. They are quoted as points with which to open a discussion, in which inevita­

bly there will be differences of opinion, not because of any intention to detract from past

achievements.

Item 1. In the proceedings of a recent seminar on water quality management

Fleming (1979) discusses the topic of assessing water resources problems that link sedi­

ment, hydrological, and water quality processes. It is accordingly proposed that each of

these three components should be treated as a deterministic system for which mass and

energy balances in time and space can be calculated. Superficially there is nothing par­

ticularly disconcerting about this recommendation, although a nlOre careful examination

of the proposed mathematical model reveals features that are indeed somewhat more

disturbing. The hydrological catchment model is divided among three phases: in each

phase there are three interacting submodels that deal individually with the movement of

sediment, the quantity of flow, and the changes in water quality. Together with a ground­

water model, these submodels are used to assess the quantity and quality of water

resources; this assessment interacts with an optimization model, which in turn is linked to

regional, national, and international models. These are then apparently to be subordinated

to sociopolitical-economic models. Notwithstanding that this is presumably intended to

be a linked set of models (and not one single, enormous, economic model that embraces

all the other models), the catchment model has impressive dimensions, for it is not to be

restricted to a small stretch of river. On the contrary, the proposal was made specifically

for a major international river system.

Concern 1. In the discussion referred to above, Fleming states that the computer

era has produced (through modeling techniques) an "acceleration in our understanding

of natural processes". This may be so; but alternatively it may be that the computer era

has merely fostered the growth and popularity of large simulation models with little

accompanying increase in understanding. In addition the only constraint on mathematical

modeling is identified as the "ability of the planner to grasp the potential of the method".

One could argue conversely that such over-enthusiastic attitudes toward modeling, with

their emphasis on determinism, tend to mask the undoubted difficulties of accounting for

uncertainty. Complexity and completeness cannot necessarily be equated with accuracy;

given the limitations of the data available, a "complete" model containing a large number

of parameters is more likely to produce predictions with serious hidden ambiguities than

anything else.

item 2. Figure I appears in a book on ecological modeling from the mid-1970s

(park et a1., 1975). The authors, referring to the diagram, state that their results for

modeling and calibration are "relatively good". There are other "equally good" results

provided.
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FIGURE 1 An example comparison of the model response with the field observations.

Concern 2. The more sceptical reader looking at Figure I might well protest that

this diagram shows nothing more than a rather whimsical fluctuation peppered with a few

dots. Our concern here is that there ought to be a less subjective method of assessing the

performance of models. However, as Lewandowski (I981) points out, while there are

several definitions of model validity, there are very few applicable methods for model

validation. Thus, while such an analytical "vacuum" exists, there can be little more than

a somewhat fruitless exchange of opinions about the "goodness" (or otherwise) of models.

Item 3. In a case study of lake eutrophication management, a relatively complex

microbiological model was developed to describe nutrient transformation processes in the

lake (Leonov, 1980). The model responses were fitted to the data by adjusting the values

of the parameters by trial and error; some of the parameters were assumed to vary with

time in order to improve the calibration results. In particular, the values obtained for one

of the parameters imply that a more or less "regular" behavior pattern prevails for eleven

months of the year but that behavior during the remaining month is highly "irregular".

Concern 3. There are two main causes for concern in this item. First, suppose that a

model contains ten parameters for which values are to be estimated by a trial and error

comparison of the deterministic model responses with the field data. Most modelers

would admit to having preconceived notions about how a system should behave, and

during the fitting of the model to the data will probably have a preference for adjusting

the values of perhaps three or four of the ten parameters. Thus preconceived notions may

dictate the outcome of the calibration - clearly excluding any serious questioning of

prior assumptions and extrapolations - and preconceived notions are not always correct.

The second cause for concern is that the results obtained from the calibration might be

accepted without, in this case, any rigorous argument or evidence to support a hypothesis

of highly irregular behavior. In fact, far from being dismissed out of hand, the peculi·

arities of the calibration results might suggest how the structure of the model can be

improved.

Our main concerns about the dominant approach to water quality modeling may

therefore be summarized as follows:
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1. Attitudes toward water quality modeling have been largely characterized by a

strong sense that the behavior of the systems being studied is deterministic. This has

obscured the fact that the values of model parameters are rarely known accurately,

and that the larger the model, the less likely it is that a unique set of parameter

values can be estimated using a limited number of field data. Such (unjustified)

confidence in a priori theory engenders both a reluctance to put aside "classical"

assumptions and a readiness to reject the unconventional without due consideration.

2. There is no universal model for solving all manner of water pollution problems.

However, once a water quality model has been constructed the costs of develop­

ment (if large) may make it necessary to present the model as "universal" in order

to justify these costs. If a government agency confers its "seal of approval" on a

model, this lends a sense of authority to the use of that model and at the same

time may undermine confidence in an alternative model. "Complexity" and "com­

pleteness" can be misrepresented (and misunderstood) as "truth" and "accuracy".

There is a temptation to believe that a large, comprehensive model must be correct,

for how can it possibly fail to be so if every detail of conceivable relevance has

been included?

3. Confidence in a model is perhaps unavoidably subjective. Yet surely one should

doubt any model that requires the use of an absurd hypothesis to make the model

responses fit the data. This would merely be a sterile calibration exercise in which

curve-fitting is an end in itself. It would ignore th~ obvious inadequacy of the

model, excluding the closer examination that could actually be a source of new

ideas, and would suggest that calibration is something of a backwater compared

with the mainstream of model development.

These, then, are the concerns that have provoked this discussion. It would be naive to

imagine, however, that these issues can be resolved as easily as they have been raised - a

precise resolution of the issues requires first a precise definition of the issues, and our

concerns are themselves borne of a vague sense that "all is not well with water quality

modeling".

3 FIELD DATA, UNCERTAINTY, AND SYSTEM IDENTIFICATION

Most analysts and decision-makers would wish to be reassured that the patterns

of behavior simulated by a model do in fact resemble observed patterns of behavior.

There is thus a need for system identification, or more specifically, for model calibration,

an exercise typically associated with curve-fitting and parameter estimation. However, the

word "calibration" is misleading. It suggests an instrument (here, the model) whose

design has been completed and whose structure is fixed; it is only necessary to make a

few minor adjustments to the parameter values. This is not what is meant by "calibration"

in the discussion of water quality-ecological modeling that follows. There are two main

reasons for this: the nature of water quality field data and the nature of contemporary

a priori theory. This section, therefore, begins with a discussion of these two factors,

which form the basis for a thorough exploration of the key problem of model structure

identification. An important objective of this exploration is to map the "topography" of
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the problem by examining it from several different perspectives; we then consider briefly

the philosophical foundations upon which we hope to construct a solution. We must also

dispel any expectation that some "universal" approach to modeling will be presented here.

To do this, it is necessary to realize that model development may take place under various

conditions: with few or no data; with some adequate data; or with too many data (a

situation which could become increasingly common in the future). This discussion will

consider only the second of these categories; however, a universal approach to modeling

should of course be able to deal with all three.

3.1 Field Data and A Priori Theory

At present, field data from water quality systems are generally scarce. However,

when data are available they are subject to high levels of error and uncertainty. Halfon

(1979a), for instance, shows just how many sources of error can affect the data obtained

from large lakes. These errors, however, are not the only problems encountered in the

calibration of water quality models. It is not simply a matter of large errors, too Iowa

sampling frequency, or too short a record of time-series data.

Young (I978) suggests that the inability to perform planned experiments (see

below) is a distinctive feature of the modeling of badly defined systems: a category which

clearly includes water quality-ecological systems. Successful calibration is hindered by

the conditions under which field observations are obtained. Planned experiments may be

defined as experiments in which the responses of some of the system variables (outputs or

effects) are recorded and are assumed to be unambiguously related to changes in other

(input, causative) variables. In such planned experiments all variables (except the input

deliberately manipulated and any response variables thereby disturbed) are maintained at

constant values. In other words, the "environment" of the system is held constant, the

causative variables can be manipulated to conform with a desired pattern of change, and

the experiment is planned such that unambiguous relationships between the variables can

be determined. Planned experiments of this kind are virtually impossible for water

quality-ecological systems; there are merely successively less good approaches to this ideal.

3.1.1 Active, Natural, and Passive Experiments

A considerable amount of work in system identification has been devoted to the

problem of experimental design (Astrom and Eykhoff, 1971; Soderstrom et a!., 1974;

Gustavsson, 1975). Two interpretations of this problem are particularly relevant to our

discussion since they demonstrate a number of desirable features of experimental design

that are rarely possible in the collection of water quality data. The frequency-response

interpretation has immediate relevance to this discussion; the sensitivity-analysis inter­

pretation is of more general interest, but is significant here in that it links together some

of the arguments of Sections 3 and 4.

Let us begin with the simplest p o s s i b ! ~ situation, ilJustrated in Figure 2. In this case

the purpose of the model is to characterize the dynamic relationship between two measured

variables: u(t), the input, and yet), the output. The objective is therefore to design an

experiment which has an appropriate set of variations of u(t) with time t. Assuming a

frequency-response interpretation of system behavior, this objective can be made more
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FIGURE 2 Definition of a simple system for the interpretation of data from field experiments.

specific: for example, it is desirable to design u(t) such that its frequency spectrum is

"matched" with the expected frequency-response characteristics of the system. (This

"matching" does not, of course, take place with knowledge of the actual frequency­

response characteristics of the system, since this is what we are trying to determine.)

At the same time it is desirable to design u(t) such that in the subsequent analysis it

will be possible to discriminate against the effects of high-frequency random measure­

ment errors, i.e., some of the effects of the "environment" shown in Figure 2.

Given these limited, qualitative notions of experimental design, we shall now

examine the problem of identifying the dispersion mechanisms affecting the distribution

of a dissolved material in a body of water. This is the classical problem of water quality

modeling, and continues to attract much attention (for example, Somly6dy, 1977;

The, 1978; Kahlig, 1979; White et aI., 1980; Jakeman and Young, 1980; Young, 1983;

van Straten and Golbach, 1982). The tracer experiments employed for subsequent model

calibration, which we shall define as active experiments, are the closest field approxi­

mations to the planned experiments of laboratory science. They possess three of the most

desirable properties of experiments: (i) significant, in this case impulse-like, input pertur­

bation of the system - this is intuitively desirable because the observed effects of dis­

persion are most pronounced for a high-frequency input variation; (ii) relative lack of

ambiguity in the assumed relationship between input and output; (iii) restriction of the

experimental measurements to the quantities assumed to vary.

The problem of model calibration is thus as well-posed as it can be. However, it will

swiftly degenerate should any of these three properties not hold, for example, if: (i) the

frequency components of the input are not significant (except for the effects of measure­

ment error) at the higher frequencies where the response of the system is theoretically

most sensitive to the dispersion coefficient; (ii) the tracer or dissolved material is not

completely conserved, i.e., there is some interaction with the environment of the experi­

ment; (iii) other quantities, such as stream discharge, also vary with time, i.e., the
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environment of the experiment is not constant. Ample evidence of the limitations intro­

duced by these compromises. especially (i) and (iii), can be found in recent analyses of

dispersion mechanisms in the River Cam (Lewandowska, 198 I) and the lower reaches of

the River Rhine (van Straten and Golbach, 1982).

It is instructive to consider the Rhine study (van Straten and Golbach, 1982) in

somewhat greater detail, partly because the problems encountered are typical of system

identification in this field, and also because it provides a natural extension of the dis­

cussion to the topic of sensitivity analysis. Under the assumption that the classical

advection-dispersion model would adequately describe the observed variations in the

field data. van Straten and Golbach found that the loss function for calibration was much

more sensitive to the value of the stream velocity than to the value of the dispersion

coefficient. At the "best" value for the estimated stream velocity, both a ten-fold decrease

and a two-fold increase in the value of the dispersion coefficient produced only a marginal

increase (12% and 24%, respectively) in the value of the loss function. A 7% change in the

estimate of the stream velocity, however, gave a 47% increase in the value of the loss

function. We can therefore conclude that the gradient of the loss function surface with

respect to the dispersion coefficient is relatively small close to the minimum of the loss

function. In other words. for these particular experimental conditions, the output response

of the model is not sensitive to the value of the dispersion coefficient, which is therefore

probably not uniquely identifiable. A common consequence of this lack of sensitivity

(or identifiability) is that the estimation error covariances of the associated parameters

will be large, which in tum has important implications for the model predictions (see

Section 4). In more general tenns, however, and for more complex multiple-input/

multiple-output systems, it is possible to minimize subsequent difficulties of this kind.

A prior analysis of the assumed model structure may indicate a combination of input and

output measurements that will allow the unique estimation of all the model parameters

(see, for example, Cobelli et al., 1979). However, this merely confinns once again that a

well-designed experiment must be based upon a good a priori model of system behavior.

Not only is the availability of a good a priori model unlikely, as we suggested ir,

Section 2, but the scope for implementing active experiments is virtually confined to the

classical problem of identifying dispersion mechanisms. However, this does not imply

that we cannot observe natural experiments in complex natural systems. For example,

the hydrological sciences place considerable emphasis on the identification of catchment

characteristics through analysis of the response of the stream discharge to a storm (IAHS,

1980). In the light of the preceding discussion the importance of the stonn is obvious:

it represents a significant input disturbance of the system, and the output response can

be relatively unambiguously related to the input disturbance. There are, however, signifi­

cant differences between active experiments and natural (hydrological) experiments.

The environment of the hydrological system is not entirely constant (the temperature will

vary, for instance, thus affecting the evapotranspiration rate) and it is not possible to

manipulate the input disturbance at will. This may lead to problems similar to those

encountered in the Rhine dispersion study. Nevertheless, the subsequent calibration

problem is likely to be as well-posed as could be expected in water quality modeling.

If the assumption of a simple two-variable (input/output) relationship is not sufficient

to characterize the observed behavior of the system, the comparative wealth of a priori

theory may be used to restructure the model such that a more accurate representation is
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obtained (as in Whitehead et aI., 1979). Thus, the field data available from natural experi­

ments can be summarized by the stylization "significant input perturbation: significant

output perturbation" (Figure 3).

Input Time-Series

Time

Output Time-Series

Time

FIGURE 3 Stylized representation of the input/output data available for, e.g., rainfall/runoff model

identification (natural experiments).

Natural experiments of the kind cescribed above are quite rare in water quality­

ecological systems. Consider, as a CO'1trast to the natural hydrological experiment out­

lined earlier, the "extreme" output response which appears as a phytoplankton bloom

in a lake. The bloom occurs because a specific but apparently commonplace sequence of

environmental (input) conditions forces the system into a region of the state space in

which a nonlinear mode of behavior becomes dominant. Unlike the example of the

hydrological system, the response of the lake is probably not unambiguously related to

an extreme input disturbance. Instead, it may be a consequence both of subtle changes

in the system's environment and of a very specific combination of circumstances within

the lake at the given point in time (or space). Such a situation has useful parallels with

the conditions that have prompted the application of catastrophe theory to problems

of water quality modeling (see, for example, Kempf and van Straten, 1980). Two points

have special relevance. First, the applicability of elementary catastrophe theory depends

upon the assumption that variations in the inputs are relatively slow (lower frequency)

with respect to the output response variations (higher frequency). Second, the matching

of this theory to observed behavior implies a quite specific, critically important non­

linear structure for the dynamic model of the system.

For a number of reasons, therefore, field data obtained from the predominantly

passive experiments with water quality-ecological systems do not possess the properties

required for system identification. Pictorially the data for such situations can be repre­

sented as in Figure 4 and hence stylized as "apparently insignificant input perturbation:
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FIGURE 4 Stylized representation of the input/output data available for, e.g., lake water quality

model identification (passive experiments).

significant output perturbation". If a specific model structure is needed in order to

describe observed behavior, which the parallel with catastrophe theory would suggest,

the probability that a priori hypotheses clearly embody this structure is not great, as we

shall discuss in Section 3.1. 2.

Finally we consider an important variation on the above theme which is in some

sense the converse of the conditions depicted in Figure 4. This last class of condi tions is

encountered in the identification of models for microbiological wastewater treatment

processes, such as, for example, an activated sludge unit (Beck et aI., 1978). Figure 5

summarizes the stylized form of this category of field data, which we might define as

"apparently significant input perturbation: insignificant output perturbation". The

system, observed in this way, appears to possess remarkable stability. Typically the

mean levels of the input disturbances are much higher than corresponding mean output

levels (for biochemical oxygen demand (BOD), and suspended solids, for example), and

Input Time·Series

Time

Output Time-Series

Time

FIGURE 5 Stylized representation of the input/output data available for, e.g., wastewater treatment

plant model identification (passive experiments).
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some of the large-amplitude, higher-frequency variations of the inputs are attributable to

random measurement error. It is not surprising, therefore, that it is difficult to relate

output to input, even in a statistical sense, which in turn accounts for the tendency for

strongly autoregressive models to be identified from such data, Yet in these systems

conditions equivalent to those of Figure 4 do occur, and they occur for very much the

same reasons as discussed above, Longer-term variations in the input disturbances can,

in combination with a specific set of operating conditions, induce subtle but important

changes in the microbiological state of the activated sludge, While these complex changes

themselves occur slowly, they may eventually lead to what are observed as relatively

rapid changes in the system's output responses (Tong et aI., 1980),

3.1.2 A Priori Theory and Ambiguity

The problems of error-corrupted data and the lack of planned, active, or natural

experiments (in the sense that we have used these terms) are technical, rather than

fundamental problems of model calibration, Admittedly, they lead to severe difficulties

in the application of methods for system identification, but they are purely technical in

the sense that if the analyst knew, a priori, how the system behaved, then it would still

be comparatively easy to distinguish the estimated patterns of behavior in the observed

field data, The basic problem of calibrating water quality-ecological models is the limited

degree of a priori knowledge about expected system behavior. In spite of very many

laboratory-scale experiments and a number of major field studies, our knowledge of the

relationship between the mineral, organic, and microbiological components of water

quality-ecological systems is actually quite incomplete, This means that model calibration

should concentrate on resolving the problem of model structure identification, Indeed,

the question of accurate parameter estimation will only be touched on briefly in the

following discussion,

A somewhat sophisticated, but particularly apt example of uncertainty in the

structure of model relationships is given in Biennan's study of Saginaw Bay, Lake Huron

(Bierman et aI., 1980), Bierman noted that the output response of his model was especially

sensitive to the choice of hypothesis for the growth-rate of phytoplankton, The model

had originally been calibrated against field data from Saginaw Bay with phytoplankton

growth expressed according to the threshold hypothesis - namely, that growth-rate is

governed only by that single factor which is determined to be rate-limiting - and there

was additional evidence from laboratory experiments to support the chosen hypothesis.

But Bierman subsequently admits that an alternative hypothesis - the multiplicative

growth hypothesis, where all factors contribute to an overall rate of growth - could

probably also have been calibrated against the Saginaw Bay data. Calibration of this

differently structured model with the alternative growth-rate expression would almost

certainly have resulted in different estimates for all the other parameter values in the

model. The significance of this example is, of course, that it demonstrates how sufficient

uncertainty exists in our a priori theories of system behavior to allow considerable

speculation about the precise structure of an appropriate mathematical model. In short.

there are am biguities in the a priori theory of behavior patterns in water quality-ecological

systems.

There is fairly widespread recognition of the effects of such ambiguities on the

process of model calibration. For instance, Halfon (l979b) presents results for a model of
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Lake Ontario where an order-of-magnitude change in many of the estimated parameter

values gives rise to an increase of merely 6% over the minimum of the loss function. There

are many combinations of the parameter values that fit the data "equally well". It might

be that the occurrence of this flat loss-function surface is dominated by errors in the field

observations. If this is not the case, however, one should clearly question the appropriate­

ness of the model structure, as does Halfon. Yet Halfon's questioning, although correctly

aimed (according to the concerns outlined in Section 2) leads to answers that err on the

side of accepting convention. He concludes, in effect, that all the parameters are more or

less equally significant (or equally insignifican t) in determining the correspondence

between model and observations. There is thus no radical rethinking of the model struc­

ture; it is considered to be sufficiently aggregated and to have no redundant parameters,

i.e., no surplus content.

The tendency, as stated in Section 1, is to accept the legitimacy of extrapolations

from laboratory or similar field situations. The analyst who justifies surplus model

content on the basis of these extrapolations must support one of two possible arguments:

either the surplus content of the model has originally been unambiguously identified by

a prior calibration for another field system, which is unlikely in the present circumstances,

or his justification is founded upon a chain of similar justifications starting from an

extrapolation from laboratory to field conditions. An argument such as the latter covers

the possibility of a further implicit, but important extrapolation. Suppose that, in order

to overcome the ambiguities of unconstrained estimation of many parameters, bounds

are introduced to define "acceptable" ranges of values for the estimates. (A logical

extension of this is to restrict some of the a priori "better known" parameters to point

estimates, which are then assumed to be known without error.) But from what source of

absolute authority are these bounds themselves derived? For example, if the bounds on

the growth-rate constant of a species are drawn from laboratory-determined values, it

should not be forgotten that such values are only defined relative to the model (kinetic

expression) that was assumed and calibrated for the observed nutrient and phytoplankton

concentrations in the laboratory experiment.

This is not, however, to dismiss entirely the accumulation of experience but rather

to emphasize that too much confidence is frequently attached to the validity and relevance

of a priori theory.

3.2 Model Structure Identification

Given the preceding discussion we see that calibration of models for water quality­

ecological systems is unlikely to be a simple and straightforward matter of making minor

adjustments to a well-designed "instrument". Instead, even before asking the question

"Can I estimate the model parameters accurately?", the analyst must first ask himself

whether he knows how the variables of the system are related to each other. In particular.

one must ask whether information about these relationships can be identified from the

in situ field data. Most exercises in model calibration have focused solely on the matter of

parameter estimation; hence little attention has been paid to the arguably more important

prior problem of model structure identification (Beck, 1979a). As a simple example, it

may be a fine idea to estimate the slope and intercept ofa straight line drawn through a set
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of data points (i.e., parameter estimation), if it has already been established that a straight

line, and not a curve. will give the best fit to those data (i.e., model structure identifi­

cation). Hence, model structure identification logically precedes parameter estimation.

Undoubtedly it is a complex problem whose complete description is a function of many

elements, requiring examination of the problem from several different perspectives.

Perspective 1. In order to describe the problem of model structure identification

more precisely, let us begin by introducing the following general model of the system's

dynamics

x(t) = C{X(t), u(t),a(t)} + E; (t)

y(tk) = h {X(tk),a(tk)} + TJ(tk)

where

x n-dimensional vector of state variables,

u - m-dimensional vector of measured input disturbances,

y p-dimensional vector of (discretely sampled) measured output variables,

a l-dimensional vector of model parameters,

E; n-dimensional vector of unmeasured (unknown) input disturbances,

TJ p-dimensional vector of output measurement errors,

(I a)

(Ib)

and Cand h are nonlinear, vector-valued functions; t is the independent variable of time,

t k is the kth discrete sampling instant in time, and x denotes the derivative of x with

respect to t. From Section 3.1.1 it is apparent that system identification is generally

concerned with the analysis of that which is measurable - the inputs u and the outputs

Y. i.e., the "external" description of the system (see also Figure 2) - in order to infer the

characteristics of C, h, x, anda, i.e., the "internal" description of system behavior. This

process of inference may require assumptions about the "environment" of the system,

E; and TJ, or it may conversely be directed to drawing conclusions about the properties of

E; and TJ themselves.

Perspective 2. In addition to the fonnalities of eqn. (1), let us introduce a com­

plementary conceptual representation of the system, as shown in Figure 6. First note the

distinction between the microscopic (block 1 in Figure 6) and macroscopic features

(block 2) of the system's dynamics and between the easily and not easily measured

state variables, X m and xu, respectively. Xu is intuitively associated With the (literally)

microscopic dynamic features of the system's behavior patterns because these detailed

microbiological characteristics are not directly observable. It is particularly difficult,

for example, to monitor mechanisms of nutrient uptake and release by micro-organisms

(a microscopic feature), but it may be supposed that such mechanisms have considerable

significance for the observed variations in chlorophyll-a concentrations (a macroscopic

feature). The process of inference mentioned in Perspective 1 is thus especially difficult.

If the microscopic features of block 1 in Figure 6 are of central interest in determining

and understanding system behavior, they must be inferred from identification of their

interaction with macroscopic state variables observed in the presence of a highly uncertain

"environment" (block 3) characterized by high levels of measurement error and random

input disturbances.
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(3) SYSTEM ENVIRONMENT AND MEASUREMENT PROCESSES
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(2) SYSTEM STATE DYNAMICS

(Macroscopic features)
)(

Variations in (e.g.): pH, Temperature, Dissolved n

oxygen, Biological oxygen demand,
Chlorophyll-A concentrations

+

y

FIGURE 6 Conceptual representation of the system for perspective 2 on the problem of model

structure identification.

Second, the conceptual distinctions between blocks I, 2, and 3 can be loosely

associated with three types of inadequacy in a given model structure. This requires

further careful consideration. Suppose that the analyst attempts to identify a model

of the system that is consistent with the "observable state" of the system; this implies

a natural choice of state variables (xm ) directly related to the output observations,

which in turn implies a strong correspondence between block 2 and "that part of the

system being modeled". Thus, in the event of a demonstrable discrepancy between

"that part of the system being modeled" and the observed behavior of the "system",

one or more of the following underlying causes may be responsible:

(a) Interaction between Xu and X m has not been accounted for (i.e., relationships

between block 1 and block 2);

(b) The relationships among the variables of block 2 are incorrectly specified (i.e.,

relationships within block 2);

(c) There is significantly nonrandom interaction between X m and the assumed "envi­

ronment" of the system (i.e., relationships between block 2 and block 3).
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These are important classes of causes and they will be especially useful in constructing

arguments for resolving the problem of model structure identification.

Perspective 3. At this point it is appropriate to offer a working definition of model

structure identification:

Model structure identification is concerned with establishing unambiguously and by

reference to the in situ field data how the measured system input disturbances, u, are

related to the state variables, x, and how the state variables are in turn related both to

each other and to the measured outputs,y.

It is thus an oversimplification to suggest that this problem is analogous to the problem

of choosing the order of a polynomial that "best" fits the set of data. Solving the latter

problem can be more specifically described as model order estimation, which, while it is

an important component of the overall solution, nevertheless leaves some of the most

challenging aspects of model structure identification unresolved. Since this may appear

to be a subtle difference of definitions, it is important to make a further clarifying

comment. Let us suppose, for instance, that an analysis of the input/output time-series

leads to a model in which input and output are related according to the form shown in

. . . .. . . . . . . .............
...

.......................... .

Input

ult) i_
.. :-:-:-:-:.;-:.;.;.;-:.:< .-: .

...•........ ···..If

Output

•
y(t)

Input u(t)

Time t

Output y (t)

FIGURE 7 Identified input/output relationship for the observed system behavior; from the point of

view of the model the system is considered to be a black box, i.e., nothing is assumed to be known

about the internal mechanisms that govern the relationship between input and output.
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Figure 7. Model order estimation (and parameter estimation) would constitute such an

analysis; but only if the analysis were directed toward answering questions about why

and by what internal mechanisms the input and outpu t are so related would this consti­

tute model structure identification as defined here. There is a large body of literature on

methods of model order estimation (for example, Box and Jenkins, 1970; Astrom and

Eykhoff, 1971; Akaike, 1974; Unbehauen and Gohring, 1974; van den Boom and van den

Enden, 1974; Chan et aI., 1974; Soderstrom, 1977; Wellstead, 1976, 1978; Young et aI.,

1980), although it is not certain how many of these methods would be applicable under the

conditions discussed in Section 3.1 (see also Maciejowski, 1979). Most of this literature is

concerned with the analysis of problems in which model structure identification is either

not relevant (because a priori theory is not fraught with ambiguities and contradictions)

or not important (because just the abstract mathematical properties of the model are

sufficient for the solution of the problem).

Perspective 4. Our working definition of model structure identification can be rep­

resented as in Figure 8 and hence specified in more detail. It can now be seen that:

Given the input/output data as the fixed basis for analysis, it is necessary to detennine

an appropriate number of state variables for the model (the "nodes" of the system

description in Figure 8) and appropriate expressions for the relationships between

U, x, a, and y, that is, f and h in eqn. (I).

A simple example will serve to illustrate this point. Suppose we are investigating the

removal of a substrate in a closed system, and our first hypothesis is a linear model

(2)

in which x I, the concentration of the substrate, is the state variable, and Q 1 is a parameter

representing a first-order kinetic decay-rate constant. For a second hypothesis about the

SYSTEM

Outputs (y)

Fixed for
analysisi

Parameters (01)

Fixed for
analysis

Inputs (u)

Plausible hypotheses
(variable)

FlGURE 8 Pictorial defmition of the problem of model structure identification.
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observed system behavior we might propose a Monod-type kinetic expression and the

presence of a mediating micro-organism in the reaction

Model II: Xl (t)

(3)

where the additional state variable Xz is the micro-organism concentration anc we have a

vector [ O ' ~ , 0';, 0';, O'~ I of associated model parameters. Now recall that there are pre­

sumably some noise-corrupted measurements available from this experiment, but that we

do not know which, if either, of Models I and II best describes the observed behavior.

Model structure identification is thus concerned with determining whether [XI] or

[x I, xz] is the most suitable choice of state vector and with identifying an appropriate

form for the expression contained in the square brackets [.] of eqns. (2) or (3). If both

models are thought a priori to be good approximations of observed behavior, this might

also be called a problem of model discrimination (Shastry et aI., 1973; Maciejowski,

1979). But if neither hypothesis is adequate and a more complex pattern of behavior is

suggested by the analysis of the data, then the generation of alternative, more appropriate

hypotheses is a very difficult problem. This kind of problem will be of central concern

in the following.

Perspective 5. The simple example discussed with respect to eqns. (2) and (3) can

be generalized by rearranging eqn. (Ia) as follows (Beck, 1979a):

X(t) ='1' {x(t), u(t), a l (t)} + ~ {x(t), u(t),a z (t)} + ~ (t) (4)

Here .'T {-} includes expressions representing relationships from a priori theory that are

considered to be relatively well known, for example, transport and dispersion properties;

~ {.} accounts for all other phenomena whose significance in the observed patterns of

behavior is a matter of speculation and for which no well-established mathematical

relationships are available a priori. a I and a z are, respectively, the vectors of model

parameters associated with .'1' and 7/ . The distinction drawn between .'1' and ~ is, of

course, rather arbitrary, since there tends to be a complete spectrum of degrees of con­

fidence in the theories incorporated in a model. Nevertheless, the ideal objective during

the process of model structure identification would be to eliminate W from eqn. (4) by

modification and/or expansion of the structure of.'T.
How precisely one could approach or attain this ideal objective, by a process of

both generating and assessing plausible hypotheses, is again a basic concern of this study.

Perspective 6. At this point we introduce one further conceptual representation of

the problem of model structure identification. Suppose the patterns of system behavior

exhibited in the (historical) field data can be represented by the set A in the set P of all

possible patterns of behavior - see Figure 9. This pictorial representation has its origins

in the work of Mankin et al. (1977); qualitatively, it is a powerful medium in which to

express the following arguments. For reasons that will become apparent later, care must

be taken to qualify P as being the set of all behavior patterns that one would expect to

observe in "reality". Our first hypothesis for a model (say Md might be rather modest

in size, allowing only a somewhat restricted type of behavior, although a reasonable
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FIGURE 9 Perspective 6 on model structure identification: P is the set of all possible behavior

patterns; A is the set of historically observed patterns of behavior; M, is the set of behavior patterns

simulated by the first model hypothesis; M2 and M, are alternative models hypothesized after assess­

ing the suitability of M"

proportion of the set of behavior patterns simulated by the model (M 1 in Figure 1)

is contained in the set A. Again. one must be careful about misinterpretation. Tenns

such as "small" model or "limited variety" of behavior patterns should not be equated

too literally with a small number of variables, equations, or relationships. Moreover,

note that, strictly speaking, A and M1 represent observation and simulation under exactly

equivalent conditions; such equivalence may not apply if M1 contains relationships

based, in effect, upon extrapolations from laboratory conditions. An example of a

model typifying M1 might be the Streeter-Phelps model of stream dissolved oxygen

(DO)-biochemical oxygen demand (BOD) interaction. This model is a good starting

point for analysis, although we are aware that its ability to describe system behavior

is limited. Thus, given Figure 9 as a pictorial representation of the problem, what does

the analyst do? His first model may not be bad, for it has captured part of the essence

of reality (A and M1 have an intersection), but it is far from being good - it does not

simulate half of what was obselVed in practice. The crucial issue of model structure

identification is this: we require a method that provides a useful feedback of diagnostic

infonnation from analysis of the first hypothesis (M 1) so that a second hypothesis (M2 )

can be cast more fully within the set of obselVed patterns (A). It would be undesirable

at an early stage of the analysis to suggest a revised model (M 3 , say), probably both

greater in size and with relationships different from those of M1 , that merely simulates

more apparently spurious behavior.



Uncertainty, system identification, and water quality prediction 23

3.2.1 An Approach Based on Recursive Estimation

At this point let us pause to assimilate the salient points of the foregoing discussion.

The "problem" is model structure identification. Equation (I), the working definition,

Figure 6, Figure 8, eqn. (4), and Figure 9, are different, complementary perspectives

which, when assembled together, provide a broad description of this problem; some,

especially eqn. (4), will subsequently become important in the development of solutions.

Indeed, what is really required as a means of solution is an "intelligent" method of model

structure identification - intelligent because it should indicate which parts of the struc­

ture are inadequate and how they might be corrected. Using the representation in Figure

9, such a method should maximize the probability of moving from M[ to M2 and mini­

mize the probability of moving from M[ to M3 .

One promising approach is to restate the problem of model structure identification in

terms of the problem of parameter estimation (Young, 1974, 1978; Beck and Young,

1976; Beck, 1979a; Whitehead, 1979); this is assessed as "promising" simply because it

generates a relative wealth of the kind of diagnostic information mentioned above,

although we would not claim that this yields more than partial solutions to the problem.

In fact, the very wealth of diagnostic information itself leads to other difficulties that will

be discussed below. In order to develop the approach, however, it is first necessary to

introduce some basic concepts underlying recursive estimation algorithms. We shall then

present an illustrative case study (in Section 3.2.2), where it is reasonably straightforward

to solve the problem of model structure identification, and proceed finally (in Section

3.3) to assess the prospects for further progress in this field.

For our purposes an important distinction can be made between parameter estimation

algorithms that are off-line (or block data processing schemes) and algorithms that are

on-line, or recursive. Figure 10 shows the essential differences between the two types of

algorithm. With an off-line procedure (as in Figure lOa) the parameter estimates are

assumed to be constant and equal to their a priori values, aO
, while the complete block of

time-series field data - from time toto tN of the experimental period - is processed by

the algorithm. Frequently all the data are processed together in one computation. A loss

function, generally based on the errors between observed and model reponses, is calculated

at the end of each iteration; the algorithm then attempts to minimize the loss function

over the parameter space and computes an updated set of parameter values, ai, for

substitution into the next iteration through the data (from to to tN)' A recursive algorithm,

in contrast, computes revised parameter estimates, a°(tk), at each sampling instant tk of

the field data (see Figure lOb); the minimization of the error loss function is implicitly,

rather than explicitly, included in the algorithm. At the end of the block of data the

estimates aO(tN) are substituted for the a priori parameter values a[ (to) of the next

iteration through the data. Subsequent iterations through the set of field data are

required since any initially incorrect estimates, aO(to), contribute larger errors to the

calibration loss function than the errors contributed by initially correct estimates. (By

implication, therefore, the minimum of the loss function is unlikely to have been located

after the first iteration.) The ability of a recursive algorithm to estimate time-varying

parameter values, upon which certain very useful interpretations will be placed shortly.

is its greatest asset here.

In the case of a recursive estimator. therefore, the estimate eX of a at time t k is given

by an algorithm of the general form
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FIGURE 10 Methods of parameter estimation: (a) off-line; (b) recursive. The notation tk denotes

the kth discrete sampling instant in a time-series with N samples; the superscript i in af denotes the

estimate at the beginning of the (i + l)th iteration through the data.

(5)

where the second term on the right-hand side is a correction term based on the error

between observationsy(tk) and an estimate of those output reponses,y(tk Itk-l), obtained

from the model using estimated values for the parameters from the previous sampling

instant t k - 1 . G(tk ) is a weighting matrix whose elements may be thought of as being

dependent upon the levels of uncertainty (or error) specified for the model (as an approxi­

mation of "reality"), in the unmeasured input disturbances ( ~ ) , and in the output response

observations (TJ). For the time being our arguments will center upon the effects of the

errors (e) in eqn. (5) on the performance of a recursive estimator, where

(6)

Later, in Section 3.3.2, the discussion will return to a more serious consideration of the

role of the matrix G(tk ) in solving the problem of model structure identification.

Perspective 7. Armed with a basic understanding of recursive parameter estimation

algorithms let us now resume our discussion of the original problem. Imagine that the

state variables x in a model may be represented conceptually by the nodes of Figure 11 b

(this is similar to the concept of Figure 8) and that the parameters a are visualized as the

"elastic" connections between the state variables. If we have assumed that all the parame­

ters have values that are constant with time and yet a recursive algorithm yields an

estimate of one or more of the parameters that is significantly time-varying, we may

question the correctness of the model structure chosen. We can argue this point as follows.
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FIGURE 11 An illustrative example showing the concept of using a recursive parameter estimator in

the context of model structure identification: (a) hypothetical model response and observations

(dots); (b) conceptual picture of model structure; (c) recursive parameter estimates.

The general tendency of an estimation procedure is to provide estimates x of the state

vector, or some function thereof, i.e., y, that track the observations y. Hence, if any

persistent structural discrepancy is detected between the model and "reality" (in other

words, the errors E exhibit a significantly nonrandom pattern), this will be revealed in

terms of significant adaptation ofthe estimated parameter values. Clearly, direct adaptation

of the model structure cannot occur, because the relationships between u, x, and y must

be specified in a fixed manner for the purposes of implementation. Such variability of the

parameter estimates with time can, of course, occur for several reasons; for instance, the

parameter may be truly time-varying in accordance with a seasonal fluctuation. However,

while this latter possibility is important, let us assume that it is not relevant to the illus­

trative example of Figure 11, which we shall now describe in more detail.
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We start with Period I of Figure Ila. The model responses (Y) and output obser­

vations (y) are essentially in agreement over this period and there is no significant

adaptation of the parameter estimates (according to Figure lIe). At the beginning of

Period 2, however, there is a persistent discrepancy between'y andy. It might be supposed,

for example, that the underlying cause of the discrepancy is an inadequacy in the behavior

simulated for XI and X2, that 0:1 is sensitive to this discrepancy (Figure II b), and that

(persistent) adaptation of the estimate 0: 1 (Figure lIe) partly compensates for the error

between y and y. In Period 3 there is again disagreement between the observations and

model responses. which leads to adaptation of the estimate 0:2 ,

Perspective 8: A View of the Philosophical Foundations. The example of Figure II

is clearly an idealized view of how a recursive estimation algorithm should be employed

for model structure identification. Nevertheless, cast in this particular fashion such an

approach has intuitively appealing interpretations. First, and by analogy with the analysis

of physical structures, our aim is to expose inadequacy in terms of the "plastic defor­

mation" (Figure lIe) of the model structure. Second, and of deeper significance, testing

the model structure to the point of failure (the failure of one or more hypotheses) can

be said to be consistent with Popper's view of the scientific method (Popper, 1959).

An introductory text on Popper's work begins (in 1973) with the assertion that " ...

Popper is not, as yet anyway. a household name among the educated ..." (Magee. 1973).

Judging by some of the recent literature (Holling, 1978; Young, 1978; Maciejowski,

1979, 1980), this assertion may no longer be true, at least in the present field of interest.

Especially pertinent is Holling's remark that (in discussing "model invalidation and

belief') " ... the model is [to be] subjected to a range oftests and comparisons designed

to reveal where it fails." This remark, with emphasis on the words "range" and "designed

to reveal", wil1 be our guiding principle for solving the problem of model structure

identification. But to have revealed that the model structure is inadequate is merely a

part of the solution, and actually a relatively easy part. Extending the example of Figure

II by one further step, let us suppose that the first (model) hypothesis has been identified

as failing, as shown in Figure 12a. Now assume that a second hypothesis can be generated

(in some way) and that it has the structure of Figure 12b with an additional state variable

(xs) and two new parameters (0:5, 0:6). It may well be that calibration of the second

model against the field data yields effectively invariant parameter estimates and hence

that the analyst can accept the adequacy of this model structure as a conditionally good

working hypothesis. These two steps of Figure 12 are consistent with the procedure of

model structure identification outlined in Figure 9. The problem of how to proceed from

one hypothesis to a subsequent hypothesis, however, has by no means been solved; nor

can it be solved, as will become apparent later, as a matter of mere technique.

3.2.2 An Illustrative Case Study

A good example of how some of the foregoing ideas apply in practice is a study of

the River Cam in eastern England (Beck. I 978a). In fact the development of a conceptual

framework for model structure identification has been heavily dependent upon this case

study and can be traced through three papers (Beck and Young, 1976; Beck, 1978b.

1979a). The Cam case study has therefore been an immensely fruitful prototype for the

testing of ideas and methods. A "successful" case study, on the other hand, is not with­

out disadvantages, for it creates the illusion that other case studies will be equally
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FIGURE 12 The process of model structure identification: revIsion of the model structure and

re-estimation of the associated parameters (b) on the basis of diagnosing how the prior model structure

fails (a).

successful (whereas mostly they are problematic) and it traps the analyst in dominant

modes of problem-solving. However, for this discussion the interpretations of model

structure identification embodied in Perspectives 2, 5, 7, and 8 will be of principal

relevance.

An a priori model for the dynamics of DO-BOD interaction can be derived from

the classical studies of Streeter and Phelps (1925). Since we wish to concentrate on model

structure identification, we will state the model in the following form:

(7a)

(7b)

where [XI,X2] =x is the state vector compnsmg downstream DO and BOD concen­

trations, respectively, (}:I, I is the first-order BOD decay-rate constant (assumed to be

time-invariant), and u contains upstream DO and BOD concentrations as measured input

disturbances. In terms of eqn. (4), it has been assumed for eqn. (7a) that
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(8a)

(8b)

so that. 'j'- I [.j contains terms accounting for the process of re-aeration and the fluid

transport and mixing properties of the reach of the river. If the discussion of eqn. (4)

is recalled, it can be seen that the assumption of eqn. (8b) implies considerable con­

fidence in the proposed model structure. This is a very deliberate use of the tactic of

stressing a relatively rigid structure so that the probability of detecting a significant

failure is maximized. At this early stage of the analysis it is not particularly useful to

express little confidence a priori in the model and then to try and identify unambig­

uously where failure occurs. In such a case the postulated model structure would be,

as it were, too flexible. Adaptation mayor may not be significant, because one has

little confidence in the model, and clear-cut answers cannot be obtained because clear­

cut questions are not being asked. We may note in passing that these arguments have

quantitative statistical counterparts for the use of certain recursive estimation algorithms,

for example, the extended Kalman filter (Jazwinski, 1970; Beck, 1979a, b).

With the benefit of hindsight, however, it seems that a more appropriate a posteriori

hypothesis for the model structure (in this specific instance) would be based upon the

scheme of Figure 13a. An examination of the simple model structure will thus lead to a

failure of the hypothesis that the observed behavior of DO-BOD interaction is represented

by eqn. (7). Following Figures II and 12 it can be expected that there will be a defor­

mation of the model structure as given by Figure 13b, and in fact Figure 14 shows this to

be the case. Significant adaptation of the recursive estimate al,l(tk Itk) occurs where

there is a marked and persistent discrepancy between the model and observed output

responses. At the same time, although this is not shown, the recursive estimate of the

re-aeration rate coefficient becomes negative.

If we were now to imagine this same situation in the absence of hindsight, it would

be apparent that the model structure is inadequate, but not necessarily why. The analyst

would be confronted with the need to generate a second, hopefully more plausible,

hypothesis. He might begin by examining the relative likelihood of four possible, generic

causes of failure, for which purpose the conceptual distinctions of Perspective 2 and

Figure 6 can at this point be exploited and expanded. Since the model structure of eqn.

(7) is stated in terms of the macroscopic features of system behavior (DO and BOD),

and since both state variables are directly measurable (Le., x =xm ), these four causes of

failure can be classified as follows:

(i) The only reason for failure lies in an incorrect specification of the relationships

among u, x, andy, which has a counterpart in a, f, and h being incorrectly speci­

fied (see eqn. 1). If this is improbable, then failure is a function of interaction

between "that part of the system being modeled" and its "environment", because:

(ii) ~ disturbs x in a nonrandom fashion, which has a counterpart in u being incorrectly

specified;
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FIGURE 13 Model structure identification in the Cam case study: (a) the a posteriori model struc­

ture; (b) expected failure of the a priori model structure.

(iii) Xu interacts with X m in a significant manner, which has a counterpart in X being

incorrectly specified, Le., x =f X m ;

(iv) TJ corrupts the relationship betweenxm andy in a persistently biased fashion.

These, however, are only guidelines for the organization of one's thoughts, the beginnings

of the process of diagnosis and synthesis where the analysis enters a phase in which

creative speculation is necessary. It is helpful to introduce a somewhat broader organizing

principle for the procedure of model structure identification. Let us simply suggest that

the analyst is concerned with conducting experiments on and with the model structure.

The use of ."F and ~ in eqn. (4) allows two different orientations (or objectives) for

these experiments:

(i) The former (Y) in the process of falsification;

(ii) The latter (V) in the process of speculation about alternative hypotheses.
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FIGURE 14 Model structure identification (a priori model) in the Cam case study: (a) recursive state

estimates x. (tk Itk) and observations y, (tk) for dissolved oxygen concentration; (b) recursive state

estimates x2 (tk Itk) and observations y2 (tk) for BOD concentration; (c) recursive parameter estimates

a", (tk Itk) for the BOD decay-rate constant.
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Therefore the analysis of the a priori model structure, as in eqns. (7) and (8) was an

exercise in falsification. It merely remains to illustrate now the process of speculation.

We postulate some of the assumptions of Dobbins (1964) as suitable candidate

hypotheses to be included in Wsuch that

[

£:1:2 1 (t)]
~ [x(t), U(t),Q2 (t)] =

£:1:2,2 (t)

(9)

in which £:1: 2,1 (t) and £:1:2,2 (t) are, respectively, lumped variables representing all sources

and sinks of DO and BOD other than those (the assumptions of Streeter and Phelps)

accounted for in ,r of eqn. (8a). Relatively little confidence would be attached to the

expected behavior of £:1:2,1 and £:1:2,2, although they would be expected to vary with time.

Calibration of this revised model gives the recursive estimates 0:2,2 (th Ith ) of Figure l5a.

We now require a logical explanation of why 0:2,2 varies in such a fashion, which in turn

is related to the question of why the a priori model structure fails. From Figure 13a, it is

apparent that a subsequent hypothesis is that:

(i) An additional input disturbance, the variation in sunlight, has an important indirect

effect on the DO(x 1) and BOD(x2)' i.e., the a priori specification of u is inadequate;

(ii) This disturbance acts on X 2 through its effects on the additional states of the

system, neither of which are measured, i.e., the a priori specification of x =xm is

not adequate.

When generated as a purely deterministic function of the day-to-day sequence of observed

sunlight conditions, the estimated variations of X4 (the concentration of "dead algae")

are as shown in Figure 15b. It is but a short step from there to propose that the apparent

rate of addition of BOD in this reach of river is proportional to the concentration of dead

algal material.

It is tempting to close the issue of whether an acceptable model structure has been

identified, yet at least one competing hypothesis is worthy of attention. This concerns

the possibility of algal "interference" with the measurement of BOD, that is to say, the

possibility of an incorrect specification of h (from eqn. 1) in eqn. (7b). This is quite a

plausible hypothesis and it will be of relevance in a later section of the paper. It also

illustrates the potential difficulty of distinguishing between system behavior and the

process of observing that behavior.

3.3 Problems and Prospects

On occasion, therefore, one is fortunate and the case study described in the pre­

ceding section is just such an occasion. When calibration of a Streeter-Phelps model

yields a negative-valued re-aeration rate constant, the analyst can be reasonably confi­

dent about rejection of the associated model structure. In such a situation he is forced

to support an absurd hypothesis if he wishes to obtain correspondence between the given

model and the data. But when eventually the diagnostic evidence favors rejection of the

model, can one really hope to formalize the procedure for generating the next hypothesis?
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FIGURE 15 Model structure identification in the Cam case study: (a) recursive parameter estimates

"'2,2 Uk Itk) for the net rate of addition of BOD to the reach; (b) deterministically estimated variations

of the concentration of dead algae (x., a posteriori model).

Isn't this in fact a procedure that demands that spark of creative thought characteristic of

scientific discovery? Perhaps, therefore, we should be rather modest in searching for an

"intelligent" algorithm of model structure identification. While we do not believe that

hypothesis generation can be reduced to a formal algorithm, it is still legitimate to ask

whether there are methods that suggest feasible directions in which to cast new hypotheses,

as was the intent of Figure 9.

Let us summarize the discussion so far. Because of the lack of planned experiments,

because field data are highly uncertain, and because a priori definition of the mathemati­

cal forms of relationships among the important system variables cannot be made categorical,

the calibration of water quality-ecological models is not a straightforward exercise of

parameter estimation. The problem of model structure identification has to be solved

before accurate estimation of the parameter values is attempted. The basic aim of model
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structure identification is to seek plausible hypotheses for "unexplained" relationships

in a set of field data. The approach that we have outlined exploits the idea of curve·

fitting as a "means-to·an-end" and not as an "end" in itself. Experience shows that

approaching the problem from a variety of angles - for example, using different types

of models and different estimation algorithms - can yield different clues about why a

given hypothesis is incorrect and how it might subsequently be modified (Beck, 1978b).

The illustrative case study of Section 3.2.2 has focused on merely a part of an overall

approach from one or two angles. Falsification of the model, or components thereof,

rests partly upon judgments about absurd parameter values, or about implausible vari·

ations in parameter values. Unless these variations and values can be defended by logical

argument, then it must be conceded that the structure of the model does not match the

structure of the observed patterns of behavior. Even in a relatively simple context,

however, these kinds of solution to the problem are not easily derived. In the more

complex situation to be discussed below the basic process of absorbing and interpreting

all the diagnostic information generated by the analysis itself becomes very much more

difficult. The evidence cannot be sharply focused in order to reveal the absurd hypothesis.

But even to believe that such a sharp focus might be possible is arguably a delusion,

since the field data are subject to high levels of uncertainty. Individual elements of

a priori theory may not themselves be ambiguous. It is when many of these elements

are assembled in a complex model, which is then calibrated against the in situ field

data, that ambiguity arises. As with the examples of Bierman et al. (1980) and Halfon

(1 979b) quoted earlier, there is usually not a unique set of parameter values - nor is

there necessarily a unique model structure ~ that will give a significantly superior fit

between the data and the simulated responses of a complex model. The purpose of

model structure identification is nevertheless to allow a posteriori evidence (a posteriori

in the sense of having calibrated the model) to be brought to bear on distinguishing one

or another of the possible a priori explanations as (conditionally) the most plausible.

The difficulty lies in focusing and interpreting the a posten'ori evidence.

3.3.1 Some Problems ofComplexity

The case of the Bedford·Ouse river in central-eastern England is a natural extension

of the Cam study. From 1972 to 1975 the UK Department of the Environment and the

Anglian Water Authority jointly funded a major study of the Bedford-Ouse river system

in order to evaluate the effects of developing a new city (Milton Keynes) in the upper

part of the catchment area (Bedford·Ouse Study, Final Report, 1979). Daily data on

some 16 water quality variables were collected at five locations on a 55-km stretch of

the river for 14 months from late 1973 to early 1975. The character and behavior of

the Bedford-Ouse system is very similar to that of the Cam (see, for example, Whitehead,

1983), but the scope of the available data base is incomparably greater.

Superficially the Bedford-Ouse study appears to offer an opportunity for straight­

forward application of those techniques that have proved so successful in the Cam study,

but simply on a "larger" scale. In particular, during the spring of 1974 a substan tial

algal bloom occurred in the river with measured concentrations of chlorophyll·a, DO,

and BOD reaching maximum levels of 300J,Lgl-l, 20 gm -3, and 13 gm -3, respectively.

The modeling problem can be formulated in terms of four state variables (DO, BOD,

cWorophyll-a, and suspended solids) for each reach of a three-reach system. Not only
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do the observed relationships among these variables appear to be significant, and there­

fore identifiable, but also the character of the interactions appears to vary both in time

and space. In retrospect, it was probably naive to expect success, but what is important

is an analysis of the problems revealed in the process of model structure identification.

Let us look first at the notion of testing the model structure to the point of failure,

that is, the process of falsification in which 1/ {.} = 0, as in the general statement of

eqn. (4) and the specific example of eqns. (7) and (8). ,r thus contains various (confi­

dent) assumptions about the transport and dispersive properties of the river, re-aeration,

BOD decay, and the growth, death, and photosynthetic properties of a population of

algae. Six parameters are to be estimated in identical model structures for the behavior

of each reach of the system (a total, therefore, of 12 state variables and 18 parameters).

Figure 16 shows the recursive estimates of these six parameters for the third (downstream)

reach of the river. Comparing Figure 16 with the enviable simplicity of Figure 14c, one
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FIGURE 16 Model structure identification (the process of falsification) in the Bedford-ouse case

study (third reach): (a) re-aeration rate constant (day-'); (b) maximum specific growth-rate constant

for algae (day·'); (c) BOD decay-rate coefficient (day"I); (d) rate constant for addition of BOD to

reach from suspended solid matter (day"' (gm-' BOD)(gm"3 SS)"I); (e) death-rate constant for algae

(day"'); (D rate constant for "loss" of suspended solids from the reach (day"I).
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would have great difficulty in answering the question "at what point does the model

structure fail?" without even asking the question why it might have failed. There are

clearly some apparently absurd hypotheses. For instance, the recursive estimates of

both the maximum specific growth-rate (Monod-type kinetics) and death-rate constants

for the algal population (Figures 16b and 16e, respectively) become negative-valued. One

could argue, as a result, that the former is barely significantly different from zero and

that the latter - a linear, negative, death rate - is evidence of a preferred linear growth­

rate function for the algae (at least for all but the initial period of the data), but the

analyst would be hard-pressed to attach great confidence to such conclusions.

There is also evidence in Figure 16 of preconceived notions dictating the outcome

of this test of the model structure. For example, the remarkable stationarity of the

recursive estimate for the re-aeration rate constant (Figure 16a) is a function of assuming

relatively more a priori confidence in this particular parameter. In other words, the

analyst has assumed that, if the model is to fail, its failure is unlikely to be a function of

an inadequate description of the re-aeration process. Solely on the basis of these data,

however, there are good reasons for arguing that the classical assumptions both of Streeter

and Phelps and of dispersion in flowing media are not identifiable from the observed

patterns of behavior. Figure 17 shows that with respect to the first reach of the system,

which is typical of all three reaches, a classical advection-dispersion model with Streeter­

Phelps assumptions produces responses such that the error between the observations and

these responses is likely to be highly insensitive to the estimated values of the associated

model parameters. Such a common problem of identifiability does not arise because of

complexity, which we would suggest is the case in the results reported by Bierman et al.

(I980) and Halfon (I979b), but because other dominant modes of behavior (in this

instance, algal growth) almost entirely obscure these less significant modes of behavior.

This is again slightly different from the situation described by van Straten and Golbach

(1982), in which the character of the input disturbances is such that the system is not

stimulated to respond in a manner sensitive to the dispersive properties of the river.

Since concern has been expressed in Section 2 about preconceived notions, it is

important not to pass over this point without further reflection. We do not claim that

our approach is without any element of subjectivity. The judgment of the analyst is not

only required in specifying a priori confidence levels for the parameter estimates but

also, of course, in deciding which hypotheses to include in the a priori model structure.

Soderstrom (I 977) is here in agreement, for he states that:

" ... Naturally, an objective method will produce a model structure without inter­

ference [by the analyst]. However, it is a chimera to regard this as an essential advan­

tage. On the contrary, it may be a misleading property, since for all methods, objective

as well as subjective, there is always a potential risk that a false model structure is

selected."

We do claim, however, that the test procedures we have outlined are more rigorous than

the approaches generally employed previously. If one adopts that view of the scientific

method in which falsification of hypotheses is of fundamental importance, one might

conclude that in the present example the assumptions of Streeter and Phelps cannot be

expressed in a form that permits falsification. In a sense, therefore, they are not testable
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FIGURE 17 Evaluation of a classical advection-dispersion model with the assumptions of Streeter

and Phelps for the first reach of the Bedford-0use case study. Values for the longitudinal dispersion

coefficient (J3" in km' day-I), the reaeration rate constant (J3., in day-I), and BOD decay rate con­

stant (J33' in day-I) for each curve are given respectively as: (1) [11" 11.,113] = [0.0, 0.0, 0.0]; (2)

[11" 11., 113 1= [2.0, 0.0, 0.0]; (3) [11" 11., 113 ] = [0.0, 0.3, 0.0]; (4) [11" 11 2 , 113 ] = [2.0, 0.3,0.4];

(5) [11" 11., 113 1= [0.0,0.15,0.2]; (6) [11" 11 2 , 11, J = [2.0, 0.3, 0.4].
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propositions and their inclusion in any a posterion' model structure is tantamount to an

act of faith. Such a problem may not be critically important in the context of model

calibration, but could have significant consequences when the model is used for pre­

diction, which will be of concern in Section 4.

It seems important, therefore, to question the motives for maintaining hypotheses

that are not, strictly speaking, falsifiable. The reluctance to set aside convention is strong

indeed, and Figure 16 illustrates well the conflict that can occur. Given prior experience

that the hypothesis of BOD decay is probably not identifiable, a BOD decay-rate constant

is still maintained in the model structure, but with an a priori estimate of zero (day-I).

Moreover, it would be difficult to argue that the subsequent pattern of the recursive

estimates prompts the assumption of a significantly nonzero value for this parameter.

This is not surprising in view of the "peculiarity" of observed conditions of simultaneously

high DO and BOD concentrations and given the possibility of algal interference with the

BOD test. Nevertheless, in this case there is no evidence that better hypotheses than those

of Streeter and Phelps are available. In marked contrast is the discussion by Young (1983)

of the classical representations of pollutant dispersion in rivers. Young clearly produces

evidence that challenges conventional assumptions, a situation not without a certain

irony. Originally unconventional assumptions about fluid-mixing properties, which

allowed a transformation from a partial- to an ordinary-differential equation representa­

tion* (Beck and Young, 1975), were largely responsible for the developments leading to

the present paper. Such developments can of course be challenged because they are

unconventional, yet it is the results of precisely these assumptions that now forcefully

challenge convention (Young, 1983). Moreover, subsequent reassessment of the original

assumptions shows them to be fairly reasonable for that particular study (see Lewandowska,

1981 ).

Our reflections may then be briefly summarized as follows. The results of Figure 16

are founded upon the premise that:

(a) We have confidence in the hypotheses of Streeter and Phelps, but consider current

hypotheses about mechanisms of algal growth as higWy speculative.

Such a premise could be reoriented in either of two ways:

(b) We are confident about our hypotheses for algal growth, but consider the assump­

tions of Streeter and Phelps to be higWy speculative.

(c) All hypotheses are equally speculative.

Although there is a temptation to cling to the first premise and not reject convention

until it is demonstrably inadequate, this course of action may very well preclude the

important possibility of revealing inadequacy.

Let us now tum from the process of falsification and look instead at the process of

speculation (see also Section 3.2.2). If it is assumed, once again, that the Streeter-Phelps

* To avoid the problem of parameter estimation in partial-differential equation representations, a

difIicult problem to solve then as now.



38 M.B. Beck

Net rates of addition of chlorophyll·A
to reach of river (10- 3 gm- 3 day-l)

Reach 1

Reach 2
Reach 3

,.,. '.
I \ ... _ .......

i

--- ....._....;.-...--,,-/
_/ ..... '.

-'
O . O - r - . . . . . ; ~ - S - = : : : : - = = = = = . . . . . . - - - = - - - : ~ ' c - - - - - - - - - - - - c c . . , - - - - - - = - - = - = - - - ~ _ . . - ' . - " , .. ~",,-,- '=-,,-,-.---.#'~' ~~.~.#'_ .

............ _._.- ........... / _.,./....... .././.

20.0

40.0

-20.0

-40.

o 10 20 30 40 50 60 70

Time (days)

FIGURE 18 Model structure identification (the process of speculation) in the Bedford-Ouse case

study: recursive estimates for the net rates of addition of chlorophyll-a to each reach of the system.

and fluid-mixing hypotheses can be included in ..cT, we may speculate that t1, as in eqn.

(9) for the Cam study, comprises a vector of lumped parameters for all other sources an d

sinks of DO, BOD, and chlorophyll-a. Part of the diagnostic evidence from analysis of

this speculation for the three reaches of the Bedford-Ouse system is gathered together in

Figures 18, 19 and 20. One might tentatively conclude from these recursive estimates that:

(i) The rate of addition of cWorophyll-a to the system reaches a maximum first in the

third (downstream) reach, then in the second, and lastly in the first (upstream)

reach (see Figure 18).

(ii) The rate of addition of dissolved oxygen to the first reach is roughly proportional

to the observed concentration of chlorophyll-a at the downstream boundary of that

reach (see Figure 19a); the rate of addition of dissolved oxygen to the second reach

is roughly proportional to the observed concentration of chlorophyll-a, except over

the middle of the period recorded (see Figure 19b); the rate of addition of dissolved

oxygen to the third reach is not obviously proportional to the observed chlorophyll-a

concentration for most of the time (see Figure 19c).

(iii) The rate of addition of BOD in all three reaches is essentially identical over the

later part of the period recorded (see Figure 20); the rate of addition of BOD to

each reach roughly follows the same relative pattern as the rate of addition of

chlorophyll-a to each reach over the initial part of the period recorded (compare

Figures 18 and 20).

[t would certainly require bold and imaginative thinking to synthesize a hypothesis from

such evidence that would facilitate the step from M1 to M2 in the terms of Figure 9.
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FIGURE 19 Model structure identification (the process of speculation) in the Bedford-Ouse case

study: comparison of recursive estimates for the net rates of addition of DO to each reach of the

system with the observed chlorophyll-a concentrations at the downstream boundary of each respective

reach.
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FIGURE 20 Model structure identification (the process of speculation) in the Bedford-Duse case

study: recursive estimates for the net rates of addition of BOD to each reach of the system.

How, in fact, would the analyst absorb and interpret this relative wealth of diagnostic

in formation?

Further conjecture about model structures based on evaluation of these observations

will not be presented here; we merely offer one brief speculation, principally because it

introduces a problem of considerable general significance. Let us suppose that there are

two distinct states of the algal population, one of which gives rise to a net addition of

both chlorophyll-a and DO, while the other gives rise only to a net addition of DO. This

hypothesis might be consistent with some of the diagnostic evidence and, if it were, any

subsequent model structure would probably have to account for the behavior ofunobserved

state variables, Le., Xu in Figure 6. There is, however, no really satisfactory procedure for

accommodating unobserved state variables in our scheme for model structure identifi­

cation. Undoubtedly, the inclusion of such variables gives additional flexibility to the

model structure, in fact, so much so that the test designed to reveal structural inadequacy

in terms of significant parameter adaptation would be nullified. The estimates of the

unobserved state variables would be adapted rather than the parameter estimates and

there would be little basis on which to judge the plausibility of such variations. The

procedure adopted for the Cam study, where the dynamics of the unobserved state

variables were defined as completely deterministic functions of the inputs and other

state variables, seems to be more compatible with the idea of making bold, easily falsifiable

hypotheses than procedures used elsewhere (Beck, 1979c). The identification of a time­

varying parameter - or unobserved state variables, for the two concepts are barely

distinguishable - is the archetypal fraud of which curve-fitting is often accused. The
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conclusion that the model fits the data subject to arbitrary variations in one or more of

the parameters is itself of no consequence. Rather, it is the process of speculating why

such variations occur that should be highly valued.

3.3.2 Design for Failure and Speculation

There are obviously lessons to be learned from the prototype case study of Section

3.2.2 and its more ambitious successor. The most important are that:

(i) The process of model structure identification proceeds as a sequence of "experi·

ments" in which the analyst has either the objective of falsifying confident hypothe­

ses or the objective of speculating about relatively uncertain hypotheses; in a purely

technical (and perhaps more fundamental) sense these two objectives are best

considered as mutually exclusive.

(ii) If speculation is the objective, then a primary concern is rearrangement of the

model (utilizing the results of speculation) in such a way that its structure is likely

to contain only parameters with essentially time-invariant recursive estimates when

re-estimated. For complex systems and patterns of behavior it is extremely difficult

to diagnose the results of speculation.

(iii) If falsification is the objective, there may be ambiguities in determining where the

model fails and in distinguishing between reasonable and absurd hypotheses.

Given these limitations and inadequacies in the technical aspects of model structure

identification, is it still possible to identify avenues of further progress? For it is not
particularly encouraging to conclude that the analysis of an apparently simple problem

leads merely to more complex unresolved problems. One might reflect, with resignation,

that such is progress! Our answer to this question is nevertheless positive, although

cautious: for the reasons given in the introductory paragraph of Section 3.3 it is clear

that one should not expect the impossible.

Let us begin by examining point (iii) and its concern with "determining where the

model fails". In the case of Figure 16, for example, it is not at all apparent which parame­

ter is associated with the least adequate component of the model structure. It might be

possible to clarify the situation by testing each hypothesis individually, assuming all but

one of the parameters to be constant and known with certainty. To do this we would

need to appreciate the underlying causes of variability in the recursively estimated value

of a parameter. Recalling therefore the general form of eqns. (5) and (6), we have

(10)

which for parameter eli (when all other parameters are assumed to be known) reduces to

p

O:i(tk) = O:i(tk-d + L gij(tk)f.j(tk Itk-I)
j= 1

(I I)

It is perhaps easier to state, on the basis of eqn. (11), the following conditions required

for O:i(tk) not to vary with time:
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(a) Ej(tk Itk-I) is small and random for allj,k: this is clearly the case when one has

an appropriate model structure and good parameter estimates.

(b) gij (tk) is small for all j, k: this implies that the estimation algorithm computes

gij(tk) such that all errors Ej are effectively ignored, which would be correct ifany

hypothesis associated with (Xi were truly unrelated to any persistent error Ej •

(c) The effects of summing the products gij Ej may be self-cancelling even though both

gij and Ej may not be small; however, the implications of this condition are not

immediately evident and will thus not be considered further in the present discussion.

Conditions (a) and (b) are stated as mutually exclusive extremes. A combination of the

two is clearly feasible, since one simply has the condition that Ej(tk Itk-I) is small when

gij(tk) is not, and vice versa.

Condition (b) is the most interesting of the three because it calls into question both

the role of the matrix G(tk ) and the way in which this matrix is computed. Conceptually,

G is a mechanism for distributing the stress applied to the model structure (when it is to be

tested for failure) among the component parameters and hypotheses. In eqn. (11), for

example, this process of stress distribution has therefore been constrained to act upon a

single parameter. One disadvantage with certain methods of recursive estimation - the

extended Kalman fJ.1ter, for example - is that G is largely, but not entirely, determined

by the a prion' assumptions about the model structure, parameter uncertainties, and

statistical properties of the system's "environment", i.e., '1 and ~ . In other words, and

perhaps not surprisingly, the degree of attention paid to the a posteriori evidence, as

represented by E(tk Itk -I), is prejudiced by the a pn'ori assumptions. With slight modi­

fication, however, this intuitively appealing "directional" property of G, namely that it

indicates the relative degree of significance of any E j with respect to a given Qi' might

be turned to a distinct advantage. More specifically, Ljung (1979) has shown recently

that it is G that has all the algorithmic importance for the extended Kalman filter and

that, if G is parametrized and its elements estimated recursively, some of the a priori

assumptions previously required become redundant. From our point of view, which is

rather different from Ljung's perspective, not only does this lessen the dependence of

the analysis upon a priori assumptions, but it also shifts the balance of the correcting

mechanism G(tk)E(tk Itk-I) in eqn. (10) toward greater exploitation of a posteriori

evidence. Furthermore, this has a strong equivalence with recent developments proposed

by Young (1979) for other forms of recursive estimation algorithms.

In these various suggestions for circumventing the problems of point (iii), and

also the problem of point (ii) to which we now turn, there is nevertheless a disquieting

element concerning complexity and computational effort. Recursive estimation of

the elements of G, in addition to estimating the model parameters, would seem an added

burden in the process of diagnosing the results of model structure identification. It is

therefore sensible to seek some informative, yet easily computable scalar quantity that

aggregates the multivariate character of the analysis. An obvious choice would be the

determinant of a matrix (or submatrix) - or a function of this and determinants of

other matrices - that appears naturally within the estimation algorithm. This too could

be a promising direction for further progress, as is clearly evident from parallel develop­

ments in model order estimation (for example, Woodside, 1971; Wellstead, 1978; Young

et al., 1980).
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Yet there is something more fundamental, and perhaps more disturbing about this

problem of complexity and computational effort. Consider, for instance, the context of

the whole of this section of the paper. It deals with only one or two kinds of diagnosis,

within one particular approach to the problem of model structure identification, for one

of three categories of data (the intermediate category of "some adequate data", as

explained in the introduction to Section 3), and applied to modestly sized, even humble

models. Nevertheless, the approach is sufficiently complex that it loses the attractive

simplicity of the Monte Carlo approaches adopted elsewhere for the analysis of "scarce

data" situations (Hornberger and Spear, 1980, 1981; Spear and Hornberger, 1980;

van Straten, 1980; Fedra et a!., 1981). And it is a sobering thought indeed, if one reflects

upon the vast potential of telemetered, on-line water quality monitoring networks

(Marsili-Libelli, 1980), that a lack of field data will not always be the critical constraint

on water quality modeling. There is every possibility, therefore, that future critical

constraints will involve precisely this area of absorbing and interpreting the results of

data analysis.

Could one thus argue a case in favor of other equally profitable but simpler

approaches? At least two alternatives come to mind: the ubiquitous "trial and error"

comparisons of deterministic simulation responses with the field data (although serious

concern about such an approach has already been expressed in Section 2); and approaches

based on off-line methods of parameter estimation, which, while they are relatively

effective (see for example, Di Toro and van Straten, 1979; van Straten, 1983), do not

have the same potential for insight as the approach described here. For both of these

alternative approaches there is little evidence of associated work on the problem of model

structure identification and one could argue that simplicity, when dealing with complex

models and large numbers of data, is a chimera. In the absence of comparable approaches,

the question of the advisability of following the principles outlined here must be examined

with some deeper appreciation of how consistent these principles are with the scientific

method. For this reason we contend that certain aspects of Sections 3.2.1 and 3.3.1 are

neither fanciful nor esoteric excursions into the realm of philosophy.

Our last consideration deals with point (i) of the lessons to be learned and also

relates back to the discussion of convention, confidence, and speculation in Section 3.3.1.

Let us suppose that in a given study the ultimate objective is to reconstruct in situ

"experiments" from the observed data by analytical methods. In other words, as scientific

endeavor moves outside the laboratory it carries with it the notion of recreating the

"controlled" conditions of a laboratory experiment in the field system itself (see, for

instance, Lack and Lund, 1974). The objective of recovering experiments may be worthy

and it would appear to relate to the central issue of extrapolation from laboratory systems

which was raised in Section 1. It seems reasonable to attempt to design the analysis of

model structure identification so that it compensates for the variable environmental

conditions of the "experiment" (recall here the discussion of Section 3.1.1). An apt

example would be the reconstruction of an "in situ chemostat experiment", where the

objective is to identify the structure of the relationship between substrate and phyto­

plankton growth. In this particular example the skill of the analyst would lie in arranging

the analysis such that extraneous interference with the "experiment" - for simplicity,

extraneous hydrodynamical disturbances - could be filtered out. At first sight, this is

a rather attractive view of the true purpose of system identification and time-series
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analysis, but it presupposes, of course, that the part of the model required to compensate

for the "experimental environment" is known a priori with sufficient confidence to

permit the full power of the analysis to be concentrated on the problem of substrate/

phytoplankton interaction. Such assumptions themselves have to be evaluated. The

distinction between what is "known well" and what is "speculation" (as in eqn. 4) thus

becomes vanishingly small. In a holistic sense it is difficult to claim, however tempting

it may be, that there is one "experiment" and its complementary "environment". Instead,

it is only possible to state that a number of more or less significant "experiments" are

proceeding in parallel.

Clearly, complexity, and not only uncertainty, is a universal and inescapable

feature of the modeling of water quality-ecological systems. From the discussion of

Figure 9 in Section 3.2 it is apparent that the best way of taking complexity into account

is to start from a simple model and progressively increase model complexity when the

diagnostic evidence of analysis precludes acceptance of any simpler model structure.

Of course, we are well aware that uncertainty and complexity would soon impose con­

straints on the depth of such an analysis; however, the alternative of starting with a

complex model and identifying those components of the structure that are essentially

redundant (i.e., surplus content) is an approach seemingly fraught with many more

difficulties, the kind of difficulties raised, for instance, in Halfon's (l979b) analysis of

a model for Lake Ontario (see Section 3.1.2). One of the key problems is that ambiguities

arise in determining whether the a posteriori evidence supports rejection of an inadequate

model structure. In the face of these ambiguities, and acknowledging the additional

difficulties of interpreting large amounts of evidence, the analyst should respond by

making particularly prudent choices for the postulated model structures. If the model

is a vehicle for asking questions about the nature of "reality", then it is advisable to make

those questions as few - at least initially - and as unambiguous as possible.

3.4 A Concluding Comment

Many recent exercises in water quality-ecological modeling have been conducted

without serious consideration of the deeper significance of calibration. This should not be

considered a mere backwater to the mainstream developments in water quality modeling.

It only becomes so if one chooses to attach great confidence to a priori theory, thereby

renouncing, in effect, much of the questioning that should accompany calibration. This

choice, albeit often made subconsciously, is inherent in the present dominant approach

to modeling where heavy reliance is placed upon extrapolations from laboratory or

"equivalent" field systems. One might choose, in complete contrast, to put aside a priori

theory altogether, and in view of the manifest difficulties in determining the governing

mechanisms of behavior for even a well-documented case study (see for example, van

Straten et al., 1979; van Straten and Somly6dy, 1980), perhaps this could be justified.

Any resulting model, which in this extreme case of exclusive dependence on the a posteriori

evidence of the sample field observations would be a true black-box model, would cer­

tainly attract a common criticism: namely, that the model should not be used for making

extrapolations outside the range of conditions for which it was developed. Unfortunately,

such extrapolation is precisely what is required of most models. Equally unfortunately,
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exactly the same criticism can be leveled at the use of models based upon extrapolations

from laboratory or "equivalent" field systems. But this does not imply a stalemate in a

conflict between the dominant approach and the not-so-dominant approach discussed

in this section. Rather the tW(\ approaches are complementary and one way out of the

seeming impasse is suggested by the ability of the not-so-dominant approach to evaluate

those extrapolations characteristic of the dominant approach. The existence of genuinely

complementary approaches, in the context of calibration, will be confirmed in the next

section in the context of prediction. There is, however, one fundamental asymmetry in

the relationship between the two approaches: namely, that any attempt at simplifying

the problem of model structure identification by (conceptually) subdividing the system

into smaller components (the analysis of single "experiments") is an exercise of dubious

value.

4 PREDICTION AFTER IDENTIFICATION

The preceding section has wrestled at length with the extremely difficult problem

of acquiring understanding of a complex system's behavior, irrespective of any intended

application for the associated model. The stimulus for presenting what we have called

a "not-so-dominant" approach originates with the concerns expressed in Section 2 about

other more conventional approaches to model development and calibration. Yet in spite

of such concerns it is the complementary character of the approaches, rather than their

points of conflict, that is the emerging theme of Section 3. Undoubteilly, we should

expect much more debate about the advantages and disadvantages of one approach

or another. To a large extent, however, debates about how to acquire understanding of

complex systems are best conducted at a general philosophical level (see for example,

Battista, 1977). Of more immediate and specific relevance is the debate about how a

model is likely to perform when applied to the problem of prediction of future behavior

patterns under substantially changed conditions. This section, therefore, addresses that

issue. We shall first discuss qualitatively the question of accounting for uncertainty in

the relationship between the identification (calibration) of a model and its application

to prediction of the future (in Section 4.1). This is clearly an important logical connection

in the underlying argument of the paper as a whole. Section 4.2 gives a brief review of the

methods available for analyzing the propagation of forecasting errors. We have already

noted that this is a particularly active field of current research, although our interest in

the methods themselves is here somewhat secondary. Rather, as in Section 4.2.1, the

object is to illustrate certain important aspects of the relationship between identification

and prediction. Hence, in Section 4.3, we shall conclude with a dilemma that captures

some limiting features of both the dominant and the not-so-dominant approaches to

water quality-ecological modeling.

4.1 Accounting for Uncertainty

Let us suppose that in an ideal study the problem of model structure identification

has been solved and that it merely remains for calibration to be completed by estimation
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of the model parameter values. After a successful calibration exercise it would be expected

that the degree of uncertainty in any given parameter estimate would be less than the

uncertainty associated with the prior estimate of that parameter value before calibration.

The amount by which the uncertainty in the parameter estimate is reduced should be

roughly consistent with the degree of relevance that the parameter - and its associated

sector of the model's behavior patterns - has to the observed system behavior. The

reduction in the uncertainty of the parameter estimates will also be approximately

inversely related both to the number of field observations and to the levels of uncer­

tainty and error associated with those observations. But the a posteriori estimates of

the parameters will still be subject to uncertainty: their estimation errors are, as it were,

a kind of "fingerprint" of the calibration procedure; and the effects of these errors

will propagate forward with predictions about the future.

To be more specific, let us examine the possible changes in the parameter estimation

error variance-covariance matrix (as a measure of the uncertainty in the parameter

estimates) that might occur during the process of recursively estimating the parameter

values. The covariance matrix of the a priori estimation errors will be denoted by

(12)

where E {-} is the expectation operation and to is the time at the beginning of the period

for which experimental data are available. Under the assumption that the calibration

exercise is successful in yielding improved estimates of the parameters with a lower

error variance, we could expect that

(13)

where the subscript ii indicates the ith diagonal element of the matrix pP and tN is the

time at the end of the period covered by the experimental data. In other words PYi(tN I
tN ) is the a posteriori error variance for parameter Cii' But just how "successful" the

calibration exercise is requires an important qualification, for which purpose two nominal

illustrative trajectories for pYi are given in Figure 21. For the trajectory of P ~ I a significant

reduction in the uncertainty of the parameter estimate &1 is achieved, and the rate at

which this uncertainty is reduced is especially rapid during the period 1::.t. We might

suggest that over this period 1::.t such an accelerated rate of decrease in error variance is

due to the existence of a substantial amount of information in the data that refers to the

system behavior associated with parameter Cil' The trajectory of P ~ 2 ' however, displays

a negligible decrease in the uncertainty of the related parameter estimate, &2' Assuming

the opposite of the argument used for the P ~ I trajectory, it might be concluded that

there is virtually no information in the data that confirms the type of behavior simulated

by Ci2 and its associated sector of the model.

At this point it is appropriate to revive the concepts associated with the set diagram

of Figure 9. In Figure 22, therefore, the set A again denotes the sample behavior observed

in the historical field data and M characterizes the set of behavior patterns simulated by

the model. It is not difficult to imagine that actual (A) and simulated (M) behavior do not

correspond exactly so that there is only a partial overlap between A and M (although

strictly speaking this suggests that the problem of model structure identification has not
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FIGURE 21 Two examples of changes in parameter estimation error variances during calibration

(calibration is assumed to refer to the period of observations from to to tN)'

P

FIG URE 22 Calibration: A is the historically observed pattern of behavior; M is the set of behavior

patterns simulated by the model.

been satisfactorily resolved). Transferring the argument from Figure 21 to Figure 22, let

us say that parameter al is associated with a part of the behavior covered by the shaded

area of Figure 22, while a2 is related to that part of M that does not intersect with A.
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When the model is calibrated against the field data one would expect the uncertainty of

parameter estimates associated with the intersection of A and M to decrease significantly.

But for parameters associated with the nonintersecting remainder of M estimation error

variances should not decrease because there is no information in the historically observed

data with which to evaluate such behavior. That is to say, parameters such as Q2 are not

identifiable for the given model structure from the given data; this is simply a reiteration

of the same point that appeared earlier in the discussions of Section 3.1.1 (sensitivity

analysis and a dispersion model for the Rhine River) and Section 3.3.1 (identification of

a Streeter-Phelps-type model for the Bedford-Ouse River).

The variances of the a posteriori parameter estimation errors indicate, among other

things, the relative degrees of uncertainty in the various sectors of the model relation­

ships. From the summarizing picture of Figure 23 it is clear that they are a key factor

connecting identification with prediction, at least in terms of accounting for uncertainty.

What is the most likely influence of the a posteriori parameter estimation errors on the

error bounds of forecasts about the future? Yet again, a Venn diagram is a useful starting

point. Figure 24 shows a possible situation in which, for example, the future behavior of the

system lies within the set of patterns represented by F. The sets P, A, and M have the

same interpretations as previously, although the definition of M may be further qualified

by stating that it represents simulated behavior in both the past and the future. Let us

Identification

Uncertainty. errors in

observed field data

Prediction

Uncertainty in future
input disturbances

A priori
parameter
estimation

errors

A posteriori
parameter
estimation
errors

Uncertainty in initial

state of water quality

Forecasts and
forecasting
errors

FIGURE 23 Sources of uncertainty and the connection between identification and prediction.
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FIGURE 24 Prediction with the calibrated model: A and M are as defined for Figure 22; F represents

the set of possible future behavior patterns of the actual system; iJ represents behavior patterns

associated with a well-identified part of the model; 'Y represents behavior patterns associated with a

poorly-identified part of the model (i.e., surplus content).

consider, in particular, what happens when at initial time tf (with respect to the fore­

casting period) the model simulates behavior that is characteristic of the set ~ (M ()

A () F) and then at time tf + T it simulates behavior characteristic of the set marked

"Y (M () F) in Figure 24. In other words, a well-calibrated sector of the model (Le., a

pattern of behavior observed in the past) is initially dominant in the simulated behavior,

although subsequently a poorly identified sector of the model becomes dominant in the

simulated behavior. With a nonlinear model such a transition could be easily brought

about, for example, by a slightly modified combination of commonplace input dis­

turbances that force the state of the model into a quite different region of the state

space (as already noted in the discussion of Section 3.1.1). Figure 25 illustrates the

associated, hypothetical trajectory of one of the state variable forecasts, X, and its error

bounds, which here are simply denoted by x ± a, where a is the standard deviation

of the forecasting error. As the state variable trajectory crosses the "boundary" between

"past" and "future" behavior patterns the error bounds on the forecast expand rapidly

because the response of the model is becoming especially sensitive to relatively uncertain

parameter estimates and their respective sectors of the model. Of course, it might also

be that the future forcing functions are unlikely events, in which case the sudden loss of

confidence in the model forecasts arises both from the uncertainty of these functions

and from the parameter estimation errors.

To summarize, let us note that a most important feature, from the forecaster's

point of view, is that when forecast-error bounds are computed it is possible to deduce

where the model is making predictions for which there is very little historical empirical
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FIGURE 25 Hypothetical state variable trajectory x(tlt f) and prediction error propagation (a is the

standard deviation of the prediction errors) for the "scenario" of Figure 24.

justification. Likewise, when calibrating large models against (probably inadequate)

field data it will not be at all obvious which sectors of the model are properly calibrated,

if the a posteriori parameter estimation errors are not calculated.

4.2 The Propagation of Forecasting Errors

Only two quantitative methods have been used for computing the propagation

of forecasting errors, namely Monte Carlo simulation and first-order (possibly higher­

order) error analysis, although at first sight the number of recent publications on this

topic would perhaps suggest otherwise. However, a point of convergence is discernible,

both in terms of the desire to compare the performance of the two methods (Scavia

et al., 1981; Gardner et al., 1980a) and in the equivalent ways of stating the equations

of a first-order error analysis. The application of Monte Carlo simulation in various

studies is well represented, for example, by the papers of O'Neill and Gardner (1979),

Gardner et al. (I 980b), Whitehead and Young (1979), Hornberger (1980), and Fedra

et al. (198 I), and we shall not comment further on it here.

A first-order error analysis, or statistical sensitivity analysis, appears to have been

first applied to models of water quality-ecological systems by Argentesi and Olivi (1976),

following similar applications in other fields (see for example, Burns, 1975; Atherton

et al., 1975). Reckhow (1979) and van Straten (1983) state their equations for error

covariance propagation in the same form as Argentesi and Olivi (1976), in the sense that

the matrix of sensitivity coefficients [axi/aail appears explicitly. McLaughlin (1983)

derives the error covariance propagation equations for a fairly general class of distri­

buted-parameter models and states them in a partitioned or disaggregated form (i.e.,

distinguishing between various sources of error). Inspection of McLaughlin's equations
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(14a)

provides an obvious correspondence with the algorithms of Beck et al. (1979), which

are derived from recursive filtering theory and also stated in partitioned form. Canale et

al. (1980), in their study of sampling strategies and error propagation with respect to

modeling water quality variations in the Great Lakes, make use of the same filtering

algorithms as Beck et al. (1979). To a less obvious extent, the work of Scavia et al.

(1981) also draws upon a background of filtering theory.

A detailed discussion of the conditions under which the statistical analysis of

Argentesi and Olivi (1976), for example, is equivalent to the covariance equations of the

extended Kalman filter quoted by Beck et al. (1979) is given elsewhere (Beck, 1982). For

our present purposes, it suffices to state these recursive partitioned equations (in the form

used by Beck et al., 1979) as:

{Uncertainty in {Uncertainty propagated from the current state of water quality}

the state variable

predictions}

{Uncertainty derived from correlated state-parameter errors}

{Uncertainty propagated from the a posteriori parameter estimation

errors}

{Uncertainty contributed by future input disturbance estimation

errors}

{Uncertainty arising from other factors e.g., residual errors of model

calibration}

where

(l4b)

(l4c)

In eqn. (14) ps, pc, pP, and S are, respectively, the covariance matrices for the state

prediction errors, correlated state-parameter prediction errors, parameter errors (which

in this case are assumed to be propagated with constant covariance according to eqn.

14c), and the errors in the estimated future input disturbances (u). The matrices (Jlll,
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<1>12, and r s are dependent upon the state predictions, x(tjltr), the parameters·ci(tjltr),

and the estimated inputs u(t), and must therefore be evaluated at each time step t j • The

elements of these matrices are related to the partial derivatives [a/daXj], [afdaQj], and

[afdauj] of the function f {-} in eqn. (I a), which are notably 110t the same derivatives as

those of the sensitivity coefficients. The solution for X(tjltf) can be obtained from eqn.

(la) with the initial conditions x(tfltr) for the period of prediction and w i t h ~ ( t ) = 0

for all t ;;;. tr.

Before proceeding to an application of these covariance propagation equations

to illustrate the qualitative discussion of Section 4.1, it is helpful to draw together

some of the threads of the foregoing arguments. First, at the very beginning of the

discussion of calibration problems in Section 3.1.1, the notion of a sensitivity analysis

was introduced informally. To this original idea a statistical component has now been

added, in the sense that contributions to the uncertainty of a state variable pre­

diction (x;) are the products of a sensitivity coefficient (axdaQj, for example) and an

error covariance (pE) associated with a particular source of uncertainty (see also

Argentesi and Olivi, 1976). Once again, there is a close connection between sensitivity

analysis and the design of experimental and monitoring programs (see also Canale et aI.,

1980).

Second, in Section 3.2.1 eqn. (5) represents the essential element of a recursive

parameter estimation algorithm. Equation (14) can be derived from the same type of

algorithm (see Beck et aI., 1979), indeed from the same algorithm as that used to provide

the results for the Cam and Bedford-Ouse case studies of model structure identification

in Sections 3.2.2 and 3.3.1. Such a natural, quantitative link between the problems of

calibration and prediction permits in principle a more formal exploration of the questions

raised in a qualitative manner in Section 4.1 and this undoubtedly has significant impli­

cations for the dilemma to follow in Section 4.3. The connection crystallizes around the

obvious choice of setting the a priori error covariances for the prediction period equal to

the a posteriori error covariances of the calibration period, for example,

(15)

which is clearly suggested by Figure 23. Fedra et a1. (1981) provide a corresponding

interpretation of the calibration-prediction connection under the somewhat different

conditions of sparse data situations (recall the categorization given in the introduction

of Section 3).

Lastly, given our bias toward examining the relationship between calibration and

prediction, rather than examining the accuracy of algorithms for prediction error propa­

gation, it is reasonable tG ask whether the approach behind the statement of eqn. (14)

yields any additional insight. In three directions the answer appears to be yes. First, let

us recall that the model of the system's dynamics also includes a representation, eqn.

(I b), of the output observation y whose significance for prediction error propagation

has thus far been overlooked. There is at least one example in which it is sensible to

assume a value for all future observations y(t). Suppose we have a closed system with

three interacting state variables (nutrient XI, phytoplankton X2' and zooplankton X3);
then if the initial total concentration of an element (phosphorus, for instance, or nitrogen)

distributed among these three states is measured as
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(16)

it is reasonable to assume a value for YI (tjltf) for all future tj . Since eqn. (14) is part of

a recursive state-parameter estimation algorithm, the computation of prediction error

propagation may be conducted as if it were actually a calibration exercise. Second, and

as a more general complement of this argument, assumptions about the covariance of

fu ture measurement errors TJ (tJ can be made independently of making any similar assump­

tions about future values of y. Prediction error propagation can then be studied as a

function of possible future monitoring programs as discussed by Canale et a!. (1980).

Third, once a covariance matrix for TJ (tj) is assumed, it is also possible to compute the

gain matrix G(tj Itf) appearing in eqns. (5) and (10), a matrix whose role in the estimation

of parameters has been discussed briefly in Section 3.3.2. One might accordingly speculate

that the behavior of G(tj It f ) will be associated with measures of the effectiveness of

future measurement strategies with respect to parameter estimation, although this can

also be considered more explicitly in other ways (Canale et a!., 1980). We may note in

passing, however, that the original idea of a sensitivity analysis, subsequently expanded

to accommodate a statistical component, can thus be generalized further to include not

only analysis based solely upon assumptions about the model and its uncertainties but

also analysis incorporating assumptions about measurement strategies.

4.2.1 An Illustrative Example

When discussing problems of uncertainty in complex models, the choice of a simple

example, however desirable for reasons of clarity, is nevertheless restrictive. Moreover,

a great deal of time could be spent in constructing the perfect example ("perfect" in the

sense that it illustrates all the points to be made). However, since the essence of this

paper is the analysis of real, and not hypothetical systems, we shall avoid the possible

sterility and unreality of the "perfect" case and content ourselves with the following

modest example.

Suppose we have a three state-variable model (again, nutrient XI, phytoplankton

x 2, and zooplankton X3) representing a lake system with inflow and outflow (see Figure

26). Let us assume, without going into detail, that over the period of calibration there

was no significant observed zooplankton activity and that consequently, as indicated by

the line of demarcation in Figure 26, the part of the model associated with zooplankton

activity is relatively uncertain. In quantitative terms, this assumption might imply for

the prediction period the following error covariance assignments:

(a) For the initial state estimation errors, pS(tf It f ), variances equivalent to coefficients

of variation of, say, 5% for the nutrient and phytoplankton states and 100% for

the zooplankton state.

(b) For all the model parameter estimates associated with zooplankton activity

(phytoplankton grazing, excretion, and zooplankton mortality), error variances,

pP, equivalent to coefficients of variation of 100% and for the remaining parame­

ters coefficients of variation of 10%.

(c) For the three input disturbances (influent discharge, influent nutrient, and

phytoplankton concentrations), constant error variances, S, equivalent to
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FIGURE 26 Illustrative example system for the analysis of prediction error propagation; the zoo­

plankton dynamics are assumed to be (relatively) highly uncertain (Le., surplus content).

coefficients of variation of 4%, 16%, and 10%, respectively, for the initial input

values U(tf).

This last assignment is tantamount to the assumption that the disturbances expected for

the future will be essentially similar to those observed in the past. The input variations

actually used for this example are shown in Figure 27; they are intended to reflect the

nature of the "smooth", unexceptional changes characteristic of the earlier discussion of

Figure 4 in Section 3.1.1. There is a slow fall in the influent nutrient concentration, a

temporary rise in the "seed" phytoplankton population of the inflow, and the influent

discharge exhibits a response to a precipitation event. Prediction under substantially

changed conditions will thus amount to assessing the effects of significant zooplankton

activity in the future.

There are, in fact, a host of items emerging from the discussion of Section 3 to

which the present example could be addressed. We shall, however, concentrate on

illustrating essentially two groups of problems:
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FIGURE 27 Input variable variations (u) for the illustrative example.
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Problem 1. If the activities of zooplankton have not been significantly observable

in the past, then their inclusion in the model is equivalent to an "act offaith". In other

words, as with the discussion of the Streeter-Phelps assumptions for the example of

the Bedford-Ouse study in Section 3.1.1, there was no information in the historical

data with which to estimate the parameters associated with zooplankton activity

and such behavior, if it occurred, was dominated by other modes of behavior. The

model thus contains highly uncertain surplus content (a term introduced in Section

3.1.2).

Problem 2. As a minor variation on the theme of Problem I, we may point out

that the model, since it contains surplus content, is probably over-parametrized and will

have suffered from problems of identifiability. In order to illustrate this point it is neces­

sary to be somewhat more specific. Let us introduce the following expression from the

representation of the zooplankton dynamics in the model

(17)

where a4 is the growth-rate constant for zooplankton [in day-l (10-3 gm -3 phyto­

planktonfl], as is the zooplankton death-rate constant (day-l), and a6 is the fraction

of the phytoplankton component absorbed into the zooplankton cells. The term 'Y is

therefore a lumped (growth-death)-rate parameter and typically, while reasonably

accurate estimates for 'Y might be obtainable during calibration (given suitable data),

it is highly unlikely that a uniquely "best" combination of estimates for a4, as, a6 is

identifiable. (This is really the same as the problem in the examples of Bierman et a1.

(1980) and Halfon (1979b), which were discussed in Section 3.1.2.) Many combinations

of values for a4, as, and a6 give the same value of'Y and, from the point of view of the

observed zooplankton dynamics, the model reponse is probably more sensitive to the

value of 'Y, and not a4, as, or a6. A characteristic result of such problems of identifiability

is that covariances among the estimation errors of different parameters are very significant

(see for example, Di Toro and van Straten, 1979; van Straten, 1983; and Young et aI.,

1980).

It is the implications of these two problems, which are intrinsic to the process of

model calibration, that are important for the illustrative example of prediction error

propagation.

Figure 28 shows the state variable trajectories and the propagation of prediction

errors when the pattern of future input disturbances from Figure 27 is assumed. Two

cases are considered: a base case (scenario I) defined by the covariance assignments

introduced above; and a case (scenario 2), which is otherwise identical with the base case,

except for the complete removal of zooplankton activity from the model. It is clear that

uncertainty deriving from the estimates of parameters associated with zooplankton

activity (in scenario 1) dominates the propagation of errors, providing a rather dramatic

illustration of the previous discussion of Figure 25. Confidence in the phytoplankton

prediction is entirely eroded as soon as zooplankton grazing becomes significant although

some measure of reasonable "predictability" for the base case is restored toward the end

of the prediction period when zooplankton activity subsides. The second set of pre­

dictions in Figure 28 is a strikingly confident statement about the future and one could

tentatively conclude that toward the end of the prediction period the two scenarios for
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FIGURE 28 Scenarios 1 and 2 for the illustrative analysis of prediction error propagation: nominal

reference trajectories are given together with the bounds representing (±) the standard deviations of

the prediction errors. The shaded areas represent these bounds for scenario 2; all units for the three

state variables are expressed in terms of the nutrient element contained in each compartment.



58 MB. Beck

(a) Nutrient (10- 3 gm- 3 )

200

160

120 .....

""" ;'" /'..... /
7-

/
/

/
/

/'

/

I
I

I
I

I
I

I
/

/
/, ;'

O - ! - _ ~ ~ ~ ' - ~ - ; ; " i - e - ~ - ~ a ~ ' . L : . . L ~ : 6 C 2 ' L Z ~ L . . . < : . . . . . . . L - - . L 1

80

40

(b) Phytoplankton (10- 3 gm-3)

200

160

(c) Zooplankton (10- 3 gm- 3 )

60

40

20

10 20 30 50
Time (days)

FIGURE 29 Scenarios 3 and 4 for the illustrative analysis of prediction error propagation: nominal

reference trajectories are given together with the bounds representing (±) the standard deviations of

the prediction errors. The shaded areas represent these bounds for scenario 4; all units for the three

state variables are expressed in terms of the nutrient element contained in each compartment.
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TABLE 1 Parameter estimates and parameter estimation error covariance assumptions for Problem

2 (see also Figure 29).

Parameter Estimate

Scenario 3 Scenario 4

Correlation coefficient of estimation errors

"'.
"'s

"'.
X,(tf1tf)

'Y

0.05

0.03

0.1

5.0

-0.005

0.02

0.025

0.2

5.0

-0.005

p(a. , 6. s) = 0.4

p(6.., 6..) = - 0.5

p(6. s' 6..) = 0.33

prediction are distinctly different, an important point to which we shall return in the

following section.

Figure 29 deals with Problem 2 as defined above. For these two sets of predictions

(scenarios 3 and 4) the parameter estimates assumed for eqn. (17) and their associated

error covariances are given in Table 1. Scenario 3 is identical with scenario 1, the base

case, except for the assumption of nonzero covariances among the parameter estimation

errors. Scenario 4 has the same estimation error structure as scenario 3 but different

parameter estimates for 0:4, 0:5 , and 0:6 (which, nevertheless, give the same value for

r) and estimation error variances adjusted to maintain coefficients of variation of 100%

for these parameter estimates. Note that a comparison of scenarios 1 and 3 in Figures

28 and 29 demonstrates the reduction in prediction error magnitudes due to the assump­

tion of correlated parameter estimation errors. As expected, in this illustration the

nominal trajectories (means) of the predicted state variables are distinctly different.

Had these been confident, or even deterministic predictions, it might have been con­

cluded that the ambiguities of model calibration result in unavoidably ambiguous state­

ments about the future. As it is, however, the uncertainty in both scenarios is sufficient

that such a conclusion is not justified, a point which otherwise may not have been

apparent if the prediction errors had not been computed.

4.3 A Dilemma

This simple example attempts to show two things: that the results of a calibration

exercise, which depend partly upon the nature of the model and partly upon the nature

of the data, can have a decisive influence on the propagation of prediction errors; and that

the association of prediction errors with a prediction can influence one's judgment about

the significance of differences among alternative statements about future behavior patterns.

Referring to Figure 30, let us assume that the set of behavior patterns M1 belongs

to a model characteristic of the class of large simulation models - the type of model that

simulates a much greater variety of behavior patterns than has actually been observed in

the historical field data, A (i.e., a large part of M1 does not intersect with the set A). For

such a model the many parameters not associated with those modes of behavior in the set

A (Le., that part of M1 lying outside A) would have, as we have already discussed, rela­

tively large a posteriori estimation errors. The complement, or opposite, of the large
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FIGURE 30 Uncertainty and prediction after identification: A is the set of historically observed

patterns of behavior; M, is the set of behavior patterns simulated by the typical "large simulation

model"; M
2

is the set of behavior patterns simulated by the small fully-identified model; F is a set

of possible fu ture behavior patterns of the actual system.

simulation model is the more compact kind of model that would typically result from

the "not-so-dominant" approach to model building discussed in Section 3. Optimistically,

this latter fully identified model might be represented by the set M2 in Figure 30. Its

a posten'on' parameter estimates ought to be much less uncertain than many of those of

M1; and since this model contains no surplus content, the set M2 is contained completely

in the set A.

How might these two models perform when applied to the problem of prediction?

The most interesting and challenging case to consider is that in which future input dis­

turbances of the lake or river, such as different meteorological conditions and modified

effluent discharges, force the variations of water quality into patterns of behavior (say F

in Figure 30) quite different from the historically observed patterns. If our arguments

from Sections 4.1 and 4.2 are sound, then for model M1 it would be expected that

predictions of behavior characteristic of F would be strongly dependent upon highly

uncertain sectors of that model (since M1 () A is disjoint from M1 () F). These pre­

dictions would accordingly be highly uncertain. In contrast, would a small model that

captures only the dominant modes of past behavior (as does the model M2 in Figure

30) tend not to predict different future conditions? After all, its parameter values have

been well identified and would thus be associated with relatively small estimation errors.

Hence, given the kind of argument presented earlier, we might be mistakenly confident

about its predictions. There is, for example, no intersection between M2 and F in Figure

30, which suggests that F is outside the scope of behavior patterns simulated by M2 •

We have in fact a dilemma; indeed, it was already foreshadowed in the illustrative
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predictions of Figure 28. With a large model (M!) it may well be possible to predict the

"correct" future, but one would have little or no confidence in that prediction. In contrast,

with a small model (M2 ) it may be that a quite "incorrect" future is predicted, and,

worse still, one might place considerable confidence in that prediction.

Admittedly this dilemma has perhaps been stated in an exaggerated and overly

simplistic fashion. And once again our argument has fallen into the trap of using the

words "large" and "small" to qualify the models developed by their respective approaches.

However, since this discussion relates back to calibration and the problems of surplus

content in a model, such words are not as misleading as they might have been earlier.

The intention of simplification was to sharply define the problem, not to obscure the

inevitable grey areas between the black-and-white statements about the problem. For

example, one might consider the rather provocative extension of Figure 30 represented

by Figure 31. In this case the large simulation model (M!) has a set of behavior patterns

that stretches outside the frame of all possible (true) behavior patterns, P, of the system.

That it to say, M! contains spurious content that has no parallel with reality.

p
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FIGURE 31 Uncertainty, prediction after identification, and spurious content: all sets are as pre­
viously defined for Figure 30.

The analysis of prediction error propagation can be viewed as an a posteriori

sensitivity analysis. It provides a check on the relative levels of confidence associated

with the assumptions made in developing, calibrating, and applying a model; and it
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should reveal when, and to what extent, the model's predictions rely upon these assump­

tions and upon each component of uncertainty. It ought to be possible to distinguish

among the effects of uncertainty propagated from surplus content in the model, the

effects of unresolved ambiguities of calibration, and the effects of uncertainty associated

with the extrapolation of knowledge about the behavior of laboratory systems to know­

ledge about the behavior of the field system.

The major point of the dilemma is that it captures some limiting features of both

the approaches to modeling discussed in this paper.

5 CONCLUSIONS

There has always been uncertainty. Our present concern with it is partly because

it has come to be recognized (or "perceived") as one of the problems in water quality­

ecological modeling. Again, as in the opening paragraphs of this paper, reference can be

made to Orlob's review of water quality modeling, where "model reliability" is listed

first among the "areas for improvement" (Orlob, 1983b). Two aspects of the problem

of uncertainty have been dealt with here: uncertainty in the structure of the mathe­

matical relationships hypothesized for a particular model; and uncertainty associated

with the predictions obtained from models. These are considered to be closely related

aspects that link together the subjects of model calibration (or system identification)

and prediction. We have also classified approaches to water quality-ecological modeling

into two types, a "dominant" and a "not-so-dominant" approach. To address the con­

cerns expressed about the dominant approach in Section 2, we have discussed at length

a complementary alternative, which we call the not-so-dominant approach (Section 3).

Our arguments for linking identification and prediction have then been used to conclude

with a dilemma, which in turn allows us to reiterate some the complementary features

of these two approaches (Section 4).

Our main concern with the dominant approach to water quality modeling is that

it tends to ignore the deeper significance of model calibration. Calibration should not

be an unimportant afterthought to a model development exercise. It may only be con­

sidered in this way if one chooses, as is the tendency with the dominant approach, to

attach great confidence to a priori theory, thereby renouncing much of the questioning

that should accompany calibration. Somly6dy (l981) provides insight into why certain

disciplinary conventions may encourage the view that calibration is not really important.

Model complexity and (apparent) completeness cannot be equated with accuracy. Given

the current limitations of the data available for calibration, larger models, with many

parameter values to be estimated, are likely to lead to hidden ambiguities in the model

predictions. Indeed, it is only in the context of applying a model for prediction that one

can begin to challenge the belief that a large model must be correct - for how (so runs

the rhetorical question) can it be incorrect if every detail of conceivable relevance has

been included? This concern is not restricted to water quality-ecological modeling, but

is encountered in other adjacent fields (see, for example, Kossen, 1979).

The "questioning" process of model calibration, to which such importance is

attached, is what we have called model structure identification. The model is a vehicle

for asking questions about the nature of "reality" and the process of model structure



Uncertainty, system identification, and water quality prediction 63

identification is ultimately concerned with acquiring understanding about a system's

behavior. For this reason we have examined the equivalence between procedures for

solving the problem of model structure identification and current theories of the scientif­

ic method (for example, Popper, 1959). The procedure of Section 3 has two basic features:

(a) the use of recursive estimation algorithms; and (b) "experimentation" with the model

structure to satisfy alternately the two objectives of falsifying confident hypotheses

and creatively speculating about uncertain hypotheses. The notion of "experimentation",

and the idea that the controlled conditions of an experiment can be reconstructed during

the analysis of field data, have considerable appeal, particularly because of the suggested

association with laboratory science (from which, incidentally, many of the extrapolations

inherent in the dominant approach are ultimately drawn). But in a holistic sense it is

difficult to claim, however tempting it may be, that there is one "experiment" and its

complementary "environment". Rather, it is only possible to state that a number of more

or less significant "experiments" are proceeding in parallel. The primary value of the

approach discussed in Section 3 is its ability to provide a means for direct evaluation of

those extrapolations, from laboratory or "equivalent" field systems, characteristic of the

dominant approach. The not-so-dominant approach is certainly not, however, without

its own difficulties. Indeed, there are serious difficulties in absorbing and interpreting

the results from the analysis associated with model structure identification. However,

these difficulties are somewhat independent of the particular approach taken; they

arise fundamentally from the combination of complexity with uncertainty.

The real debate about approaches to modeling is, at least for the purposes of this

paper, more appropriately considered in terms of the question of predicting future

behavior patterns under substantially changed conditions. The arguments employed in

Section 4, however, cannot be divorced from the preceding discussion of calibration

and model structure identification. One of the most important issues in examining the

propagation of prediction errors is the effect of highly uncertain surplus content in a

model. In other words, this is an effect resulting from problems of identifiability where

prior estimation of unique values for the model parameters has not been possible; the

model contains too many parameters in terms of the data available for calibration. The

results of a calibration exercise can have a decisive influence over the propagation of

prediction errors. Equally the association of prediction errors with a prediction can

determine one's judgment about the significance of differences among alternative state­

ments about future behavior patterns.

We have closed this paper with a dilemma, the same dilemma as presented in the

much shorter companion paper (Beck, 1981). Its usefulness, for the time being, is the

sharp focus into which it brings the problems from which both the approaches to modeling

suffer. No doubt, it also expresses some of the limits to modeling.
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THE VALIDITY AND CREDIBILITY OF MODELS FOR BADLY

DEFINED SYSTEMS

Peter Young*

Centre for Resource and Environmental Studies, Australian National

University, Canberra (Australia)

INTRODUCTION

If the dictionary definition were the sole criterion, a model would be considered

valid if it was found to be well grounded, sound, cogent, logical, and incontestable.

Similarly, a model would be deemed credible if it was deserving of or entitled to belief,

or if it was plausible, tenable, or reasonable. All of these characteristics are, of course,

desirable in a mathematical model of a physical system; but when used as the basis for

the definition of model adequacy, they are clearly too subjective to provide useful and

rigorous criteria for model evaluation.

In this paper, we will consider validity and credibility as desirable properties of a

model which should follow from close adherence to a systematic and comprehensive

model-building procedure. This systematic procedure is evolved naturally when the

model-building problem is considered within the hypothetico-deductive interpretation of

the scientific method (see, for example, Popper, 1959), and it forms the basis of a

"method theory" for modeling dynamic systems which would appear to have wide appli­

cability (Young, 1977). This method theory is concerned not only with mathematical

analysis techniques but also with the successful integration of mathematical analysis and

data collection in whatever form may be most appropriate, whether it be active field and

laboratory experimentation or passive monitoring exercises.

Within this setting, model validity - or, more correctly, conditional validity ­

follows the satisfactory outcome of a validation phase of the analysis in which attempts

to falsify the model as a theory of system behavior are found to be unsuccessful. In

contrast, model credibility is a property which depends upon success in all phases of the

model-building procedure from model formulation through model structure identification

to parameter estimation and validation. In this sense credibility remains a somewhat

subjective concept: I believe, however, that whether a model is credible or not will always

* Present address: Department of Environmental Science, University of Lancaster, Lancaster LAI 4YQ,

UK.
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depend, to some extent, on the background of the adjudicator. For example, if the

scientific establishment is firmly committed to a particular type of model for a physi­

cal system, then it may at first be difficult for the systems analyst to gain acceptance

and credibility for a less conventional representation, even if the model-building

procedure has been rigorous and is seen to conform with the basic tenets of the scientific

method.

The modeling procedure described in this paper can be applied to any dynamic

system, whether man-made or naturally occurring, but it is designed specifically for sys­

tems which can, in some sense, be considered badly defined. This poor definition usually

arises for two major reasons. First, the size and complexity of many natural systems, such

as those encountered in environmental and economic research, are such that the mecha­

nisms governing the change in the observed system variables and their interrelationships

are rarely fully understood a priori. There can, in other words, be a basic ambiguity;

a situation in which a number of possible explanations for the observed behavior seem

feasible but where little a priori evidence exists as to which of these explanations is the

most plausible. The monodisciplinary expert may well be able to list the various mecha­

nisms that could be operative in that part of the system with which he is acquainted,

but he will be unlikely to proffer advice on which of these mechanisms are likely to

dominate the behavior of the entire system under study.

Such limitations in a priori knowledge are not, of course, restricted to complex

natural systems: research into many physical and biological processes often starts from

a position in which little prior knowledge is available. But in the case of complex natural

systems the position is exacerbated by a second problem - the difficulty, if not impossi­

bility, of performing planned experiments. This difficulty, which is perhaps the major

difference between research in the environmental and social sciences and research in the

more conventional physical and biological sciences, is compounded by the associated

problems entailed in even collecting adequate quantities of in situ data during the

"normal operation" of such systems. In addition, normal operational data, even when

available, are likely to be scarce and subject to some degree of uncertainty. Thus, the

analyst with prior experience in the physical sciences might expect to improve this

scant a priori knowledge of the system by careful analysis of reasonable-quality, planned

experimental data to yield a much improved a posteriori situation. In practice, however,

he is forced into the position of attempting to explain the troublesome ambiguities by

reference to very restricted observational sets using conventional, and not necessarily

appropriate, analytical techniques.

Faced with the dilemma of the badly defined process, systems analysts have

attempted various different approaches to the problem. These approaches are often

dictated almost completely by the specific background experience of the research worker,

and, for this reason, there seems to be no unified approach, merely a collection of ad hoc

procedures with various degrees of sophistication and complexity. To the outside

observer at least, the only thing the procedures seem to have in common is their use of

highly esoteric mathematics and an inevitable dependence upon the electronic computer.

Certainly it is the complicated, although sometimes rather naive, computer-aided

exercises in model-building and systems analysis that have attracted most attention

in recent years and that seem most to typify the "systems approach". Furthermore it

is these same exercises that have contributed most to the recent, widespread criticism
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of applied systems analysis and environmental model-building (see, for example, Hoos,

1972; Brewer, 1973; Ackerman et al., 1974; Philip, 1975; Berlinski, 1976).

There seem to be two main reasons for the present rather unsatisfactory state of

affairs. First, the applied mathematicians who have taken a major part in the development

of systems methodology appear sometimes to be attracted more by the elegance of the

mathematical tools rather than the need to solve adequately the real problems at hand.

Second, it is all too easy to use a computer, particularly for the "simulation modeling"

of complex dynamic system behavior, and to forget the true nature of the problem in

such exercises: the complex simulation model and the subsequent analysis are defined

within the confines of the available mathematical methods and computer programs,

while the many statistical problems of model-building often receive only cursory attention.

It is almost as if the model has become more important than the problem at hand, even

that the model in some sense is the system.

This problem is exacerbated by a tendency for most simulation-modeling method­

ology to be based on a rather restricted "reductionist" philosophy. Here the system is

repetitively subdivided into elemental components that are assumed to have physical

significance to the modeler and can be analyzed as relatively separate entities. Having

evaluated the "physical" parameters associated with each of the elemental models,

usually by experimentation either in situ or in a laboratory, the modeler then reassembles

the model components in a manner which he and his advisers perceive to be appropriate,

with the numerical values for the parameters inserted in accordance with this pre­

conceived, but usually untested, perception of the system and its behavioral mechanisms.

Such a reductionist approach is rarely, however, accompanied by sufficient evalu­

ation of the resulting model as a complete entity. "Holistic" validation (see, for example,

Rigler, 1976) is normally restricted to exercises in deterministic "model fitting" in which

overall "calibration" of the model is achieved using manual or automatic methods of

parameter "tuning" or "optimization"; an approach that is sometimes enhanced by

deterministic sensitivity analysis* in which the sensitivity of the model outputs to vari­

ations in the parameters is examined using various analytic procedures (see, for example,

Miller et al., 1976).

Although such analysis is perfectly respectable, it must be used very carefully;

the dangers inherent in its application are manifOld, but they are not, unfortunately,

always acknowledged by its proponents. It is well known that a large and complex

simulation model, of the kind that abounds in current ecological and environmental

system analysis, has enormous explanatory potential and can usually be fitted easily to

the meager time-series data often used as the basis for such analysis. Yet even determin­

istic sensitivity analysis will reveal the limitation of the resulting model; many of the

"estimated" parameters are found to be ill defined and only a comparatively small subset

is important in explaining the observed system behavior.

Of course, over-parameterization is quite often acknowledged, albeit implicitly, by

the reductionist simulation model-builder. Realizing the excessive degrees of freedom

* Stochastic sensitivity analysis, in which sensitivities are calculated in relation to stochastic variations

in the parameter, usually by resort to Monte Carlo analysis, is preferable (see Section 2.1) but is not

currently very popular, probably because it demands more comprehensive data analysis.
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available for fitting the model to the data, he will often fIx the values of certain "better

known" parameters and then seek to fit the model by optimizing the chosen cost function

(usually the sum of the squares of the difference between the model outputs and the

observations) in relation to the remaining parameters only, and these are normally few.

In this manner, the analyst ensures that the cost function-parameter hypersurface is

dominated by a clearly defined optimum (a minimum in the least-squares case), so that

estimation of the parameters which defIne the optimum becomes more straightforward.

But what is the value of this optimization exercise in relation to the specification

of the overall model? Clearly a lower-dimensional parameter space has been located which

allows for the estimation of a unique set of parameter values. However, this has been

obtained only at the cost of constraining the other model parameters to fixed values that

are assumed to be known perfectly and are defined in relation to the analyst's prior

knowledge of the system. As a result, the model has a degree of "surplus content" not

estimated from the available data, but based on a somewhat ad hoc evaluation of all

available prior knowledge of the system and colored by the analyst's preconceived notions

of its behavioral mechanisms.

On the surface, this conventional simulation-modeling approach seems quite

sensible; for example, the statistician with a Bayesian turn of mind might welcome its

tendency to ·make use of all a priori information available about the system in order to

derive the a posteriori model structure and parameters. On the other hand, he would

probably be concerned that the chosen procedures could so easily be misused: whereas

the constrained parameter optimization represents a quantitative and relatively objective

approach, it is submerged rather arbitrarily within a more qualitative and subjective

framework based on a mixture of academic judgment and intuition. Such a statistician

would enquire, therefore, whether it is not possible to modify this framework so that the

analyst cannot, unwittingly, put too much confidence in a priori perceptions of the

system and so generate overconfidence in the resulting model.

Consideration of the modeling problem from this kind of Bayesian statistical stand­

point is the stimulus behind the present paper. The need to choose a model that is

efficiently parameterized and compatible with the identifiability of the system (in relation

to the available data) is a major requirement of the model-building procedure discussed

here: it is clearly foolhardy to attempt the statistical estimation of parameters in a model

if the model has excess content (in the form of surplus structure and/or parameters)

which cannot be validated against the observed data. However, it is possible to blend the

a priori information on the system and the subsequent analysis of the time-series data

into an objective model-building exercise aimed specifically at either obviating these

difficulties or, at least, identifying where the limitations of the resulting model may

reside. In this manner, the main impediments to the use of the model, either as a pre­

dictive device or for control and management system design, will often become more

apparent and the possibility of its misuse in such applications will be minimized.

Given the Bayesian stimulus behind the proposed model-building procedure, it

is appropriate that the main statistical tool used in the analysis suggested here can be

considered as the physical embodiment of Bayesian estimation, namely the "recursive"

or "probabilistic iterative" estimation algorithm (see for example, Young, 1976b, 1981).

Recursive estimation in its simplest recursive, least-squares form was first developed

at the beginning of the nineteenth century by the famous mathematician K.F. Gauss and
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described in his collected works (1821-1826), which appeared under the title Theoria

Combinationis Erroribus Minimum Obnoxiae (Bertrand, 1855; also see, for example,

Sprott, 1977; Young, 1981). In the Theoria Combinationis, Gauss shows how it is

possible "to find the changes which the most likely values of the unknowns [the parame­

ter estimates] undergo when a new equation [observation] is adjoined and to determine

the weights [standard errors] of these new determinations" (with our comments in square

brackets). In other words, and to utilize more contemporary terminology, he developed

a statistical algorithm for sequentially or recursively updating the least-squares estimates

on receipt of additional data.

The recursive methods of time-series analysis used in the present model-building

procedure are logical successors to the algorithms of Gauss and also owe much to later

work on recursive estimation by Plackett (1950) and Kalman (1960). In their latest

form (Young, 1976a; lakeman and Young, 1979; Young and lakeman, 1979, 1980) they

represent a general recursive method of time-series analysis for time-series models of the

"errors-in-variables" type (see for example, Kendall and Stuart, 1961). As such they

provide a robust and generally applicable procedure for identifying and estimating

parametric change in stochastic models of dynamic systems.

In subsequent sections we will see how these recursive methods of time-series

analysis can be of major importance in both the identification of an efficiently parame­

terized model structure and the estimation of the parameters which characterize this

structure. In this sense, they provide the methodological cornerstone of the proposed

systematic approach for modeling badly defined systems.

2 THE PHASES OF MODEL-BUILDING

If it is to be formulated in accordance with the scientific method, a model-building

procedure must start with an analytical phase aimed at generating working hypotheses

about the nature of the system under study. Normally, as indicated in Figure 1, such

hypotheses will themselves be in the form of mathematical models which (a) attempt to

embody all prior information and knowledge about the system, (b) make use of all

appropriate historical data, and (c) are related closely to the objectives of the model­

building exercise.

2.1 Model Formulation and the Generation of Working Hypotheses

In the early stages of an investigation into a badly defined system, time-series

data are likely to be scarce. In this situation, the only way to progress is to utilize some

form of simulation model in the hypothesis-generating role. "Simulation model" here

implies one whose structure and parameters are explicitly related to the physical, chemi­

cal, biological, or socioeconomic processes that are assumed, a priori, to characterize the

system.

If the selected simulation model is relatively simple and parsimonious in its

parameterization, then its use as a hypothesis-generating device is fairly straightforward,

as will be seen in later sections. Indeed, such a simulation model could form a basis for



74

a priori

data
Definition of
objectives

Model
formulation

a priori

information

Planning stage

P. Young

Relevant
data
collection

,
Additional
data
collection

Model
structure
identification

Parameter
estimation

,
Model
validation

Yes

No

No Analyze
nature of
limitations

IUse model

FIGURE 1 The model-building procedure.



Validity and credibility of models for badly defined systems 75

the subsequent exercises in model-structure identification and parameter estimation

shown in Figure 1. But if the model is based on normal reductionist principles then it

may, as pointed out in the previous section, be rather complex, with many parameters,

state variables, and nonlinear relationships.

I maintain that such complex models can only be useful in the initial analysis of

badly defined systems if they are considered within a probabilistic context. That is, given

the model and the inherent uncertainties in structure and parameter values, the only

meaningful and safe analyses must focus on the probabilities of various behavioral

patterns. Most importantly, they must focus on the probable structures and parametric

relationships that appear consistent with the dominant modes of behavior associated

with the "problem" under consideration (Young, 1977).

If this notion is formalized, it implies that the simulation model should not be

evaluated as a single entity; in other words, not as a fixed structure characterized by a

set of constant parameters defined in terms of point-estimates. Rather the parameters

should be considered as inherently uncertain and, therefore, definable only in terms of

statistical probability distributions. This Bayesian interpretation leads naturally to the

study of a whole ensemble of models defined by the various selected structures and their

associated parametric probability distributions.

In order to pursue this idea, consider a general class of systems which can be

represented by the following, nonlinear, state-space differential-equation representation

of the system in continuous time:

(1)

Here,

t = time;

x = [XI, X2, ... , Xn]T is an n-vector of state variables which describe the system

behavior in the "state space";

a = [aI, a2, ... , aq ] is a vector of (possibly time-variable) parameters or coef­

ficients which characterize the system in the state space;

U
C = [u I, U2, ... , um]T is an m-dimensional "control input" vector whose elements

are capable of manipulation in some manner;

ud = [d I, d 2 , •.• , ddT is an {-vector of deterministic* but uncontrollable dis­

turbances which affect the system; and

~ = [~I, ~2, ... , ~n]T is an n-vector of stochastic disturbances whose statistical

properties mayor may not be known, depending on the level of a priori

information available about the system.

It will be noted that eqn. (I) is an ordinary differential equation or "lumped-parameter"

representation, which can be contrasted with the partial differential equation or

* In the present context "deterministic" is used loosely to mean measurable in some manner; such

disturbances are equivalent to the "exogenous" variables of socioeconomic systems (see, for example,

Johnston, 1963).
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"distributed-parameter" alternative which is more popular in some areas of environmental

systems analysis. This reflects my view that the lumped-parameter description is of

greater practical utility in systems analysis aimed at solving control or management

problems; it also serves to emphasize that it is the modeling of badly defined systems

for such control applications that is the principal concern of this paper.

The vector function Ii in eqn. (1) is nominally nonlinear and nonstationary ­

assumptions which reflect the idea that badly defined systems will, in general, exhibit

nonlinear and possibly changing behavioral patterns. The continuous-time formulation

is chosen because many physical relationships, such as mass or energy conservation laws,

are stated more naturally in continuous time; thus it is likely that a priori assumptions

about the nature of physical environment problems, for example, will fit more easily

within the continuous-time framework. This is not a limiting assumption, however,

since it is straightforward to consider the representation of system (1) in discrete time

(see Young, 1977).

In relation to eqn. (1), the probabilistic approach requires the evaluation of model

behavior for different vector functions Ii with the associated parameter vector &

represented in terms of the probability distribution which is chosen to encompass the

complete range of "possible" values for the coefficients that compose the vector. In

addition, because the disturbance vector ~ allows for random disturbances to the system,

it is clearly necessary to allow for this input uncertainty in the evaluation of the model.

It might also be desirable, depending upon the circumstances, to consider the model

behavior for different deterministic inputs U
C and ud

, which are representative of the

kind of inputs met in practice. For example, if ud represented a vector of rainfall inputs

to a river water-quality model, then "wet", "dry", and "average" conditions could be

accommodated with different representative deterministic sequences (see, for example,

Whitehead and Young, 1979).

This conceptual base of an uncertain or stochastically defined simulation model

can be exploited in methodological terms by recourse to Monte Carlo simulation analysis.

Put simply, such analysis consists of repeated solution of the model equations with the

uncertain parameters and inputs specified by sampling at random from their assumed

parent probability distributions. This analysis results in a large number of random simu­

lations (or realizations), each providing a unique state trajectory x(t). The set of tra­

jectories is then examined statistically to investigate the properties of the whole

ensemble of simulation models; that is, statistical procedures are utilized to infer certain

properties of the ensemble from the finite sample of trajectories obtained from the

random simulation experiments. It is, in other words, a method of bypassing the diffi­

culties associated with the analytic solution of nonlinear, stochastic differential equations,

albeit at some cost in computational terms.

The general aspects of the use of Monte Carlo methods to investigate the properties

of an ensemble of simulation models are discussed by Spear (1970). Monte Carlo

methods have been used previously in environmental and socioeconomic systems analysis

(see, for example, Barrett et al., 1973; Young et aI., 1973; Whitehead and Young, 1979)

but, in these earlier approaches, the ensemble properties were considered mainly in terms

of the propagation through time of the probability distribution associated with the state

trajectory x(t) itself. Here, an alternative procedure is proposed in which the state tra­

jectory x(t) obtained from each randomly selected solution of the model equations is
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examined to see if it is characterized by a behavioral pattern relevant to the problem

under consideration. For example, in a socioeconomic simulation, the occurrence of high

inflation simultaneously with a stagnant economy and high unemployment would define

the existence, for that run, of the "stagflation" problem. If the state trajectory does

appear to exhibit a problem behavioral pattern, then it is considered that the model

parameter vector Q: does give rise to "the behavior B"; alternatively, if x(t) does not

exhibit such characteristics, then 0: is associated with "not the behavior E". The end

result is N simulation runs in which M parameter vectors led to the behavior and N - M

did not.

This kind of Monte Carlo analysis is described in detail by Spear and Hornberger

(1978). For present purposes, it suffices to say that the aim is to ascertain which elements

of vector 0: are important in giving rise to the problem behavior. This is achieved by

evaluating the sample cumulative probability distributions associated with these elements

(the model parameters) in both the "behavior set B" and the "not the behavior set E".
A parameter is then deemed important if there is a statistically significant difference

between the two distributions and not important if this difference is statistically insig­

nificant. The two procedures for assessing the significance of differences in this sense are,

first, the application of conventional nonparametric tests such as the Kolmogorov­

Smirnov two-sample test and the Mann-Whitney test (see, for example, Spear, 1970),

and second, the use of principal-component methods based on eigenvalue-eigenvector

analysis of the covariance matrices associated with the parameter vectors (see, for

example, Kittler and Young, 1973).

Evaluation of the results of the Monte Carlo analysis in the above manner should

yield a better understanding of the system in terms of those mechanisms and parameters

that appear important to the problem at hand. Such additional insight can be useful in

a number of ways. Most importantly, it can lead to the specification of hypotheses

about the system behavior that can be tested by further planned experiments or moni­

t o ~ i n g exercises; in other words, it can help in the planning of further data collection in

the study of the system. As will be seen, it can also indicate to the analyst the possible

dominant modes of behavior of the system, information that is of crucial importance in

subsequent stages of model-building.

Of course, since the analysis is not limited to a single a priori model structure, it

may result in a number of different hypotheses, each of which will need to be tested,

and a number of possible "dominant mode" descriptions, each of which will need to

be evaluated during subsequent time-series analysis. It is seen, therefore, that the Monte

Carlo me thodology is indeed a very effective hypothesis-generating device which is

based on a relatively objective analysis of all a priori information available about the

system. This latter point helps to emphasize that the simulation models developed in this

initial stage of model-building should not be considered in the same light as more con­

ventional deterministic simulation models. Also, for the reasons outlined in the previous

section they will rarely, in themselves, form the basis for subsequent exercises in time­

series analysis. In the case of badly defined systems, I strongly advocate that mechanistic

simulation models should be viewed principally (although not entirely) within the

ensemble context. As such, their use in time-series terms is mainly as a vehicle for indi­

cating dominant-mode mechanisms and descriptions - descriptions which will, in

general, be much simpler than the original simulation-model description and can,
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therefore, provide a starting point in the identification of appropriate time-series model

structures.

2.2 Time-Series Model Identification and Estimation

Time-series analysis is a systematic, statistically based approach to the problem of

model development which provides an objective method of constructing both black-box

(input-output) and mechanistic (internally descriptive) models from time-series data.

Despite assertions to the contrary, time-series analysis is much more than just model

"fitting", as currently practised in many areas of systems analysis and simulation

modeling. This is emphasized by the fact that, in time-series analysis, the degree to which

the model fits the data is not, in itself, used as an indication of model adequacy: other

factors, such as the estimated uncertainty on the model parameters, are equally impor­

tant and are, as we shall see, an indispensable part of the analysis (see Young et aI.,

1980).

The use of time-series methods as the basis for modeling badly defined dynamic

systems has been described at length by Young (1977). As in the previous subsection,

therefore, the procedures will not be discussed in depth. Rather, an attempt will be made

to explain their role in the overall modeling process and to show how they follow quite

naturally from the initial Monte Carlo based model-formulation and identification

exercises.

It has been shown how the stochastic simulation-model experiments can reveal

in the assumed model those parameters which appear important in relation to the

"problem" behavior under consideration. In this way, these experiments can also help

the analyst to appreciate better the relative importance of the various dynamic mecha­

nisms in the model, to a point where he is able to identify those dynamic modes of

behavior that seem dominant in characterizing the problem. Young (1977) suggested

that it is these dominant modes of behavior that are important in the subsequent time­

series analysis for, if the model is indeed representative of the system, then it is these

modes that will be most "identifiable" from the observed data.

There is no proof at present tha t such a dominant-mode theory of dynamic behavior

is generally applicable but experience with practical dynamic systems suggests that it is a

reasonable conjecture; indeed it could be argued that the definition of a "problem"

behavior is, in itself, an acceptance of some form of modal dominance. But whether or

not the analyst subscribes to such a theory he will, in any specific case, be able to examine

the model for evidence of such behavior. As will be shown in a subsequent example,

evidence of this type can be obtained by quite straightforward exercises in systems

analysis applied to one of the model realizations that exhibit the problem behavior.

This may entail both evaluation of the model structure (for example, by linearization)

and analysis of the model response x(t) (for example, using time-series methods).

In effect, this analysis of the model in systems terms is aimed at testing the

hypothesis of modal dominance. If the hypothesis is confirmed (as I feel it will be most

of the time) then the analyst will have obtained some ideas about possible simple forms

of the model which can be used as the basis for further time-series analysis on data from

the system itself. If there appears to be no evidence to support the hypothesis (which

1
I
i

Ii
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I feel is unlikely in general) then the analyst will be no worse off and he should at least

have a better appreciation of the dynamics of the simulation model*.

The coordinated systems-analysis-modeling-data-collection strategy whose virtues

are extolled here should mean that, concurrent with the simulation modeling and systems

analysis, exercises in relevant data collection will have been planned and initiated. When

these data on the system become available they will allow the analyst to progress one

step further in his model-building: namely to the identification of a suitably identifiable,

time-series representation of the system.

A simple dominant-mode characterization of the simulation model provides an

ideal starting point for time-series analysis, the first stage of which is aimed at identifying

a dynamic model of the dominant modes associated with the system itself. In other

words, having tested the hypothesis that the simulation model can be represented simply

in dominant-mode terms, I suggest that the analyst should now proceed to test the

hypothesis that such representations are appropriate to the real system. The result of

this analysis is the identification of a time-series model structure which may be linear

or nonlinear in dynamic terms, depending upon the nature of the system. It will, how­

ever, normally be characterized by a small set of unknown parameters which need to be

estima ted during the subsequent parameter-estimation phase of the analysis.

The methodology of time-series model structure identification suggested by Young

(1977) is based on the use of recursive estimation procedures. The model structure is

then considered "well identified" if it simultaneously satisfies the following require­

ments:

(1) The recursive estimates of assumed time-invariant parameters are themselves

indicative of time-invariance and the estimates of assumed variable parameters

have direct physical interpretation.

(2) The covariance matrix of estimation errors associated with the estimated

parameters indicates that there are no problems of over-parameterization.

(3) The model structure satisfies certain statistical identification criteria based on

test statistics associated with its ability both to explain the time-series data and,

at the same time, to possess well-defined parameter estimates - these identifi­

cation criteria and their application are discussed fully by Young et al. (1980).

(4) The estimated stochastic disturbances ~ are purely stochastic in form and have

no systematic components attributable to some physical aspects of the system

behavior.

(5) The residual-error sequence or "innovations" process associated with the model

possesses "white noise" properties and is statistically independent of the deter­

ministic inputs U
C and ud

.

* I would go further and suggest that this kind of systems analysis applied to the simulation model

is a sine qua non for success in any simulation-modeling exercise applied to a badly defined system:

it would certainly help to avoid some of the more naive exercises in simulation modeling that currently

abound in the literature. An excellent example of its value is the analysis of the Forrester world model

by the "Globale Dynamica" Group at the University of Eindhoven (see, for example, Rademaker,

1973; Thissen, 1978).
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Put simply, this identification analysis is aimed at producing a model structure which

has a satisfactory physical interpretation, and is identifiable from the available time­

series data in the sense that it can be characterized by a unique set of well-defined

parameter estimates. Implicit in these specifications is the requirement for a parametrically

efficient model representation and the avoidance, therefore, of over-parameterization.

The evaluation of the recursive estimates is a most important aspect of the above

identification analysis. Significant variation in the estimated parameters can arise for

three main reasons:

(a) The dynamic behavior of the system is changing over the observation interval

(Le., the system is nonstationary).

(b) There are nonlinearities associated with the system behavior but not present

in the mathematical model.

(c) The model is over-parameterized so that the parameters are poorly defined ­

as a result, the recursive estimates tend to "wander" along the indeterminate

valley-like surfaces which characterize the criterion function-parameter hyper­

surface in this over-parameterized situation (in this situation the model always

fits the data well, with high coefficients of determination, but its parameters

are characterized by high levels of uncertainty).

The identification procedure in stages (1)-(3) above is designed to eliminate the

occurrence of (c) by removing the possibility of over-parameterization. Any remaining

recursively estimated parameter variations are then examined to discover whether they

are statistically significant and, if so, whether they arise because of (a) or (b), or a

mixture of both. The model structure is then modified accordingly until the existence

of a set of well-defined and, if possible, constant-parameter estimates is established.

Estimation of the parameters that characterize the model structure finally identi­

fied is a fairly straightforward exercise and numerous estimation procedures can be

utilized (see, for example, Young, 1981). As pointed out in Section I, however, the

recursive instrumental variable (IV) techniques provide what appears to be currently the

most flexible approach (see, for example, Young, 1974, 1976a; Jakeman and Young,

1979; Young and Jakeman, 1979, 1980) since they are statistically sophisticated yet

robust and simple in application terms. In addition, as we have seen, their recursive for­

mulation makes them useful in the previous identification phase of the analysis (Young,

1977). Also, recursive smoothing versions of the IV algorithms are now available (Kaldor,

1978; Young and Kaldor, 1978) which can enhance still further the time·varying esti­

mation potential of the IV method.

Whatever estimation procedure is used, however, the result will be a set of estimates

of the parameters characterizing the identified dominant-mode model structure, together

with some indication of the uncertainty associated with these estimates (usually in terms

of an estinlation error covariance matrix). If the identification and estimation analysis

has been successful then this set of estimates should represent either a low-dimensional

or, in the best circumstances, a minimum-dimensional representation of the tinle-series

data. In other words, the analysis will represent a data-reduction exercise in which the

useful information in the data has been compressed into a few important and well­

defmed constant-parameter estimates. Moreover, these estimates will normally have



Validity and credibility of models for badly defined systems 81

direct physical significance because of their interpretation within the physically meaning­

ful dynamic model structure. This could help substantially in establishing the overall

credibility of the model and should aid in its use as a tool in control and management

system design.

2.3 Times-Series Model Validation

The final and continuing stage in model-building is validation; here the model's

forecasting ability is evaluated on data other than those used in the identification and

estimation studies. If the model continues to forecast well over this test data interval,

it is assumed that it is conditionally acceptable in the sense that, as far as it is possible

to test it, the model see'ms satisfactory.

Validation is a continuing procedure since the model will need to be reassessed in

the light of future developments and additional data. If major changes in the system

take place, for instance, it is likely that the model will need to be modified because it

will not necessarily mirror the changed dynamic behavior in the new situation. Never­

theless, the continuing process of model assessment based upon a supply of new data

should indicate whether the model has become questionable in any sense and will, in

these circumstances, indicate the need for further model identification, estimation,

and validation. In such a situation, the recursive nature of the estimation algorithms

will greatly facilitate the process of model reassessment, a process which could entail

simply updating the model parameters, but which might require changes in the basic

model structure.

The inherently stochastic nature of the model discussed in the previous section also

helps considerably in the continuing process of model assessment because it allows for

the application of statistical tests regarding the model's suitability. Such tests can help

to remove some of the more subjective judgments which are often encountered with

conventional model-building procedures.

Of course, the only real validation of a model is that it satisfies the purposes for which

it was intended, in other words, that it "works" in practice. It is hoped that by going

through the systematic procedures suggested here the analyst will maximize the proba­

bility that the model will be acceptable in this sense. But this can never be guaranteed

in the case of badly defined systems; the analyst must, unfortunately, "wait and see".

2.4 Model-Building and the Scientific Method

Before discussing practical examples, it is worthwhile stressing the relationship

between the model-building procedure discussed in previous sections and the scientific

method (see, for example, Popper, 1959). Model formulation is simply the formulation

of hypotheses about the nature of the system; model structure identification and parame­

ter estimation represent initial steps in the deductive procedure that is used to test these

hypotheses against data; model validation is the final step in that deductive procedure in

which the analyst attempts to "falsify" the model (or theory) of behavior and accepts the

conditional validity of the model if such attempts fail.
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It may seem trite and obvious to draw this analogy but it seems necessary. Often

simulation modeling of badly defined systems, as at present practised, does not neces­

sarily conform to the principles of the scientific method; indeed I regard this limitation

of many simulation-modeling exercises as the main reason for their failure to be fully

successful in practical terms.

Too often, reductionist philosophy is misused in simulation modeling: the model

structure is assumed to be known a priori and all subsequent analysis accepts this

assumption, usually without serious question. Thus, the hypothesis that the model

structure is correct is not tested adequately, the checks and balances of the scientific

method tend to be bypassed, and surplus content within the assumed model structure

is clearly a possibility. By pursuing the approach discussed here, however, serious con­

sideration of the model structure in statistical terms becomes an important aspect of

the analysis and the likelihood that the model structure is incorrect is minimized. At

the very least, it should be possible for the analyst using this line of approach to identify

and be aware of any surplus content and make allowance for this in any subsequent

use of the model.

Note that I am not advocating here the elimination of speculative simulation

modeling. On the contrary, there is no doubt that such modeling can be an extremely

useful tool in applied systems analysis. Rather I am warning of the dangers inherent in

the blind use and acceptance of such models, and emphasizing the need for greater care

both in the development of simulation models for badly defined systems and the inter­

pretation of the results obtained from these results.

3 APPLICAnON OF THE MODELING PROCEDURE

The efficacy of a particular analytical approach to a complex problem can only

be properly evaluated by applying it to problems that are meaningful in practice. In this

section, a number of practical examples are discussed which illustrate how the model­

building procedure described in previous sections has worked in practice. In these

examples, all phases of the procedure have been tested individually but a complete

exercise involving all phases applied to a single problem has not yet been undertaken.

This emphasizes the point that not all problems will demand application of the entire

procedure: depending on the level of a priori knowledge, information, and data, it may

well prove possible to achieve the stated study objectives by more limited modeling

activities involving only certain phases of the overall procedure. For example, if the

system is relatively well defined in relation to the study objectives, it should be possible

to dispense with the probabilistic simulation-modeling phase and put greater emphasis

on data collection and time-series analysis.

3.1 The Use of Probabilistic Simulation Modeling for the Generation of Working

Hypotheses on Macroalgal Growth in an Estuarine System

In this example, the system in question is the Peel-Harvey Estuary in Western

Australia and the "problem" behavior is the excessive growth of the green alga Cladophora
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FIGURE 2 Phosphorus budget model for Cladophora: schematic block diagram.

that has occurred in recent years, creating certain objectionable conditions in the Peel

Inlet. Between 1976 and 1980, a study team composed of a number of experts from

disciplines ranging from hydrology through soil science and biology to applied systems

analysis conducted scientific investigations under the sponsorship of the Western

Australian Environmental Protection Authority's Estuarine and Marine Advisory

Committee. The initial stages of systems analysis discussed here are, of course, only a

small aspect of this larger study (Humphries et aI., 1980).

The initial exercises in simulation modeling for this problem were aimed at charac­

terizing the system under a "phosphorus scenario"; in other words, the simulation model

was formulated on the basis of a phosphorus budget, under the hypothesis that phos­

phorus is the major nutrient of importance to the algal problem. It is these initial exercises

in simulation modeling that will be considered here. It should be made clear, however,

that the phosphorus scenario is not the only one that has been considered in the study:

other research has been concerned with the evaluation of an alternative "nitrogen

scenario". As has been emphasized, the simulation-modeling studies are "hypothesis­

generating" exercises and should not, therefore, be overly restrictive in any sense.

The phosphorus budget model consists of four compartments: Cladophora Xl,

phytoplankton X2, soluble phosphorus in the water column X3, and sediment phosphorus

X4. Two other equations describe the water and sediment volume balances. A schematic

diagram of the whole system is shown in Figure 2. The equations for each compartment

are described in detail by Spear and Hornberger (1978) and only the Cladophora

equation, which exemplifies the model, will be considered here. The equation is nomi­

nally nonlinear and takes the form
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where

(2)

XI = Cladophora biomass in terms of phosphorus content (J.1g);

11 = temperature-light-growth coefficient (cm2 °C-I cal-I day-I);

T = water temperature caC);

I b = total light at the bottom for the day (cal cm -2),

= Ie -KTZ, where I is actual surface-light intensity, KT is the extinction coef­

ficient, and Z is depth;

available phosphorus concentration (J.1g I-I),

aX3 + (1 - a)X4 , where a is a number between zero and one and X3 and

X4 are phosphorus concentrations in water and sediment, respectively;

half-saturation (Michaelis) constant for phosphorus-uptake (J.1g I-I);

biomass (phosphorus) available for active photosynthesis (J.1g) - this term

is equal to XI for low values of biomass but asymptotically approaches a

constant value xm ; and

~ a t e constant for biomass decrease from all causes, i.e., death, respiration,

grazing, and export to beaches.

The various coefficients in eqn. (2) and the other model equations were either

derived from the literature, inferred from measurements on the Peel Inlet system, or

estimated by experts familiar with the system. The probability distributions associated

with the parameters were chosen in accordance with the uncertainty in their specifi­

cation: in general, they were chosen as rectangular distributions with limits selected to

reflect reasonable upper and lower bounds on the parameter values. Environmental

functions required to solve the equations from the specified initial conditions (e.g.,

temperature, irradiance, river discharge, tidal exchange) were mostly specified from

existing data on the system collected during 1976, but sometimes were estimated by

time-series analysis (e.g., in the case of tidal exchange).

The "problem" behavior was defined from prior knowledge of the system and was

specified in terms of the state variables: in simple terms, it involved the simultaneous

occurrence of high Cladophora biomass, low water-column nutrients, and low phyto­

plankton biomass. Figure 3 shows two of the variables, Qadophora biomass and total

sediment phosphorus, as generated in three typical realizations from the Monte Carlo

analysis. Also shown are plots of the irradiance I and the hydrograph of river inflow over

the same period.

The Monte Carlo analysis entailed 626 random simulations of the model and out

of these 281 exhibited the problem behavior. Statistical analysis of these results suggested

not only that the important parameters were those connected with Qadophora growth

(as might be expected) but also that those specifically connected with the Cladophora

sediment-phosphorus interaction and self-limitation (due to self-shading) were par­

ticularly important. In addition, the analysis pointed to the special part played by

the river input in maintaining the sediment phosphorus supply. In other words, the

analysis generates the hypothesis that it is this pathway for phosphorus in the system that

is dominant in causing the problem behavior. It also indicates that it is this hypothesis
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FIGURE 4 Comparison of simple two-parameter linearized time-series model output with 19­

parameter nonlinear model output.

amongst all others connected with the phosphorus budget that seems to demand most

attention and should be tested in subsequent field studies on the system.

An analysis of the model in systems terms also yields some interesting and useful

results. For example, as might be expected from visual appraisal of graphs (a) and (c)

of Figure 3, linearization of eqn. (2) shows that, for much of the time, the system behaves

approxima tely as a first-order, linear system with irradiance I as the inpu t and Cladophora

biomass Xl as the output. This is confirmed further by simple constant-parameter, time­

series analysis of the model data. Figure 4, for example, illustrates the results obtained

from such an analysis over the period shown in Figure 3; it is worth noting that the

steady-state gain and time constant of this model are consistent with the linearization

analysis. It is interesting to note also that recursive estimation of a time-variable parame­

ter model yielded a perfect fit to this model data with the estimated coefficients exactly

equal to the values obtained by the linearization analysis.

These dominant-mode results suggest that Cladophora growth in the model is

controlled for much of the time by light limitation. Thus, while the sediment phosphorus

is indicated as the important pathway through which the Cladophora receives its phos­

phorus nutrient inputs, phosphorus itself is unimportant in its effect on the modeled

problem behavior, because it is almost always in plentiful supply.

The implications of these conclusions on time-series analysis are fairly serious. They

mean that if the "phosphorus scenario" simulation model is represen tative of the real world,

then observation of the system during "normal operation" will not necessarily supply

much useful information on the dynamic relationship between phosphorus inputs and

Cladophora growth. This in turn means that it would be difficult to identify and estimate

time-series models for such interactions, which are of potential importance from the man­

agement standpoint. This has been confirmed by later analysis (Humphries et a!., 1980).
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3.2 The Flushing Dynamics of an Estuarine System

87

This example also derives from the Peel-Harvey study and is concerned with the

evaluation of the flushing characteristics on the basis of monitored salinity variations at

various sampling sites in the estuary.

There have been numerous attempts at modeling estuarine dynamics ranging from

the very simple (e.g., Ellis et aI., 1977) to the highly esoteric (e.g., Smith, 1980). In the

Peel-Harvey study, an attempt was made to take an intermediate route and develop

a model that was able to describe the behavior of the system in a manner appropriate

to the requirements of the study, but without the fine detail normally demanded in

more classical hydrodynamic analysis.

The system was decomposed into seven zones or compartments associated with

the seven sampling sites (Figure 5) and each site was considered to be well mixed, in

the sense that the sampled salinity was representative of the salinity in the compartment

as a whole. By simple conservation-of-mass arguments, it can be shown that the equations

controlling salinity in such a system will be of the form:

where

dSjdt = -S[(Q/V) + (l/V)(dVjdt)] + (QiSdV)

S salinity;

Q flow out of the compartment;

V = volume of the compartment;

Qi flow into the compartment; and

Si = input salinity or forcing function to the compartment.

(3)

Since an adequate quantity of data (104 weeks) was available for analysis, as shown in

Figure 6, time-series analysis was initiated directly in this case, with eqn. (3) providing a

major motivation for the analysis. Equation (3) can be written in the form

dSjdt = -a(t)S + b(t)Si (4)

where aCt) and bet) are nominally time-variable coefficients. Considering initially the

relationship between salinity at Sites 2 and I, a time-series model of the form (4) but

with constant coefficients was first estimated* and Figure 7 compares the deterministic

output of this model with the measured salinity at Site 1.

The higWy periodic nature of the residuals is indicative that either additional

inputs are affecting the system linearly or, as might be expected from eqn. (3), the system

is nonlinear, with aCt) and bet) time-variable functions of other environmental variables

such as evaporation, river flow, and rainfall (Figure 6). This is confirmed by recursive

estimation, which indicates that aCt) is indeed a time-variable coefficient but that bean

* In fact, the discrete-time equivalent of this model was used for convenience of analysis but we will

consider here only the continuous-time interpretation of this model.
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FIGURE 5 The Peel-Harvey estuarine system showing estimated circulation and flushing charac­

teristics. The numbered points represent sampling sites; the boxed values are (top) summer maximum

flushing residence time (weeks), and (bottom) winter minimum flushing residence time (weeks).

be considered constant for the purposes of the present analysis. Figure 8 compares the

output of this model with the observed salinity and it can be seen that the data are

explained rather well, with the residual series conforming to the requirements of the

identification analysis (Section 2).

Figure 9 shows the recursive estimate aCt) of aCt) and the dotted sinusoidal curve

shows that the estimated variation is dominated by a periodic component with a period

of one year. Considerable fluctuations about this sinusoid occur, however, particularly

during weeks 0-12, 48-72, and 96-104. These periods correspond to the winter periods

in Western Australia when fluvial inputs to the system are dominant (see Figure 6).

Bearing in mind eqn. (3), these results make sense: changes in volume will occur

because of periodic evaporation changes, seasonal rainfall effects, and the differences in

tidal height between the compartments. Put mathematically, the small perturbation

equations can be written:
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or

dV/dt = d(Ah)/dt ((hi - h)/R) + QR - Ae

(5)

where

dh/dt - h((1/AR) + (l/A)(dA/dt)) + (hdAR) + (QR/A) - e

h depth of wa ter in compartment;

A = surface area of compartment;

hi depth of water associated with the input location and measured with respect

to the same height datum as h;

QR river flow; and

e - effective evaporation (evaporation minus rainfall).

This identification analysis suggests that eqns. (4) and (5) provide a reasonable

a priori model structure in this case and it would be interesting to pursue the analysis

on this basis. However, in relation to the study objectives (and given the usual time

restrictions on any practical study), this did not prove necessary. The estimated variation

of aCt), in itself, provides sufficient information both to assess the overall nature of the

flushing dynamics and to help in the evaluation of nutrient budgets, as required by the

study objectives. Figure 5, for example, shows the estimated maximum and minimum

flushing times (obtained in performing the above analysis at each site in turn) together
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FIGURE 10 "Innovations" series computed from observed minus estimated total nitrogen load in

the Peel-Harvey estuarine system.

with inferred circulation patterns: the details of this analysis are given in Humphries et a!.

(1980). Figure lOis a plot of the innovations series (i.e., observed - predicted nitrogen (N)

load) obtained in a subsequent nutrient budget analysis which made use of the flushing

information to estimate oceanic exchange of nutrients. The fact that this series has zero­

mean, serially uncorrelated characteristics is a further, independent check on the efficacy

of the analysis. The two large transient deviations in the innovations series in July (nega­

tive) and November (positive) can be accounted for in terms of biological activity in the

estuary. The large negative deviation is due to apparent gross sedimentation of inorganic

nitrogen from the water column by a phytoplankton bloom during winter riverine enrich­

ment of the estuarine water column; the large positive deviation occurred during a massive

Nodularia bloom which fixed about 270 tonnes of nitrogen in the estuary.

3.3 The Transportation and Dispersion of Pollutants and Tracer Materials in Flowing

Media

As a final example, we will consider a subject which is closely related to that dis­

cussed in the previous subsection but has wider implications in a scientific sense because

it has relevance to various areas of research. Much has been written on dispersion in

flowing media, and applications where characterization of dispersive behavior are impor­

tant range from water-quality modeling to the analysis of data obtained from tracer

studies in plants, animals, and man (Jakeman and Young, 1980).
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Classical hydrodynamic analysis associated with this kind of problem is often

related to the seminal work of Taylor (1954) on flow in pipes and involves the use of the

following one-dimensional, partial-differential diffusion equation (Taylor, 1954; Fischer,

1966):

(6)

where (lJ) is the mean flow velocity and D the longitudinal dispersion coefficient.

Taylor's original work was based on turbulent flow in pipes and, although most

textbooks subscribe to its use in the river context, reasonable arguments can be put

forward to suggest that it is not strictly applicable to flow in natural streams, particularly

close to the point source (see, for example, Fischer, 1966). Moreover, while it is often

the accepted model in the literature, this does not mean that other mathematical

representations may not provide an equally good, if not superior, description of the

observed natural phenomena. For eqn. (6) is not the real world, although it may some­

times be interpreted as such; it is an approximate model of the real world and there is

no guarantee that, for certain applications, it is either the best or the most useful model.

Recent work carried out at the Centre for Resource and Environmental Studies

has been concerned with both an alternative approach to dispersion modeling (Beer

and Young, 1980; Young, 1980) and the planning of tracer experiments to evaluate

dispersion characteristics and models (Jakeman and Young, 1980). This approach, like

that used in the last subsection, uses a lumped-parameter, ordinary-differential equation

(ODE) compartmental model based on a combination of the plug flow and continuous

stirred tank reactor (CSTR) mechanisms used so often in chemical engineering research

(see also Beck and Young, 1975). However, the model is capable of a more conventional

hydrodynamic interpretation (Beer and Young, 1980): in particular, it can be interpreted

as the solution, at specified spatial locations down the river, of a partial differential

equation (PDE) of the form:

(ae/at) + U(ae/ax) = (ej -e)/T (7)

Here ej is the input concentration into the reach considered and the first velocity term

U(ae /ax) accounts for the plug-flow characteristics*. The CSTR mechanism resides in

the term on the right-hand side of eqn. (7), which can be interpreted as an "aggregated

dead zone" (ADZ) effect: this arises from the aggregated effects of all those physical

processes in the stream (e .g., bottom holes, turbulence, rocks, side irregularities, meanders,

and pool-riffle effects) that contribute to retaining dissolved material temporarily

and then releasing it, on a time-scale defined by the ADZ residence time (or time­

constant) T.

Note that in eqn. (7) the dispersive effect arises completely from the ADZ terms

on the right-hand side and is characterized by the residence-time parameter T; the con­

ventional dispersion mechanism characterized by the dispersion coefficient D (eqn. (6))

* Here we use the symbol U rather than (U) to emphasize that the velocity coefficient does not have

the same interpretation here as in eqn. (6).
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does not appear in the equation at all! Clearly, the argument here is not that turbulent

diffusion is not taking place but rather that its effect is completely overshadowed by the

much more significant dispersive effects of the aggregated dead zones.

The parameters of these ADZ models can be estimated quite easily from experi­

mental or monitored data using the techniques of time-series analysis discussed in this

paper. The resulting models consistently provide a much better explanation of the

observed data than the more classical PDE representation (6) and are considerably easier

to estimate and use. A typical example is shown in curve (b) of Figure 11, which com­

pares the observed and modeled concentration of tracer material in a river system. The

data in this case are those used by Fischer (I968) to test his alternative modeling pro­

cedure which is based on the more conventional PDE description (6): Fischer's results

are shown as curve (a) of Figure 11 for comparison.

Despite the ability of the ADZ model to provide a better explanation of experi­

mental data, it has not yet attracted a very favorable response from the fluid dynamics

establishment, which tends to regard it as a black-box representation obtained by curve

fitting. In particular, the establishment seems to consider the ADZ approach entirely

devoid of the "nice" physical interpretation it associates with the classical PDE descrip­

tion. This criticism seems a little unfair since the ADZ description clearly does have a

physical interpretation (see, for example, Buffham and Gibilaro, 1970; Beer and Young,

1980) albeit an unconventional one which does not directly involve the dispersion

coefficient, D. This physical interpretation appears to allow for the model to be used in

\

!

Ii\
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an "extrapolative" mode, so allowing for the prediction of dispersive characteristics

at different river flows and conditions. In addition, it is possible to estimate an "equiva­

lent" dispersion coefficient on the basis of the model parameters if this is required

(Beeretal., 1980; Beer and Young, 1980).

I have chosen this latter example deliberately to illustrate one problem with the

concept of credibility, a problem already alluded to in Section 1. By following a quite

rigorous model-building procedure and satisfying all of the requirements specified in this

paper, it is possible to produce dispersion models which seem highly satisfactory practical

tools and can be considered valid in the strictest meaning of that word. But they still

do not appear wholly credible to a large and important body in the scientific community

whose different outlook on the problem makes them somewhat skeptical of the uncon­

ventional physical interpretation of the model and the methodological approach used to

obtain it. Nevertheless, it might be hoped that, given time, these unconventional models

will find general acceptance, not necessarily as replacements for the more classical

representations but as alternatives which have merit in certain applications.

3.4 Other Examples

The model-building procedures described in this paper have been applied to

numerous other examples, ranging from the analysis of fluorescence data in chemical

experiments (Jakeman and Young, 1979b), through the modeling of rainfall flow charac­

teristics in hydrology (Whitehead et aI., 1979), water quality behavior in river systems

(Young and Beck, 1974; Beck and Young, 1975; Whitehead and Young, 1979), and air

quality (Jakeman et aI., 1980; Steele, 1981), to the evaluation of economic models and

data (young et aI., 1973; Young, 1977; Salmon and Young, 1978). While it has not, of

course, solved all problems in these applications, it has provided a systematic approach

which has helped a great deal in the overall systems analysis.

4 CONCLUSIONS

This paper has presented a comprehensive methodological approach to model­

building based on a general theory of modeling for badly defined systems. Whilst it is

unlikely that this approach will solve all modeling problems associated with such systems,

it is felt that it will provide a satisfactory system of "checks and balances" which should

at least help the model-builder and systems analyst in this most difficult of problem

areas. The most important features of the proposed approach are as follows:

(1) It is consistent with the hypothetico-deductive procedures of the scientific

method and can be considered within the framework of Bayesian estimation

theory.

(2) It presents a fully integrated approach involving the systematic application of

mathematical analysis, planned multidisciplinary monitoring, experimentation,

and fieldwork, and allows for a continuous form of adaptive assessment along

the lines suggested, for example, by Holling (1978).
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(3) In the model-formulation phase, it makes use of a novel type of probabilistic

or "speculative" simulation modeling based on Monte Carlo analysis in order to

generate working hypotheses about the nature of the system; these hypotheses

can then be thoroughly tested by planned monitoring or experimentation.

(4) In the later identification and estimation phases of model-building, it exploits

sophisticated methods of recursive time-series analysis to detect the presence

of significant model-parameter variations and hence: define any important non­

linear or nonstationary aspects of the observed system behavior which are not

present in the model; define any over-parameterization or surplus content in the

model; and, in this manner, derive a model which will normally be efficiently

parameterized and characterized by a low-dimensional set of well-defined and,

hopefully, constant-parameter estimates.

(5) It emphasizes the need for thorough validation of both model structure and

parameter estimates, and stresses the need to ensure that the consequences of

any surplus, unvalidated content are fully acknowledged in any subsequent

application of the model.

By discussing a number of practical examples, it is hoped that the reader will better

understand the procedures involved and will be encouraged to use them in practice. For

it is only by practical application that the true value of any method of applied systems

analysis can be assessed. Whether the application of this method will eventually lead to

models that are more "valid" or "credible" is, however, another matter. Only time will

tell.
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1 INTRODUCTION

The use of simulation models for analyzing complex natural systems can be

criticized in terms of the mathematical techniques normally employed (see, for example,

Berlinski, 1976) and in terms of the sophistication of representations of the "realities

of the natural world" (Hedgepeth, 1977). Regardless of one's philosophy concerning

construction of "ecosystem" models, we argue that certain elements of such criticism

must be addressed. In dealing with complex environmental problems in particular, the

benefits of traditional systems analysis, if such exist, appear to be severely limited. Not

only do the forcing inputs and parametric values of our models change with time and

circumstance, but often so do their internal structures that yesterday appeared to best

summarize the important causal relations in the system. Because it is virtually impossible

to completely distinguish, let alone decouple, the system from its environment, model

verification is itself a dynamic process which cannot be assumed to approach an equi­

librium state. Thus, it seems unlikely that any moderately complex environmental system

can be well defmed in the traditional physical-chemical sense. This conclusion does not,

in our view, destroy the appeal of applying systems analysis methods to environmental

forecasting problems. It does, however, set a fairly short timescale over which models

can be used to develop management strategies with any confidence. It seems, therefore,

that the important issues pertaining to the forecasting problem relate to methods of

making the best use of the diverse data available at any time to develop these short-term

management strategies. This is not to say that long·term environmental planning is not

necessary or profitable. We do contend, however, that long-term planning based on

environmental models is of dubious value except insofar as such exercises may provoke

analytical thought in a broader context.
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If one accepts that the only model-based systems analysis worth doing is short­

term, a practical dilemma arises immediately. The modeling of environmental systems of

any complexity is usually not a short-term proposition. It will usually take several years

of data collection and background work even to get a start. When a model finally emerges

its authors are then loathe to regard it as anything but the revealed gospel and the notion

that processes and causal relations may have changed or may be changing is resisted with

vigor. Often the model becomes the system.

Over the last several years we have developed an approach to the modeling of

environmental systems that has some promise as a means of circumventing this long lead­

time. The approach is based on two premises: that the literature contains much infor­

mation of relevance to an understanding of the problem at hand, and that it is possible

to describe, at least in qualitative terms, the principal features of the behavior of the

environmental system that define the problem to be managed.

Our ideas were developed while working on the analysis of a cultural eutrophication

problem in the Peel-Harvey Estuary of Western Australia. The specific problem we

addressed was one of research direction, that is, what were the critical uncertainties

in the knowledge of the behavior of this system which required resolution before a

strategy could be formulated for the management of the "nuisance" alga. The system

behavior of concern was the excessive growth of the benthic alga Cladophora, which

led to its transport, accumulation, and decay on the beaches of Peel Inlet. Research on

this problem was being carried out by several groups under the overall direction of the

Estuarine and Marine Advisory Committee (EMAC) of the Western Australian Environ­

mental Protection Authority. At the time we became involved there were available some­

what over a year's data on nutrient levels, algal biomass, phytoplankton populations, etc.,

usually on a monthly basis. There were somewhat more extensive hydrological data and

a variety of other fragmentary data as well as speculations from the various research

teams. The issue was to make an assessment of these results and speculations, however

preliminary, in order to guide future research.

We chose to approach this task via simulation modeling because the logic and

order inherent in the model-building process so often expose causal as well as quantitative

uncertainties in the system under study. Indeed, the nature and extent of the data from

Peel Inlet were such that the quantitative aspects of a conventional modeling exercise

would be of little benefit. However, given that we were willing to hypothesize that the

factor or factors controlling Cladophora growth in Peel Inlet were among those common

to other estuarine systems, a great deal of relevant information was available in the

literature. The extent of this information, coupled with the data from the field, led us

to speculate on the possibility of estimating the parameters of a model in some approxi­

mate fashion and investigating the degree to which the resulting model might mimic

the qualitative behavior of the Peel system with respect to the Cladophora problem.

More to the point in view of our overall objective, we asked if the study of such a model

could lead to the generation of hypotheses or could point to critical gaps in knowledge

that might not otherwise emerge until later in the life of the project.

Because the factor or factors controlling the growth of Cladophora in Peel Inlet

remain uncertain, various models of the phenomena are possible depending on which

of the competing hypotheses is chosen. The assumption of a controlling factor, and

the model resulting therefrom, we term a scenario in order to emphasize its speculative
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nature. A comprehensive analysis must consider various scenarios. During 1978 we

considered a phosphorus scenario and found it to lead to several intriguing hypotheses

and to exemplify a methodology we feel has wide applicability.

Because the Peel Inlet data available for this original study did not include com­

prehensive time-series information on the principal variables of interest, only the

qualitative behavior of the system could be defined over an annual cycle. Therefore,

only qualitative contrasts were possible between model performance and that of the

system. We maintain, however, that the salient qualitative aspects of the behavior could

be specified and that the result of any simulation using a model consequently classified

as exhibiting either "the behavior" or "not the behavior". In this study the behavior was

defined by a Cladophora "bloom" qualitatively similar to observed conditions in Peel

Inlet in the period 1976-1977.

In any simulation model of an environmental system there is substantial uncer­

tainty surrounding the "best" values of the parameter set. At the stage of understanding

of the system discussed here, the level of parametric uncertainty precludes the use of

any analytical procedure which relies on point or "best" estimates. In most cases, how­

ever, it is possible to make some defensible assessment of the probable or, at least, the

allowable values of the parameters. We adopted this approach in the Peel Inlet work

and associated with each model parameter a statistical distribution function to represent

the uncertainty in knowledge of its "best" value given the assumed model structure.

The distribution function assumed for any given parameter represents our best a priori

knowledge of its likely or allowable values based on the current literature or on the

limited field data.

Taken together, the scenario and its associated parameter distributions define an

ensemble of models. Using a Monte Carlo approach one can explore the degree to which

the parameter space underlying this ensemble partitions under the behavioral classifi­

cation. This separation under the behavioral classification forms the basis for a type of

sensitivity analysis. It is intended that the results of this analysis, when interpreted in

the light of the totality of current knowledge of the system, will indicate gaps in present

research efforts or suggest new hypotheses and profitable avenues for the next phase of

the research program.

2 SYSTEM BEHAVIOR AND THE PHOSPHORUS SCENARIO

The problem-defining behavior was principally based on Cladophora biomass

measurements taken by Professor AJ. McComb and his associates in the Botany Depart­

ment of the University of Western Australia during the period from April 1976 to April

1977 (Atkins et aI., 1977). These data indicated a relatively slowly reacting system in

which bloom conditions are characterized by biomass increases on the order of two

to five times the minimum biomass. Further, high biomass levels exist for a relatively

prolonged period. Also, during the period in which Cladophora biomass is high or

increasing rapidly the average concentrations of phosphorus in the water column are

low. Nitrate nitrogen was always less than IOpgl-l but ammonia nitrogen rose to

140pgl-l in April 1976 and declined steadily to 25pgl-l by August of that year.

There were only very sparse data on phytoplankton levels in the Inlet but those that
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were available suggested a curious absence of phytoplankton. Few values in excess of

5pgl-1 of chlorophyll-a had been reported.

At the time we began our work there were, among the researchers, proponents of

both phosphorus and nitrogen as the principal limiting nutrient in the system. Given our

modeling approach it was necessary to assume some growth factor to be limiting and we

chose to pursue the phosphorus scenario. The behavior was then defined on the basis

of six conditions placed on Cladophora biomass, phytoplankton biomass, and phosphorus

concentrations in a section of Peel Inlet termed the Cladophora growth area. Behavior

condition 5, for example, was that during the period in which Cladophora biomass

exceeds 1.5 times its initial value the average s01uble phosphorus concentration in the

water column must be less than lOpg I-I.

The choice of a model to use in the preliminary analysis of the problem of nuisance

algal growth in the Peel Inlet is dictated by a number of constraints. First, the model

must of necessity be mechanistic, to as great an extent as possible, because if our approach

is to succeed, data available in the literature must be relied upon as a surrogate to data

on the system itself. This requirement of "transferability" of information from diverse

sources is the primary reason for selecting conventional model components; it is only

by using such mechanistic components that information derived from vastly different

problems can be utilized to construct our candidate models and to select reasonable a

priori probability density functions for the parameters. (For example, as described below,

we chose to use the Monod kinetics description of nutrient uptake because values of the

half-saturation constant are routinely reported in the literature.) A second constraint

is in some ways antithetical to the first: the model should be as simple as possible in

recognition of the fact that available data are sparse or nonexistent. Thus, the model

must be structured to provide enough detail to be capable of reproducing (in the broad

sense discussed above) the behavior of the system that defines the problem but not be so

excessively complex as to prohibit its use in a preliminary study. The lumped-parameter

model described below was chosen in recognition of these practical considerations.

Our simplified phosphorus model consists of four compartments: Cladophora,

phytoplankton, soluble phosphorus in the water column, and sediment. The term "sedi­

ment" as used here includes the layer of decomposed organic material that underlies

much of the actively photosynthesizing Cladophora mat. A phytoplankton compartment

is included because, as discussed above, we suspected the general absence of large popu­

lations of phytoplankton to be an important aspect of the behavior of the system. For

each of the compartments a mass-balance equation for phosphorus can be developed.

The equation for dissolved phosphorus in the water column is a good example of

the structure and level of detail of the entire model. It is

advection terms

Cladophora uptake

from water column

-'Y2T(e!IKT Z)(e-CY.' -e-CY.o)(X3 /(K2 + X 3))X2Vw

phytoplankton uptake

Vw(dX3 /dt) = QTPT-QTo X 3 + QRUR - (1- (3)QG UG

- (XYtTIb (X3 /(K I + Xc))g(X I )

transfer from sediment
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where the state variables are:

Xl Cladophora biomass,

Xz phytoplankton biomass concentration,

X3 phosphorus concentration in the water column, and

X4 phosphorus concentration in the sediment.
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The tidal parameters QTi and QT
o

were estimated from tide gauge data as was water

volume Vw ' The river flow, QR, was known and some idea of the magnitude of ground­

water flow, QG, was available, as was information on the phosphorus concentrations

UT , UR , and UG in these inputs. The Gadophora and phytoplankton terms are in standard

form except for the function g(XI ) in the Gadophora growth term. This was inserted to

account for the fact that only the upper layers of the Gadophora mat are exposed to

light and, as a result, only a fraction of the mat can be actively photosynthesizing at any

moment. Hence, g(Xd is a saturation-type function that contains a parameter Xm , which

is an estimate of the maximum photosynthesizing biomass.

Another type of parameter used to account for uncertainty is exemplified by {3.

The parameter {3 was introduced to allow a fraction of the groundwater flow to go

directly into the water column with the remaining fraction being routed through the

sediment compartment. This mechanism was included in the formulation because it

represented one theory of nutrient source current at the time of model development.

The primary parameters of this equation that were assigned distribution functions

were then: 'Yi> Ki> Xm , Q, 'Yz, Kz , and a43' The values for a variety of the light-related

parameters f, Ql, Qo, and I b were calculated from the distributions of more basic parame­

ters, e.g., k, the phytoplankton-shading coefficient.

There is, of course, almost endless detail involved in explaining why certain

features of this model were chosen and how estimates of the various inputs and parameter

distributions were developed. This documentation is available (Spear and Hornberger,

1978) but the present point is that, at the conclusion of the development process, we

felt there to be surprisingly few real "holes" in our knowledge. That is, we felt it to be

possible to explain, if not defend, the model and each of the various estimates to a greater

or lesser extent.

3 SIMULATION RESULTS

A total of 626 simulation runs were carried out for the phosphorus scenario with

the parameter distributions as given in Table 1. These required approximately 75 minutes

of CPU time on a Univac 1110. The 626 runs comprised 281 in the behavior category

and 345 in the nonbehavior. Figure 1 shows the time course of Gadophora biomass,

phytoplankton biomass, soluble phosphorus in the water column, and phosphorus in

the sediment for a typical behavior-producing run. Figure 2 shows the same variables

for a run in which Gadophora biomass was insufficient and phytoplankton biomass too

high to constitute a behavior. In virtually all of the runs in which the behavior did not

occur, this was due to a deficiency of Gadophora, an excess of phytoplankton, or both

occurring simultaneously. Also characteristic of the behavior-producing simulations was
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FIGURE 3 Cumulative distribution functions under the behavioral mapping for (a) 1'" which shows

a distinct separation, and (b) k, which shows no separation.

a brief phytoplankton bloom and a marked increase in the growth rate of Qadophora

at the time of peak river flow about day 140.

Figure 3 shows values of the sample distribution functions under B and Ii for

various values of the Qadophora growth coefficient 'Yl and for the phytoplankton light­

shading coefficient k. Both the Kolmogorov-Smirnov statistic, dm n, and the Mann­

Whitney statistic, U, indicated that F('YIIB) '* F('YIIB) at well abov~ the 99% level of

significance. The distributions of the light-shading coefficient k, on the other hand, differ

by a maximum of 0.05, a value which corresponds to a level of significance of below

90%. We interpreted these results to indicate that, over the stipulated ranges of uncer­

tainty, 'Yl is an important determinant of the behavior and k is not, at least in terms

of the univariate tests. It must be emphasized that these results pertain only to the

multidimensional region of parameter space defmed by the limits of the a priori distri·

butions given in Table I.

Table 2 contains the class means and variance of each of the nineteen normalized

parameters together with the values of dm,n and U. Also included is a classification for

each parameter into one of three groups, critical, important, or unimportant. This classi­

fication corresponds to the significance levels of the Kolmogorov-Smirnov statistic of

greater than 0.99, 0.90-0.99, and less than 0.90, with class I being of critical importance.

These intervals are somewhat arbitrary since the significance level of any given value of

dm,n is a function of sample size. On the other hand as the sample size increases, dm,n

will converge to a constant value which is the maximum difference between the cumu­

lative distribution functions F(h IB) and F ( ~ k Iii), so that although the significance levels

associated with the values of dm,n given in Table 2 will continually increase with sample

size, the actual values of the statistic will be relatively stable. This is the reason that

dm,n was used as the basis of the sensitivity classification.

As shown in Table 2, seven of the nineteen parameters are classified as unimpor­

tant. Significantly, these include the parameters related to nutrient inputs from the river
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TABLE 2 Univariate results: class means, class variances, d m •n • and the corresponding sensitivity

classification.

Parameter L €, s' s' dm •n Sensitivity, ,
class

'Y, 0.181 --0.173 0.804 0.936 0.198 1

K, -0.205 0.143 0.967 0.906 0.175 1

Xm 0.223 -0.397 0.804 0.958 0.315 1

a" -0.189 0.250 1.057 0.957 0.220 1

01 -0.160 0.148 0.891 1.151 0.167 1

'Y, -0.153 0.150 1.050 1.019 0.151 2

Is -0.194 -0.024 1.087 1.029 0.107 2

K, 0.212 -0.258 0.987 1.030 0.206 1

a" 0.191 -0.196 0.980 1.108 0.181 1

Kw -0.154 0.078 1.080 1.063 0.124 2

k -0.001 0.010 0.908 1.027 0.050 3

iJ 0.064 -0.002 0.938 0.894 0.062 3

a43
-0.249 0.218 0.881 1.040 0.236 1

X· -0.095 1.361 0.995 0.951 0.142 2
4

A, 0.168 0.036 0.963 1.023 0.076 3

A, -0.079 0.018 0.889 1.064 0.094 3

UG 0.019 0.047 0.976 0.965 0.052 3

p 0.049 0.085 1.027 1.016 0.076 3

Sp -0.026 -0.050 0.988 0.980 0.054 3

and from groundwater, Sp, uG, and {3, as well as the nutrient recycling parameters A.I' A.2'

and p. These results suggest that, under the modeling assumptions, the system behavior

or lack of it is not due to nutrient limitation. Indeed, the results of our analysis suggested

that light-limitation may be the critical growth-limiting factor. Elsewhere, we have shown

that a linear first-order dominant-mode model with light as input and Qadophora biomass

as output can reproduce the behavior with remarkable fidelity (Young et a1., 1978).

4 EVALUATION OF RESULTS IN LIGHT OF RECENT DATA

Our work on the preliminary analysis of the Peel Inlet Qadophora problem was

completed in June, 1978 (Spear and Hornberger, 1978). The field research program

under the sponsorship of EMAC has continued from that time through the present, and

some of the more recent data from the study can be used to "test" a number of the

assumptions that were necessary in our original study and to evaluate the results of the

work. Many of the data used in this evaluation are taken from McComb et a1. (1979)

and the remainder were graciously provided by the Systems Analysis Group at the Centre

for Resource and Environmental Studies, Australian National University. The latter

group, under the direction of Peter Young, is responsible for data collation and analysis

for the EMAC study.

The first stage in our a posteriori evaluation is to examine data that provide rough

estimates for parameters about which we originally had little or no information, at least

in terms of observed behavior of the Peel Inlet system itself. We undertake these
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comparisons not to "verify" our simulation model but rather to determine whether

any new data suggest that our original phosphorus scenario is totally inappropriate. That

is, if new data suggest that one of our original parameter values was underestimated or

overestimated by an order of magnitude or more, the sensitivity rankings deriving from

the Monte Carlo results would be suspect. On the other hand, agreement between a

newly calculated value and a previously assumed value would not imply the validity of

the simulation model itself, but could be interpreted as a failure to alter the speculation

on priorities for further research made in the preliminary analysis. In fact agreement

between a parameter derived from measurement and one found necessary to simulate

the behavior would suggest, at least in terms of our analysis, that the importance of

collection of further detailed data on that particular phenomenon would be diminished;

we would argue that research efforts in that event should be focused on other processes

singled out in the sensitivity analysis.

From the data presented by McComb et al. (1979) a value can be estimated for the

following parameters that were identified in the Monte Carlo studies as important for

simulating the behavior but for which little or no a priori information was available:

Xm , the parameter that describes the maximum photosynthesizing biomass of Gadophora

in the Peel system; 71> the temperature-light growth coefficient for Gadophora; and a

combined estimate for two parameters (a and Xn that describe the phosphate (P04)

concentration in "interalgal" water.

In our preliminary analysis we hypothesized that self-shading in the Gadophora

beds would be important and introduced the parameter X m . The data of Pfeifer and

McDiffett (1975) for a riverine species indicated that a density of 30 g dry weight m-2 is

appropriate in that situation. We speculated that higher productivity in the estuarine

environment might result in a considerably larger value for Xm for Peel Inlet than that

for the riverine environment and arbitrarily set the upper limit on the probability density

for that parameter at 150 g dry weight m-2. The distribution of Xm separated very clearly

under the behavioral classification. The mean value of Xm in the behavior class was

about 98 g dry weight m-2. Recently McComb et al. (1979) have estimated from labo­

ratory and field data that the compensation point for the Gadophora sp. in Peel Inlet

is 15-20.uE m-2s-\ and that, due to light-attenuation, this level would be reached at

about 1cm depth in the algal bed. We are not aware of data for Peel Inlet that relates

the depth of the algal bed to density but Bach and Josselyn (1978) have reported that

a 3-cm depth of a ball-forming Cladophora sp. in Bermuda corresponded to a density

of 300 g dry weight m-2. The data of McComb et al. are obviously consistent with our

preliminary work in this instance.

The Gadophora growth coefficient, 71> is another parameter for which no prior

informa tion was available from the Peel system but which ranked high in our sensitivity

classification. McComb et al. (1979) produced a series of curves relating oxygen produc­

tivity per gram fresh weight of Gadophora to the flux density of photosynthetically

active radiation at four temperatures. Using irradiance values below the observed

saturation values of McComb et al. and making a number of assumptions about algal

composition and functioning (e.g., a photosynthetic quotient of unity, a C : N : P ratio

of 18.8 : 2.7 : 1, and a fresh weight to dry weight ratio of 8 : 1) one can derive estimates

of 71 at the four temperatures reported by McComb et al. (1979) of 2.9 x 10-4,

4.3 X 10-4,4.0 X 10-4, and 3.6 x 1O-4cm2DC-Ical-I day-I. Two conclusions can be drawn
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from these results. First, the fact that the values for the four different temperatures

are reasonably close to one another argues that our simple multiplicative function for

light and temperature is probably adequate. Second, the limits chosen for the rectangular

distribution for 11 in the original study are 1 x 10-4 to 3 X 10-4 cm2
0r-I cal-I day-I and

the mean under the behavior was shifted toward the higher end of the distribution. We

consider the new data to be consistent with the preliminary guesses.

Finally, McComb et a1. (1979) report phosphate (P04) concentrations in "inter­

algal" water of 93 ~ g 1-1 with a standard deviation of 25 ~g I-I. In our simulations of the

behavior the mean concentration available to Qadophora, which we interpret as equiva­

lent to that in interalgal water, was defmed primarily by two parameters, one defining

maximum sediment concentration (Xn and the other the proportion of sediment

phosphorus "available" for growth (a). For the behavior simulations the mean values of

these parameters yield a value of interalgal concentration of 5 3 ~ g l - l . The "discrepancy"

between measured and assumed is again not very large, certainly not large enough to

lead us to reject our original sensitivity rankings at this point.

Apart from a comparison of newly calculated parameter values with previously

assumed values, a second stage in the a posteriori evaluation is to examine new data on

the overall system and its behavior and to view this in the context of the processes that

were isolated in the sensitivity analysis as deserving of further study. Figure 4(a) shows

the assumed Cladophora growth area from our 1978 study and Figure 4(b) is a represen­

tation of data on measured percent cover of Cladophora in the Inlet reported by McComb

et a1. (1979). Our assumed area of major growth does appear to be an area of dense

algal coverage. On the basis of the data used to construct Figure 4(b), McComb et a1.

(1979) estimated a total biomass of Cladophora in the system as "very approximately

20,000 tonnes dry weight" whereas the biomass for our simulated behaviors was about

7000 tonnes on a dry-weight basis.

Perhaps the most striking aspect of the system behavior in terms of Cladophora

over the time since completion of our Monte Carlo work is the marked decline in biomass

in the winter of 1978. Figure 5, after McComb et a1. (1979), shows that while the bio­

mass remained relatively constant between late 1976 and the autumn of 1978, a drastic

decrease occurred in the winter of 1978. McComb et a1. (1979) noted that during the

period of this dramatic decline in Qadophora biomass "the water of the estuary became

very turbid". This increase in turbidity coincides with a phytoplankton bloom that may

be the result of increased river input of nutrients. As we pointed out previously, our

simulation results for Cladophora behavior are very strongly conditioned by available

light and the importance of phytoplankton in the model is that relatively small concen­

trations are sufficient to prevent development of massive Qadophora beds through the

light-shading effect. It is obvious that this particular aspect of the qualitative behavior

predicted by the model does seem to be an observable mode of system functioning under

conditions that occur in the Inlet.

The phytoplankton blooms that were observed in Peel Inlet in the winter of 1978

also reinforce a deficiency in the model that we noted in our original report: "the model

predicts that phytoplankton should be able to grow in Peel Inlet and that in doing so

they should lower phosphorus concentrations below those observed". Even in the

behavior-producing runs of the model, maximum phytoplankton concentrations reached

4 0 - 5 0 ~ g l - l . Such high concentrations were never observed in the Inlet during the
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FIGURE 4 (a) Map of Peel Inlet and Harvey Estuary showing the assumed Cladophora growth area

used in Spear and Hornberger (1978); (b) the observed distribution of Cladophora as reported by
McComb et al. (1979).

period 1976-1977 and, even during the first bloom observed during the winter of

1978, mean levels of cWorophyll in the Inlet rose to only about 60J.Lgl- l . Why the model

is "wrong" is still unclear but McComb et al. (1979) argued that during the summer/

autumn period inorganic nitrogen and not phosphorus limits phytoplankton growth.
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FIGURE 5 Measured Cladophora biomass in g dry weight m- 2 at one site in Peel Inlet from 1976 to

1979 (after McComb et al.. 1979).

Considering all aspects of the data available at present, the speculations that we

derived from our Monte Carlo work are in remarkably good agreement with conclusions

and/or speculations that McComb et al. (1979) derived from their recent laboratory

and field measurements. Table 3 compares a number of statements from Spear and

Hornberger (1978) with some from McComb et al. (1979). Two possible explanations

for this agreement come immediately to mind. The first is that the phosphorus scenario

that we constructed is partially correct and that the generalized sensitivity analysis did

serve to isolate a number of areas of critical uncertainty. A second explanation might

be that everything was very clear from the outset and that our analysis merely served

as a framework for exposing obvious relationships. Regardless of the explanation

accepted, it appears that the research priorities that we outlined in June, 1978 are to

some extent being recognized in the ongoing work and consequently our work may have

had some limited value in a practical as well as in an academic sense.

5 DISCUSSION

Although we do not think of our work on the Peel Inlet problem as a form of

forecasting, it is possible to interpret it in that sense or at least to envision forecasting­

like extensions to it. In principle we see no objection to the use of our approach in the

forecasting context. However, because of our conviction that environmental models are,

by the nature of the environment, always likely to be ill-defined, we feel it essential that

the scenario concept take a prominent role in forecasting applications. In this paper,

for example, we have argued that there is presently little evidence to suggest that the
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TABLE 3 Statements from the original report (Spear and Hornberger, 1978) on the sensitivity

analysis compared with "similar" statements from the paper by McComb et aL (1979) based on

recent data.

From Spear and Hornberger (1978)

"In terms of the phosphorus model even moderate

concentrations of phytoplankton are sufficient to

suppress the growth of Cladophora by limiting the

light available at the bottom of the Inlet."

"However, once a large quantity of phosphorus

has been located in the sediment, the Cladophora

are primarily light limited."

" ... explanation of the behavior depends primarily

on one feature of the model structure: the presump­

tion that Cladophora have access to phosphorus in

the sediment."

"In the model, the second condition [a source of

sediment phosphorusI requires that there be a sig­

nificant input of nutrient to the sediment by the

river. "

From McComb et aL (1979)

"Broadly speaking, the absence of Clado­

phora from the Harvey appears to be related

to the higher water turbidity there, due to

phytoplankton and other suspended

materiaL"

"There is little doubt that light must be the

primary limiting factor in the estuary, even

in shallow water."

"This suggests that the alga obtains most of

its nutrients not from the water column

above, but from the decomposing material

below."

"What is the long-term explanation of the

accumulation of nutrients within the algal

bank? ... One possibility is that during river

flow there is a deposition of particulate

nitrogen and phosphorus."

phosphorus scenario is not a good explanation for the situation in Peel Inlet. However,

our confidence in this result would certainly not extend to basing management decisions

on phosphorus-model predictions without a thorough study of the nitrogen scenario at

the very least.

A final point concerns the basic concept of water-quality forecasting. If it is

assumed that the most common conception of forecasting of this sort is aimed toward

managing an existing or potential problem and involves a bounded input-bounded out­

put notion, then it is useful to keep in mind that such an approach may simply not be

relevant to the short-term situation in the Peel Inlet where the single most important

input appears to be light. That is, we can envision no practical way to control this input.

On the other hand, other forms of managing the situation, by dredging for example,

would most likely perturb the system sufficiently to destroy any confidence we may

have had in the predictive abilities of our models. The moral is, perhaps, that the utility

of modeling in environmental management is probably very much the same as in

traditional engineering analysis: it is great when it works but a solution is much more

important than the methodology used to achieve it.
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DISTRIBUTION AND TRANSFORMATION OF

FENITROTHION SPRAYED ON A POND:

MODELING UNDER UNCERTAINTY

Efraim Halfon and R. James Maguire

National Water Research Institute, Canada Centre for Inland Waters,

Burlington, Ontario L 7R 4A 6 (Canada)

1 INTRODUCTION

Fenitrothion* was used during the period 1969-1977 in New Brunswick, Canada,

to control the spruce budworm (Choristoneura fumiferana [Clemens]) in the province's

forests. Millions of hectares were sprayed annually with 150-300 g active ingredient

per hectare. The routes and rates of its environmental transformation and disappearance

are subjects of much interest (National Research Council of Canada, 1975, 1977).

Maguire and Hale (1980) recently reported on the aquatic fate of fenitrothion. Surface

water microlayer, subsurface water, suspended solids, and sediment samples were col­

lected from a small pond in a spruce-fir forest in New Brunswick before and after the

aerial spraying of a fenitrothion formulation for spruce budworm control; the samples

were then analyzed for fenitrothion and its degradation and transformation products.

Fenitrothion concentrations in the surface microlayer, subsurface water, suspended

solids, and sediment fell below detectable levels two days after the spray; the only identi­

fied products were p-nitro-m-cresol in water, which persisted less than two days, and

aminofenitrothion (O,O-dimethyl-O-(p-amino-m-tolyl) phosphorothionate) in sediment,

which persisted less than four days. Laboratory experiments showed that chemical

hydrolysis of fenitrothion and volatilization of fenitrothion from true solution were

both slow processes; however, volatilization of fenitrothion from surface slicks was very

fast (t 1/2 = 18 min at 20°C). Thus, a large fraction of the fenitrothion that reached the

pond surface appeared to volatilize rapidly, while the fraction that remained in the water

disappeared or degraded within a few days, largely through photolysis and microbial

reduction. The kinetics of appearance and disappearance of fenitrothion and its metab­

olites are the subjects of this paper.

* Systematic name O,O-<!imethyl.{)-{p-nitro-m-tolyl)phosphorothionate.
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FIGURE I Model structures of the three models of fenitrothion in a New Brunswick pond. The

relative sizes of the compartments are 28 I (A), 136,000 I (B), and 4460 I (C).

2 MODEL STRUCTURES

A three-compartment model (Figure 1) describes the behavior of fenitrothion in

the surface microlayer (compartment A); subsurface water, i.e., the bulk of water in the

pond, (B); and sediment (C). Although the surface microlayer contains an insignificant

amount of fenitrothion compared with the other two compartments (Maguire and Hale,

1980), it is included in the model since volatilization is only important from the surface

microlayer. The rate constants k l -k4 are first-order rate constants of transfer processes

between compartments, and k s-k7 are first-order rate constants of removal processes

(assumed irreversible), physical or chemical, from each compartment. A removal rate

constant may represent the sum of rate constants for a number of processes; in this

model, for example, k s may represent volatilization and photolysis (producing p-nitro-m­

cresol), k 6 may represent photolysis, and k 7 may represent reduction (producing amino­

fenitrothion). The behavior of fenitrothion is computed with the following ordinary

linear differential equations, where the V symbols are the effective compartment sizes

(all with units of volume - Maguire and Hale, 1980) and square brackets represent con­

centration in I1gl-l:

(1)

(2)

(3)

The effective sizes of the surface microlayer (VA = 281) and subsurface water (VB =

136,000 I) are defined as their volumes, with reference to the dimensions of the pond

(Maguire and Hale, 1980). The effective size of the sediment is defined for convenience

(since a large amount of interstitial water is present in the sediments) in volume units,

i.e., as the volume of a l-cm thick section of sediment over the area of the pond

(Ve = 4460 I). Initial estimates of the rate constants k Ck7 were obtained with data from
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FIGURE 2 Simulation of fenitrothion in surface microlayer. Data points are from three sites in the

pond. The solid line is the deterministic simulation with the "best fit" parameter values. Dotted lines

define the behavior set.

laboratory and field-sampling experiments, and are shown in Table 1. Concentration­

time data for fenitrothion in each compartment are presented in Figures 2-4.

Two-compartment and one-compartment models homomorphic to the three­

compartment model are also presented in Figure 1. Table I presents relevant information

on the three models. The homomorphic relation between any two models SI and S2 is

a triple (g, h, k) of maps g: VI --+V2 , h: X I --+X2 , k: YI --+Y2 such that h8 1(x,u)==

82(h(x),g(u)) and kAI(X) == A2(h(x)) for each x EXI and u E VI. A model is here defined

as a quintuple (V, Y, X, 8, A) where V is a set of admissible inputs, Y is a set of outputs,

X is a set of states, 8: X x V --+ X is the state transition function, and A: X --+ Y is the out­

put function. Therefore, S2 is a valid model of SI since S2 is at least a homomorphic

image of SI. Note that in this particular example, the input is an impulse function which

is incorporated in the model through the initial conditions. Some of the stated rules

therefore do not apply. Note also that there is a homomorphic relation between the real

system, Le., the pond, and the three-compartment model: it is assumed that the model

is a valid representation of the behavior of fenitrothion. The practical dynamics of the

aggregation process were made in accordance with the principles stated by O'Neill and

Rust (1979).

3 PARAMETER ESTIMATION

Simulations for the three-compartment model were obtained by solving eqns. (1)­

(3) numerically on a computer using Hamming's modified predictor-corrector method
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FIGURE 3 Simulation of fenitrothion in subsurface water. Other details are given in Figure 2.

(Ralston and Wilf, 1960) with IBM Scientific Subroutine HPCG. The "best fit" values

of the rate constants were obtained by using a random search algorithm (Price, 1977),

which minimized a weighted difference between observed and predicted concentrations.

Theil's inequality function (Theil, 1970) was chosen as the objective function since it

put equal weight on the goodness of fit of each compartment, regardless of size. By

contrast, a linear least-squares function was unsatisfactory since it put too much weight

on concentrations in the surface microlayer relative to concentrations in the other com­

partments. Data used in the computations are shown in Figures 2, 3, and 4. These

figures show the fit of the simulations for compartment A, B, and C, respectively.

Simulations for the two-compartment model were done in the same way and the results

are practically identical to the relevant parts of the three-compartment model (Figures 2

and 3 are also for the two-compartment model; computed rate constants are given in

Table 1). The one-compartment model produces simulations only for the water com­

partment (Figure 3). This simulation is slightly lower than those of the larger models

(see Table 1 for coefficients).

4 AGGREGAnON ERROR

The effects of the aggregation were computed by the total error, T£ = fgohours

£2(t) dt. Fifty hours is the time span over which data are available. The error was
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FIGURE 4 Simulation of fenitrothion in sediment. See Figure 2 for details.
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computed only for the subsurface water compartment (B) since this is the only com­

partment common to all three models. The error E is the amount of fenitrothion in

water for model j minus the amount of fenitrothion in water for model i (where j = 2, 3;

i = I, 2; i =1= j). The digits indica te the number of compartments in the model. The errors,

expressed as percentages (Le., 100 x TEj(initial amount of fenitrothion in water» are

aggregation from: three to two compartments 0.35%, two to one compartment 3.76%,

and three to one compartment 5.76%. From these results we conclude that the two­

compartment model is almost a perfect representation of the three-compartment model.

The one-compartment model is also a valid model for the water compartment.

5 SENSITIVITY ANALYSIS THROUGH MONTE CARLO SIMULATIONS

We performed a sensitivity analysis similar to that described by Hornberger and

Spear (preceding paper in this volume, pp. 101-116) to which readers are referred for

the technical details. Two sets, "behavior" and "nonbehavior", were identified. The

"behavior" set was defined as ranges of concentrations for the three compartments. These

ranges were identified by data collected in the pond. However, since some data were

too noisy (Figures 2-4), the "behavior" range was arbitrarily reduced or enlarged at

points. A simulation was accepted in the behavior set if conditions for all three com­

partments were satisfied. Note that this approach allowed some freedom in the deter­

mination of the maximum concentration of fenitrothion in the sediments (Figure 4) since

sampling may not have occurred at the time of maximum fenitrothion concentration. In

Table 1 the ranges of the parameter values are presented with the "best estimate" for the

three-compartment model. A uniform frequency distribution was chosen for the parame­

ters. The initial conditions were considered to be known. The ranges of the parameters

were chosen after examination of the results of the random search: minimum and maxi­

mum values of the parameters which produced a good fit through the behavior were used.

Large limits would not have affected the sensitivity analysis much since values outside

these limits would have belonged to the nonbehavior set anyway.
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FIGURE 5 Line defining range of possible parameter values. For linear models, when only one

parameter is modified at a time, the simulations remain in the behavior zone for a determined set

of parameter values only (univariate case). For nonlinear models, when only one parameter is modified

at a time (univariate case), the simulations may move in and out of the behavior zone.

In contrast to the procedure of Hornberger and Spear (preceding paper), we per­

formed a multivariate sensitivity analysis. From preliminary runs we found that, for a

linear model, a univariate search would be useless since simulations in the "behavior"

set are obtained for a continuous but limited range for each parameter (Figure 5). The

multivariate analysis (Table 2) showed that the model was most sensitive to estimates

of the sediment volume. This result was expected since no direct measure of the amount

of actively adsorbing sediment was possible. The model was also relatively sensitive to

the volume estimate of the surface microlayer and relatively insensitive to aU other rate

constants. Among the "true" parameters k t-k7 , the parameters k 1 , ks, and k 6 showed

a somewhat larger influence than the others. These results were obtained from 1000 runs

of the model with 121 runs falling in the "behavior" set and 879 in the "nonbehavior"

set. Note that in these runs the volumes were also considered model "parameters" and

that these results should be considered for values within the ranges indicated in Table I.

6 PREDICTION UNDER UNCERTAINTY

The most important goal of the field-research program was the identification of

the behavior of fenitrothion and its degradation products. The chemistry of fenitrothion

and its metabolites in the pond has been described by Maguire and Hale (1980). From

field data and laboratory investigations, they noted that these chemical reactions had a

degree of natural variability which made predictions through a deterministic model some­

what unreliable. Following Halfon (1979) and O'Neill and Gardner (1979) we decided

to use Monte Carlo simulations to assess the frequency distribution of the time needed

for 99% of fenitrothion to disappear from the pond. Two sets of 1000 Monte Carlo

runs were performed, one with the parameters having a triangular frequency distribution,

as suggested by Tiwari and Hobbie (1976), and the other with a uniform frequency

distribution, signifying our uncertain knowledge of the rates of the chemical reactions.

The initial conditions had a uniform distribution, with the limits derived from the data

I
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PARAMETERS WITH TRIANGULAR
FREQUENCY DISTRIBUTION

PARAMETERS WITH UNIFORM
FREQUENCY DISTRIBUTION
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FIGURE 6 Histograms describing the frequency distribution of times when 99% of fenitrothion

has disappeared. The left figure describes the case when the parameters have a triangular frequency

distribution; the right, when parameters have uniform distribution. Time is in hours.

(Table 1), since we did not know exactly how much fenitrothion actually fell on the

pond, and the volumes had a nonnal distribution (Table 1).

Results (Figure 6) showed that the two sets of runs produced equal ranges with

99% degradation occurring at not earlier than 54 and not later than 68 hours. When

parameters belong to a triangular frequency distribution, we can confidently state that

most fenitrothion will be eliminated by the 59th hour; in the second case (uniform

distribution), by hour 64. The deterministic simulation predicts removal of 99% of feni­

trothion in 56.9 hours, which is about a 20% underestimate of the worst case (68 hours).

7 DISCUSSION

Pesticides volatilize and degrade according to their chemical properties and those

of the environment (e.g., pH) where they are sprayed. Transformations by biota are

relatively unimportant to a mass balance of many pesticides. For this reason, most models

of toxic substances are linear, as in this instance. Also, modelers commonly follow the

degradation of the pesticide only in water, where it is most easily detected, and then com­

pute the steady states in the other compartments analytically. This approach was taken

by, among others, Lassiter et al. (1979) who developed an effective computer program

(EXAMS) for predicting the fate of a chemical compound in natural waters. With the

aggregation analysis we found that, at least for fenitrothion, a detailed three-compartment

model is necessary when a clear understanding of all chemical processes involved is

required, as in this case. In fact, a three-compartment model requires more data to be
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developed and validated. The aggregation analysis showed that for prediction purposes

in water, a one-compartment model is quite adequate and that the total relative error

was quite small. A two-compartment model is also quite adequate to represent most

processes if the surface microlayer can be neglected. In this paper more emphasis has

been given to the complete model since we are interested in understanding as well as

predicting the behavior of the fenitrothion.

Laboratory experiments were performed to m2asure rates of hydrolysis and

volatilization (Maguire and Hale, 1980; see also Table I, footnote b). When the search

for the "best fit" parameter values was performed, it was found that some estimates

were too low (k l , k 4 , k s , k 7 ), or too high (k 3 , k 6 ) and that a model run with these

estimates would not fit the data: the global decay rate would be too slow. Care must

be taken when applying laboratory data to the modeling of field conditions, especially

when not all environmental conditions are taken into account. The sensitivity analysis

also showed that a careful determination of field conditions, in particular sediment

volume, was very important to the understanding of the behavior of fenitrothion in the

pond. Since the volume of actively absorbing sediment is difficult to measure, some

uncertainty remains, which presently cannot be eliminated. However, we have found

that if we are willing to ignore the relative importance of fenitrothion in the sediments,

we can still obtain relatively good estimates of the time needed for the chemical to

disappear completely. Prediction capability is less influenced by noisy data and lack of

knowledge than is the understanding of the chemistry. Therefore we conclude that, for

fenitrothion in a given pond in New BrunswiCk, the problems of understanding and

prediction under uncertainty are weakly coupled and each can be approached separately.

Future work will seek confirmation of this hypothesis with other toxic substances in

other environments.
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INPUT DATA UNCERTAINTY AND PARAMETER

SENSITIVITY IN A LAKE HYDRODYNAMIC MODEL

L. Somlyody*

International Institute for Applied Systems Analysis, Laxenburg (Austria)

INTRODUCTION

Hydrodynamic models are often used to calculate the magnitude and direction of

the wind-induced motion of water in lakes, in both engineering and water quality prob­

lems. The one- and two-dimensional model versions most frequently employed have two

major parameters, the wind drag coefficient and the bottom friction coefficient. Although

a number of important experiments have been performed in relation to the drag coeffi­

cient (for example Wu, 1969; Graf and Prost, 1980) and some information is also avail­

able to define a feasible range of values for the bottom friction, both parameters should

be the subjects of model calibration as they are lumped in character.

The reliability of a well-established hydrodynamic model depends primarily on two

factors:

(i) parameter sensitivity, which indicates how the model simulation is distorted by a

given error in the parameter vector; and

(ii) the influence of input data (in this case the wind velocity vector) uncertainty, in

other words, input data sensitivity.

If the parameters have any meaningful physical interpretation (as is the case here), factor

(i) is more related to research on the general subject concerned, while factor (ii) pertains

to data collection for the specific system studied. Since no general rules are available to

decide which issue is the more important but the consequences - whether to concentrate

on research or on data collection - are quite different, both factors should be analyzed

separately and their influence compared and contrasted.

There are numerous papers in the literature on parameter sensitivity (for example

Halfon, 1977; Rinaldi and Soncini-Sessa, 1978; Kohberger et aI., 1978; van Straten and

de Boer, 1979; Gardner et aI., 1981; Beck, 1983) but far fewer on input data uncertainty

*On leave from the Research Centre of Water Resources Development, VITUKI, Budapest, Hungary.
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(Somly6dy, 1981; Scavia et aI., 1981; Fedra, 1983; among others); joint studies of both

factors are very rare. This is especially true for hydrodynamic models where even param­

eter sensitivity is seldom incorporated in the analysis and very little interest is shown in

input data uncertainty.

Our objective here is as follows: for the example of a one-dimensional lake hydro­

dynamic model we wish to study both parameter and input data sensitivity, and compare

and contrast the two. A trial and error method is used for model calibration and deter­

ministic parameter sensitivity analysis is performed numerically. An order of magnitude

analysis and a Monte Carlo simulation are performed to investigate input data uncertainty.

The 1-D hydrodynamic model, and also more comprehensive model versions, accounting

for more than just longitudinal movement (Shanahan and Harleman, 1981; Shanahan

et al., 1981), were developed in the wider framework of a eutrophication study of Lake

Balaton. For more details of the Lake Balaton study the reader is referred to van Straten

and Somly6dy (1980) and Somly6dy (1981).

The structure of the paper is as follows. The model is presented in Section 2, while

Section 3 gives some background information and a description of the wind data for Lake

Balaton. Section 4 deals with calibration and parameter sensitivity and Section 5 discusses

validation. The influence of input data uncertainty is considered in Section 6, while

Section 7 gives an extension for multidimensional models and other lakes. Finally, the

main conclusions are summarized in Section 8.

2 MODEL FORMULAnON

2.1 Governing Equations

The motion of water along the lake's axis x (see Figure 1) is described by the one­

dimensional equations of motion and continuity often adapted to river flow situations

(Mahmood and Yevjevich, 1975; Kozak, 1977)

au
at

aA
at

az 1 a 2 1
-g- - --(U )+-(r +r)ax 2 ax Hp S b

_aQ
ax

(1)

(2)

where the latter can be rewritten as

B ~: = - a: [UB(H1 + z)]

Here

U = Q/A = longitudinal flow velocity averaged over the cross-section,

A =B(H1 + z),

Q = stream flow rate,

(2a)
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z = water level elevation (e.g., due to wind),

B = width of lake,

HI =nondisturbed water depth,

H = HI + z = real depth,

Ts = wind shear stress at the water surface,

Tb = frictional shear stress at the lake bottom,

P = density of water, and

g = acceleration due to gravity.

L. Somly6dy

The shear stresses are described by introducing the drag coefficient CD and bottom

friction coefficient A(see for example Lick, 1976; Virtanen, 1978)

where

- PAQ I Q In fA l+n

(3)

(4)

Pa = density of air,

W = wind speed,

Wx = longitudinal component of wind speed, and

n = bottom friction exponent (0 .,;; n .,;; 1).

Here the quadratic law will be used, so that n = 1. As can be seen from eqn. (4), Tb is

related to the cross-sectional average velocity rather than to the local velocity in the

vicinity of the bed; consequently Ais a lumped parameter.

In subsequent stages the equations listed above are rearranged for z and Q as un­

known variables and dimensionless quantities are introduced; for details see Somly6dy

and Virtanen (1982). Boundary conditions for one of the variables should be defined at

the two ends of the lake, where x = 0 and x = L, respectively. For typical lake problems

Q(t, 0) and QU. L) are generally given. If Q(t, 0) := QU. L) = 0, no inflow or outflow

takes place, a situation which will be considered here.

2.2 Numerical Solution

An implicit finite difference scheme (Mahmood and Yevjevich, 1975) is selected

and coupled to a matrix sweep technique. Time derivatives are approximated by differ­

ences centered in both space and time, while for space derivatives the differences are

centered in space but weighted in time. Space-centered, forward-time approximations are

employed for all coefficients and nonderivative terms except the bottom shear term (eqn.

4) where a more detailed approach, centered in space but weighted in time, is used; for

details see Somly6dy and Virtanen (1982).

The resulting scheme is unconditionally stable in time. For z and Q, (2N - 2)

linear algebraic equations are generated which are then closed by the boundary conditions

to the 2N unknown variables (N is the number ofgrid points). In order to make computation
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more economical a matrix sweep method was developed for the solution of the system of

equations; using this method the number of elementary operations (and thus the execu­

tion time) is proportional to N rather than N 3 (which is the case for conventional matrix

inversion methods). The price of this computational advantage is that spatial stability

should be assured. As was shown by Somlyody and Virtanen (1982), "weak" stability

can be maintained either for relatively small or for relatively large time steps (e.g., Llt <
100-200 s or M> 900 s), with Llx = 2000 m and H = 3-4 m which are typical values

for the Lake Balaton problem.

3 CHARACTERISTICS OF LAKE BALATON: THE WIND FIELD AND ITS

ASSOCIATED UNCERTAINTIES

Lake Balaton is long and narrow (78 km X roughly 8 km, see Figure 1) and extremely

shallow. The average depth is 3.14 m, and the lake is less than 5 m deep everywhere

except in one small area near the Tihany peninsula which divides the lake into two. In

this latter region a river-type water motion is observed which changes direction depending

on wind conditions and the associated water level oscillation. The velocity in this region

sometimes exceeds 1 m S-1 (corresponding to a flow rate of around 4000 m3
S-I) - a

very high value (Muszkalay, 1973) - while in other areas of the lake it is generally less

than 0.1-0.15 m S-I. The shallowness of the lake permits a water motion response to

even mild winds and because of the fluctuations in the wind field a steady state never

exists. This is well illustrated by the velocity measurements of Shanahan et al. (1981).

The prevailing wind direction lies between northwest and north. This is particularly

apparent if strong wind (>8 m S-I) events and summer periods are considered (Bell and

Takacs, 1974). The monthly average wind velocity ranges from 2 to 5 m S-I; however

the maximum may reach 30 m S-1 . The hourly average wind velocity exceeds 8 m S-1

at SiMok (see Figure 1) during approximately 15% of the year (Bell and Takacs, 1974).

The number of seiche-type events (strictly speaking seiche is the lake's response to a

single wind impulse) is about 1000 per year (Muszkalay, 1979).

The temporal and spatial variations in wind are strongly influenced by the surround­

ing hills of the northern shoreline. The sequence of hills results not only in a nonuniform

wind distribution along the northern shoreline itself but also in a highly variable velocity

field above the lake due to sheltering, channelling, deviating, and separating effects. The

average wind characteristics at various points clearly demonstrate these phenomena. For

instance, at the eastern end of the lake the prevailing wind direction is northwesterly, at

the other end northerly, while at the middle of the lake on the southern shoreline it is

northeasterly (Bell and Takacs, 1974). The magnitude of the spatial changes in direction

is well illustrated by comparison of the records for Keszthely and SiMok (see Figure I)

during 1977: for W > 3 m s-1 , the mean value of the difference in wind direction is 39° ,

while its standard deviation is 36°, suggesting a relatively wide range within which the

wind direction can fluctuate above the lake.

Due to sheltering effects the yearly average wind speed is 40-60% higher at SiMok

than at Keszthely. This marked spatial variation in behavior is observed for nearly all

individual storms. Transverse inhomogeneity in wind speed (Le., at sites on opposite

sides of the lake rather than opposite ends), due to the presence of mountains and the
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relative "smoothness" of the water surface compared to the surrounding terrain, has also

been indicated by some observations (Bell and Takacs, 1974). The number of wind record­

ing stations (at SiOfok, Szemes, and Keszthely, together with some temporary gauges

(see Somly6dy, 1979)) is insufficient for accurate specification of the wind field described

above (although an acceptable estimate can be made for the longitudinal distribution of

W; see previous sections and Somly6dy and Virtanen (I982)). Consequently, uncertainty

plays an important role and should be explicitly accounted for in the course of any model­

ing effort.

Out of the two variables defining the velocity vector, the absolute value of wind

speed and the wind direction, the latter is far more important (see Section 6). Therefore

further discussion of the uncertainties associated with wind direction is now necessary.

The most important sources of error are as follows:

(i) Incorrect registration and time averaging of the direction as a stochastic variable. As

a result of turbulent fluctuations, the continuous records often define a domain

40-60° wide rather than a single line.

(ii) The discrete resolution of many of the measuring instruments, involving steps of

22.5° or sometimes even 45°, rather than continuous measurement.

(iii) The nonuniformity (randomness in space) of the wind field. Based on the example

given previously (the comparison of records for Keszthely and SiOfok) this may

exceed 90°.

Each of these factors must be dealt with in a different way. Concerning item (i), for

example, a Gaussian distribution can be hypothesized. For item (ii), the angle 0: defining

wind direction can randomly take three discrete values (the mean, ±22.5°, or ±45°).

No information is available concerning the character of spatial randomness and therefore

the assumption of a uniform distribution is the most feasible. The corresponding strategies

used in the course of the Monte Carlo simulation are given in Section 6.

The most detailed study to date on the motion of water in the lake was performed

by Muszkalay (1973) who collected a set of water surface-elevation observations for ten

years at up to ten stations around the lake (see Figure 1). Simultaneous measurements of

wind speed at one or two of the stations and occasional measurements of water current

in the Strait of Tihany completed his data set, which will serve as the basis for our analysis.

From his observations Muszkalay selected typical stormy events and looked for

empirical relationships between wind parameters and I (which is the difference of the ex­

treme water levels at the two ends of the lake observed during a storm, divided by the

length of the lake), and between wind parameters and the maximum water velocity in the

Strait. Some of the results based on the regression equations he developed (Muszkalay,

1973) are illustrated in Figures 2 and 3, for storm durations of 2 and 12 h and for 10:*1<

22.5° (0:* is the angle defined by the wind velocity vector and the longitudinal axis of the

lake). Muszkalay gave I as a function of the instantaneous peak wind speed, W' ,which is
max

essentially higher than the maximum for a reasonable averaging period (e.g., an hour),

Wmax; the ratio W :nax: Wmax varies in the range 1.2-1.3. Since W ~ a x will not be used in the

calibration stage and a rectangular wind input will be employed, the range given in Figure 2

corresponds to the factor 1.2-1.3. It should be stressed that this range does not incorporate

the complete scatter of the original data. As is apparent from the figure, I depcnds linearly
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FIGURE 2 Maximum water level differences along the lake for wind events of (1) l2-h and (2) 2-h

duration. The shaded areas are based on the results of Muszkalay (1973).
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FIGURE 3 Stream flow rate at Tihany. The shaded area (1) is based on the results of Muszkalay

(1973).
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on W
x

although theory suggests a quadratic relation. It is noted, however, that most of the

data utilized lay in the 5-12 m s-1 domain and a quadratic fitting could also have been

performed. As can be seen from Figure 2, the maximum value of I (in absolute terms) can

exceed 1 m, a very high value compared to the average depth of the lake.

A domain is also given for the stream flow in Figure 3. Originally Muszkalay derived

an empirical equation for the velocity 1 m below the free surface in a typical vertical

cross-section. From this the stream flow rate can be calculated as a function of I but only

approximately, as suggested in the figure.

One more essential fmding of Muszkalay (1973) is mentioned here. He concluded

from the observations that I > 0 even if 10:* I = 90° (Wx = 0). This is due to some deter­

ministic effects (e.g., the deviating role of the hills) and to the stochastic nature of vari­

ous other spatial nonuniformities (see item (iii) above). The deterministic effects were

accounted for by a slight transformation of the wind speed vector; for details see Sornly6dy

and Virtanen (1982).

The results for I and Q (Figures 2 and 3) will be used next for model calibration,

while the uncertainties in the wind field description and in the wind data will be discussed

later in Section 6.

4 PARAMETER SENSITIVITY AND CALIBRATION

Realistic ranges for the two essential parameters CD and A (see eqns. 3 and 4,

respectively) can be defmed on the basis of literature values. The drag coefficient*, CD'

moves approximately between 0.001 and 0.0015 (Wu, 1969; Bengtsson, 1978; Graf and

Prost, 1980). For A, the bottom friction coefficient, no direct observations are available

for lakes. For channel flows (in the turbulent domain for small roughness coefficients) it

varies between 0.007 and 0.03; this range can serve as a guideline for lake situations (values

near to or below the lower end of the range are generally expected).

During the calibration no effort was made to define loss functions or to use recently­

developed versions of Monte Carlo procedures (see elsewhere in this volume for several

examples of the use of these techniques). Instead, a straightforward trial and error fitting

was performed. The empirical findings shown in Figures 2 and 3 incorporate the major

features of the system's behavior so these plots were employed as a basis, rather than the

more complex approach of using historical data. For the computations a time step t:.t of

1800 s and a space step t:.x of 2000 m (giving 40 grid points) were used, with geometric

data from VITUKI (1976). The wind input profile was rectangular and characterized by

the duration and one speed value; a sensitivity analysis on the shape of the profile (see

Somly6dy and Virtanen, 1982) showed that the application of this simple distribution

is fully acceptable for the present purpose.

As an example, Figure 4 shows the oscillation of the water level at the western end

of the lake. As can be seen the dynamics of the system are very fast, characterized by a

*Note that the assumption Co(W) = constant was used as the slight wind dependence sometimes intro­

duced is overruled by the uncertainty in wind data.
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FIGURE 4 Sensitivity of the lake system to bottom friction, as illustrated by the oscillation of the
water level at Keszthely (Wx = 8 m S-I. T= 2 h).

seiche period of around 10 h. The bottom shear coefficient influences the peak amplitude

but has an even stronger effect on the damping - an important feature which will be

utilized lateL

With increasing duration of wind input the duration of any negative (or positive)

elongation also increases and in the case of a step-like wind input the water level approaches

a steady state via several small oscillations. The stream flow through any given cross­

section shows a similar pattern to that given in Figure 4 but the dynamics are even more

rapid and the oscillation obviously decays for small and long durations, as well.

Next, the sensitivity of the system to X and Cn is shown in terms of effects on 1

and Q (the latter measured at Tihany). Figure 5 illustrates the influence of the bottom

shear coefficient as compared to the calibrated situation (X o = 0.003, Cno = 0.0013,

10 "" 0.3 X 10-5
, and Qo "" 2100 m3

S-I; these values are discussed later). The figure

shows that the maximum water level difference is quite insensitive to X and over the

entire domain (Xmax/Xmin "" 30) its influence moves in the range +15% to -27%. For

values larger than X/Xo = 8, ~ I is practically constant. Similar conclusions can be drawn

for the stream flow although the sensitivity is slightly higher, especially if A/Ao is small.

The most sensitive behavior - in accordance with Figure 4 - is shown by ~ 3 (Figure 5),
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FIGURE 5 Parameter sensitivity: the influence of the bottom friction coefficient (Wx = 8 m S-l,

T= 2 h).

the ratio of the peak water level differences during the first and second elongation periods.

Similar conclusions were also drawn for wind inputs other than those given in Figure 5.

Figure 6 illustrates the influence of the drag coefficient. As expected, both {31 and

{32 depend approximately linearly on CD' The model output is more sensitive to this

parameter than to X because the drag coefficient directly influences the energy in put to

the system.

From the mutually opposing influences of X and CD on both I and Q, it follows

that no unique, "best" parameter combination can be found for the model without

having further knowledge of the system. In the ranges CD = 0.0011-0.0014 and X =

0.002-0.008, fittings of approximately the same quality can be arrived at for I and Q. At

this stage the damping properties of the system can be utilized for further information.

From study of the historical data it is apparent that the damping is quite fast due to the

shallowness of the lake; the amplitude of the second oscillation is around 30% of the first

one, while the amplitude of the fourth oscillation is negligible. Based on this observation

X was fixed at 0.003 (see Figures 4 and 5), corresponding to CD = 0.0013. Both values

are realistic for lake situations (X corresponds to a Chezy coefficient C = (g/X)1/2 ~ 60).

Comparisons with empirical results for I and Q are given in Figures 2 and 3. In the light
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FIGURE 6 Parameter sensitivity: the influence of the wind drag coefficient (Wx = 8 m S-I , T= 2 h).

of the explanation in Section 3, any closer agreement cannot be expected. Note that the

calibration of a vertically integrated two-dimensional model for Lake Balaton resulted

in the same parameter set (Shanahan and Harleman, 1981).

5 VALIDATION

In contrast to the calibration procedure, in which aggregate knowledge on the lake's

behavior was utilized, historical data on typical stormy events (selected from among Muszk­

alay's (I 973) observations) were employed for validation. Altogether more than ten events

of different nature were simulated (Somly6dy and Virtanen, 1982) without changing the

parameter values found. Hourly wind data measured at Szemes (see Figure 1) were used

as input. The time step of the computation was 3600 s. For comparison water levels

observed at the two ends of the lake (Keszthely and Kenese) and discharge values derived

from velocity measurements at the Tihany peninsula (where available) were used. Three
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examples will now be discussed. The first is characterized by wind directions coinciding

approximately with the long axis of the lake and the second by wind directions perpen­

dicular to the long axis, while the third example concerns a set of consecutive but different

events.

Example 1. (Date and starting time of storm: 16/11/1966,08:00.) The period

studied involved a relatively long-lasting storm with the wind blowing from the East,

followed by three smaller storms of various natures (Figure 7a). The corresponding wind

shear stress pattern is illustrated as a plot of F = Wx IW I in Figure 7b. The shape of the

water level curve (Figure 7c) is quite similar to that of the wind force and from this single

example a linear relationship between the two could be hypothesized. The maximum

water level difference is 0.7 m, approximately one fourth of the average depth and one of

the highest values historically observed. No second peak can be observed, mainly due to

the gradual decay in the wind shear. The agreement between simulated and observed

water levels is excellent. The discharge, ranging from -2000 to +3000 m3
S-I, shows a

highly fluctuating character. The mean value of the time series is negligible compared to

the absolute values simulated.

Figure 8 shows the entire solution z(t, x) in three-dimensional space, making the

fluctuation of the free surface much more visible. The drastic change near to the Tihany

Strait is particularly apparent; this is an obvious consequence of the Venturi-type struc­

ture encountered here. D

Example 2. (Date and starting time of storm: 8/7/1963,08:00.) This example

represents a fairly typical situation for the lake, with a strong wind perpendicular to the

long axis (Figure 9a) resulting in a relatively small longitudinal shear stress component.

The behavior of the water level is very complex (the changes are small and random) and

the observed flow rate exhibits much larger fluctuations than the simulated value. This is

a case where the model fails as a consequence of the uncertainties in the wind direction

(see Section 6). One could argue that the inaccurate simulation is partly due to the

one-dimensional treatment, but the 2-D model gave equally unsatisfactory results (Shana­

han, 1981). D

Example 3. (Date and starting time of storm: 18/4/1967, 14:00.) This is the most

comprehensive example studied: within the eight-day observation period more than five

different situations covering the wind speed range 0-25 m S-1 and the complete direc­

tional domain of Ci can be distinguished, resulting in the irregular F(t) pattern shown in

Figures lOa and lOb. On comparing the observed and simulated water levels the "noisy"

character of the latter becomes apparent. When moving averages are used for the compu­

tations reasonable agreement is achieved for the eastern end of the lake, but this is not

true for Keszthely at the western end. The model gives an over-prediction around t = 100 h

when the wind blows from the North. This is probably due to spatial nonuniformities in

the wind field causing a strongly curved water surface not adequately characterized in.

the model. The discharge reflects the noisy character of the water level and shows the

largest oscillations among the three examples discussed here. D

In summary we can state that the model has been satisfactorily calibrated. The

validation is acceptable for situations where the wind blows along the main axis of the

lake but inadequate for situations where the wind blows across the lake. This problem is

discussed in Section 6.2.
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6 WIND INPUT UNCERTAINTY

6.1 An Order of Magnitude Analysis

To begin this analysis we return to eqn. (3) and assume small errors, flo CD ' flo W,

and flo 0:, respectively, in the variables Co' W, and 0:. The error propagation in the wind

shear stress (related to Tsm axo = Pa CD W2
) in the vicinity of the nominal point 0 is then

characterized by

Tsmaxo
(S)

derived from eqn. (3) after linearizing it. The term floCo/Coo indicates parameter sensi­

tivity while the remaining terms relate to input data sensitivity. The errors flo CD and flo W

are similar in nature. For instance errors of ±20% in CD or ±10% in W result in errors of

roughly ±IS% in I and Q, respectively (see Figure 6). These errors influence the magnitudes

involved but not the dynamic characteristics of the system; therefore they can be handled

reasonably well and require no further discussion here.

The situation regarding the second term in eqn. (S) is different because tl.o: can

change the sign of Ts and through this completely distort the time-dependent flow field.

This can be shown by the following order of magnitude analysis.

Based on simulation results (see Figures 2 and 3) for wind durations of T = 2 h,

the maximum water level difference and the flow rate at the Tihany peninsula can be

expressed approximately as functions of Ts' The error term 0:* can be also introduced,

thus leading to the following equations

(6)

and

(7)

where 1 is dimensionless and Q is in units of m3 s-1 . Here 0:* is zero if x = 0 (Figure 1)

and, in contrast to the previous definition, I can be positive or negative. The sign of Q is

the same as that of I.

Equation (6) clearly shows the main features of error propagation. There is no

effect if 0:; = 0 or 180° (corresponding to longitudinal winds), while the largest effect

occurs for 0:; = 90° or 270° (corresponding to transverse winds). The case of 0:; = 90°

corresponds fairly closely to the prevailing wind direction and thus is of major importance.

In this case - depending on the sign of floo: - positive or negative first amplitudes at the

same end of the lake and both flow directions are all possible. For example, relatively small

variations in input conditions (tl.o: = ±22.So if W = 10m s-1, or tl.o: = ±10° if W = IS ill

S-1 ) correspond to strikingly wide error ranges in z (±13 cm) and Q(± IS00 m3 s-I ).

When we recall some other features mentioned previously, such as the poor resolu­

tion in the directional data, the inappropriate time averaging of the wind data (often,

only three-hour averages are available), and the fast response of the system, it is obvious
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that in the vicinity of a6 = 90° an error in a single direction datum can result in the sort

of drastic change in the simulation described above. From this simple argument it follows

that any better agreement between simulation and observation for the last two examples

in Section 5 would, in fact, be surprising. For these reasons the more accurate Monte Carlo

simulation procedure described next was employed.

6.2 Monte Carlo Simulations

In the course of the Monte Carlo procedure a random component ~ a ( t ) is added to

the mean scenario a* (t). The generation of ~ a takes place numerically according to the

three types of error sources and their respective distributions as outlined in points (i)-(iii)

of Section 3. In this way a large number of at = a* + ~ai scenarios can be calculated and

computer simulations performed with them. Finally the statistics of the model output are

evaluated. The number of simulations required was initially tested on Example 2 (see be­

low); experiments were made with between 50 and 1000 Monte Carlo runs and it was

eventually decided to use 100 runs. The values 16.8°, 22.5°, and 33.8° were assumed as

basic, realistic values for the standard deviations (or half ranges) of the Gaussian, "discrete",

and uniform distributions (see Section 3), respectively, but other values were also employed

in order to check sensitivity. The transformations of the original distributions with respect

to wind force, water level, and flow rate, respectively, were also studied. Some of the re­

sults obtained are now discussed.

Example 1. The Monte Carlo simulations depicted in Figure 11 correspond to parts

b-d of Figure 7 and show the effects of considering the means, standard deviations (±),

and extreme values of each parameter (uniform distribution, half range 33.8°). In agree­

ment with the findings of Section 6.1, the uncertainty in a influences the wind shear to

only a small extent (for wind conditions near to longitudinal). This is also true for z: for

exampIe, around t = 25 h the variance is practically zero. Again in accord with Section 6.1,

the uncertainty range for Q is essentially wider indicating at the same time that model

validation for discharge (or velocity) is more difficult than that for water level (see also

Figure 5). Note that the mean trajectories agree reasonably well with the deterministic

simulations (Figure 7), and that the discrete generator (option (ii» with a half range of

22.5° gave practically the same results as those illustrated in Figure 11.

In conclusion we may state that in this case uncertainty is not too important, this

being one reason why the validation in Section 5 was successful. 0

Example 2. Results for the uniform distribution are given in Figure 12. In contrast

to the previous example, the uncertainty produced in the wind shear stress by the same

range in a is much wider due to the cross-wind conditions (see Section 6.1). In practice

the water level variation can range between 0.15 and -0.15 m, thus including all the

observed values. The results explain the "noisy" character of the water level well and

show that under such conditions a model with deterministic input cannot be validated.

For the discharge a strikingly broad domain was obtained, covering most of the measured

values. Although it was stated in Section 5 that the model failed for this event, from the

present example it follows that the statement is only true if uncertainties are not accounted

for. Note that the order of magnitude estimate given in Section 6.1 coincides well with the

results described in Figure 12.



Influence of input data uncertainty and parameter sensitivity on a lake model 147

200'

r 0
I

100.

N
~

N
O.Eo

u.

-100.

-200.

0.4
C0

0.5

0.3

0.2

0.1

!
0

1
N

-0.1

6000.
(0

5000.

4000.

3000.

2000.

1000.
~..,

O.E
0-1000.

--I-3000.

-4000.

I I I I I I I

0 15 30 45 60 75 90

t[h]

1,5--

2,4----

3--

FIGURE 11 Monte Carlo simulation of the storm of 16/11/1966: (a) F = IWIWx ; (b) water level at

Keszthely, together with observed values; (e) flow rate at Tihany ((3) mean value, (4) and (2) mean

value ± standard deviation, (1) and (5) extreme values).



148 L. SomlyMy

200.

100.

-100,+

-200.1

e
N

0.6

0.5

0.4

0.3

0.2

0.1

O. +-_~c-7""""~1"---<-"""'-':=--+=:,-::::""'-

-o.1!
-0.2

-0.3

-0.4

~ /

i,

I I I

10 15 20 25 30

t[h]

6000'1

5OOO'f

4000·t

3000.}

2000. c

o 5

~ 1000.t

Me O.~: '""'=~;;;;~,""ri't"=-7'~F~~h","",=--~

a -1000.+

- 2 0 0 0 . ~

-3000.1

- 4000·t

- 5000.}

- 6000. i

1,5--

2,4 ----

3--

FIGURE 12 Monte Carlo simulation of the storm of 8/7/1963: (a) F = IWIWx ; (b) water level at

Keszthely, together with observed values; (c) flow rate at Tihany «3) mean value, (4) and (2) mean

value ± standard deviation, (1) and (5) extreme values; the dot-dash line is derived from observed values).



Influence of input data uncertainty and parameter sensitivity on a lake model 149

Figure 13 summarizes the results obtained using various distributions for the dis­

charge at Tihany. It is stressed that the situation described in Figure 13c represents the

smallest uncertainty range possible in practice since the resolution of the standard wind­

direction data is 22.5°.

As compared to Example 1, the mean trajectories depend more strongly on the dis­

tribution assumed for ~ a and differ from the deterministic simulation. D

Example 3. Results for the water level at the eastern end of the lake are given in

Figure 14 (uniform distribution, half range 33.8°). The very wide uncertainty domain (see

also Section 6.1) is due to the cross-wind conditions around t = 100 h and the high wind

speed value (Figure 10). More attention is paid here to the mean trajectory which is

essentially different to the deterministic result; it is less noisy and agrees better with the

observations. D

Two main conclusions may be drawn from this section: (i) except in the case of

longitudinal wind conditions the model is far more sensitive to directional data than to

other model parameters, and this should be taken into account in model development and

use; (ii) the model was successfully validated in a stochastic fashion, which is a consider­

able achievement as compared to deterministic simulations.

7 MULTIDIMENSIONAL MODELS AND OTHER SYSTEMS

It is of some interest to analyze first, whether the behavior of multidimensional

models as regards uncertainty propagation is similar to that of the l-D model and second,

what conclusions can be drawn for other lakes.

7.1 Multidimensional Models

For multidimensional approaches (3-D or horizontal 2-D models in the present case)

the wind shear stress vector as model input is given by the following equation

(8)

where e and e are unit vectors for directions x and y, respectively. In contrast to eqn.

(3), a s:cond t{rm now appears in parentheses representing the transverse shear stress.

The sensitivity of this equation to ~ a can be characterized by the relationship

In the l-D model an error in the wind direction influences the absolute value (and

also the sign) of the shear stress appearing in the input. In contrast, the absolute value is

unaffected for 2-D or 3-D situations; only the direction and through this the components

are modified (eqn. 9). The sensitivity structure of eqn. (9) is, however, not very suitable.

For wind directions nearly perpendicular to the lake's axis Tsx is characterized by the

same (large) sensitivity as in the l-D model while for Tsy the sensitivity is negligibly

small (cos a; ~ 0). As the cross-sectional average discharge in a 2-D model is primarily

dependent on Tsx we may conclude that the sensitivity of the 2-D model to input data
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uncertainty has a similar character to that encountered with the I-D approach. This explains

why Shanahan and Harleman (1981) failed to simulate the discharge adequately for the

two storms discussed in their report.

It is more difficult to reach conclusions on the possible behavior of a 3-D model as

an additional important parameter, the vertical eddy viscosity, would appear in such a

model. This would influence first of all the shape of the vertical velocity profile (excluded

from both the I-D and 2-D approaches), and through this also the cross-sectional average

stream flow. Thus it is suspected that the input data sensitivity might be smaller for a 3-D

model, but that it would still be significant.

The sensitivity in T.sy (see eqn. 9) is highest for longitudinal wind conditions. This

will, however, primarily influence the circulation pattern, but only slightly affect Q and I.

7.2 Other Lake Systems

Among the most characteristic features of Lake Balaton are the lake's geometry,

the prevailing wind direction which is approximately perpendicular to the lake's axis, and

the relatively fast response of the system. The wind field also shows specific patterns of

temporal and spatial change. However, the methods of data collection used do not in fact

follow satisfactorily either the features of the wind field or those of the lake system (due

to insufficiently exact or inappropriate resolution in space, time, and direction). These are

all reasons for the large uncertainty found and for the dominant position of input data

sensitivity rather than parameter sensitivity.

Certainly other lakes can and do essentially differ from Balaton in their major char­

acteristics. However all the systems are specific in their own different ways: for example,

no regular lake of circular shape has yet been found in nature for which uncertainties in

wind direction would equally influence the x and y components of a model simulation.

Moreover, for most lakes, typical values of length, width, and prevailing wind directions

can be straightforwardly defined. From these major characteristics the ranges and types of

possible uncertainties follow. More importan tiy, the major characteristics contain clues on

how the various uncertainties can be diminished by developing an appropriate monitoring

strategy .

8 CONCLUSIONS

Parameter sensitivity and the influence of input data uncertainty has been studied

for a one-dimensional model of Lake Balaton. The major characteristics of the Balaton

system are the long, narrow shape of the lake and the prevailing wind direction which is

approximately transverse to the lake's axis. In addition to detailed simulations, two

aggregated parameters, the maximum water level difference I along the lake and the

volume flow rate Q at the smallest cross-section, were used to describe the major features

of the system. Our conclusions are as follows:

(i) The wind field exhibits characteristic temporal and spatial changes. The response

time of the lake is very short: a typical measure is the longitudinal seiche period of around

ten hours according to the model. Storms of short duration (1-2 h) induce considerable
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FIGURE 14 Monte Carlo simulation of the storm of 18/4/1967: water level at Kenese ((3) mean

value, (4) and (2) mean value ± standard deviation, (1) and (5) extreme values; the bold line is derived

from observed values).

movement so that a steady state is practically impossible to define. The instrumental

resolu tions of wind data in time, space, and direction are inappropriate for the known

properties of the wind field and the fast dynamics of the system. This inappropriate

monitoring strategy causes large uncertainties in the wind input data and should be

accounted for in the course of model development.

(ii) The influences of the two major parameters, the wind drag and bottom friction

coefficient, on model performance are opposite. Thus, it is difficult to find a unique,

"best" parameter combination. In the ranges CD = 0.0011-0.0014 and 11.=0.002-0.008,

fittings of approximately equal quality can be arrived at for I and Q. Based also on the

damping properties of the system a parameter vector (0.0013, 0.003) was calculated.

Essentially the same results were obtained from the independent development and cali­

bration of a horizontal 2·D model for Lake Balaton.

(iii) The model's behavior is obviously very sensitive (in fact, almost directly pro­

portional) to the drag coefficient which influences the energy input to the system. In

marked contrast, the model output is quite insensitive to the bottom friction coefficient

(the only parameter directly associated to internal variables). In the range of Arelated to

the nominal calibrated value (0.25-8), I varies in the range + 15% to - 27%. For Q the

sensitivity is slightly higher, but bothI and Q are practically independent of/... for A/AD > 8.
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(iv) The model was successfully validated for longitudinal wind conditions. However,

this was not possible for winds closer to transversal and particularly not for the stream

flow, one of the two variables. The 2-D model showed the same properties.

(v) An order of magnitude analysis clearly indicated that the failure in validation

was due to uncertainties in the wind direction, which has almost no influence on the

model performance for longitudinal winds but a very major effect for transversal condi­

tions. Errors of ±15 cm and ±1500 m3
S-1 can easily occur for I and Q, respectively

(the nominal value would be zero for both variables). While errors in the wind speed are

of a similar nature to those in the drag coefficient, in that they do not influence the

direction of the flow or the sign of a water level amplitude, an error in the wind direction

can completely distort the time pattern of the simulation. The behavior of the 2-D model

is expected to be similar.

(vi) By introducing an error component solely in the wind direction, Monte Carlo

simulations were performed. This more accurate approach justified the findings of the

order of magnitude analysis. Assuming realistic uncertainties in the wind direction (in

this case, a ±22.s° error domain) the model was successfully validated for all the historical

storms simulated. The mean trajectories of the Monte Carlo runs are close to the deter­

ministic simulations for longitudinal wind directions with increasing deviation observed

on approaching cross-wind conditions.

(vii) In this particular case we can conclude that input data sensitivity is more

dominant than parameter sensitivity for the l-D model; the situation would probably be

similar for the 2-D model version. However, the pattern of course can and will be different

for other lakes. Nevertheless, it is generally of great importance to work out a proper wind

monitoring network, knowing the major features of the system studied (see conclusion

(i) above), in order to reduce the possible influence of various input data uncertainties.
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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS

AND UNCERTAINTY IN PHYTOPLANKTON MODELS

G. van Straten

Department of Chemical Engineering, Twente University of Technology,

P.O. Box 217, Enschede (The Netherlands)

1 PROBLEM STATEMENT

In modeling large complex systems, estimates for the model parameters cannot

always be obtained by controlled experimentation or independent measurements. More­

over, most parameters are lumped parameters in the sense that they represent a wealth

of underlying processes for which separate modeling is undesirable or impractical, so

that their numerical value has a well-defined physical meaning only for the system under

study within the context of the model specified. Consequently, some form of model

calibration, achieved by adjusting the parameters in some way, is inevitable.

Generally, modeling is used to enhance our understanding of the behavior of a

system as a whole, preferably in quantitative terms, from the action of each of the

components separately. Of course the eventual aim is to use models as a lOol to decide

upon the effects of possible control actions or alternative management strategies.

Obviously, the success of such applications depends critically upon the quality of the

calibration. Here it is not only essential to have parameter estimates that fit the data

well, but also important to have some idea about the accuracy of the estimates, and

about the uncertainty in the model predictions resulting from the uncertainty in the

parameters.

Formal calibration, or, if preferred, parameter estimation, based on minimization

of the sum of squared differences between model results and data (least-squares methods)

does allow for the simultaneous estimation of the parameter variance-covariance matrix

(see, for example, Draper and Smith, 1966). However, least-squares methods as such

ignore knowledge that might exist about the error structure of data, inputs, or model.

If something is known or can be assumed about the error structure, improved estimates

with lower variances can in principle be obtained by employing maximum likelihood

estimation.

In a previous paper maximum likelihood estimation was applied to a model for

phytoplankton dynamics (DiToro and van Straten, 1979), using data obtained for Lake

Ontario during the International Field Year of the Great Lakes (IFYGL, 1972-1973).
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In this case, a priori knowledge about the data error was available in the form of spatial

variances because the data were lake-wide means computed from numerous local samples.

The present paper reports on a second application of the same approach using the same

model for the same lake, but now for a ten-year lumped-data set. Here, the uncertainty

in the data arises from the variability among the different years.

First, the theory of the method as developed by DiToro and van Straten will

be restated, but cast in a more general framework. Next, the results of the application

to the IFYGL data will be summarized and supplemented with experience gained with

the ten-year lumped-data set. The key section is the discussion, in which the mathe­

matical treatment is scrutinized to explain some of the difficulties encountered in the

practical application. The principal aim of this contribution is to show what can be learnt

about maximum likelihood estimation from practical experience, and how this leads to

suggestions for improvement. The actual implementation of these improvements will

be the subject of future research.

2 THE MODEL

To help the reader in the rather abstract derivations to follow, the model is first

briefly discussed, although detailed knowledge is not essential for the development in

the subsequent sections. The model was developed originally by the Manhattan College

(Thomann et al., 1975). State variables are phytoplankton carbon, herbivorous zoo­

plankton carbon, and carnivorous zooplankton carbon; organic nitrogen, ammonia

nitrogen, and nitrate nitrogen; and organic phosphorus and orthophosphorus. Each of

these variables is modeled for both the epilimnion and the hypolimnion, but in the

horizontal plane it is assumed that the lake is homogeneous. Driving variables are total

daily solar irradiation, day length, extinction in the water column, water temperature in

the epilimnion and hypolimnion, mixing over the thermocline, and inputs of phosphorus

and nitrogen compounds. Data are available from the regular sampling program on a

rougWy ten-times-a-year basis from 1967 to 1976, and in addition from the IFYGL

program for a one-year period from 1972 to 1973. The measurements comprise

cWorophyll-a, total zooplankton biomass, total KjeldaW nitrogen, ammonia, nitrate,

and total and soluble reactive phosphorus. A comparison with model results is made

possible by a suitable linear combination of the model state variables.

Previously, the model has been calibrated using data for 1967-1970 (Thomann

et al., 1975), thus providing an initial guess for the parameter vector in the present

application. In what follows, the forcing functions representative of the period 1967-1970

have also been used, rather than the IFYGL or ten-year averaged forcings. Although

year-to-year differences for Lake Ontario are not excessive, some error will result from

this simplification, which is not accounted for here.

3 METHODOLOGY

3.1 Estimation

In this section the methodology as originally developed by DiToro and van Straten

(1979) is restated in a slightly more general form.
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Let jj be the column vector of model results at time instant tj (j = 1,2, ... ,n).

Thus

where [ h ( t j ; ~ ) denotes the model outcome for state variable k at time t j given the param­

eter vector i3 (dimension p). The dimension of Jj is s, the number of state variables.

Further let Cj be the s-dimenslOnal vector of the observed lake-wide (average) concen­

tration for the state variables:

Since fj is a model for Cj, one may postulate that

(1)

where Vj denotes the sum of all errors at time tj, which may be composed of measurement

errors, spatial errors, and model structural errors (including propagated input errors).

Under the additional assumption that the total error Vj is normally distributed

with variance-covariance matrix Rj (dimension s x s), the multivariate probability density

function of Cj given the process parameters b is

The multivariate likelihood function for Cj given the model parameters $, l(cj; $), has

the same form as eqn. (2). If the disturbances Vj are not correlated in time, the likelihood

function for the full time series can be written as

(3)

or

-In LCS)

Note that in eqn. (1) it is tacitly assumed that fj has the same dimension as the obser­

vation vector. Thus, linear transformations of the actual model state variables are under­

stood to have been performed before eqn. (1) is applied, and consequently, Ii should,

in fact, be viewed as the data-oriented model results vector rather than as a state vector

as such. It should also be noted that the summations in eqn. (4) must be taken over all

data points excluding missing data, so that in the case of missing data sn should read N,

the total number of actual observations made (N";;; sn).

In eqn. (4) both the elements ot Rj and the elements of the parameter vector S
are unknown. The estimation problem can now be formulated as: find ~j, Pthat mini­

mize the right-hand side of eqn. (4) (these are then the estimates ltj and S). At this point

DiToro and van Straten (1979) make the tacit additional assumption that the estimate
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of R j does not depend upon tl:e parameter estimate ~ . Under this assumption the param­

eters can be found by differentiating eqn. (4) with respect to S, to yield

n

L (Cj -1i)TRj-1(a!ila~) = 0
j;J

(5)

The result of eqn. (5) is further simplified by assuming that no correlations exist between

the disturbances among states, so that Rj is a diagonal matrix:

o

(6)

o

The log likelihood is now reduced to

where a ~ k j , ckj, and fkj are shorthand notations for a ~ k ( t j ) , Ck(tj), and fk(tj;S), respec­

tively. Differentiation with respect to {3 yields, in a similar way to the derivation of

eqn. (5):

n •

L L {(Ckj - fkj)/a~kj}(afk)a~) = 0
j;1 k;1

This is equivalent to a weighted least-squares problem with weights

i.e., equivalent to minimizing

(8)

(9)

(10)

Equation (10) demonstrates the well-known fact that maximum likelihood gives a

probabilistic justification for the use of weighted least-squares, and, in addition, provides

a method to choose the weights, which must otherwise be chosen by engineering judg­

ment.

At this stage of the development the weights are not known. The values of a ~ k j

must also be estimated. In order to do this, Vkj is split into a known, time-dependent

part Ilkj, i.e., the variance of the spatial mean of state variable k observed at time tj,

and an unknown part 77kj, expressing all other errors, mainly the model error. If both

errors are independent and normally distributed, and if the model error is supposed to

be time-invariant in lack of information, then
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(I I)

Differentiation of eqn. (7) with respect to the unknown a ~ k together with some algebraic

rearrangement leads to

( 12)

This is an implicit formula for a ~ k , but in this form is amenable to solution by successive

substitution. Note that if the variance of the spatial mean concentration is small, i.e.,

if a ~ k j <{ a ~ k , then a ~ k + a~kj is practically time-invariant and eqn. (12) transforms into

n n

(13)

so that the model error variance is the residual variance less the average of the spatial

heterogeneity contributions.

3.2 Parameter Variance-Covariance

A lower bound for the parameter variance-covariance is provided by the Cramer­

Rao inequality (see, for example, Eykhoff, 1974):

(14)

where J is the Fisher information matrix:

(15)

Following DiToro and van Straten

(16)

But, because it is assumed that the residuals are not correlated in time and among states

(17)

where Dmn is the Kronecker delta (equal to I if m = n, and 0 otherwise), so that the final

result is (asymptotically)

(18)
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This is the conventional nonlinear weighted least-squares expression for the covariance­

variance m?trix of the parameter estimates.

3.3 Prediction Error

When the parameter estimates Sand the associated variance-covariance matrix are

available one may also estimate the error in the prediction resulting from the parameter

uncertainty:

(19)

Linearization of fJ,j(h + t.(3) around hby a Taylor-series expansion yields

p P

V{fhj(S)} = E{(af/a{3cJ(af/a{3{3)iJ.{3aiJ.{3{3} = L L (af/a{3a)(af/a{3{3) cov({3a, (3(3)
a=l {3=1

(20)

This result is reasonable only if the linearization around the parameter values is reason­

able. In cases of pronounced nonlinear behavior, eqn. (20) may be expected to yield

misleading results.

4 APPLICAnON

4.1 IFYGL Data

In the application to the IFYGL data a ~ h j is the variance of the spatial mean,

computed as

2
(1/Nkj )aiki (21)a llhj

Nhj

aiki {l/(Nki -l)} L (Cjjh -Chj)2 (22)
j=l

Nhj

Chj (1/Nhj) L Cjjh (23)
i=l

where Cijh is the observation of variable k at time t j at location i, Nhj the total number

of locations sampled for variable k at time t j , Chj the spatial average concentration, and

aihj the sample variance of the individual Cijh values.

The parameter-estimation procedure involves the solution of eqn. (8), which can

be done by conventional nonlinear least-squares routines. The only difference is that the

weights in this application depend upon the parameters chosen, and a continuous update

of the weights according to eqn. (12) is necessary during the optimization.
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The results can be summarized as follows.

(a) The objective function (eqn. 10) using a continuous weight update turned out

to be very insensitive to the parameter choice (see discussion below); consequently,

convergence was slow. Since the principle interest of DiToro and van Straten was in

the parameter uncertainty, they decided to skip the optimization step in this preliminary

application. Instead, the nominal values resulting from the 1967-1970 hand calibration

were used as reasonable approximations of the maximum likelihood estimates.

(b) Coefficients of variation for the parameters resulting from the analysis are

shown in Table 1, column a. Because no direct calibration with the 1972 data was done

(and, moreover, forcings representative of 1967-1970 rather than the actual 1972 data

were used), the fit is not as good as would otherwise have been possible. Consequently,

the model errors as shown in Table 2 are definitely larger than expected. This, in turn,

inflates the parameter covariances, allowing for only qualitative conclusions. Generally,

the kinetic parameters and stoichiometric ratios associated with the phytoplankton,

phosphorus, and nitrogen cycles can be estimated with fair accuracy. On the basis of

the field data less can be said about the value of the Michaelis-Menten coefficients,

especially for nitrogen. This is not surprising because, in Lake Ontario, nitrogen is only

limiting for a relatively short period. Perhaps most striking in column a of Table 1 is

the relatively large uncertainty in the zooplankton parameters. Apparently, zooplankton

kinetic parameters cannot be estimated with confidence from the available field data,

at least for herbivorous zooplankton. It is somewhat surprising that the uncertainty for

the carnivorous zooplankton seems to be smaller, especially because its behavior has only

a secondary effect on the phytoplankton and nutrient concentrations.

(c) Table 3, column a, gives an impression of the prediction error due to parameter

uncertainty, calculated from eqn. (20). Prediction errors tend to be largest in summer

and smallest in winter but only yearly averages are shown in Table 3. Clearly, the predic­

tion of zooplankton is without much meaning in this case. The numbers in parentheses

indicate the prediction error when the covariance structure of the parameters is ignored.

Since several parameters are strongly correlated the effect is rather dramatic. Correlations

arise from the structure of the model. For example, since

dA/dt = (G - D)A (24)

where A is phytoplankton, G the specific growth rate, and D the death rate, G and D

have a strong positive correlation upon estimation, because it is in fact the difference that

determines the behavior pattern of phytoplankton rather than the individual G and D

associated parameters. Consequently, a large uncertainty in each of the parameters

individually does not necessarily imply a large prediction error, because of the mitigating

effect of the covariance terms in eqn. (20).

4.2 Ten-Year Data Set

In the application of this paper the ten-year data were used to construct a lumped­

data set for one "average" year. For this purpose the measurement data for a particular

month were averaged over ten years (as far as data were available). Since the year-to-year
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TABLE 1 Parameter uncertainty in coefficients of variation (%)a.

a b

Phytoplankton

Growth rate 63 48
Respiration rate 81 26
N, Michaelis-Menton 479 267
PO., Michaelis-Menton 411 115

N/chlorophyll-a 53 19

PO./chlorophyll-a 63 16
Settling velocity 76 > 1000

Nitrogen

Organic N-NH
3

transformation rate 31 42
NH

3
-N0

3
transformation rate 25 33

N settling 85 38

PllOSphonJs

Unavailable P-PO. transformation rate 113 43
P settling 237 32

Zooplankton

C/chlorophyll-a 235 131
Herbivorous grazing 170 86
Herbivorou s assimilation efficiency 800 210
Herbivorous respiration > 1000 79
Herbivorous grazing saturation > 1000 280
Carnivorous grazing 95 49
Carnivorous assimilation efficiency 116 78
Carnivorous respiration 160 51

c

71
27

>1000
174

28
16
86

57
51
53

48
41

247
228

90

d

83
38

> 1000
173

29
20

102

57
51
57

48
45

515
428
771

920

> 1000
317
785

896

a a: 1972 IFYGL data. Nominal parameter set without optimization. b, c, d: 1967-1976 data.

Optimization with fixed weights; b, all parameters, c, five parameters fixed at nominal value, and

d, full uncertainty with parameter set found under c.

variability was much larger than the spatial variance the latter was ignored, and the

variance assigned to each of the twelve data points was simply taken as the sample

variance about the ten-year mean. (Note that this variance may be up to ten times larger

than the variance of the mean. This choice implies that the ten-year mean is seen as the

most likely value for any individual year, while the sample variance relates to the interval

in which the datum is expected for any individual year rather than the interval in which

the mean is expected.) The variance obtained in this way somehow comprises the year­

to-year variability in inputs and forcing functions, and thus compensates more or less

for the fact that these variations have not been explicitly taken into account. Next,

the lumped-data set was substituted for the IFYGL set and the estimation procedure

repeated in the same fashion as before. However, because of the insensitivity of the

objective function, as mentioned previously, it was decided to optimize the param­

eters with a fixed weight, based on the data variance alone. Thus, no weight update

incorporating the model error was performed during the optimization. However, once

the optimum point was found, an estimate of the model error was made using eqn. (12),

and the parameter variance-covariances were calculated with the updated weights

according to eqns. (11) and (18). Because in this case the data variance is much larger
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TABLE 2 Model error versus data error
a

.

a b c/d

Model Data Model Data Model Data

Epilimnion

Chlorophyll-a 89 7 2 22 6 22

TKNb 52 4 47 47

NH
3
-N 260 6 10 21 21 21

N0
3
-N 44 2 13 34 13 34

Total P 10 1 42 42

PO.-p 87 3 19 5 19

Hypolimnion

Chlorophyll-a 70 18 7 59 9 59

TKNb 17 4 50 50

NH
3
-N 390 6 15 15

N0
3
-N 8 1 20 40 16 40

Total P 16 1 I 41 1 41

P04-P 91 2 17 17

a See footnote to Table 1.

b Total Kjeldahl nitrogen.

TABLE 3 Annually averaged prediction error (as % coefficient of variation) for some of the

epilirnnion variablesa,b.

a b c d

Chlorophyll-a 56 (705) 10(295) 8 (110) 9 (150)

Zooplankton 350 (2050) 43 (1200) 14(130) 27 (460)

Ortho-P 74 (430) 9 (90) 9 (150) 10 (150)

Total P 6 (36) 5 (35) 4 (18) 5 (21)

a See footnote to Table I.

b Values in parentheses show the prediction error when the covariance structure of the parameters is

ignored.

than in the IFYGL case, calculation of the model error with eqn. (12) was not always

possible. That is, the data error encompasses the span of all possible errors including

model errors, and there is simply not enough information to separate the individual

errors.

In contrast to the IFYGL application a parameter optimization was performed

prior to uncertainty calculations, rather than using the nominal parameter set. First,

a full unconstrained 20-parameter search was made. No difficulty was met in finding

a parameter set that produced a better fit than the nominal one. Consequently, as can

be seen from Table I, column b, the parameter error is much less than in the case of no

optimization (the high relative error for the settling velocity is artificial, because its

value turns out to be estimated as nearly zero, in which case a coefficient of variation

is not a suitable error measure). With the optimized set, apparently, a lower model

error (as far as this could be computed, see Table 2, column b) and a lower prediction

error (Table 3, column b) are obtained. However, when looking at the parameter values
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arrived at, it became clear immediately that the improved fit was obtained at a physically

nonfeasible point in parameter space. For example, the carnivorous assimilation effi­

ciency was raised from 0.6 in the nominal set to a value much larger than 1 in the opti­

mized set, which is, of course, impossible. And although most other parameters remained

within reasonable ranges, some of the suggestions made by the optimization, such as a

five-fold larger carbon-to-chlorophyll ratio, are highly unlikely. These results serve to

illustrate that multiparameter optimizations in complex systems with relatively few data

tend to yield nonsensical answers if no constraints are imposed on the parameters.

To overcome these difficulties a second run was made in which some of the most

uncertain and some of the physically most constrained parameters were fixed at their

nominal values (all associated with the zooplankton cycle). A new optimization was

carried out with these constraints, and a new optimum was found with values quite

different from those of the full parameter case. As expected, the model error was larger

in this case (see Table 2, column c/d) because fixing some of the parameters restricts

the number of degrees of freedom to adapt the state trajectory to the data. The param­

eter covariances were computed in two ways. Firstly, the fixed parameters were treated

as constants, so that they do not appear in the variance-covariance calculations (see

Table 1, column c). This is equivalent to assuming that these parameters are known with

certainty. In the second method, uncertainty was also assigned to the fixed parameters

by including them in the variance-covariance computations. This is equivalent to

assuming that the fixed parameters belong to the optin1al set. The results are given in

Table 1, column d. As can be seen, the fixed parameters are associated with very large

uncertain ties, which is not unexpected because uncertainty was one of the criteria for

selecting them to be fIxed. In the case of the optimal poin t, a large uncertainty would

have meant that these parameters could hardly be estimated from the data. Away from

the optimal point this conclusion is not necessarily justified (compare columns a and d).

On the other hand, a large uncertain ty does indicate that at the actual parameter poin t

the model is not very sensitive to these parameters. This is why it is perhaps more appro­

pria te to speak of sensitivities rather than uncertain ties when the estimates are not close

to the "true" values (see Schweppe, 1973).

It is also interesting to note from Table I that the assumption that some of the

parameters are known with certainty decreases the uncertainty in the remaining param­

eter estimates. This agrees with the intuitive feeling that the availability of such a

strong piece of external information permits a better estimation to be made. This point

is further illustrated in Figure 1, in the simple case of two parameters. Suppose that

the point (C, D) is found after optimization with PI fixed at C. Now the uncertainty

of the parameters resulting from the Cramer-Rao inequality (eqn. 14), assuming both

parameters to be unknown, is represented by the ellipse around (C, D), which is a linear

approximation of the true nonlinear confidence contour represented by the line drawn.

Thus, the uncertainty in parameter P2 is given by U3' However, if C is considered to

be known with certainty, the true point cannot be everywhere within the confidence

ellipse bu t must be on the line PI = C. Then, the uncertainty in P2 under the condition

PI = C is the distance U2 only, and is therefore smaller than before.

Assuming the parameters to be known with certainty reduces the uncertainty of

the remaining parameters only if we stay in the same point of parameter space. It is not

true in general, as can be seen from a comparison of columns band c in Table 2. Allowing
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FIGURE I Effect on parameter uncertainty of fixing a parameter off the optimal point (two­

parameter example, for explanation see text).

for a full optimization does decrease the parameter variances. Again, reference is made

to Figure 1. If, instead of fIxing PI at C, a full optimization is carried out, one would

find the true minimum (A, B). Since this is a true minimum the variance a I is expected

to be lower than at other points somewhere "up the hill". It may, of course, be that

the point (A, B) is physically not feasible (as is the case with column b in Table 1).

Finally, a word must be said about the prediction error in the three cases. As

expected, the average prediction error is smaller in case c than in case d because the

parameters are known with less uncertainty. However, it is surprising that the prediction

errors in the full parameter case (column b) are somewhat larger than in cases c and d,

despite the better fIt in this point. It may be that this has something to do with the non­

linearities in the model. One might expect the model to be particularly nonlinear around

nonfeasible points in parameter space (as in case b), and this might have an inflating

effect on the prediction uncertain ties. The result confIrms that care must be exercised

in applying eqn. (20).

5 DISCUSSION

The theme of central importance in maximum likelihood estimation is what is

known or can be assumed about the structure of the errors. The results are reasonable
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inasmuch as the assumptions are reasonable. In this application the assumption was

that model errors are additive with the state variables, so that they can be treated in

essentially the same fashion as observation errors. It was also implicitly assumed that

input errors are either absent or propagate linearly with the state estimates, which is

perhaps not very likely in the case of an essentially nonlinear model. It may also be that

system disturbances do not lead to additive state noise. In such situations a stochastic

differential equation might be a more appropriate model than a deterministic description

(see McLaugWin, 1978). Further, the initial conditions were assumed to be known with

certainty. In reality, of course, they are not known exactly and this will, in principle,

lead to a nonwhite state error because the initial condition error vanishes as time pro­

ceeds in this kind of model. A possible solution to this problem could be to treat the

initial conditions as additional parameters and estimate them simultaneously.

With these limitations in mind, some of the problems encountered can now be

discussed. First consider the question of the observed insensitivity of the objective

function of eqn. (IO) to the parameters. In both applications of this study the total

error as given by eqn. (l1) is only a weak function of time; in the IFYGL case because

a ~ k j ~ a ~ k ' and in the ten-year data case because the error in the data estimates is not

much different throughout the year. Then a ~ k is approximated by eqn. (l3), and sub­

stitution back into eqn. (l I) yields

n n

"" (lIn) L (ckj-!kj)2-(lln) L a~kj+a~kj
j=l j=l

Obviously the two latter terms almost cancel out so that

n

a~k "" (lIn) L (Ckj - fkj)2
j=l

Thus, the objective function given by eqn. (l0)

s n

S = L L (lla~kj)(ckj - fkj@))2
k=l j=l

becomes

(25)

(26)

ns (27)

In other words, S is almost constant, irrespective of the parameter choice. Indeed, in the

applications the numerical value of the objective function was always approximately

equal to the total number of observations as predicted by eqn. (27).

The situation can be analyzed further in more general terms. Consider the maxi­

mization of the likelihood function (eqn. 4) in two cases: first where Rj is known a priori.

In this case the In terms in eqn. (4) do not depend on the parameters and the parameter

estimation is done by minimizing
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n

S = I [(Cj - h({3))TRj-
1
(Cj - h({3))]

j=l

169

(28)

This is a weighted least-squares procedure with fIxed weights. The optimization step in

the ten-year data analysis falls in this category.

Now assume Rj is not known. In this case it is reasonable to assume that Rj is

time-invariant. It can be shown that differentiation of the likelihood function with

respect to the unknown element of R yields

(29)

in the optimum point ~ . This result is easily verified for a diagonal R matrix, but it is

true in general (see Schweppe, 1973). Thus, in the optimum the last term of the likeli­

hood function (eqn. 3) is

n _ _

I [(Cj - h@))TR-1(cj - h(~))
j=l

n _ _

tr{R- 1 I (Cj - fj(~))(Cj - h(~))T}
h=l

tr{R-1nR} = n tr{!} = ns (30)

In other words, this term is virtually constant (in agreement with what was found in

the derivation of eqn. 27), and optimization of the likelihood function must be per­

formed by minimizing

S2=ln1RI

or by minimizing

(31)

(32)

This is not equivalent to a weighted least-squares procedure.

To get a better feeling for the meaning of eqn. (32) it is interesting to consider

the special case where cross-correlations in the residuals among states are absent. In that

case R is diagonal. The parameter estimation is then equivalent to

(33)

Or in words: minimize the product of the sum of the squared differences of the states.

Equation (33) has attractive properties in that it automatically solves the problem

of different unit dimensions normally encountered in multistate least-squares. Also it

puts automatically more weight on those state variables for which the model fits well.

But what about the case where R contains both unknown and known, time­

variable parts, as was the situation in the applications in this paper? A full mathematical

treatment is not so easy, but by analogy one might infer that minimization of
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8 n

Ss = n I (l/a~jk)(Cjk - fik)2
k = 1 j= I

G. van Straten

(34)

is a reasonable pragmatic approach in this case. Weighting the residuals by the measure­

ment variances reduces the influence of unreliable data points. This idea can be incor­

porated in eqn. (32) for the more general correlated case.

A final word about the prediction problem. The prediction error, eqn. (20), is not

a true error propagation formula. It merely states the variance in the prediction that

arises from parameter uncertainty at any point in time around the given, deterministic

trajectory. Thus, errors do not build up as time proceeds. It may be that real error­

propagation calculations based on recursive-filtering techniques (Beck et aI., 1979) are

more useful. Both prediction-error and error-propagation computations depend heavily

upon the validity of the linearization around the optimum. When in doubt, the use of

Monte Carlo simulation, employing the estimated parameter variance-covariance struc­

ture, may be preferable. An additional advantage of a Monte Carlo approach is the

possibility of studying the effects of input uncertainty and uncertainty in initial con­

ditions. Maximum likelihood estimation is still possible in these more general cases

(Schweppe, 1973), but the equations are rather complex and their practical implemen­

tation is cumbersome.

6 CONCLUSION

Maximum likelihood estimation is a practical and useful procedure in cases involving

additive process and measurement noise. The resulting weighted least-squares optimi­

zation can be successfully performed when the error statistics are known. For errors that

are only partly known our experience has been less favorable. The least-squares objective

function with continuous weight update during optimization is particularly insensitive

to the choice of parameters, especially when the total error is only a weak function of

time, as is frequently the case. The theoretical development for completely unknown

error statistics shows that weighted least-squares is doomed to fail in this situation, and

that the product of the sum of squared residuals is a more appropriate objective function.

This may also be the proper function to use when the errors are partially known, in

which case weighting based on the known error component, e.g., measurement error,

may be a suitable modification. A forthcoming study will investigate these ideas in

practical applications.

Experience from this study shows that unconstrained optimization of multi­

parameter systems may easily lead to nonfeasible solutions. To prevent this undesirable

behavior, constrained optimization is needed, but this has a definite effect on the parameter

variance-covariance matrix. In the case of the most extreme constraint possible, namely

fixing some of the parameters entirely, the overall parameter uncertainty increases.

Moreoever, these uncertainty estimates are still too low when the fixed parameters,

though assumed to be known with certainty, are in reality uncertain. Thus, the practice

of fixing some of the parameters must be viewed with caution. In fact one may question

whether a model is actually well-structured if the use of parameter constraints is the only

way to avoid nonfeasible solutions. Further ~ s e a r c h in this area is definitely needed.
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Uncertainty in predictions because of parameter uncertainty is strongly mitigated

by the parameter covariance structure. This must be taken into account when employing

Monte Carlo simulation as an alternative to the error prediction formula derived from

a linearization around the optimum. The results indicate that the linearized equation

may lead to suspicious results, especially for points where the model is nonlinear, or

for points located at a constraint. More insight can probably be obtained by comparison

with results from error-propagation calculations based on recursive-fIltering algorithms.
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IDENTIFICATION METHODS APPLIED

TO TWO DANISH LAKES

Henning Mejer and Leif J¢rgensen

K¢benhavns Teknikum. Copenhagen 2200 N (Denmark)

1 NOMENCLATURE USED IN THE PAPER

Throughout this paper the following nomenclature will be used:

"J; = model state variables,

"J;0 = observed state variables,

t = time,

r= space coordinates,

ii = parameter set,

e= normalized parameter set,

1'i = (weighted) residuals,

~ = cubic splines,

J = (weighted) sensitivity matrix (Jacobian),

A= Marquardt parameter,

i = state variables (i = I, 2, , n),

j = sampling times(j= 1,2, , mJ,
k = estimatable parameters (k = 1,2, ... , p),

r = iterations in parameter search (r = 0, 1,2, ...),

- = (single bar) vector quantity,

= = (double bar) matrix,

T = transposition,

o = (zero) initial guess, and

° = nbserved value.

2 INTRODUCTION TO THE PROBLEMS

Given a set of field data on a lake system {l/Ji(tj )} at sampling times t
1
< t

2
< ...

< tj < ... < t m i and a proposed deterministic model

d"J;/dt = f ("J;, t; ii) (1)
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at least three questions immediately arise:

(i) How should observations 1/17 (or linear combinations of 1/17) be identified with

model state variables I/I;? _ _
(ii) Which feasible parameter set(s) ii will minimize deviations between I/J and 1/10, given

a model structure f?

(iii) How could submodel constructs be selected and modified in ways that both obey a

priori biological and chemical knowledge in a qualitative sense and fit the observed

data in a more quantitative sense?

Since the dimensions of both state space and parameter space are usually high (> 10) in

structured lake models, traditional parameter-search routines often fail to answer these

questions unless the initial parameter guess is very close to an optimum,

This paper contains some down-to-earth methods for answering these questions,

Most of the techniques described may be extended to apply to distributed models of the

form

a ~ / a t (2)

3 PARAMETER-SEARCH METHODS

Three iterative methods will be discussed: the Gauss-Newton, the steepest descent,

and the Marquardt. To avoid scaling problems, both the parameters (ii) and the state vari­

able residuals ( ~ - ~O) are normalized in the following way

(3)

1J;j == w;[I/I;Ctj) -1/I?(tj)]/<I/I?>, where <I/I?> = (lIm;)r I/I?(t) (4)

{ a ~ } is an initial parameter guess and w; are weights that may be chosen, for example,

as inverse normalized elements of the diagonal variance-covariance matrix of the observed

state variables (see also Di Toro and van Straten, 1979),

Introducing a Jacobian (sensitivity matrix) as

J = af//aO
n

(dimension: 1: m, X p)
;=1 I

(5)

the three methods may be formulated as follows

Gauss-Newton: 0r+l

Steepest descent: 0r+l

Marquardt: 8
r
+

1

where r numerates the i t e r a t ~ o n s (r = 0, I, 2, .. ,), A is the Marquardt parameter, Y is a

positive definite matrix, and [is the p X p identity matrix.
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Y is usually set as an identity matrix for the first iteration and updated at each sub­

sequent iteration, as shown by Fletcher and Powell (1963). A is reduced each time TiTTi
decreases and increased when TiTTi increases (Marquardt, 1963). As A + 0 the search direc­

tion in parameter space approaches Gauss-Newton directions. As A -+ 00 the direction

approaches steepest descent, Le., the direction opposite to the gradient. It is therefore

possible to shift "dynamically" between the three methods according to new information

on the Jacobian gained during computations. The Jacobian is for the first iteration, when

r = 1, evaluated as difference quotients, but for later iterations higher-order estimates

may be used.

4 CSMPOPT - A PARAMETER ESTIMATION PACKAGE

A computer package using a combination of the three numerical methods mentioned

in the previous section and including inequality constraints on the parameter set as a

whole (Le., I(j I< a user-specified limit) and several other options was written by one of

us (H.M.) in 1975. Since then the package has been tested on about a dozen different

water-quality models. Practical experience has shown that this tool only yields feasible

parameter estimates when the dimensions of the problem are low «5) or when the

package is used for fine-tuning an already well-calibrated model.

CSMPOPT is a program that is transparent to the user in the sense that his model

should be coded as a CSMP source text. Except for a few statements to be added, there

are no restrictions in the CSMP facilities (including the possibility that the entire source

text might be called from a FORTRAN subprogram embracing the whole model). The

supplementary statements are as follows:

FIT <list of variable names>,

specifying state variables to be fitted to observed variables;

ADJUST <list of parameter names>,

specifying parameters to be perturbed;

STORAGE <obs(dim», <wg(dim», ... ,

specifying tables of observed time series (~O) and weights (w).

Additionally, an initial grid search may be required.

The output from the program includes iteration history and, if convergence has

been achieved, fmal parameter values, residuals, and (optionally) an approximate sensiti­

vity matrix and various measures of error statistics.

5 DERIVATIVE ESTIMATES

Originally intended to provide a good initial parameter guess for CSMPOPT, the

derivative (d f/dt for lumped models, aif/at, aif/a" and a2if/a,2 in distributed models)

were estimated leaving aas the only unknown in model equations (1) and (2). When this

technique was applied, some useful side-effects were discovered, namely the possibility

of state-variable identification and model structure validation (or rather, invalidation).

Cubic splines (and bicubic splines in the distributed two-dimensional case) have

also been applied. The resulting algorithm for the lumped model case is shown in Table 1;

the underlying reasoning is explained in Mejer et al. (1980a, b).
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TABLE 1 Algorithm for computing cubic-spline estimates dsj/dt of time

derivatives d>JiCtj)/dt, givensj = >JiCtj),j = 1,2, ... , m.

Step] (j=2,3, ... ,m-1)

0'. j = (tj -I - tj)/2(tj+, - tj -I)

I3j = (tj+1 - tj)/2(tj+1 ~ tj -I)

'Yj = 3{[Csj+, -Sj)/(tj+1 -tj)] - [(Sj -sj-I)/(tj-tj_I)j}/(tj+1 -tj_l)

Step 2

IJ; = 0

:rl = 0

Step 3 (j = 1, 2, ... , m - 2)

1ii+1 = I3j+,/O + O'.j+1 Iii)

'Yj+1 bj+, + O'.j+1 ;;;j)/O + O'.j+1 Iii)

Step 4

d2 sm/dt2 = 0

Step 5 (j = m - 1, m - 2, ... , 1)

d
2
sj /dt

2 = ;;;j - (~d2Sj+1 /dt
2

)

Step 6

dsi/dt = [(S2 -SI)/Ct2 -tl )] - [(d 2s2/dt
2

)(t2 --t , )/6]

Step 7 (j = 1, 2, ... , m - 1)

dsj+l/dt = (dsj/dt) + {(tj+1 - tj)[(d
2
sj/dt') + (d 2

Sj+1 /dt')] /2}

H. Mejer, L. J<jrgensen

The spline functions s/t) are forced through the observed values

(6)

and the outputs of the algorithm are estimates of d {f/dt at sampling times t.
]

dlji.(t.)/dt ~ ds.(t.)/dt
I 1 I 1

(7)

Since the spline functions here are not used for interpolation - as is usually the case ­

the algorithm in Table 1 is very much simplified compared to other reported algorithms

(see, for example, Greville, 1967).

It is vital to the accuracy of eqn. (7) that tj +
1

- tj should be sufficiently small. To

get an impression of how small, the plots presented in Figure 1 were prepared; the figure

shows - albeit in a rather academic way - that the number of samples per peak should

be at least four. Considering typical timescales in lake processes, this means as a rule of

thumb that the sampling frequency should be about twice a week when studying the

water body and about once per fortnight when sediment samples are taken.
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FIGURE 1 (a) A hypothetical state variable y = sin[21T/(l - t)] sampled at equal intervals (tj+ 1 ­

tj = 0.04). (b) The corresponding analytically known time derivative and the time-derivative estimates

(X) found by using the algorithm in Table 1.
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FIGURE 2 Time-<1erivative estimates (M based on observed orthophosphate concentrations (D) for

Lake G1ums¢, Denmark. Note the time gap between the two sampling periods, in spring and autumn.

Figure 2 shows a more realistic case, namely the concentration of soluble ortho­

phosphate in Lake Glums¢, Denmark, as measured in two distinct sampling studies.

6 EXAMPLES

6.1 State Variable Identification

The technique described above has been applied to a 17 state-variable/14 calibrated­

parameter model for the shallow Lake Glums¢, Denmark (see J¢rgensen et a1., 1978).

One of the state variables (PHYT) was intended to describe phytoplankton biomass

(8)



Identification methods applied to two Danish lakes 179

where the fs denote functions of temperature (1), intracellular nitrogen (N), phosphorus

(P), and carbon (C); Q is the water outflow and Gz is a zooplankton grazing function.

Other symbols represent constants: CDR max = maximum cell division rate, Sa = settling

rate of algae, V = lake volume, and Y = a yield factor.

At the outset, eight observed time series were possible candidates for identifying

PHYT: chlorophyll-a, algal fresh weight, chemical oxygen demand (COD), glucose, organic

phosphorus (I-80-J..lm fraction), organic nitrogen (I--80-J..lm fraction), dry matter, and

Secchi-disk readings.

Rearranging eqn. (8) and neglecting the zooplankton term we obtain

(9)

By substituting each of the eight candidate parameters one at a time for PHYT in this

equation it was possible to test which gave the most constant values of CDR m ax' Note

that any proportionality factor relating observed and modelled state variables is irrelevant

here because of the logarithmic derivative. Since the last six candidate parameters are

defmitely known to include nonalgal condensed matter, it was expected that chlorophyll-a

and algal fresh weight would most closely represent PHYT, and this was actually suggested

by the analysis.

6.2 Local Parameter Estimation

Another equation in the model of Lake Glums¢ mentioned above reads as follows

dN Idt = UNPHYT- [S + (Q/V) + (G In] Nc a z c
(10)

where the new symbols Nc and UN represent intracellular nitrogen and nitrogen uptake

rate, respectively. UN is calculated as

UN = UN g.,N I(KN +N)
max JY S S

(II)

where g1l/ is a known function of Nc and PHYT, and Ns is soluble nitrogen in the water

phase. The constants UNmax (maximum uptake rate) and KN (nitrogen Michaelis constant)

remain to be estimated. Combining eqns. (10) and (11) and again neglecting the zooplank­

ton term, we obtain

PHYTN g.,1 {(dN Id1) + [S + (Q/V)N]) ~ (II UN )N + (KN/ UN )(12)
s JV cae max s max

which has the shape of a linear regression model

Y=ax+b

Calculation of slope an~ intercept leads to estimates of UNmax and KN

(13)

uN-max = 0.043 [day-l]
A

KN = 0.26 [gN m- 3 j

(0.034-0.059)

(0.15-0.45)
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Units are given in square brackets and the numbers in parentheses are 95% confidence

limits.

A corresponding calculation for phosphorus only leads to an estimate of maximum

uptake rate (UP ); the Michaelis constant estiInate (KP) fails, obviously because phos-
max

phorus was not limiting at any time during the measurement periods. Despite this over-

parameterization, KP was still retained in the model, mainly because phosphorus might

become a limiting factor in this lake in the future.

6.3 Submodel Construct Determination

Measurement of primary production leads to an estimate of maximum cell division

rate through the relation

(14)

where

(and similar relations for fp and fc)

(15)

(16)

After a local calibration on N ~ i n , etc., these parameters changed CDR
max

as shown in

Table 2.

TABLE 2 CDR max estimated from primary production.

Original NIDin, etc.
c .

Local calibrated N ffim
, etc.

fOld ~ fnew C
T T

Literature values

Mean

0.71

7.00

4.71

-4

Standard

deviation

0.65

2.65

1.00

-I

Coefficient

of variation (%)

92
38

21

-25

By inspection of the factors fT , fN' fp , and fc, it was evident that fT did not depict

the observed response on growth rate very well, especially near the optimum temperature

Topt ' Another construct was therefore suggested

(17)

(see Lassiter, 1975). The constant a is chosen to make f~ew = f<tld at T = 0, where

f T
ld is given by eqn. (15). The resulting coefficient of variation decreased as shown in

Table 2. Also, CDR now falls within the range of literature values (when corrected
max

for the effects of light limitation on growth).
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6.4 Distributed Models

181

In several versions of a sediment model for Lake Esrom, (see Kamp-Nielsen, 1978;

Mejer, 1978; Mejer et aI., 1980b) a significant discrepancy between observed and modelled

exchangeable phosphorus (Pe) occurred for values for the month of May; otherwise the

models behaved fairly well. One of the four partial-differential equations in the latest

version is

K(T) == l/[T + (1/<k»]

where

and

dZ/dt

-K(T)g(T. OX)Pe -(dZ/dt)(aPe/az)

Zmax

[(S-R)/lODMoPsedl - f K(T)g(T. OX)(Pe/Ptotal)dz
o

(18)

(19)

(20)

There are two independent variables in the model, time (t) and depth in the sediment (z).

Z is the displacement of the sediment/water interface determined mainly by the sedimen­

tation rate (S), resuspension rate (R), and a compression term (the integral in eqn. 19).

DMo denotes the dry matter content at the sediment surface and geT. OX) is a known

function of temperature (T) and oxygen (OX). The decay rate K(T) is a function of

"effective" age T == T (t, z) and an average rate constant of newly sedimented material

«k», and it should be strictly positive (cL eqn. 20).

Applying bicubic splines to estimate aPe/at and aPe/az. K(T) was calculated at

various sampling times and depths from eqn. (18). It turned out that K(T) was negative

for the May values, suggesting that the incorrect section of the model was located near

the term K(T)g(T.OX)Pe in eqn. (18). Unless data for this month are obsolete, a positive

term is missing on the right-hand side of eqn. (18).

7 CONCLUSIONS

Traditional parameter-search methods usually fail when applied to structured lake

models with more than about ten dimensions in state space and parameter space. Estimat­

ing derivatives from intensive measurement programs, e.g., by using spline functions, seems

to improve the initial parameter guesses needed for these methods. Since low-order param­

eter subspaces are manipulated at each stage of the technique described, state variable

identification and debilitated submodel diagnosis turn out to be valuable side-effects of

this - admittedly somewhat simplistic - method.
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CARLO SIMULATION AND NONLINEAR LEAST-SQUARES

ESTIMATION OF A VERTICAL TRANSPORT SUBMODEL

FOR LAKE NANTUA

F. Chahuneau

Laboratoire de Biometrie, INRA-CNRZ Domaine de Vi/vert, Jouy-en-Josas

78350 (France)

S. des Clers and J.A. Meyer

Laboratoire de Zoologie, Ecole Normale Superieure, 46 rue d'Ulm,

75230 Cedex 05 Paris (France)

INTRODUCTION

Lake Nantua (see Figure 1 for lake characteristics) is a small eutrophic alpine lake

undergoing frequent algal blooms (the blue-green alga Oscillatoria rubescens). The en tire

water body is thermally stratified from April to December and completely mixed after

the late-autumn overturn (the lake is monomictic). Given the rather small lake area

and its simple morphometry, the water body is considered horizontally homogeneous and

a one-dimensional submodel was developed to describe vertical transport processes (eddy

diffusion and advection).

The submodel (briefly described in this paper) accounting for density stratification

is used here to compute evolution of temperature profiles due to heat transport and

surface exchanges. This allows simulation of the thermal dynamics of Lake Nantua

and subsequent modifications of vertical transport rates for the substances involved in

chemical and ecological cycles. This transport submodel will be included in a larger water­

qualityjecological model describing the lake ecosystem dynamics. This latter model,

still under development, will help to assess the efficiency of different restoration tech­

niques (such as hypolimnetic aeration or withdrawal) and to define optimal operational

rules.

This paper describes how experimental temperature profiles are used in the non­

linear least-squares estimation of some submodel parameters. The calibrated model is

then validated against another set of field data. Finally, Monte Carlo simulation,

employing the parameter variance-covariance structure identified in the parameter esti­

mation procedures, is used to investigate the prediction error variance (or uncertainty).
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Catchment area: 50.3 km 2

Lake area: 1.42 km 2

Maximum depth: 42.8 m
Mean depth: 30.0 m
Retention time: 251 days

500 mo

FIGURE 1 Lake Nantua: basic information.

This is done in order to avoid inaccuracies in the computation of prediction confidence

arising when the usual linearization around the parameter estimates is used.

2 MODEL DESCRIPTION

2.1 Fundamental Equation

The water-quality model consists of a system of parabolic partial-differential

equations describing vertical transport of dissolved substances or biota, and their inter­

actions. For example, the mass-balance equation describing the temperature variations

T(z, t) with time (t) at a given depth (z) is

aT(z, t) 1 a ( aT(z, t)) 1 a
at = A(z) az A(z)K(z, t) az - A(z) az (A(z) W(z, t) T(z, t))

transport by vertical dispersion transport by vertical advection

+ Qin(Z, t) Tin(z, t) - Qout(z, t) T(z, t) + SS(z, t) (1)

inflow outflow source-sink
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where
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A(z)

K(z, t)

T(z, t)

W(z, t)

Qin(Z, t), Qout(z, t)

Tin(z, t)

SS(z, t)

horizontal cross section at depth z (m 2),

dispersion coefficient (m2 S-I),

temperature at depth z CC),

vertical advection velocity (m s-I),

rates of volume displacement corresponding to inflows and

outflows, respectively (S-I),

temperature of in flowing water CC), and

rate of change due to internal sources and sinks (OC S-I).

Equation (I) is solved by a finite difference technique. The water body is vertically

discretized; in each layer the concentration of a given substance is assumed to be homo­

geneous. In the case of Lake Nantua, 43 layers were considered (each 1.0 m thick). The

Crank-Nicolson approximation, associated with central differences for spatial dis­

cretization, was applied. Nonlinearity in eqn. (1), due to the source-sink term and

the dependence of K(z, t) on the vertical temperature gradient, is treated by iteration

at each time step (Remson et aI., 1971). The time step (about 0.1 day) is automatically

adjusted according to the convergence rate of the iterative process.

2.2 Description of Vertical Transport

2.1.1 Dispersion

Equation (1) includes a diffusional transport term. Given the spatial and temporal

scale characterizing the model (Ford and Thornton, 1979), the "diffusion" coefficient

expresses much more than eddy diffusion generated by local shear. The transport

equation is spatially averaged over horizontal planes, and the characteristic time scale

is of the order of one day (i.e., we are interested in day-to-day variations). Thus, in

addition to the typical diffusional transport, the "diffusion" coefficient includes

implicitly all transport mechanisms of an advective nature for which the fluxes through

horizontal planes are balanced. This concerns such mechanisms as mixing by internal

seiches, nocturnal thermal convection, local upwellings and downwellings generated by

wind-driven circulation, and transient convection cells such as Langmuir circulations.

This is expressed precisely in the concept of "effective dispersion" developed by Orlob

and Selna (1970). The "effective dispersion" coefficient is an operational parameter

which cannot be easily measured in the field, but can only be estimated by computing

layer-to-Iayer mass or heat budgets.

Parametrization of the dispersion coefficient is based on the following qualitative

considerations: vertical dispersion increases with wind speed (kinetic energy input),

even in the thermocline (shear stresses) and in the hypolimnion (through large eddies

associated with seiche oscillations), and decreases with the local degree of stability of

the water column (density gradient), through buoyancy effects; vertical dispersion asso­

ciated with large vertical eddies necessarily decreases near physical boundaries (including
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the free surface and thermocline). The vertical dispersion coefficient is calculated using

the following formulae. In the epilimnion:

K(z) = (k/Pr) U*lmixO + SIGMA RirPow

where

K(z)

k

Pr

U*

CD IO

Pa,P w

lmix

SIGMA,POW =

Ri =

vertical dispersion coefficient (m2s-I) at depth z (m),

von Karman constant (= 0.4),

turbulent Prandtl number (= 1.0),

friction velocity = [(P a /Pw)CD IO U?O]I/2 (m S-I),

drag coefficient for wind speed at 10m (UIO , m S-I),

densities of air and water, respectively,

mixing length = distance (m) to the closest physical boundary

with the additional constraint lmix ,,;;; ZSCALE (maximum eddy

scale); for z";;; ladd (surface layers), lmix = ladd, where ladd =

additional mixing length (expressing wave mixing and nocturnal

convection effects),

empirical, nondimensional parameters expressing the sensitivity of

turbulence to stratification effects, and

local Richardson number = (g/pw )(apw/az)lau/azl-2, where

lau/az I is the vertical gradient in horizontal flow velocity, and is

computed from a stratified boundary-layer approximation (see

Tucker and Green, 1977).

In the metalimnion and hypolimnion:

where

N(z) = Brunt-VaisaHi frequency (S-I) = [(g/pw)(apw/az)] 1/2,
Kth , Nth = values at the thermocline of the dispersion coefficient and the

Brunt-Vaisala frequency, respectively,

lmix mixing length (m), and

ALPHA, POW2 = empirical parameters.

The additional constraint K(z)";;; lOKth is introduced in the hypolimnion.

A detailed justification of the semiempirical equations used will be given elsewhere

(Chahuneau and des Clers, in preparation). The classical concept of mixing length (distance

to boundaries), modulated by wind speed and local density gradient (see for instance

Leonard et aI., 1978), was used. Near the free surface, the dispersion coefficient is

increased to account for wave mixing and nocturnal thermal convection.
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The whole formulation involves a total of six parameters, namely, CD IO , SIGMA,

POW, ZSCALE, ALPHA, and POW2.

2.2.2 Advection

Computation of vertical advective transport is based on the empirical formulae

used by the US Army Corps of Engineers in 1974 (see Tetra Tech., 1978) for reservoir

modeling. The inflow zone is centered on the depth where the density of incoming

water matches lake water density. The zone extends over and under this level; its total

thickness depends on both local density gradient and the inflow rate. A uniform distri­

bution of inflow is assumed (i.e., an equal proportion of total inflow is added to every

layer in this zone). Water withdrawal is restricted to the well-mixed surface zone, where it

is uniformly distributed.

More detailed approaches, for example, Gaussian distribution of inflows (Ryan

and Harleman, 1971), were not attempted, since the uncertainty on loadings is large

and Lake Nantua is a natural lake with little through-flow.

2.2.3 Convection

Thermal convection is not introduced in eqn. (l). It operates separately, in the

discrete framework defmed by the finite difference grid.

At the end of each time step, the algorithm checks the computed temperature

profile for density instabilities. The checking procedure starts from the surface down­

wards. Whenever a density instability between two adjacent layers is detected, mixing

starts and works upwards until the instability is removed (on some occasions, it may

reach the surface). Starting again from the level where mixing was initiated, it checks

the profile further down, and so on, until overall stability is obtained. Density is used

here rather than temperature, so that the mixing algorithm is valid even in the case of

inverse winter stratification.

Thus, thermal convection is modeled as an instantaneous process, which is in

accordance with the characteristic time scale of interest.

2.3 Boundary Conditions for Thermal Simulation

It is assumed that no heat transfer occurs through the lake bottom. The equation

that defines heat transfer at the air-water interface is a nonlinear function of surface

and air temperatures, atmospheric pressure, vapor pressure, etc., taking into account

explicitly the various heat-transfer processes illustrated in Figure 2.

The global heat budget is expressed by

Qnet = Qsw + Qat ± Qc ± Qe -Qbr

where

Qnet net surface heat flux,

Qsw net short-wave radiation (only a fraction is absorbed at the surface),
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incoming long-wave radiation from the atmosphere,

flux of convected heat (net convected energy),

flux of latent heat (heat loss because of water evaporation), and

long-wave back-radiation from the lake surface,

all measured in units of Wem -2.

Wind shear

•

Short-wave rad iationQ,¥
Q

net
Q sw + Qat ± Q c ± Q e - Q br

Long-wave rad iation

Qat

:-80nvection \

Evaporation Q e Long-wave \\

D
back radiation\

Q br \

Conduction Q
c

\

~ ~ ( \: Tem,PeratureC\9
'"'\-.. \ I profile C \ - ~..............21 ",./ Velocity

Short-wave radiation

~ e P t h

= = = : : = i ~ C - . . - = - = - _ ~ ~

FIGURE 2 Physical processes accounted for in the thermal submodel (adapted from Svensson,

1978).

2.4 Forcing Variables for Thermal Simulation

The forcing variables used in the model are listed in Table 1 together with their

measurement frequencies. Some forcing variables were not measured directly but were

estimated from other field data. For example, global solar radiation was estimated from

astronomic computations and daily sunshine duration data. Inflow temperature was

linearly interpolated between monthly measurements. These estimations are the major

sources of uncertainty in the forcings for the simulated period.
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3 MODEL CALIBRATlON

3.1 Fixing the Values of Some of the Parameters

The estimation of the six parameters occurring in the formula for the vertical

dispersion coefficient is not an easy task. To our knowledge, there is no unique, straight­

forward, and guaranteed strategy to organize parameter estimation for complex models.

All that can be done is to fix those parameter values that are more certain than others,

and concentrate on the latter in order to reduce the dimensions of the parameter space.

One can also test the sensitivity of the model to various parameters and discard those

parameters for which model sensitivity is low. Examination of the correlation between

parameter estimates can also provide a guideline in the parameter-fixing procedure.

Reasonable estimates for the parameters CDIO and POW2 are available in the

literature. For moderate winds and for small lakes, values of CDIO seem to vary between

0.7 x 10-3 and 2.3 x 10-3 (Bengtsson, 1978), and therefore CDIO was fixed at an average

value of 1.7 x 10-3
, given the average wind speed at Nantua. For POW2, which appears in

the relation between the eddy diffusion coefficient K(z) and the Brunt-ViiisiHa frequency

(N) in the hypolimnion, values ranging from 0.25 to 1.0 (Lerman, 1979) are reported

in the literature. Thus, this parameter was fixed at a value of 0.6.

The next step was to evaluate the orders of magnitude of the remaining parameters.

Values reported for SIGMA vary widely, according to the way in which the vertical

velocity gradient, and hence the Richardson number, is approximated. A range from

1.76 x 10-3 to about 10 can be found in the literature. Associated values for POW vary

from 0.5 to 2.0 (Munk and Anderson, 1948; Newbold and Ligget, 1974; Bowden and

Hamilton, 1975; Leonard et al., 1978; Walters et al., 1978).

The physical meaning of ZSCALE is that of an upper limit to the size of wind­

induced eddies (mixing length). In Lake Nantua (30-m average depth), a value of 10m

can be reasonably adopted as an order of magnitude (the range 5-10 m was defined

as "physically acceptable").

The value of ALPHA is unknown. However, when one considers the values of N

below the thermocline, it can be seen that values of ALPHA greater than 0.1 will produce

a rapid increase in K(z) under the thermocline, a feature which is not observed in the

empirically obtained K(z) profiles presented in the literature (Bella, 1970; Orlob and

Selna, 1970; Li, 1973). Values ranging between 0.001 and 0.1 can be anticipated.

Once some parameter values have been fixed, or "physically acceptable" ranges

have been defmed, one can use visual fitting to get a first idea of model sensitivity to

parameter changes. In this step, observation of animated sequences on a television

raster display proved very useful (see below).

It was observed that changes in ALPHA modify the K(z) profile under the thermo­

cline, but have little influence on the temperature profIle. The thermal simulation is not

very sensitive to ALPHA so that the latter may be regarded as almost fixed. A value

of 0.025 gives K(z) profiles quite similar to the experimental profiles presented in the

literature. It should be noted that ALPHA may become important when materials con­

sumed (such as dissolved oxygen) or produced (such as phosphate) at the sediment­

water interface are included in the model.
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3.2 Calibration

191

The three parameters SIGMA and POW, which express sensitivity of the dispersion

coefficient to the local Richardson number, and ZSCALE (maximum mixing length),

which strongly influences thermocline depth, remain to be identified. The objective

function to be minimized was defmed as the sum of the squared differences between

simulated and observed values (least-squares criterion). For the year 1972, temperature

data were available for eight unevenly-spaced depths: 0.0 m, 2.5 m, 5.0 m, 7.5 m, 10 m,

20 m, 30 m, and 43 m, at roughly monthly intervals.

The optimization routine used is a slightly modified version of the Marquardt

algorithm (Meeter, 1968), combining the steepest-descent method (far from the mini­

mum) and the Gauss-Newton method (close to the minimum) (Marquardt, 1963).

The three initial parameter values were estimated from previous sensitivity tests,

in the range suggested by literature values. The initial values were chosen as SIGMA = 10,

POW = 1.8, and ZSCALE = 9 m. Convergence of the algorithm led to SIGMA = 13,

POW = 1.6, and ZSCALE = 7.4 m. The sum of the squared deviations was reduced to

26% of its initial value. The uneven distribution of observed temperature data along

depth (five points out of eight are in the first 10m) favors transfer of residual deviation

between model and data to the hypolimnion. This uneven weighting could have been

avoided by interpolating the observed temperature profIle at equally spaced depths.

From linear approximation around the minimum, the optimization routine provides

an estimation of the correlation coefficients between the parameter estimates and the

confidence limits for these estimates. Confidence intervals for model predictions are also

computed with this linear approximation. Owing to the strongly nonlinear nature of

the model (with respect to the parameters), these confidence intervals must be considered

as rough estimates only. The Monte Carlo technique was used as an alternative method

to estimate these confidence intervals (see Section 7). The correlation matrix for this first

calibration is given in Table 2. Examination of the correlation matrix obtained at the

end of the three-parameter calibration shows a strong negative correlation between

SIGMA and POW: the parameter estimation problem is ill-conditioned.

TABLE 2 Parameter-estimate correlation matrices.

Calibration I

Correlation rna trix

Final parameter values

95% confidence limits for estimates

Calibration 2

Correlation coefficients

Final parameter values

95% confidence limit for estimates

SIGMA

1

-0.894

-0.030

13.0

16.87

9.21

POW

1

0.417

1.6

1.72

1.45

1

0.834

1.7

1.75

1.64

ZSCALE

1

7.4 m

9.01 m

5.76 m

1

7.6m

9.08m

6.07 m
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Because of the antagonistic effect between SIGMA and POW, many (SIGMA, PO W)

pairs can produce equally good fits, based on the sum-of-squares criterion. However, it

was found that values greater than 10.0 modify the shape of the thermal profile in

the metalimnion, by shifting the point of inflexion of the profile close to the bottom

of the mixed layer, a feature which is not observed in the experimental data. Therefore,

we decided to perform a second calibration, on two parameters (POW and ZSCALE),

with SIGMA fixed at a value of 10.

Convergence was obtained with POW = 1.7 and ZSCALE = 7.6 m (starting from

values of 1.3 and 4, respectively), which was quite close to the previous results. The

residual sum of squares (69.8°C2
) was quite close to its value for the three-parameter

calibration (67.4°C2
). The correlation matrix, estimated parameters, and confidence

limits for this second calibration are given in Table 2. It should be noted that fixing

SIGMA narrows the confidence interval of the estimate of POw.

Convergence required 23 runs. Note that several runs of the model are necessary for

each iteration in the calibration procedure, since the partial derivatives of the model with

respect to the parameters are computed numerically and several trials may be necessary

before a new search direction is determined. As a model run requires 2 min CPU time

on an IBM 370/168, this last calibration used 46 min of CPU.

It should be noted that the estimated parameter values were very close to our

initial guess, even in the second calibration where the initial values were intentionally

2.5

2.0

1.5

1.0

..
0.5 ...

0.0 ......
-0.5

-1.0

-1.5

-2.0

-2.5
L.-.- I I ! I ! ! ! , ! !

-2.5 -2.0-1.5 -1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 3 Normal probability plot of residuals.
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shifted to check the uniqueness of the minimum in the neighborhood of the solution

obtained for the first calibration.

4 ANALYSIS OF RESIDUALS

The use of the least-squares criterion corresponds to the maximum likelihood

criterion if model residuals are independent, normal, random variables with zero mean

and equal variances. This property was checked a posteriori using a normal probability

plot (probit test) of residuals (Figure 3). Fitting a straight line by eye through the set

of points shows that the distribution mean (intercept with y = 0) does not depart very

much from zero.

9
15.0

7

LlJ
...J

C3 6
CJ)

N

5

4

3

FIGURE 4 Contours of objective function (mean of squared deviations).
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5 MAPPING THE PARAMETER SPACE

As only two parameters were left for calibration, a visual mapping of the parameter

space was possible, for checking the uniqueness of the minimum in the range of physically

acceptable values. The mapping also provides some visual impression of the nonlinearities

in the model and the correlation between parameters, and shows the efficiency of the

Marquardt algorithm.

The model was run for 81 different pairs of POW (varying from 1.1 to 1.9 at 0.1

intervals) and ZSCALE (from 5.5 to 9.5 at 0.5 intervals) values. The least-squares criterion

was computed and normalized (that is, the sum was divided by 12 x 8, which is the

number of observed data). Contour lines were linearly interpolated on the 81-point

grid (Figure 4). The path followed by the optimization routine between two iterations

has been drawn a posteriori.

6 MODEL VALIDATION

Model validation was carried out for the year 1973, all parameters being held

constant. Some calibration (1972) and validation (1973) results are given in Figure 5,

which shows data points plotted and four predicted profiles. These pictures are snapshots

taken from an animation sequence, which was generated on an experimental television

raster display and stored on a videocassette (designed by P. Matherat of the Centre de

Calcul de I'Ecole Normale Superieure, Paris).

The agreement between experimental and predicted profiles was equally good for

calibration and validation runs, which shows that goodness of fit for the year 1972 was

not just an artifact of the calibration procedure (Figure 6).

7 MONTE CARLO SIMULATION

A Monte Carlo simulation (100 runs) was performed with two parameters (POW

and ZSCALE) randomly chosen from a bivariate correlated Gaussian distribution (Lehman,

1977). The distribution mean, standard deviations, and correlation coefficient estimates

(Table 2) were those computed by the last calibration.

The use of the Monte Carlo technique enables the simulation outputs to be pre­

sented in terms of a mean (stochastic mean) (Tiwari et aI., 1978) and associated variance.

The Monte Carlo runs are then compared to the calibration run (deterministic run) to

identify dates and depths critically affected by parameter uncertainty. Finally, Monte

Carlo results are compared to the confidence intervals estimated from linear approxi­

mation, and to observed data points.

Monte Carlo simulation results are given in Figure 7 for four different depths.

In the epilimnion layers (at 0.0 m, 2.5 m, and 7.5 m) there is relatively no error accu­

mulation (in terms of prediction variance) due to parameter uncertain ty. This is explained

by the feedback mechanisms acting on the heat balance at the air-water interface and

their characteristic time scale. In contrast, once the lake is thermally stratified, model

error may accumulate in the hypolimnion predictions (at 30.0 m). This illustrates the
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sensitivity of the hypolimnetic equation for vertical dispersion to the two parameters,

as well as the relatively high inertia of hypolimnetic temperature variations. By the

end of a yearly cycle very little uncertainty remains that could be transferred to a second

year of simulation, because of the complete mixing of the lake at that time.

Another representation of the Monte Carlo simulation results is given in Figure 8

where, following O'Neill and Gardner (1979), error accumulation over the year is given

for four observation depths (0.0 m, 2.5 m, 7.5 m, and 30.0 m). The percentage of runs

that remain "valid", given an error tolerance, at any particular day is plotted against

time for the year 1972. The error criterion is given as a coefficient of variation around

the deterministic value. For instance, up to day 219 at 0.0 m, about 10 runs from 100

satisfy the 2% error criterion but more than 80 runs from 100 satisfy the 10% error

criterion. Concerning error accumulation over time at depth 0.0 m, the key dates ­

day 74 (14 March 1972) and day 350 (18 December 1972) - correspond to the triggering

of thermal stratification and autumn mixing, respectively. Simulated hypolimnion tem­

peratures are again seen to be more affected by parameter uncertainty (only 70% of the

Monte Carlo runs remained within 20% error up to day 366).

The limited number of field data available for calibration makes comparison between

Monte Carlo prediction variance and linear confidence interval estimations difficult,

since these intervals are computed here only around the data points. Nevertheless, it

can be seen (Figure 7) that the linearly estimated (95%) confidence intervals are always

smaller than the Monte Carlo ± one standard-deviation intervals. Thus, in the case of this

model, linearization around estimated-parameter values strongly underestimates pre­

diction uncertainty. This would probably be the case for most highly nonlinear models,

and thus shows the suitability of the Monte Carlo technique for uncertainty analysis.

The observed data nearly always lie within a ± one standard-deviation interval

around the stochastic mean (and always within the ± two standard-deviation interval, as

expected).

Finally, it is also noticeable that the "stochastic mean" and the deterministic run

are sometimes quite different.

8 CONCLUSION

This study shows that some techniques which are currently used by statisticians

in nonlinear curve-fitting problems can be successfully applied to complex, spatially

distributed simulation models. Examination of error accumulation over time reveals

some critical periods for the system's dynamics. This information could be used to

optimize data collection, by concentrating on these critical periods. Such unevenly

distributed data over time would favor information transfer from data to model parame­

ters during the calibration phase. Other techniques, using model-sensitivity analysis

for optimal sampling design (Vila, 1980), could probably be rewardingly applied to this

kind of problem.

It is expected that statistical analysis on model behavior will become an important

research field in environmental modeling. Such methodology should reinforce feedback

from model-building to the design of field-data collection procedures.
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MULTIDIMENSIONAL SCALING APPROACH TO

CLUSTERING MULTIVARIATE DATA FOR

WATER-QUALITY MODELING
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Hidekiyo Itakura**

Department ofElectrical Engineering, Faculty ofEngineering, Kyoto

University, 606 Kyoto (Japan)

INTRODUCTION

This paper is concerned with a statistical treatment of multivariate water-quality

data to help regulatory and operational personnel engaged in monitoring, control, and

managing problems of water pollution and eutrophication to obtain a comprehensive

view of water quality in their own areas. Because of the variety of parameters observed

as water-quality data, and the complexity and uncertainty involved in pollution and

eu trophication mechanisms in aquatic environments, it is necessary to develop a method­

ology that is able to identify common and differing aspects of water quality in data from

various sources. In particular, in order to build a water-quality model of the compartment

type which is better able to identify regional characteristics, it is necessary to have an

integrated index of regional water quality which makes it possible to divide a designated

area into several compartments.

In this paper a statistical method is presented in which expert knowledge or experi­

ence can be utilized together with extracted regional statistics based on an observed data

set obtained at various points in the area of interest. The method consists of aggregating

the data available on many measures of water quality, for example, transparency, chem­

ical oxygen demand (COD), nutrients, chlorophyll-a, etc., obtained over many years, into

* Present address: Institute of Socio-Economic Planning, University of Tsukuba, Sakura, 305 Ibaraki,

Japan.

** Present address: Department of Electrical Engineering, Chiba Institute of Technology, Narashino,

275 Chiba, Japan.
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a smaller number of indices which define criteria to represent the differences in water

quality at various sampling points; then a visible representation of those differences in

two-dimensional space is obtained by means of multidimensional scaling (MDS) (Shepard

et aI., 1972; Itakura et aI., 1979). This visible representation gives model-builders

information from which subjective groupings may be made, in contrast to the rigid

grouping obtained by using the formal procedure of sampling points in a spatial segmen­

tation for water-quality modeling under the specific situation of uncertainty involved

when using multivariate water-quality data.
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FIGURE 2 Loading of nitrogen (N) and phosphorus (P) in Lake Biwa (Lake Biwa Office, Ministry

of Construction, 1974). The symbols 0 and. refer to the Northern and Southern Lakes, respectively.

The method is applied to the water-quality assessment of Lake Biwa, the largest lake

in Japan, which supplies drinking water to twelve million people, and industrial water to

the economic center of western Japan, as shown in Figure I. Recent socioeconomic

features of the lake basin have made the water quality worse, owing to an increase in both

the demand for water and the discharge of various pollutants into the lake. Much research

and data collection work has been done on the water quality of Lake Biwa (Japan Society

of Civil Engineering, 1970-1977; Ikeda and Adachi, 1978). Information gathered by

those efforts shows that the lake is now in a hazardous situation, being tranformed from

an oligotrophic to a eutrophic state (see Figure 2) (Lake Biwa Office, Ministry of Con­

struction, 1974). The main purpose of the present study is to gain more knowledge

about the eutrophication phenomena in various parts of the lake by making use of recent

monitoring data on water quality.

2 WATER-QUALITY DATA FOR LAKE BIWA

Lake Biwa is 680 km2 in area and 27.56km3 in volume. Several million years ago

the lake was formed by a disastrophism and it is thought to be as old as lakes such as

Baikal and Tanganyika. The lake is composed of two parts: the northern part, the main

lacustrine, is called the Northern Lake and is in an oligotrophic state; the southern part,

a smaller and shallower sublacustrine, is called the Southern Lake and is in a eutrophic

state. More than 100 rivers flow into the lake, but it has only one outlet, situated at the

end of the Southern Lake. The general characteristics of Lake Biwa are given in Table I.

The regulatory office conducts regular monthly monitoring of a number of water­

quality parameters at 23 points in the lake; 12 of these are situated in the Northern Lake

and 11 in the Southern Lake, as shown in Figure 3. A set of data on water quality which

includes biological data, on, e.g., cWorophyll-a, has been collected from 1975 to date
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T ABLE I Characteristics of Lake Biwa (Lake Biwa Office, Ministry of Con­

struction, 1974).

S. Ikeda, H. Itakura

Normal water level

Total area of lake

Average depth

Maximum depth

Volume of water

Average annual precipitation

Average annual runoff

Average monthly air temperature

Number of tributaries

Retention time

Ratio of catchment area to lake surface

Population around the lake

Land usage in catchment area (%)

Forests, etc.

Lake Biwa

Rice paddies

Other

TABLE 2 Measured parameters of water quality.

Parameter

Transparency

pH

Dissolved oxygen

Chemical oxygen demand

Suspended solids

Ammonia nitrogen

Nitrite nitrogen

Nitra te nitrogen

Organic nitrogen

Total nitrogen

Orthophosphorus

Total phosphorus

Chlorophyll-a

Water temperature

Water level

Solar radiation

Wind velocity

84.371 m above sea level

680km'

41.2m

103.6 m

27.5 km'

1900mm

53XIO"m'

3.l-26.2°C

121

5.2 years

5.7

95 X 10'

54.8

17.7

17.4

10.1

Unit

m

mgl- 1

mgl- t

mgl-'

mgl- I

mgl- t

mgr'
mgl- 1

mgl- t

mgl- t

mgl- t

/Lg I-I

°c
cm (± standard)

calcm-'

ms- t

Symbol

TRANSP

PH

DO
COD
SS

NH4
N02

NO]

ORGN

TN

P04

TP

CHLORA
WATTMP

WATLEV

SOLAR

WNDVEL

(Lake Biwa Office, Ministry of Construction, 1974-1979). Thus for the present analysis

a set of data exists for 17 parameters (listed in Table 2) for every month from April

1975 to March 1979. Among these are data on physical parameters for the lake which

might affect water quality, such as water temperature, water level, solar radiation, and

wind velocity.

Figure 4 shows the difference in annual averaged values of typical water-quality

parameters such as COD, SS, N0 3 (N03), and chlorophyll-a (CHLORA) between the
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NORTHERN LAKE

21. Mihagasaki

23. Juzenjigawa
Oki Chua

'24. Seta

FIGURE 3 The observation points.

SOUTHERN LAKE
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Northern and Southern Lakes over a four-year period. Apparently, the lake has different

pollution levels in the northern and southern parts. Furthermore, since it has been

pointed out that a clear distinction exists between the dominant species of phyto­

plankton and zooplankton in the two parts of the lake, a separate analysis should be

done for each part.
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Figures 5-7 show the montWy variations of three of the parameters of Figure 4,

which have been measured at the 23 points indicated in Figure 3. It can be seen that the

value of each parameter differs from point to point in the lake. However, note that some

common interrelationships exist between certain parameters in these figures. Motivated

by these observations, an attempt was made to use the MDS statistical technique, out­

lined in the next section, to extract some quantitative information from the analysis.

3 MDS APPROACH TO DATA ANALYSIS CONCERNING WATER QUALITY

This section outlines the analytical techniques of multidimensional scaling (MDS)

and principal component analysis (PCA). The approach is tailored for the analysis of a

set of data associated with the water quality of Lake Biwa. The principal aim is to group

the observation points such that the water quality at points within a group exhibits a

common aggregate index.

The simplest way of grouping the observation points is to use cluster analysis.

Once a measure representing the difference in water quality between observation points

has been defined, the analysis gives unique grouping through a formal procedure. But

unique grouping is not always efficient because it is too rigid and account cannot always

be taken of a priori knowledge or information about water quality in the area of interest.

To incorporate such expert knowledge and experience into the clustering technique, it is

necessary to integrate the data on many parameters over several years, define a measure

that represents the difference in water quality, and make a visual representation of these

differences.

First, the PCA technique, which aims to derive an integrated index of water quality,

will be discussed. The technique is generally used for aggregating statistical data on a

small number of hypothetical variables. This aggregation is done through linear com­

binations of the original variables.

Consider a set of data containing n variables XI , x 2 , ..• ,Xn , and also consider the

linear combination

(1)

Now assume that the data on all variables have been normalized with a zero mean and a

variance of unity. The values of unknown coefficients ali are determined such that the

resulting value of Z I has maximum variance, under the restriction

ai I + ai2 + ... + ai n = 1 (2)

The procedure used to obtain ali consists of reducing the calculation to an eigenvalue

problem on a correlation-coefficient matrix of Xi' The coefficients ali obtained weight

the parameters Xi and contain information about each variable Xi (j = 1, 2, ... , n).

Although the variable Zl aggregates most of the information contained in the data on

X I, X 2, ... , X n , the rest of the information will be missed.

Now consider a second linear combination
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(3)

The values of a2i are determined such that the correlation of Z2 to Z 1 is a minimum and

the variance of Z2 is a maximum under the restriction

(4)

The quantity z 1 is called the first principal component and Z2 the second principal

component. The third, fourth, etc., components are designated in a similar way. The

ratio of the quantity of information contained in each component to that contained in

all the variables is called the component contribution, and this is evaluated by the eigen­

value associated with the corresponding component. For instance, in the present case

of Lake Biwa, the three components up to Z 3 contain 65-75% of all information in the

original data from parameters x 1 to x no Once the au values are determined, substitu ting

the normalized real data xi into eqns. (J) and (3) yields the value of Z i' Let zimp be the

value of Z i at observation point p in the lake and in month m; this is designated the

principal-component (PC) value.

Next, based on the PC value of Z i' the parameter dpq that represents the difference

in water quality between points p and q is defined by

(5)

Several ways exist of making this summation over i, the PC number, on only one of the

components or over a number of components. If the values xi are exactly the same at

two points, then dpq = 0 for these points; if they are very different, then dpq is large.

Thus, dpq is considered to represent totally the differences between the water quality

at the different points. A table could be drawn up in which the values of dpq were

listed, and this could provide a summary of the differences, but the numerical values in

such a table would be of doubtful worth. Therefore, an attempt was made to introduce

a technique that would give a visual representation of dpq . This is the MDS technique,

which provides a simple graphic display of dpq •

The MDS technique is useful for the analysis of a variety of data from the social

and behavioral sciences. Its purpose is to extract the structure that is hidden within a

set of data and to represent this structure in the form of a more accessible geometrical

picture. The objects studied are represented by points in an r-dimensional space, in such

a way that the significant features of the data are revealed in the geometrical relations

between the points.

Although there are a variety of MDS procedures, corresponding to the varying

features of the data to be analyzed, the basic framework is as follows. Let rp be the

coordinate-value vector corresponding to observation point p in r-dimensional space.

To obtain ~ p , the least-squares criterion

(6)
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is introduced. The vector rp is determined by minimizing J. There are N x r parameters

to be estimated in eqn. (6), where N is the number of sampling points (in practice, some

of the parameters need not be estimated; for example the first point may be placed at

the origin, the second point on one of the axes, etc.). This estimation problem can be

solved by a conventional unconstrained nonlinear optimization method, for instance,

that of Hooke and Jeeves (1961). The quantity dpq represents a Euclidean distance

between points p and q distributed in r-dimensional space. Plotting the [p values obtained

in the r-space gives a geometrical picture representing the differences in water quality

between the observation points. Unless the dimension r is very high and/or the dpq

values exactly satisfy the so-called triangle law, the minimum value of J is not zero in

most cases. In addition, a very high-dimensional space is unsuitable for visual represen­

tation and so a two- or three-dimensional space is often used. Thus the aim is to incorpo­

rate the original dpq values into the dpq values in a lower-dimensional space. This naturally

results in nonzero J, but the results give more useful information than would a table

containing only numerical values of dpq .

4 ANALYSIS AND DISCUSSION

Among the seventeen parameters of water quality listed in Table 2, the following

variables were selected to construct the integrated index to describe the physical nature

of water quality: TRANSP, PH, DO, COD, SS, N03, TN, TP, and CHLORA. The corre­

lation-coefficient matrix of these variables for the Northern Lake is given in Table 3, and

the corresponding matrix for the Southern Lake in Table 4.

TABLE 3 Correlation-coefficient matrices of variables for the Northern Lake.

TRANSP PH DO COD SS NO] TN TP CHI ORA

TRANSP 1.0

PH - 0.267 1.0
DO - 0.028 - 0.160 1.0
COD - 0.287 0.600 -0.230 1.0

SS -0.606 0.221 0.079 0.366 1.0
NO] -0.013 -0.434 0.543 - 0.464 0.085 1.0
TN -0.260 - 0.149 0.272 -0.192 0.258 0.558 1.0
TP - 0.343 0.004 0.077 0.056 0.405 0.202 0.301 1.0

CHI ORA - 0.388 0.399 0.159 0.394 0.398 - 0.013 0.168 0.222 1.0

Taking the correlation matrices of Tables 3 and 4 into account, a PCA was under­

taken for a series of cases with different combinations of these nine water-quality variables.

Four examples from these cases are shown in Table 5; they were selected simply because

of the (relatively) good figures for the first three principal components in terms of com­

ponent contribution in the PCA.

For convenience of explanation of the proposed procedure, case 3 will be discussed,

since it has well-suited PC coefficients aij for both the physical meaning of the
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TABLE 4 Correlation-{:oefficient rna trices of variables for the Southern Lake.

TRANSP PH DO COD SS NO] TN TP CHIORA

TRANSP 1.0

PH ~ 0.Dl5 1.0

DO 0.089 -0.231 1.0

COD - 0.395 0.344 - 0.398 1.0

SS -0.586 - 0.041 0.009 0.330 1.0
NO] - 0.049 - 0.463 0.401 - 0.313 0.074 1.0

TN - 0.267 - 0.163 0.053 0.169 0.267 0.627 1.0

TP -0.327 - 0.063 -0.004 0.228 0.231 0.267 0.383 1.0

CHIORA - 0.309 0.328 - 0.082 0.417 0.192 - 0.152 0.170 0.120 1.0

TABLE 5 Combinations of water-quality variables chosen for PCA.

Variable Case I Case 2 Case 3 Case 4

TRANSP X X X X

PH X X X X

DO X X

COD X X X X

SS X X X X

NO] X X

TN X X X X

TP X X X X

CHIORA X X X X

TABLE 6 Cumulative values of the contributions of the first three components (%).

Northern Lake

Southern Lake

Case I

69.2

65.0

Case 2

69.0

64.2

Case 3

71.8

70.2

Case 4

72.8

70.0

water-quality index and for the total information con tained in the original data. Cumu­

lative values of the contributions of the first three components are given in Table 6.

Furthermore, the fewer factors a particular PCA has, the higher the percentage con­

tribution that can be obtained by summing over the first three components, because

the relative proportion of information involved becomes larger than for other cases which

have more factors. Hence a tradeoff must be made between the number of factors in the

PCA and the cumulative value of the contributions of the first three components.

The PC coefficients au for case 3 are given in Table 7. If we examine the italicized

values in Table 7, it seems that the first PC tends to describe a quantity associated with

organic substances, while the second PC tends to describe a quantity associated with

inorganic substances. This is because coefficients such as SS, COD, PH, and CHLORA in

the first PC, and N03, TN, and TP in the second PC, have much larger positive values
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TABLE 7 Principal component (PC) coefficients aii of case 3.

Northern Lake Southern Lake

1st PC 2nd PC 3rd PC 1st PC 2nd PC 3rd PC

TRANSP - 0.265 - 0.184 0.183 - 0.307 0.039 0.394
PH 0.233 - 0.332 0.277 0.038 - 0.508 0.377

COD 0.254 - 0.325 0.019 0.249 - 0.352 0.071

SS 0.272 0.212 -0.242 0.277 0.010 - 0.551

N03 -0.074 0.559 0.278 0.078 0.599 0.220

TN 0.059 0.525 0.382 0.239 0.369 0.393
TP 0.156 0.339 - 0.578 0.232 0.185 0.220

CHLORA 0.255 0.043 0.523 0.209 -0.295 0.377

Contribution (%) 34.5 27.6 9.7 31.7 26.5 12.0

than the others. Figures 8 and 9 illustrate the distributions of monthly variations in the

first and second PC values for each observation point. The two figures (compare, for

instance, (a) and (b) in Figures 8 and 9) display different seasonal behavior in the

variation of these two PCs.

By using the calculated results from the MDS procedure described in the previous

section, a graphic display of observation points is obtained, based on the following

four different versions of metric distances dpq : (a) 1st PC, (b) 2nd PC, (c) 1st + 2nd +
3rd PCs, and (d) all components. Figures 10 and II show these four types of graphic

display obtained using the MDS approach, where the numbers 1-23 correspond to the

locations in the two parts of the lake (see Figure 3).

Taking account of the geographical location of the observation points and past

trends in water quality, it is reasonable to choose the following clusters of points from

Figures 10(a) and II (a):

Northern Lake: (1,3), (2,4,5), (7,10), (8,9,11), (6), (13)

Southern Lake: (15,16,18), (21,22,24), (20,23), (14), (17), (19)

(7)

(8)

Clustering patterns (7) and (8) agree with those in Figures 10(d) and II(d) except for

point 5 in the Northern Lake and point 21 in the Southern Lake, although patterns

(7) and (8) are much more consistent with existing knowledge about the water quality

of Lake Biwa. This means that it is not necessary to use all the original information

and only three components are needed to derive the fundamental characteristics of

water quality in the area concerned in terms of filtered information from the noisy

multivariate data. Furthermore, compared with the clustering of points encircled

in parts (b) and (c) of Figure II, it is clear that the relative location of clusters (21,

22,24) and (15,16,18) is reversed for point 17, which has the worst water quality in

the entire area. The other points are in almost the same positions. This fact indicates

that the two clusters have different characteristics with respect to the worst point,

17, depending on whether organic or inorganic water pollution is considered, as has
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FIGURE 9 Variation of the values of the 2nd PC with time: (a) in the Northern Lake; (b) in the

Southern Lake. The capital letters used are the same as those in Figure 5.
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FIGURE 10 Configuration of the observed points in the Northern Lake, with distance defined using:

(a) the first three PCs; (b) the 1st PC; (c) the 2nd PC; (d) all the components.

already been described for the difference of PC coefficients. That is, the southeast section

of the Southem Lake has a greater similarity to the most poilu ted point, 17, than does

the northeast section in terms of organic pollution. A similar observation can be made

for the Northern Lake, comparing parts (a) and (b) in Figure 10, as regards the relative

position of the northeast section (1,3) with respect to effluent point 13.

Thus, various interpretations can be made from these figures depending on our

knowledge and experience of the area concerned. We consider that the more general

participation of specialists in this analysis could yield even more useful and practical

information for producing a comprehensive survey of water quality and, particularly,

for the further elaboration of water-quality modeling.
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FIGURE 11 Configuration of the observation points in the Southern Lake, with distance defined

using: (a) the first three PCs; (b) the 1st PC; (c) the 2nd PC; (d) all the components.

5 CONCLUSIONS

An MDS approach to clustering multivariate water-quality data has been presented.

This yields a graphic display of regional characteristics with respect to an integrated

index of water quality. In this paper, only the physical and chemical aspects of water

quality have been discussed, in terms of similar monthly variation patterns in the data

concerned. In the next step of the work, the biological aspects of water quality will be

examined using other types of measure, for example, coefficients of regression analysis

for a particular biological element such as the biomass of different types of algae. This

approach might extract effective information from the original data by applying expert

knowledge and experience to the analysis of aggregate measures plotted in two-dimen­

sional space.
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NONLINEAR STEADY-STATE MODELING OF RIVER

QUALITY BY A REVISED GROUP METHOD OF DATA

HANDLING

Hiroyuki Tamura and Tadashi Kondo*

Department ofPrecision Engineering, Osaka University, 2-1 Yamada-aka,

Suita, Osaka 565 (Japan)

INTRODUCTION

In river-quality systems there are many complex phenomena at work, such as

biochemical reactions, thermal behavior, sedimentation, and photosynthetic oxygen

production; therefore the structure of any physical model that considers the influence

of these phenomena is necessarily very complex (Rinaldi et aI., 1976, 1979). Parameter

estimation procedures for physical models (Rinaldi et aI., 1976) that have been used

for predicting pollution levels of river quality are also very complicated.

The Group Method of Data Handling (GMDH) (Ivakhnenko, 1970, 1971) is a

useful technique of data analysis for identifying these complex nonlinear s:vstems through

statistical analysis of input-output data, especially when only few data are available.

The basic GMDH and its modifications (Duffy and Franklin, 1975; Ikeda et aI., 1976;

Tamura and Kondo, 1978, 1980) have many advantages, probably the most remarkable

being that they automatically select the structure (degree of nonlinearity) of the model

without using a priori information on relationships among the input-output variables.

Therefore, if the system is predominantly nonlinear and its mechanistic structure is

not known explicitly, GMDH can be a useful technique for modeling and identification.

However, using a conventional GMDH it is difficult to identify a physically meaningful

structure among the input-output variables because the partial polynomials, in which

the intermediate variables are used as the input variables in each selection layer, have

been estimated and accumulated in the multilayered structure.

In this paper, a nonlinear steady-state river-quality system is identified using a

revised GMDH (Kondo and Tamura, 1979), which generates optimal intermediate poly­

nomials instead of partial polynomials in each selection layer. The optimal intermediate

* Present address: Toshiba Corporation, Fuchu, Tokyo 183, Japan.



226 H. Tamura, T. Kondo

polynomials express the direct relationships among the input-output variables, and

they are generated so as to minimize the Akaike information criterion (AIC) (Akaike,

1972, 1973, 1974) evaluated by using all the data. Therefore, even if the internally

descriptive (mechanistic) model is not known explicitly, the physically meaningful

structure can be identified by using this revised GMDH when the characteristics of the

system are well incorporated in the measured data. By using various measures of river

quality such as biochemical oxygen demand (BOD) and dissolved oxygen (DO) levels,

for the example of the Bormida River, Italy, two kinds of nonlinear models of steady­

state river quality are constructed, and the structures and prediction accuracies are com­

pared with those of Rinaldi's linear physical (mechanistic) model.

2 MODELING THE STEADY-STATE RIVER QUALITY

BOD and DO levels have been widely accepted as the most important indexes of

organic river quality. The dynamic behavior of these levels can be described using a

generalized Streeter-Phelps model (Rinaldi et aI., 1979)

ob/at + Vob/ol = - (kl (T) + (k3( V)/A))b (l a)

oc/ot+ Voc/ol = -kl(T)b + (k2 (T,Q)/H(Q))(c s(T)-c) + k 4 /A (lb)

where

b = BOD (mgl- 1
),

c = DO (mgl- I),

Cs = saturation level of DO (mgl- I),

k l = deoxygenation rate (day-I),

k2 = reoxygenation rate (m day-I),

k3 = suspended BOD sedimentation rate (m2 day-I),

k4 = photosynthetic oxygen production rate ((mg 1-1)(m2 day-I)),

t = time (day),

I = distance (kIn),

T = water temperature COC),

A = cross-sectional area (m 2
),

Q = flow rate (I03 m3day-l),

V = (Q/A) = average stream velocity (km day-I), and

H = mean river depth (m).

Here, for simplicity, it is assumed that the cross-sectional area A does not vary along the

river and that the velocity V is constant over space and time. Then, the steady-state BOD

and DO levels satisfy the differential equations

db/dl

dc/dl

(2a)

(2b)
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where the functions Kh (h = 1, 2, 3,4) depend upon the two independent variables Q

and T, Le.

(3a)

(3b)

K 3(T, Q) = k2 (T, Q)/(H(Q)V(Q))

The solu tions to eqns. (2) are

(3c)

(3d)

(4a)

(4b)

where bo and Co are the BOD and DO levels, respectively, near the discharge point, and

it is assumed that there is no discharge inside the subject range.

Data are measured for n different steady states. The ith steady state is characterized

by the flow rate Qi and the temperature T i
. The BOD and DO levels are measured at r

points along the river as shown in Figure 1. We will assume that the following measured

da ta are available:

(b~,c~) (i= 1,2, ... ,n)

(bJ,cj) (i=I,2, ... ,n; j=1,2, ... ,r)

where j denotes the jth measuring point along the river.

2.1 Parameter Estimation of the Physical Model (Rinaldi et al., 1976)

(Sa)

(Sb)

Here, the estimation method for the parameters contained in eqns. (4a) and (4b)

is introduced briefly. The structures of the functions Kh contained in eqns. (4a) and (4b)

are assumed to be

where the flh denote the parameters contained in Kh. By using the measured data (Sa)

and (Sb), the parameters flh are estimated so as to minimize the criterion

n

J = L Ji
i=!

(6a)
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I I
>

Distance I

.. . .. . . . . .. . . ..

FIGURE I The variables measured in a river. Superscript i denotes the ith steady state in the river.

where

r

L [AEli + (l - A)E1i
] (0 ~ A ~ 1)

j=1

ji - [ (l K i K i K i K i b i i) _ i]2Ec - C j, 1, 2, 3, 4, 0, Co Cj

(6b)

(6c)

(6d)

and Eli is a square error between the measured value of the BOD level of the ith steady

state at the jth point and the estimated value from eqn. (4a). E1i is a square error for

the DO level, and A is a weight for the BOD level. It is very difficult to estimate the

parameters flh directly so as to minimize J in eqn. (6a) because the dimension of flh is very

high; therefore, the following procedure is used for this estimation. Firstly, by using

the data measured in each steady state, functions K ~ (h = 1, 2, 3, 4; i = 1, 2, ... , n) are

estimated so as to minimize Ji (i = 1,2, ... ,n). Then, by using the estimated values

of K ~ , the parameters flh are estimated so as to minimize

J'
n 4

L L (Kh(flh, Ti, Qi) - K~)2
i=1 h=l

(7)

A more precise description of this procedure can be found in Rinaldi et al. (1976).



Modeling ofriver quality using revised GMDH

2.2 Modeling the Steady-State System using the Revised GMDH

229

Here, the steady-state model of river quality is constructed using the revised GMDH

algorithm. In this algorithm, optimal intermediate polynomials, which express the direct

relationships between the input and output variables, are generated automatically in

each selection layer so as to minimize the Ale, and the final model is obtained from

the optimal intermediate polynomial remaining in the final layer. Using the revised

GMDH algorithm, the following two steady-state models are constructed.

2.2.1 Steady-State Model /

A steady-state model in the form of eqns. (2) is constructed. Two variables,

b(j + I) and e(j + I), are used as output variables and five variables, b(j), e(j), Q-l,

Q-O.5, and T, are used as input variables. Here it is assumed that the measuring points

for the BOD and DO levels are equally spaced along the river. The steady-state model

to be identified by the revised GMDH is

Equations (8) can be transformed to

(b(j + 1) - b(j»/t.1 = (l/t./H!I(bU), e(j), Q-l, Q-O.5, T) - b(j)}

(e(j + 1) - e(j»/t.1 = (l/t./H!2(b(j), e(j), Q-l, Q-O.5, T) - e(j)}

(8a)

(8b)

(9a)

(9b)

If the left·hand sides of eqns. (9a) and (9b) are accepted as approximations for db/dl

and de/d/, respectively, a steady-state model in the form of eqns. (2) can be obtained.

2.2.2 Steady-State Model II

A steady-state model in the form of eqns. (4) is constructed. Two variables, b(l)

and e(l), are used as output variables and seven variables, bo, co, I, r 1, QO.5, Q-O.5, and T,

are used as input variables. In this case, no physical interpretation of the model con­

structed by the revised GMDH is possible, because eqns. (4) cannot be described as

physically meaningful polynomials in terms of these input variables. That is, the revised

GMDH model obtained is a nonphysical model. The steady-state model to be identified

by the revised GMDH is

(lOa)

(lOb)

For constructing this model, the measuring points for BOD and DO levels need not

necessarily be equally spaced along the river.
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3 THE REVISED GMDH

From the many kinds of mathematical models available, such as polynomials,

Bayes formulas, trigonometrical functions, etc., the Kolmogorov-Gabor polynomial

(II)

is widely used in the GMDH as a complete description of the system model. If a con­

ventional multiple regression analysis is followed, it is necessary to estimate the enormous

number of parameters in eqn. (I I) simultaneously, which is impossible from both the

statistical and the computational points of view. Equation (I I) can be constructed by

combining so-called partial polynomials

(12)

of two variables in multilayers, where the Yk values are called the intermediate variables.

On going to the second layer, the intermediate variables Yl, Y2, ... ,YL are regarded as

the input variables of the second layer. That is, the partial polynomials generated in the

second layer are of the form

(12')

In the basic GMDH originated by Ivakhnenko the available data were divided into two

sets: the training data and the checking data. The training data were used for estimating

the parameters in the partial polynomials, and the checking data were used for selecting

intermediate variables. Much research was done by Ivakhnenko's group on the best

method of dividing the data into these two data sets (Ivakhnenko et aI., 1979).

In the revised GMDH used in this paper, this artificial differentiation between

training and checking data is eliminated. Furthermore, instead of partial polynomials

(eqns. (I2) and (I2')), the intermediate polynomials are used. These intermediate poly­

nomials are constructed from the direct relationships among the original input/output

variables (while, as seen from eqn. (I 2'), the partial polynomials were constructed from

the relationships among the intermediate variables and the output variables), and they

are generated so as to minimize the Ale evaluated by using all the available data. A

detailed discussion of the mathematical form for the intermediate polynomials can be

found in Kondo and Tamura (I979). By using this revised GMDH a physically meaning­

ful structure can be identified when the characteristics of the system are well incorporated

in the data, even if the internally descriptive (mechanistic) model is not known

explicitly.

Figure 2(a) shows the block diagram of a conventional GMDH, while Figure 2(b)

shows the revised GMDH used in this paper. A detailed discussion on the algorithm of

the revised GMDH can be found in Kondo and Tamura (I979).
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1

x =a--.=1 G ---+. Y2
X3

11-

(a)

III

~ I ~

--

(i= 1,2, ... ,ml)

(b)

FIGURE 2 Block diagrams of: (a) basic GMDH (I, division of original data into two sets; II. self­

selection of the intermediate variables; Ill, optimization of the threshold; G. generator of the partial

polynomials); and (b) revised GMDH (I, self-seleetion of the optimal intermediate polynomials; G1,

G2, G3. generators of the optimal intermediate polynomials).

4 MODELING THE STEADY-STATE WATER QUALITY OF THE BORMIDA

RNER

The steady-state model of the Bormida River shown in Figure 3 is constructed by

applying the revised GMDH algorithm to the data shown in Table 1; the predicted results

obtained using the revised GMDH model are compared with those obtained from the

physical model estimated by Rinaldi et al.
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FIGURE 3 The Bormida River and locations of measurements stations (Rinaldi et aI., 1976).

The data measured in the Bormida River (Rinaldi et aI., 1976) are used; four

variables, namely BOD level b, DO level c, flow rate Q, and temperature T, are measured,

and these are shown in Table 1. Data for BOD and DO levels are daily average values

measured at six points located at intervals of about ID-15km along the river. Here,

the data obtained for the fourth point are not the measured values but values obtained

by linear interpolation. Temperature data are average values obtained at six points but

the measurement time is different for each steady state, and therefore it is difficult to

give a significant interpretation. The effect of temperature variation was, in fact, simply

neglected. Fifteen steady states are measured (n = 15). From these, data from thirteen
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steady states are used for modeling and data from the remaining two steady states are

used for model validation.

4.1 Results of Parameter Estimation of the Physical Model (Rinaldi et aI., 1976)

Parameters of the physical model are estimated using the procedure described in

Section 2.1. The data of the steady states 1-13 are used for modeling. The structures of

the functions Kh (17 = I, 2,3,4) are assumed to be

(13)

where

Functions K ~ (17 = 1,2,3,4; i = I, 2, ... , 13) are estimated so as to minimize Ji

(i = 1,2, ... ,13) in eqn. (6b) and as a result

(14)

is obtained. This result shows that the BOD and DO levels in the Bormida River can be

described by a Streeter-Phelps model. Then parameters f}1 and f}3 are estimated so as

to minimize l' in eqn. (7) and the results

db/dl = - 0.2Q-OA3b (I Sa)

dc/dl

are obtained.

(ISb)

4.2 Results of Modeling Using the Revised GMDH

4.2.1 Steady-State Model J

Four variables, b(j), c(j), Q-\ and Q-O.5, are used as input variables. BOD models

identified by the revised GMDH will be considered first and these are shown in Table 2.

Model 4 is identified using all the data from the 15 steady states. It can be seen that the

structure of the model varies slightly according to the measured data used for modeling.

In the revised GMDH, the structure of the model is determined by using only the

measured data, and therefore the dependence of the structure of the model on the

statistical characteristics of the measured data cannot be avoided. However, if sufficient

data can be used, the dependence can be reduced. Model 3

b(j + I) = - 4.22 + 0.920b(j) + 0.000037b(j)2 - 0.0133 Q-o.5b(j)2 (16)
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TABLE 2 Structure of the BOD model I

Model Prediction Constant b b' bQ-o., b'Q-o.s

number points

1 4,5 -5.84 0.960 -0.00040 -0.011

2 9,10 -2.38 1.027 -0.00070 -2.06

3 14,15 -4.22 0.920 0.00004 -0.013

4 0 ~3.82 0.900 0.00008 -0.013

is identified using the measured data for steady states 1-13. This model can be trans­

formed to

(b(j + I) - b(j))/Al (I/Al){- 4.22 - 0.080b(j) + 0.000037b(j)2

(17)

Since Al ~ 10 lan, eqn. (17) can be approximately reduced to

db/dl = - 0.422 - 0.0080b + 0.0000037b2- 0.00133Q-o.sb 2 (18)

From this model it is found that the second-order terms of the BOD level are contained

in eqn. (18), and the structure of the model is a little more complex than physical model

(2a). In order to verify the effectiveness of eqn. (16), the prediction errors for the steady

states 14 and 15 of eqn. (16) are compared with those of the physical model (2a). In

eqn. (16), the BOD concentration b(l) is predicted using the measured data bo, and

the BOD levels b(j + I) for j = 1-4 are obtained using the predicted values for j = 0-3.

Predicted results for steady states 14 and 15 are shown in Figure 4. It can be seen that

the prediction accuracy obtained from the revised GMDH model (16) is identical with

that obtained from physical model (2a).

DO models identified by the revised GMDH will now be considered (see Table 3).

Model 4 is identified by using all the data from the 15 steady states. From Table 3,

it can be seen that the structure of the model varies remarkably according to the

measured data used for modeling. In particular, the terms concerned with flow rate Q

are very varied. The reason for this is that the number of different measurement data

for the flow rate are very few compared with the number of terms contained in the

model. In other words more data for different flow rates are needed before more precise

information can be extracted from the data concerned with input variable Q. Model 3

c(j + I) = 6.72 + 0.43Ic(j) - 0.000203b(j)2 + 0.00222Q-O.5b(j)2

- 46.lQ-O.5 + 3.9IQ-o.sc(j) (19)

is identified using the measured data for steady states 1-13. This model can be trans­

formed to
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FIGURE 4 Measured and computed values of BOD from model 1-3: (a) steady state 14; (b) steady

state 15.

(c(j + I) - c(j))/ f.l (1/f.I) {6.72 - 0.569c(j) - 0.000203b(J)2

+ 0.00222Q-o.5b(J)2 - 46.1Q-O.5 + 3.91Q-O.5C(j)} (20)

Once again using f.l::::= 10 km, eqn. (20) can be approximately reduced to

dc/dl = 0.672 - 0.0569c - 0.0000203b2+ 0.000222Q-O.5b2

- 4.6IQ-O.5 + 0.391Q-O.5C (21)

It can be seen that the second-order terms b2 and Q-o.5b 2 are contained in both the BOD

model (18) and the DO model (2I). The terms Q-O.5 and Q-O.5 C are similar to the terms

Q-O.8 and Q-O.8c, respectively, contained in the physical model (2b). In order to verify

the effectiveness of eqn. (19), the prediction errors for steady states 14 and 15 of eqn.

(19) are compared with those of the physical model (2b). In eqn. (19), the DO level

c(1) is predicted using the measured data bo and Co, and the DO levels c(j + I) for j = 1-4

are obtained using the predicted values for j = 0-3. Predicted results for steady states

14 and 15 are shown in Figure 5. From Figure 5(a), it can be seen that the revised GMDH

model (19) gives much better prediction accuracy for steady state 14 than does the

physical model (2b). From these prediction results, it can be seen that the steady-state

model I identified by the revised GMDH algorithm is fairly reliable as a prediction model.

Furthermore, the structure of steady-state model I is a little more complex than that
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FIGURE 5 Measured and computed values of DO from model 1-3: (a) steady state 14; (b) steady

state IS.

of the physical model but the two are very similar. This shows that statistical analysis of

the input and output data by the revised GMDH algorithm using intermediate poly­

nomials gives important information about the physical structure of the system.

4.2.2 Steady-State Model II

Six variables, bo, Co, I, r l
, QO.s, and Q-o.s, are used as input variables. The BOD

model identified by the revised GMDH will be considered first. By using the measured

data of steady states 1-13, the BOD model is identified as

+ 0.0004bJQo.s + 0.871 bocoQ-o.s - 0.000042bJcoQo.s (22)

It can be seen that the structure of eqn. (22) is more complex than that of the steady­

state model I (I 6). In order to verify the effectiveness of eqn. (22), the prediction errors

for steady states 14 and 15 of eqn. (22) are compared with those from the physical model

(4a). Predicted results for steady states 14 and 15 are shown in Figure 6. It can be seen

that the revised GMDH model (22) has the same prediction accuracy as the physical

model (4a).

The DO model identified by the revised GMDH will now be considered. By using

the measured data for steady states 1-13, the DO model is identified as
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FIGURE 6 Measured and computed values of BOD from model II: (a) steady state 14; (b) steady

state 15.

c(l) - 34.8 + 1.74Qo.s - 11.6r1 - 0.00104/ 2 + 189Q-o.s + 9.26coQ-o.s

+ 0.0106Qo,s/- 0.000436bocol + 0.000004bo/ 2 + 0.000003b5col (23)

It can be seen that the structure of eqn. (23) is once again more complex than that of

the steady-state model 1 (I9). In order to verify the effectiveness of eqn. (23), the pre­

diction errors for steady states 14 and 15 of eqn. (23) are compared with those of the

physical model (4b). Predicted results for steady states 14 and 15 are shown in Figure 7.

From Figure 7(b), we see that the revised GMDH model (23) gives a worse prediction

accuracy for steady state 15 than does the physical model (4b). The reason for this is

that the structure of the system for the DO level is very complex and cannot just be

described as a polynomial approximation of the six input variables used here; in other

words, more suitable input variables are needed for this model.

5 CONCLUSIONS

In this paper, two kinds of steady-state river-quality models are constructed by

applying the revised GMDH algorithm to the measured data for the Bormida River. On

comparing the revised GMDH model with the physical model identified by Rinaldi et al.

the following results are obtained.

For the steady-state model J identified by the revised GMDH, the second-order

terms of the BOD level are contained in both the BOD and DO models. It is interesting

to see that the remaining terms are quite similar to those in the physical (mechanistic)
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FIGURE 7 Measured and computed values of DO from model II: (a) steady state 14; (b) steady

state 15.

model. This implies that the revised GMDH model using intermediate polynomials gives

important information about the physical structure of the system.

Steady-state model I gives the same prediction accuracy as the physical model for

the BOD level but better prediction accuracy than the physical model for the DO level.

In the revised GMDH models for the DO concentration, steady-state model I gives

better prediction accuracy than does steady-state model II. This is because the structure

of the system for DO concentration is very complex and cannot be described as a poly­

nomial approximation of only the six input variables used here. More suitable input

variables are needed for this case.

The structure of the revised GMDH model is heavily dependent on the statistical

properties of the data used for modeling because the structure (degree of nonlinearity)

of the model is determined by using input-output data only. In the case of the Bormida

River example, the flow rate terms in the revised GMDH model are particularly depen­

dent on the data because of the lack of information about different flow rates in the

available data.

Finally, in the physical model the computation for estimating the parameters is

quite complex, but in the revised GMDH model this is not so.
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PARAMETER UNCERTAINTY AND MODEL PREDICTIONS:

A REVIEW OF MONTE CARLO RESULTS

R.H. Gardner and R.Y. O'Neill

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37830 (USA)

1 INTRODUCTION

Uncertainty in ecological models (O'Neill and Gardner, 1979) is due to a number

of factors. The total error associated with model predictions can only be assessed by a

validation process (Caswell, 1976; Mankin et al., 1977) which tests the model against

independent data (Shaeffer, 1979). However, such validation experiments are often

infeasible, and modeling research has focused on individual factors that contribute to

total error. These factors include assumptions in model construction (Harrison, 1978;

Cale and Odell, 1979; O'Neill and Rust, 1979), measurement errors (O'Neill, 1973;

Argentesi and Olivi, 1976), and errors in formulating ecosystem processes (O'Neill,

1979a).

Of the factors contributing to total error, parameter variability has received the

greatest emphasis. Many studies have taken advantage of the availability of analytical

methods for estimating the variance on model output (see, for example, Argentesi and

Olivi, 1976; Beck et al., 1979; DiToro and van Straten, 1979; l..ettenmaier and Richey,

1979). In the series of studies reviewed in this paper, we approached the study of parame­

ter variability by Monte Carlo analysis, i.e., repeated simulations of the model with

randomly selected parameter values. At the beginning of each simulation (or at intervals

during the simulation), parameter values are chosen from specific frequency distributions.

This process is continued for a number of iterations sufficient to converge on an estimate

of the frequency distribution of the output variables.

Our goal in these studies was not merely to establish error bounds around model

predictions, but to explore the general properties of error propagation in models. In our

opinion, the Monte Carlo approach is uniquely suited to this exploration because the

technique is not limited to any specific set of assumptions, the sources of model error

must be explicitly considered, and the method can be quickly implemented, allowing

the comparison of many different models.

In all of our studies we have assumed that parameters are measured in independent

laboratory or field experiments. This assumption is appropriate for models that synthesize
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FIGURE I Comparison of frequency distributions of the real system ("truth") with the determin­

istic model solution ("model") and the deterministic model with variable parameters ("analysis

model"). Four situations are illustrated: (a) the real system is deterministic, the model is determin­

istic and unbiased - no analysis i ~ necessary; (b) the real world is variable, the model is deterministic,

the analysis model is coincident with "truth"; (c) the real system is deterministic, the model is deter­

ministic and biased, the analysis model is variable and less biased; (d) the real world is distributed, the

model is deterministic and biased, the analysis model is more variable than the real world and less

biased than the deterministic model.

individual physiological studies (see, for example, Park et aI., 1974). However, the assump­

tion is inappropriate when all parameters of a model are simultaneously fitted to sequen­

tial measurements of the state variables, either by nonlinear least-squares (see, for

example, Halfon, 1975) or extended Kalman filter (see, for example, Beck, 1979)

methods. In this paper we will review our recent error analysis studies, with emphasis on

the counter-intuitive results produced by the Monte Carlo approach.

2 TWO SOURCES OF PARAMETER VARIABILITY

Differences in the assumed sources of error lead to differences in formulating the

results. Figure I illustrates the interplay between two sources of error: natural variability

in the ecosystem and error in parameter estimation. Figure I(a) shows the simple case

with no natural variability and no measurement error; in this case every parameter of

the model is known exactly. In this case, the "true" behavior of the system can be
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represented by a frequency distribution which is a single vertical line of height 1.0.

Assuming that there are no errors in model construction (as we will assume throughout

this paper), the model predicts the distribution perfectly and there is no need for error

analysis. This situation, of course, never actually occurs but will serve as a reference

for more realistic cases.

In Figure I(b), the ecosystem has natural variability but there is no measurement

error. In this case, we must represent ecosystem behavior by a distribution representing

the statistical population of behaviors of which the ecosystem is capable. This is an

important point to keep in mind: natural variability in the ecosystem implies a popu­

lation of possible behaviors. The Monte Carlo implementation of the model explicitly

accounts for this variability and exactly predicts the distribution correctly if all sources

of natural variability are known exactly. The deterministic model, in contrast, still

predicts a single value and, even without error in measuring the mean of each parameter,

this prediction is incorrect. This bias or shift in the predicted value results from

attempting to represent the variable system by a deterministic model. The error results

from the fact that

E[f(A)] =1= f[E(A)] (1)

whenever f(A) is a nonlinear function. In other words, the expected value of a function,

E[f()], with a set, A, of randomly varying parameters is not necessarily equal to the

value of the function using the expected value of each of the parameters. The two are

equal only when f(A) is simply the sum or product of the A terms or when the function

is linear (O'Neill, 1979b), but these cases do not appear particularly relevant for

ecological models. Even a system of linear differential equations produces anf(A) which

is an exponential function.

Figure I(c) depicts the situation in which the ecosystem has no natural variability

but where parameter values determined in independent experiments are measured with

error. In this case, the deterministic model shows a shift in the predicted value because

the parameters are incorrect. The mean value from the Monte Carlo implementation

of the model is also incorrect, but it is possible to make a probabilistic statement about

the magnitude of the error, because the distribution of model ou tpu ts is produced.

Figure led) shows the most common situation, in which there is both natural

variability and also uncertainty in model parameters, each of which has been measured

independently. The deterministic model is incorrect because incorrect parameters are

used and bias is introduced by the model (eqn. I). The expected value of the Monte

Carlo iterations is also incorrect due to measurement errors. However, the shift or bias

in the expected value will be less than in the deterministic model, and an estimate of

the uncertainty associated with the prediction is possible.

3 SENSITIVITY ANALYSIS AS AN APPROXIMATION TO ERROR ANALYSIS

In many studies, the contribution of error on individual parameters to overall pre­

diction uncertainty is estimated by sensitivity analysis (see, for example, van Straten

and de Boer, 1979). This approach evaluates the partial derivative of some model output
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(typically, the value of a state variable) with respect to each of the parameters. However,

this method only approximates the contribution of each parameter because of three

implicit assump tions:

(1) The expected behavior of the model is equal to the behavior of the model using

the expected parameter values (Argentesi and Olivi, 1976).

(2) The contribution to total error can be approximated by examining the contri­

bution due to each parameter separately.

(3) Small perturbations in the parameters approximate errors resulting from large

uncertainties (van Straten and de Boer, 1979), i.e., higher-order effects are

absent.

Since sensitivity analysis is the most commonly applied method for this type of

analysis, it is important that we examine the extent to which these assumptions are valid.

It should be clear from our discussion of Figure 1 that a deterministic model of a

variable system always yields a biased prediction of the expected behavior. Thus, the

first assumption of sensitivity analysis is ordinarily violated. However, the magnitude

of the bias can vary significantly. In one study (Gardner et aI., 1980b) comparing six

phytoplankton-zooplankton models, all of the models were calibrated to a single hypo­

thetical data base. As a result, bias was small, ranging from 1% to about 10% of the total

uncertainty in the model prediction. In contrast, a study of a marsh hydrology model

(Gardner et aI., 1980a) showed that the deterministic prediction can be in error by an

order of magnitude due to bias! In the majority of the applications examined, however,

the bias has been small (approximately 10%). It seems reasonable to conclude, therefore,

that violation of the first assumption of sensitivity analysis will not lead to serious

problems. If the first-order approximation of Hahn and Shapiro (1968) is used, the

assumption will be violated only in unusual cases.

Our past studies do not provide a direct test of the second assumption that each

parameter contributes independently to total error. We can, however, approach the

question by comparing partial and simple correlation coefficients calculated between

individual parameters and total model variability. When all parameters are varied simul­

taneously, the partial correlation coefficient indicates the direct contribution of that

parameter to the variance of the predicted value. If there are no interaction terms

between parameters, the partial correlation coefficient will approximate the individual

sensitivity coefficient. The simple correlation coefficient represents the direct relation­

ship between a parameter and predicted values when all parameters are varied simul­

taneously. Comparison between simple and partial correlations is a test of the second

assumption if we assume that no higher-order interaction terms are present. If the partial

is not equal to the simple correlation, this indicates that the variance of the other

parameters has altered the relationships between parameters and predictions. We use

the correlation coefficient for this analysis because, when the coefficient is squared, it

expresses the fraction of the prediction uncertainty that is accounted for by variability

in the parameter.

A comparison of partial and simple correlation coefficients is possible for our analysis

of the marsh hydrology model (Gardner et aI., 1980a; Huff and Young, 1980). For most

parameters, the partial and simple coefficients are similar and the second assumption
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appears valid. Where they diverge, it is usually only for a portion of the simulated annual

cycle. The few exceptions that were found among the 14 parameters had unusually high

variances. For example, the greatest divergence occurs for a parameter with a coefficient

of variation of 48%. Our analysis indicates that the sensitivity coefficients are con­

servative; that is, the effect of simultaneously considering all parameters is a decrease

in the correlation between an individual parameter and total model error. A similar

conclusion was reached by DiToro and van Straten (1979).

The third assumption is that the uncertainty in model output can be characterized

by examining small variations in the parameters; that is, large variations, more charac­

teristic of ecological measurements, will not significantly alter parameter sensitivities.

We can address this assumption directly, based on unpublished analyses of the marsh

hydrology model. In separate Monte Carlo simulations, we assumed all parameters to

have, firstly, a coefficient of variation of I% and, secondly, variations characteristic of

real field measurements. By comparing the partial correlation coefficients generated

by these two runs, we can examine how larger variations alter sensitivity patterns. If

the model were linear, the coefficients would be identical for the two runs. Therefore,

differences should indicate the importance of nonlinearities when variances on parameters

are large.

In general, the partial correlation coefficients are similar between the two sets of

simulations, and the assumption appears valid for this model. The exceptions, however,

were drama tic. Figure 2 shows the partial correlation coefficient between the field

capacity of the soil (Fe) and water level for the 1% case (dashed line) and the case in

which all parameters were varied at realistic levels (solid line). Allowing all parameters

to take on large variations obviously has an important effect on the correlation of model

error to variability in this parameter (FC). In the 1% case, a significant fraction of the

variance in water level is explained by variance in FC, particularly early in the year

(days 0-40), during the summer (days 160-240), and following rainfall events (sharp

peaks in the graph). With high variances on parameters, nonlinear responses of the model

and, especially, nonlinear interaction terms between FC and other parameters, cause

very little of the variance in water level to be explained by variations in FC alone. In

general, when the coefficients diverge (Figure 2), sensitivity analysis indicates that the

model is more sensitive to a parameter than would be indicated by a Monte Carlo

analysis. In other words, it would overestimate the reduction in prediction uncertainty

resulting from better measurements of a parameter.

In an analysis of a phytoplankton-zooplankton model (O'Neill et aI., 1980;

Gardner et al., 1980b), increasing the variance associated with individual parameters from

4% to 10% of their means results in complex changes in the predicted values. The deter­

ministic system is characterized by an increase in populations in the spring, a decline

during the summer months, a fall recovery, and a winter decline. Prediction error (sum

of squared deviation from the deterministic solution) increases in the spring and faU

when the populations are increasing rapidly (Figure 3). Because aU populations are

declining during the warm summer months, the errors at this point are at a minimum.

Seasonality in prediction uncertainty has also been noted by DiToro and van Straten

(1979).

Increasing the variability of the parameters from 4% to 10% changes the magnitude

of variation and the pattern of variability throughout the year (Figure 3). Herbivore
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and the predicted water level in a marsh system through 240 days of the year. The solid line is based

on 500 iterations with parameters varied at realistic levels; the broken line is based on 500 iterations

with parameters varied at 1%.

errors increased approximately ten-fold and carnivore errors approximately five-fold.

Increase in parameter variability resulted in a smoothing and broadening of the peaks

of variability, and, because the relationship between populations is nonlinear, the pattern

of response of the fall carnivore populations is most affected. It should be noted that

this analysis ignored covariances between parameters. There is ample evidence (DiToro

and van Straten, 1979; O'Neill et a!., 1980) that correlations decrease prediction

uncertainty.

At the present stage of understanding, the assumptions of sensitivity analysis do

not appear to cause serious problems. This is a consoling result because most analyses

will be limited to this approach. However, some important exceptions to the rule were

observed. The marsh study (Gardner et a!., 1980a) showed that sensitivity analysis (1%
variation) could lead to erroneous decisions. Based on the sensitivity analysis, one would

be led to believe that model uncertainty could be significantly reduced by increasing the

accuracy of a small subset of parameters. The error analysis (i.e., realistic variances)

revealed that increased accuracy and precision in measuring this subset of parameters

would have little practical effect on model error. Sensitivity analysis has many practical

and theoretical uses for model examination, but caution must be exercised because the

assumptions can be violated under some circumstances.

3.1 Establishing the Domain of Applicability of an Analysis

Unless consideration is given to the different sources of parameter variability

(Figure 1), considerable ambiguity can be introduced into the interpretation of results.

The inferences which can be drawn from any particular error analysis study are depen­

dent on the selection of nominal values for the parameters and the definition of their
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statistical properties (e.g., distributions, variances, maxima and minima, etc.). Any

assumptions implicit in the choice of these statistical properties will strongly influence

the inferences drawn from the analysis. If variances are measured for a specific system

in a specific year, conclusions should not be drawn about other systems or future years.

If study objectives call for inferences about a particular system, variances characteristic

of an entire class of systems should not be used. The problems associated with the for­

mulation of a particular case and inferences which can be drawn are illustrated by two

recent studies.

In the analysis of the marsh hydrology model (Gardner et a!., 1980a), the statistical

distributions were assumed to be normal, with variances and extreme values estimated

a priori from available information on marsh systems. One parameter, W, set the upper

limit above which overland flow occurs and excess water drains rapidly into an adjacent

lake. When this value is allowed to vary from iteration to iteration it determines directly

the maximum water level of the marsh and, hence, the actual water level and storage

when the soils are saturated. The initial investigation set the mean of W at 15.2, the
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variance at 48% of the mean, and the minimum and maximum at 0.0 and 30.0, respec­

tively. The resulting relationship between Wand predicted water level in the spring

(March, April, and May) was quite strong, with W the second most significant contributor

to water-level variability (R 2 being 44-77%).

This result had very little practical meaning for any single marsh. For an individual

marsh system the variability of W would be smaller and result largely from spatial

heterogeneity and measurement error. The uncertainty of the nominal value of W is

obviously much less "within" a marsh than is that of the "between marsh" value used

in the simulation. When the Monte Carlo experiment was repeated with the variance of

W reduced from 48% to 1%, the statistical relationship between Wand water level during

saturated periods disappeared.

The second example concerns the frequency distribution of predicted dose to the

thyroid of infants from a chronic release of radioactive iodine-131 (O'Neill et al., 1981).

The model includes a Gaussian-plume atmospheric dispersion, movement of the radio­

isotope through the food-chain into milk, and the subsequent dose (resulting from

ingestion) to the thyroid gland of infants. The extreme value for a particular parameter,

B, which describes the transfer of radioisotope from the soil to pasture forage, proved

to be troublesome. The parameter B is dependent on the nature of the soil and is quite

variable between sites. In addition, there are few measured values of B. Variability of

B at a local site is restricted to the variability of the local soils within the area and yet

we can only characterize the universal variability of B across all soils. This point was

not apparent when we began our investigation but we soon realized that allowing the

maximum value of B to change by orders of magnitude from I to 1000 resulted in a

change in the correlation of B with dose from 0.06 to 0.32 and a shift in the mean and

maximum predicted dosages as well (Table 1). Like W in the marsh model, B has a small

effect on the predicted value when variances characteristic of one site are used, but when

either the region is large or knowledge of the parameter is insufficient, then the results

must be cast in a different light.

Meaningful insights must come from a meaningful definition of parameter values

and distributions. The approach must be applied uniformly across all parameters of

the model, otherwise meaningful relationships between parameters and predictions will

be obscured. It is most helpful to defme first the level of resolution of the model, then

defme the statistical properties of parameters within that framework.

3.2 Frequency Distributions of Parameters

Any real system (Figure Ic) contains natural variability, and system behavior is

most realistically represented as a frequency distribution of potential behaviors. The

distribution of system behaviors is the result of the mathematical characteristics of the

model and the distributions of model parameters. The factors used to select a parameter

distribution should include the probabilistic properties of specific processes in the model,

the empirical distribution of available data, and any information on the expected distri­

bution of system behaviors. In our experience this information is seldom available, even

for a portion of the parameters of the model. Approximations must be made based on

the best available information (Morgan et al., 1978).
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TABLE I Relationship between the maximum value of B and the predicted dose to thyroid of

infants from chronic release of radioactive iodine-131 a.

Bmax Predicted dose (rem year-I) rb

Mean 95 percentile Maximum

1 0.87 2.9 9.4 0.06

10 0.88 2.9 9.6 0.07

100 1.03 3.4 11.5 0.14

1000 2.47 9.0 53.6 0.32

a Values of B were generated from a triangular distribution with minimum value equal to 0.0,

expected value of 0.2, and maximum value as indicated in the table. Each row summarizes the results

of 1000 Monte Carlo iterations. The expected value from the deterministic system is 0.72rem year-t.

b r is the simple correlation coefficient between B and the predicted dose.

Under such circumstances we concur with Tiwari and Hobbie's (1976) recom­

mendation that the triangular distribution be selected. The few parameters necessary for

this distribution (mode, maximum, and minimum) can usually be inferred from the

physical process under investigation. Tiwari and Hobbie point out that the choice of

any other distribution involves additional assumptions. The triangular distribution is the

least biased assumption under these conditions. In addition, under many circumstances,

the results generated by the triangular distribution resemble results using more complex

distributions.

For purely analytical studies (for example, no statements about real confidence

limits are expected), we prefer normal distributions because covariances can be specified

with relative ease and the symmetrical distribution of parameters aids in interpreting

the often skewed frequency distributions of predicted values since, in this case, the

skewed distribution must be due to the mathematics of the model. The effects of altering

the distributions of parameters by changes in the variance, by specifying covariance

terms, or by selecting another distribution, can alter the frequency distribution of pre­

dicted results. For instance, in a multiplicative chain model (prediction is calculated as

the simple product of a number of coefficients and variables), prediction errors can be

calculated analytically (Shaeffer, 1979) if parameters are lognormally distributed. The

choice of a lognormal distribution has been justified for a number of reasons, including

the fact that extreme values are more likely and predicted frequency distributions will

be conservative. However, the shape of the frequency distribution of predictions is

largely determined by the mathematics of the model rather than by the assumed distri­

bution of model parameters. The mean and variance of the output distribution are

affected by the choice of the particular parameter distribution.

The effect of altering the parameter distributions is illustrated by holding the

parameter means and variances constant, but changing the frequency distributions from

lognormal to normal distributions for the radiation dose model (Shaeffer, 1979; O'Neill

et aI., 1981). When parameters are lognormally distributed, the mean, the 95 percentile,

and the maximum value of dose from 1000 iterations are 0.86, 2.9, and 9.5 rem year-I,

respectively. When the parameters are normally distributed, the mean value is lA, the

95 percentile 4.5, and the maximum 109.5 rem year- I (calculations based on an arbitrary

release of 1 Curie of iodine-131 per year).
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Examination of lognormal distributions with different variances (Hahn and Shapiro,

1968) shows that as variance increases, the peak of the distribution shifts farther to the

left, Le., more values lie below the mean. The complementary normal distribution is

symmetrical, and a proportionately larger fraction of the values lies above the mean.

The practical result is that the normal distribution predicts a slightly higher mean dose

and a much higher extreme dose. For this example, the choice of distribution affects

the mean, variance, and extreme value, and a choice of lognormal distribution for con­

servative results is a poor one. However, no matter what parameter distribution is used,

the predictions appear to be lognormally distributed.

Another factor which affects the frequency distribution of predicted values is the

method chosen to simulate the problem. We recently studied density-independent Leslie

models of striped bass populations which predict abundances in each of 15 age classes

for 40 years, based on age-specific fecundities (Ft) and survival (Pi) parameters.

Leslie matrix models (Leslie, 1945, 1948) tend to predict population behavior

that approaches infinity or zero through time. The probability of choosing random

parameter values for the matrix that will result in a stable age distribution is very small.

One way of forcing the model to produce a stable result is to calculate the survival from

eggs to young-of-the-year, Po, based on the remaining parameters (Van Winkle et aI.,

1978). If parameters are chosen randomly only at the beginning of a Monte Carlo run,

if Po is calculated to ensure a stable age distribution, and if the parameters remain

unchanged for the 40 years of the simulation, the predicted mean population size is

equal to the deterministic solution of the model and the coefficient of variation is 5.9%.

If parameter values are chosen each year of the simulation (and Po recalculated each

year), the mean is 35% greater than the deterministic solution and the coefficient of

variation is 19%. The upward shift of the mean results from the continual adjustment

of Po to reach a new, stable age distribution based on current parameter and age distri­

bution.

If we make Po a random variable, like the other parameters of the model, a stable

age distribution is no longer guaranteed. Now the predicted mean population size is 140%

greater than the deterministic solution and the coefficient of variation is 254%! The

shift to a higher mean value results from exponential increase in the population for some

parameter combinations. This exponential increase can result in very large populations

for a few iterations, resulting in an increased mean.

The fish population model also reflects an important advantage of the Monte Carlo

approach. The simulation in which all parameters, including Po, are assumed to vary

randomly, predicts an increased mean population size. Using an analytical approach

which reflects only the shift in the mean, this result indicates that the fish population

would be larger than the deterministic prediction. The Monte Carlo simulation produces

a complete frequency distribution of predictions. It is clear from this distribution

(Figure 4) that the most likely result is a reduction in population size. In this case, the

mode of the distribution is of greater significance because the mean is strongly influenced

by a few large numbers. The frequency distribution reveals that most populations will

lie well below the mean value. In this respect, dealing only with the means and variance

is deceptive, and the frequency distribution of predicted behaviors is needed to arrive at

a reasonable understanding of the result.
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FIGURE 4 The cumulative probability of predicted levels of a Leslie model of striped bass popu­

lations when all parameters of the model are varied at 10% (N case) or when Po (the probability of

survival from eggs to young-<:>f-the-year) is calculated for each iteration (N - I case). Each line

represents the results obtained from 1000 iterations.

4 CONCLUSIONS

Much of this paper has been concerned with showing that prediction error is a

complex phenomenon that requires careful analysis in order to avoid confusion in inter­

preting results. Figure I shows that natural variability in an ecosystem results in a bias

in any deterministic model of the system. Changing the variances on parameters or

changing the frequency distributions will affect conclusions drawn from the analysis.

Particular attention must be paid to any implicit assumptions involved in the selection

of statistical properties of parameters. If parameter distributions are representative of

an entire class of ecosystems, results will not be characteristic of prediction error applied

to a specific site.

In some cases, the purposes of the study will not be satisfied by simply stating a

confidence interval around model predictions. In the fish population study, the entire

frequency distribution of predictions was required to recognize that it was the mode

and not the mean value that was of greatest interest. In our analysis of the radiation dose

model, the probability of predicting an extremely high dose is of greater potential impor­

tance than predicting the mean.

It is clear that the current state of information about prediction uncertainty for

ecosystem models is inadequate and in a state of rapid change. It would appear unwise

at present to advocate any single technique for error estimation to the exclusion of other

possible approaches. The Monte Carlo approach has distinct advantages during the present

exploratory stages because it is not limited to any particular set of assumptions about
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the nature of errors or their magnitude. The Monte Carlo approach may not always be

an efficient method for estimating error bounds on a prediction, but it may well be

the most effective approach for exploring the mechanisms involved in propagating uncer­

tainty and the factors involved in minimizing and controlling these uncertainties.
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INTRODUCTION

The model representation of complex environmental systems requires numerous

simplifications; frequently, arbitrary choices of how to formally represent the relation­

ships between causes and effects have to be made, since these relationships are neither

obvious nor easy to detect. Environmental systems in toto do not easily yield to the

classical scientific tool of planned experimentation. Consequently, the analyst has to

utilize whatever bits of information may be available, which as a rule are very few and

not strictly appropriate in terms of the problems addressed. A priori knowledge about

the structure and function of any ecosystem is generally poor, and reliable quantitative

information on the governing processes and their rates and interrelationships insufficient.

Consequently, building and testing models and finally applying them for predictive

purposes often consists of a more or less formalized trial-and-error iterative process of

estima tion, testing, and improvement. The following discussion proposes an approach for

formalizing this process of model building, calibration, and application; it emphasizes the

interdependences of the individual steps in the process. The approach proposed is based

on the recognition of uncertainty as an inevitable element in modeling, and uses straight­

forward Monte Carlo techniques to cope with this uncertainty.

2 SOURCES OF UNCERTAINTY

2.1 System Variability

Ecosystems are diverse, complex (see, for example, Pielou, 1975), and mostly

large-scale systems. The number of component elements is usually extremely high, and

the relationships among these elements are complex. They are characterized by a rich

behavioral repertoire, are variable in time and highly structured in space (see, for example,

Steele, 1978), they are driven by (generally unpredictably) fluctuating external con­

ditions, and exhibit complex feedback and control mechanisms (see, for example,
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Conrad, 1976; Straskraba, 1976, 1979) such as adaptation and self-organization. Most

functional relationships in such systems are nonlinear and time-variable, and even the

boundaries of the system must in many cases be defined quite arbitrarily. When attempting

formal description and representation, numerous sources of uncertainty can be identified

(see, for example, Beck et aI., 1979; DiToro and van Straten, 1979; O'Neill and Gardner,

1979; O'Neill and Rust, 1979; Reckhow, 1979; Fedra et aI., 1981). Summarizing, eco­

systems seem to be just about the least desirable subjects for deterministic mathematical

modeling!

2.2 Theoretical Background

All the above features are well reflected in the theoretical background of systems

ecology. There is no well-established, unifying theory in systems ecology. At best, one

can find a mosaic of unrelated concepts and approaches (see, for example, Halfon,

1979). Quite often, ecological theories (or rather hypotheses) are contradictory. The

processes governing ecological systems are generally poorly understood, especially at

a high "systems level" of organization (or rather abstraction) - the level used in systems

modeling. This is due at least in part to the fact that much of the available information

stems from microscale laboratory experimentation. Usually, in such physiologically

oriented experiments, all but one (or a few) variables are kept constant, and the response

of the system (usually an individual organism or a monoculture) to changes in one

external condition is observed. Such experiments are difficult to interpret at the "eco­

system level", where nothing is constant, everything affects (almost) everything else,

and the "unit" of interest is a functionally heterogeneous, diverse, adapting, multispecies,

multiage and size-class, more or less arbitrarily lumped aggregate. Generally, the empirical

basis or the data available are singular measurements, so that their reliability in terms of

the spatial or functional macrolevel used in the model cannot be estimated. Consequently,

ruling out or rejecting any hypothesis put forward is rather difficult (Fedra, 1981a),

and in fact, examples of more than one contradictory hypothetical construct, each

"possible" in terms of the data to be described, are known (Nihoul, 1975; Bierman et

aI., 1981). However, as a priori knowledge about a system is essential for the first steps

in model-building, the lack of reliable and unambiguous knowledge adds considerable

uncertainty to the problem.

2.3 Environmental Data Base

All the above features are, again, reflected in the data available on environmental

systems. Not only do spatial and temporal variability make data collection under logistic

constraints an art rather than a scientific procedure, but in many cases it is simply

impossible to sample or measure what is described (conceptualized) in a model. Most

state variables used in model descriptions are more easily represented in a flow diagram

than measured, as the level of abstraction in the model representation is completely

inaccessible to direct measurement. Consequently, ecological data are scarce, scattered,

distorted by sampling error, and usually only exist for the "wrong" variables in any given

numerical analysis. Monitoring programs, as a rule designed independently of subsequent
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evaluation and analysis, traditionally tend to concentrate on what other monitoring

programs have included. And as only theory can tell the observer or experimenter what

to measure (an only seemingly trivial truth ascribed to Albert Einstein), the "wrong"

variables are measured. Also, different variables tend to get measured at different places

and at different times. Even the most ambitious, money-consuming attempts at data

collection like the IFYGL do not result in the smooth, unambiguous curves one would

(probably rather naively) hope to find (compare Scavia, 1980a).

2.4 Model Uncertainty

Mathematical models designed to describe and simulate environmental systems

cover a wide range of detail and complexity: they range from very simple statistical

black-box models (see, for example, Vollenweider, 1969, 1975) to the "all-inclusive",

multicompartment, spatially disaggregated, physical or "explanatory" model (see, for

example, Park et aI., 1974). But even for the most detailed and spatially disaggregated

models, elements or compartments treated as being homogeneous (either in space or

functionally), are very large when compared to the sampling units from the field or

experiment, and are highly aggregated (see O'Neill and Rust, 1979, on the subject of

aggregation errors). What models really describe are extremely simplified conceptuali­

zations of the real-world system, which are very difficult to relate directly to the point­

samples from these systems. Models and data are on two different levels of abstraction

and aggregation, and therefore traditional data from a spatial or functional microlevel

can hardly be used directly. Instead, from the available data one can try to derive infor­

mation about the system studied at an appropriate level of abstraction, for comparison

with the respective model equivalents. Ideally, the measurements should be made directly

at the appropriate level, but some of the more promising techniques in environmental

data collection are still in their infancy, at least as far as scientific applications are con­

cerned (see, for example, Gjessing, 1979).

Simulation models consist of numerous, more or less arbitrary assumptions which

are made about certain relationships within the system, about boundary conditions,

and about the "meaning" of data in terms of the model and vice versa. Many authors

admit that their assumptions are arbitrary, that their simplifications are gross, and that,

by necessity, they ignore some more detailed (and confusing) knowledge. However, the

effects of such assumptions on the reliability and usefulness of a model are rarely

examined. Instead, the meta-assumption, "our assumptions will not affect the results

significantly", is often made. There seems to be little doubt that such models contain

a high degree of uncertainty.

3 AN ALTERNATIVE APPROACH

Considering all the above sources of uncertainty, the traditional, deterministic

mathematical approach to modeling does not seem to be an appropriate tool to cope

reliably with complex, environmental, real-world problems. One ought at least to explore

the effects of uncertainty on the reliability and usefulness of model applications.
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If one recognizes that the entities used in a simulation model and those measured

in the field or in a laboratory experiment are quite different, it is obvious that they

cannot be compared directly or used to estimate one from the other without taking into

account these differences and the resulting uncertainty. Since the model, due to its high

degree of abstraction, simulates average patterns or general features of a system (as con­

ceptualized in the mode!), it is necessary to derive these patterns and estimate these

features at an appropriate level of abstraction and aggregation from the measured data.

Only such derived values should be compared with the terms generated using the model,

in order to test and improve model performance. For a discussion of the concept of

"problem-defming behavior" see Hornberger and Spear (1980) and Spear and Hornberger

(1980).

If we begin the discussion with problems of model-structure identification (in a

rather general and inclusive sense (cf. Beck, 1979a,b)), it should be recognized that any

model structure proposed for a complex system will itself be a complex, composite

hypothesis which has to be tested. Because of the very high number of interactions

between the numerous elements of ecological systems, considerable conceptual simpli­

fication is needed to make the theories formulated about the structural properties and

functions of the systems traceable, interpretable, and useful. Universal statements

describing those properties of a system which are invariant in space and time may be

called models, whether they are based on informal verbal or mental descriptions or on

formalized mathematical structures. These scientific theories, or models, have to be

testable; that is to say, when one puts a set of specific singular statements (the initial

conditions, which, in the case of a mathematical model, also include the model parame­

ters in a general sense (cf. Fedra et aI., 1981; Fedra, 1982)) into the model, it must be

possible to deduce or predict testable singular statements (observations or experimental

results). Disagreement between the prediction deduced from the hypothesis or model

and the available observations would then make it necessary to reject the given hypothesis,

to modify and improve it, or to look for alternative hypotheses, which would then be

subjected to the same procedure. This method, representing one strategy of scientific

research proposed by Popper (see, for example, Popper, 1959) has, however, one major

drawback when applied to complex simulation models or dynamic hypotheses describing

ecological systems: namely, the so-called initial conditions used with the basic structure

of the theory to deduce the testable predictions are not known exactly. Nonunique

inputs, however, will produce nonunique outputs (see, for example, Tiwari et aI., 1978).

This certainly could be viewed as the result of two basic shortcomings, one in the

measurement techniques available, and the other in the formulation of the models them­

selves - if the models require unknowns as inputs, they are not well formulated. The

latter is certainly a generic shortcoming of ecological models, or of ecological theory

in general.

The same line of argument can be followed with regard to the observations used

for model-output comparison in hypothesis testing. The degree of abstraction and aggre­

gation is quite different in the measurements and in the model conceptualization, so

that the measurements can only serve as samples of the properties of the units concep­

tualized. As these units are generally heterogeneous (in terms of their measurable

properties), and are generally characterized by a high degree of variability, that is to say,

the repeatable part of the observations is only a certain range, further uncertainty
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has to be dealt with in the hypothesis-testing procedure. A formal concept of "dis­

agreement" under uncertainty has yet to be formulated (Fedra, 1982). But whatever the

objective for a formal approach to the analysis of a complex, dynamic environmental

system may be, the testability of the models involved is an essential criterion when

evaluating them as useful scientific tools. Testability, however, has to be achieved with

the information available, that is to say with ranges and semiquantitative relations, if

models are to be used at all. There is no scientific way of identifying the "best" model

structure for a given system under uncertainty. Nonuniqueness on both sides of the test­

ing procedure will always result in nonunique answers. All that can be done on a

rigid formal basis is to rule out grossly inadequate model structures. Since initial con­

ditions and reference behavior for the test are uncertain, they can both be specified in

terms of acceptable ranges for the plausible inputs and acceptable outputs. The test is

then as follows: is there at least one set of plausible input conditions which will result in

an acceptable model response? The criterion is certainly one-sided and weak; however,

it implies a minimum of implicit arbitrariness in a formal approach.

Given a satisfactory model structure which passes the above test of adequacy, the

next step is to explore the full range and structure of the admissible initial conditions,

which are largely parameters in classical terminology. Estimating appropriate parameter

values is generally referred to as model calibration. To calibrate and run any given simu­

lation model, one needs a set of numbers (the parameters, forcings and imports, and

the initial conditions) to be put into the model and a set of numbers to compare with

the model output. The comparison, together with a recursive tuning of the parameters

(by whatever method) may be called calibration (see, for example, Lewis and Nir, 1978;

Benson, 1979). To specify the above numbers, first one must understand their meaning

(in terms of the real-world system or the measurements derived from this system) as

conceptualized in the model. As discussed above, these numbers are average, aggregate

features of the system, so that the available singular measurements can only be used as

a first, rough approximation in the estimation procedure. Considering uncertainty, the

data describing the system behavior (in terms of the model output) can be specified as

ranges (Hornberger and Spear, 1980; Spear and Hornberger, 1980) or, given enough

information about the system, probability distributions. As the model represents average

and general aspects of system behavior, a data set for more than one year might be used

(in the absence of obvious trends), so that the basic data set will not only contain

sampling and measurement uncertainty, but also evidence of the variability of the system

over time. From the empirical data base, a formal definition of the system behavior is

derived in terms of ranges, for measures such as states and process rates or flows at a

given point in time, as well as derived relational or integrated properties. This description

of the system can be understood as a region in a hyperspace, where each measure

describing the system behavior defines one dimension. Of course, the kind of measures

to be used depends on what is described in the model as well as on the available infor­

mation about the system.

Given this reference behavior for the estimation of model parameters, it is obvious

that more than one parameter set (including the initial conditions and the coefficients

used to parameterize time-variable forcings, which can also be viewed as parameters) will

generate a model response within the behavior-space region taken to describe the system.

Again, the concept of a parameter hyperspace can be useful. The estimation procedure
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now tries to identify that parameter-space region where the corresponding model response

is within the defined behavior-space region. This parameter-space region, or ensemble of

parameter sets with its characteristic variance-covariance structure, reflects the basic

uncertainty of the (deterministic) modeling exercise. Using such an ensemble of parameter

sets for predictions results in an ensemble of forecasts, where the variability of the fore­

cast is an effect of the initial uncertainty and can be understood as an estimate of the

reliability of a prediction. This approach also demonstrates the intimate coupling between

"estimation" (which I prefer to use rather than the somewhat misleading term calibration,

which implies some objective reference point) and prediction.

3.1 The Concept of Allowable Ranges

The two sets of numbers to be specified in testing the model structure and using the

model for predictions - one describing the "expected" model behavior, the other the

parameters of the model - can only be estimated roughly from the information available

on the system studied, if at all. However, the raw data available will be quite different from

case to case, depending on the complexity and variability of the system, and the amount

and quality of the measurements. At best, time series of physical, chemical, and biological

variables will be available, together with an estimate of their distribution and sample

statistics within the spatial elements of the model. In addition, some independent experi­

mental data on process rates may be available. However, generally only singular measure­

ments are available, so that no estimation of their reliability in terms of the model's spa­

tial and functional aggregation is possible. Also, the available measurements often do not

relate exactly to the state variables of the model; for example, it may be necessary to

simulate algae populations in terms of phosphorus, but if measurements are only available

in terms of chlorophyll then dubious (and quite arbitrary) conversions may be needed.

Also, the time intervals between measurements are often large (and traditionally con­

stant), so that more transient dynamic features are rarely detected.

Nevertheless, the available information generally allows for the specification of

ranges within which any of the observed features can reasonably be expected. Such

"allowable ranges" can be formulated for the behavior-describing data - for example,

the value or timing of the spring algae peak - as well as for the initial conditions, the

forcings, and the parameters. Wherever such allowable ranges cannot be derived from

the specific set of data available, additional a priori information from similar systems

described in the literature, or simply ranges defined by physical laws or ecological

plausibility can be used. Certainly, such ranges will not be able to describe an individual

system unambiguously, but they will help to constrain the model response to realistic, or

rather plausible, regions. Calibrating a model using state variables only may well lead to

seemingly reasonable results (in terms of the state variables), but at the expense of

unrealistic process rates (see, for example, Scavia, 198Gb).

4 TESTING THE MODEL STRUCTURE: A MARINE ECOSYSTEM EXAMPLE

As an example to illustrate the first step in the approach, a data set from the

southern North Sea was used. Most of the information stems from the yearly reports of
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FIGURE I Systems behavior (German Bight, North Sea): phosphorus dynamics (P0 4-P), solid lines,

from 1964 to 1979, thick line indicates monthly averages for the years 1965 to 1975; and chlorophyll

dynamics (broken lines), from 1964 to 1979, thick line indicates monthly averages for the years 1965

to 1975. After unpublished data from: Weigel and Mangelsdorf; Harms; Harms and Hagmeier; Harms,

Mangelsdorf, and Hagmeier; Mangelsdorf; Weigel, Hagmcicr, and Treutner; and Hagmeier, Kanje, and

Treutner.

the Helgoland Biological Station, and describes physiochemical as well as biological

variables at the sampling station "Helgoland-Reede" for the period 1964-1979 (Biolo­

gische Anstalt Helgoland, 1964-1979, including otherwise unpublished data of Hagmeier,

Hickel, Mangelsdorf, Treutner, Gassmann, and Gillbricht; Hagmeier, 1978; Lucht and

Gillbricht, 1978). However, various other sources have been used for additional informa­

tion (for example, Steele, 1974; Nihoul, 1975) to compile a data set typical of an arbitrary

location representative of the German Bight, southern North Sea.

Figure 1 gives an example of the data used. The driving environmental variables

water temperature and radiation were sufficiently smooth and well behaved for direct

utilization of their long-term averages, approximated by simple sine waves. Data for
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nutrients (P04 -P) and algae (measured as chlorophyll as well as in terms of carbon,

recalculated from counts) showed consistent yearly patterns. However, when including

the year-to-year variations (as well as the implicit sampling errors), the high variability

of the observations and the difficulty in averaging over time (several years) become

obvious. Although the average phytoplankton dynamics show a single but extended

peak around July/August, the individual years exhibit at least two peaks in the summer,

which, because of their variable timing, are averaged out when looking at the long-term

mean (Figure I). Also, the long-term mean is about one order of magnitude below the

spiky peaks of the individual year's data. Little information was available on zooplankton

biomass values. However, some additional information from independent experiments,

mainly on primary production, was available.

Certain nonvariable and general features could be derived from the observations;

these are formulated in terms of the "allowable ranges" discussed above:

Primary producers remain below a chlorophyll level of 4 mg m-3 during the first

three months of the year; between days 120 and 270 of the calendar year there is

an increase of at least twofold in biomass.

At least two biomass peaks occur during this latter period, with a reduction of at

least 25% of the first peak value between the two peaks.

After day 270, biomass again remains below a chlorophyll level of 4 mg m-3.

The higher of the two peak values does not exceed a chlorophyll level of 25 mg m-3.

Yearly primary production falls within the range 300-700 g carbon m-2.

The first biomass peak value (defined as an increase of at least twofold over initial

biomass before a subsequent decline) is reached later for herbivorous consumers

(zooplankton) than for phytoplankton.

The maximum density of herbivorous consumers does not exceed 1000 mg carbon
-3m.

The level of P04-P stays above 20 mg m-3 between calendar days 1 and 90; on

average, it stays below 20 mg m-3 between days 120 and 240; after day 270 it

returns to values above 20mgm- 3
• Throughout the whole year the P04-P level does

not move outside the range 2-50 mg m-3.

All state variables must be cyclically stable (with a ± 20% tolerance range).

This description of the observed system features, defining a region in the behavior hyper­

space of the system, should be understood as a rough and at best semiquantitative

description of persistent patterns rather than a quantitative description of the system

for any specific period. Certainly, more resourceful analysis of the available data and the

incorporation of additional information would allow this description to be refined.

5 HYPOTHESIS GENERATION: DESIGNING ALTERNATIVE MODELS

There are several implicit assumptions hidden in the way the data are interpreted

and the description derived. Ignoring short-term spatiotemporal variations (e.g., those

caused by the tides) and looking instead at average features implies that we are con­

sidering a hypothetical body of water that is not absolu tely fixed in space. The horizontal
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extension of this body of water is rather arbitrarily limited by the requirement of

homogeneity within this spatial element. In the vertical, the body of water considered

is defined by the extent of the measurements used, but again homogeneity has to be

assumed. At the lower bounJary, an "endless sink" of constant chemical properties

is assumed, that is to say, one which is very large compared to the productive upper

layer, and exchange between the upper layer and this sink is controlled by eddy dif­

fusivity.

All these assumptions are more or less unrealistic if we think in terms of specific

physical units in time and space. However, their precise description is not the aim of our

modeling. The basic idea behind all our assumptions is that the simplified processes

considered largely dominate the behavior of the conceptual system and that the processes

ignored are relatively unimportant.

5.1 Hypothesis 1: Two Compartments in a Simple Physical Framework

An attempt will now be made to formulate one very simple hypothesis about the

pelagic food web described in the data set above. The system is conceptualized as con­

sisting of only two compartments, namely particulate, photos)' ilthesizing organic matter,

and mineral nutrients, which are coupled by the processes of primary production and

nutrient uptake, mortality, and respiration/mineralization; one implicit assumption is

that nonphotosynthesizing organic matter is in a constant proportion with the living

fraction. The system is driven by light and temperature, and by turbulent mixing (eddy

diffusivity). Controlling mechanisms are light limitation and nutrient limitation of

prinlary production, self-shading of algae, and the temperature dependence of all the

biological processes. Figure 2a shows a diagrammatic representation of this system.

The model description uses Monod kinetics to describe nutrient limitation of

primary production, using a constant half-saturation concentration. Light limitation is

described using the double time-depth integral of DiToro et al. (1971) for Steele's

(1962) equation (for a discussion of the implications of this formulation see Kremer and

Nixon, 1978). Mortality is described as a nonlinear, concentration-dependent function

of algae biomass, and is directly coupled to remineralization, without any time lag or

further control. Mixing with a "deep layer" is described as the exchange of a constant

fraction of the volume of the upper layer (the top 10m), where the POcP concentration

of the deep layer equals the initial (winter) concentration of the upper layer, and the

algae concentration of the deep layer is zero, that is to say, algae can only be lost from

the system. The rate of mixing is varied by a step function, triggered by temperature,

such that the initial high (January) value is reduced to one-tenth of the initial value as

soon as the surface temperature reaches tluee times its starting level; the mixing rate

is reset to the initial high value as soon as the surface temperature drops below the

trigger level.

This model requires only six parameters to be estimated, given the initial con­

ditions and that the driving variables are "known". For each of these parameters or rate

coefficients, a possible allowable range can be specified, depending on available knowl­

edge. In the worst case, the mortality rate, for example, has to be greater than zero and

smaller than one. To circumvent the problem of uncertainty in initial conditions, a set
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of likely values (estimated from the available data) was taken and allowed to self-adjust

by letting the model run for three years. This strategy (using the results of the third

year after arbitrarily specifying the initial-state condition for year one instead of adding

more dimensions to the input-search-space) was followed with all the models described

below. The model is formulated in terms of phosphorus, with constant stoichiometric

conversions to carbon and a time-variable carbon-chlorophyll ratio. A discussion of the

description of the major biological processes can be found in Fedra (I979a).

5.1.1 Testing Hypothesis 1

To test the hypothesis formulated in model I, the model was incorporated into a

Monte Carlo framework, which randomly sampled a set of model parameters (the initial

conditions) from the allowable ranges, ran the model for a period of three years - to

allow the arbitrary initial values of the state variables to adjust - and finally tested for

violations of the constraint conditions. This process was repeated for a sufficiently large

number of trials (in fact, more than 100,000 model runs were performed with each of

the model structures).

Summarizing, model I could fulfill all of the constraint conditions except one:

it was not possible to reproduce two algae peaks during the summer period (without

violating several other conditions). Figure 3 shows a sample output from model 1.

Hypothesis I consequently had to be rejected. To construct an improved hypothesis,

the distributions and correlation structure of parameters and output variables from those

runs violating only condition 3 (the two algae peaks) were analyzed. For an example

of the output of the analysis programs used, see Table I (parts A-D). The analysis clearly

indicated that phytoplankton mortality is the critical process, and consequently that it

deserves a more refined treatment.

5.2 Hypothesis 2: a Four-Compartment Web

As a slightly more detailed alternative to model I, a second version was formulated

which incorporates detritus and omnivorous zooplankton, to allow for a more detailed

description of phytoplankton mortality. The description of primary production as well

as the physical framework are essentially the same as in the first version. Model 2, how­

ever, splits the phytoplankton mortality into a natural, background mortality, which is

described as concentration-dependent, and losses due to grazing. Background mortality

as well as zooplankton mortality now feed into the detritus pool, which in turn (being

temperature-dependent) feeds back into the nutrient pool; detritus is also consumed by

zooplankton, for which, however, a certain preference for living algae is assumed. Zoo­

plankton respiration also feeds into the nutrient pool. Figure 2b shows the flow chart

for this model. Grazing was described using a simple encounter theory, but the resulting

model performance was still not satisfactory: for low values of the grazing rate constant,

the zooplankton did not survive phytoplankton lows in winter, and died away; for high

values of the feeding rate, in contrast, phytoplankton was removed very quickly, as soon

as it started to grow in the spring, with a consequent collapse of the zooplankton popu­

lation itself. In between, the system was able to produce classical prey-predator oscil­

lations which were, however, unstable in the long run. Consequently, the encounter theory
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Compare Figure 2.

was rejected and the description of grazing was reformulated based on a saturation curve

(similar to Michaelis-Menten kinetics) using a temperature-dependent maximum feeding

rate coefficient, with the same temperature dependence as used for respiration and

remineralization.

Again this version was subjected to the simulation procedure described above, and

the resulting response was analyzed and used as the basis for yet another modification,

namely the introduction of another trophic level (carnivorous zooplankton), to explore

its importance in controlling the herbivores (Greve, 1981). This last and most complex

version (see Figure 2c) finally passed the test of adequacy, after some more refine­

ments in the formulations of thresholds for grazing and starvation of zooplankters.
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TABLE lA Automatic parameter space analysis program: various results.
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Behavior definition applied

Minimum primary production g C m-z year-I

Maximum primary production g C m- zyear-I

Time range for biomass peak value

Upper limit for biomass peak mg P m- 3

Minimum relative increase of biomass max/min

Orthophosphate maximum in mixed period mg m- 3

Total phosphorus output range

Upper limit, metric tons year-I

Lower limit, metric tons year- J

Maximum ratio of total P relative change

Automatic analysis results

Number of simulation runs evaluated

Number of well-behaved runs

Number of nonbehavior runs

Constraint conditions violated by BAD class

Primary production too low

Primary production too high

Biomass peak too early

Biomass peak too late

Biomass peak too high

Relative biomass increase too low

Orthophosphate level too high

Phosphorus outpu t too low

Phosphorus output too high

Relative change in P content too high

50.00

150.00

day 60 to day 210

15.00

2.00

2.50

8.00

2.00

0.50

10,000

293

9,707 including 26 aborted runs

849 cases

937 cases

4,991 cases

1,480 cases

4 cases

a cases

7,517 cases

2,089 cases

I case

2,250 cases

TABLE IB Automatic parameter space analysis program: constraint violations %-eoincidence
matrix.

Condition

2 3 4 5 6 7 8 9 10

I 100.00 0.00 74.79 3.53 0.00 0.00 54.30 55.01 0.00 26.74

2 0.00 100.00 13.02 39.27 0.43 0.00 100.00 0.00 O.ll 9.39

3 12.72 2.44 100.00 0.00 0.00 0.00 65.02 31.48 0.00 36.59

4 2.03 24.86 0.00 100.00 0.27 0.00 93.11 6.22 0.07 14.26

5 0.00 100.00 0.00 100.00 100.00 0.00 100.00 0.00 0.00 50.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 6.13 12.47 43.17 18.33 0.05 0.00 100.00 10.02 0.01 13.70

8 22.36 0.00 75.20 4.40 0.00 0.00 36.05 100.00 0.00 43.03

9 0.00 100.00 0.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00

10 10.09 3.91 81.16 9.38 0.09 0.00 45.78 39.96 0.00 100.00
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6 PARAMETER ESTIMATION AND PREDICTION

6.1 A Lake Modeling Example

The second step of the approach outlined above, parameter estimation and pre­

diction, has been applied to a lake ecosystem, or rather to a lake ecosystem model. A

real-world example and an existing data set, showing all the deficiencies of the above­

mentioned marine example, were used to test the practical applicability of the approach.

It also gave some insight into the model used, which was, admittedly, selected quite

arbitrarily. However, the model structure selected passed the above test of adequacy,

so that a more detailed study of parameter ranges and relationships was feasible.

6.2 Ecosystem, Data, and Model

The lake ecosystem chosen for this study was the Attersee, a deep, oligotrophic

lake in the Austrian Salzkammergut. Basic lake characteristics are compiled in Table 2,

and much detailed information about the lake system can be found in the yearly reports

of the Austrian Eutrophication Program, 'Projekt Salzkammergutseen' (Attersee Report,

1976, 1977; Muller, 1979; Moog, 1980), which is a national followup of the OECD

alpine lake eutrophication program.

TABLE 2 Attersee: basic lake data (after Flogl, 1974).

Geographical position

Altitude

Catchment area

Lake surface area

Length

Average width

Maximum depth

Average depth

Volume

Theoretical retention time

Average outflow

47° 52'N, 13° 32'E
469 m above sea level

463.5 km'

45.6 km 2

19.5 km

2.4km

171 m

84m

3934 X 106 m3

7-8 years

17.5m 3 s- 1

For the purposes of this study, it suffices to say that the available data showed

considerable uncertainty and variability. This was largely due to the limited manpower

and number of observations available (most of them being singular measurements). Also,

the monitoring program was designed independently of any subsequent analysis, and

in addition one of the key variables, namely orthophosphate concentration, varies around

the minimum level of detectability. Consequently, the method described above for

deriving a formal defmition of the systems behavior had to account for this uncertainty,

and only comparatively broad ranges could be specified for the behavior-describing

measures selected. Figure 4 shows a plot of total phosphorus data, averaged for a five­

year period, for the two sampling stations on the lake. The plot gives some idea of data
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276 K. Fedra

FIGURE 5 Flow diagram for the lake model: P, available phosphorus (P0
4
-P); A, particulate phos­

phorus, representing algae biomass.

variability, and, considering the physical properties of the lake (namely the long reten­

tion time) and the almost conservative nature of total phosphorus, also gives some

measure of data reliability.

The problem selected for the modeling approach was the relation of the lake's

trophic state or water quality (as described by, for example, algal peak biomass, yearly

primary production, or nutrient concentrations) to the nutrient imports or external

loading (Fedra, 1979b). For this purpose a rather simple model of lake phosphorus dynam­

ics (Imboden and Giichter, 1978) was used, which considers only two state variables,

namely dissolved phosphorus (the available, limiting nutrient) and particulate phosphorus

(algal biomass). A flow chart of the model structure is shown in Figure 5; the model

structure corresponds to that in Figure 2a, although the description of depth-integrated

primary production and the physical framework are different (Imboden and Giichter,

1978). The model has been applied to various lake systems with a generally satisfactory

performance.

6.3 The Formal Definition of System Behavior

Depending on the problem addressed and the model selected, the behavior of the

system had to be described in terms of model response, relevant to the problem, and

supported by the available information. The measures selected were, in almost complete

agreement with the marine example test case, yearly primary production, algae peak

biomass (absolute level, as well as the timing), relative change in algae biomass during the

year, nutrient concentration during the periods when the lake water is fully mixed verti­

cally, and phosphorus export from the lake. Figure 6 shows an example of the information
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MAXIMUM
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FIGURE 6 Algae dynamics (chlorophyll-a, data of several years pooled). Behavior description

derived: the spring peak with a minimum extent of twice the winter minimum occurs between days

60 and 210 of the calendar year.

used to define the allowable ranges for the relative change in algae biomass, as well as the

timing of the peak value. The resulting estimates (day 60 to day 210, and a minimum

relative increase of 2.0) are certainly very broad. No attempt was made, however, to refine

them further by more resourceful analysis of the available data, as the major objective of

this study was methodological rather than problem-specific. These constraint conditions

are shown in Table I as a part of the output of the analysis program.

Again, allowable ranges had to be specified for the parameters, the coefficients

describing forcing, and the initial conditions of the model, in a manner similar to that

used for the behavior-describing measures. Altogether, the chosen model required

defmition of 22 such ranges, after some of the time-variable forcings had been redescribed

as functions of time, using auxiliary coefficients (see Fedra, 1979b; Fedra et al., 198 I).

A list of the parameters and inputs used is given in Table IC. For some of the ranges

specified, data to support the estimates were available, as for example in the case of the

extinction coefficient, the phosphorus loadings, hydraulic loading, and depth of the

thermocline. Here the ranges could be specified by a mean estimate and some observed

variability around it, or at least by any estimate with an arbitrary, ample range. Whenever

measurements to estimate allowable ranges were unavailable, values from the literature

or simply "educated guesses" had to be used, and the additional uncertainty was

reflected in the wide ranges. The subsequent estimation method, however, is not sensitive

to the initial choice of the ranges, as long as they are within plausible, and physically

and biologically feasible, bounds.
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6.4 The Estimation Process

Given the definition of allowable ranges for all the numbers to be put into the

model's computer code (parameters, coefficients describing forcing, and initial states)

and the defmition of allowable ranges for the model response, the estimation process

involves a straightforward application of Monte Carlo methods. From the input- or

parameter-space region defined, a random sample was taken (assuming rectangular,

independent probability density functions for the individual ranges), and this parameter

vector was then used for one simulation run. A sample output for the time-depth distri­

bution of the two state variables "available phosphorus" and "algae biomass phosphorus"

is shown in Figure 7. The resulting model behavior was compared with the predefined

model response, and the parameter vector was classified according to whether it resulted

in the defmed response (the response being fully within the defined allowable response

region) or not. This process was repeated until a sufficient number of behavior-giving

parameter vectors was found. In fact, the process was repeated 10,000 times for the

parameter-space definition used (after an initial 10,000 pilot runs which allowed some

reduction to be made in the parameter space for the random search and established the

adequacy of the model structure, as discussed above), in order to arrive at a sufficient

number of behavior runs.

6.5 Model Response and Parameter-Space Structure

The 10,000 independent random combinations of 22 input (parameter) values,

each used to generate a model response, resulted in a rather broad overall region for

these model responses. Projections from this overall response space (a hyperspace with

the axes defmed by the response variables used in the behavior definition) on planes of

two response or constraint variables are shown in Figure 8 to illustrate this. The figure

also indicates the allowable, behavior-defining range of the constraint variables. Table 1

shows part of the output of one of the parameter-space and model-response analysis

programs used.

Only a small fraction of the 10,000 runs was fully within all of the ranges; in fact,

only 293 such behavior runs were found (compare Figure 7). This low "score" could be

attributed to the rather broad ranges for the parameters sampled; on the other hand

it has to be kept in mind that the ranges for the allowable response were quite liberal

too. However, selecting the random samples independently, i.e., without taking into

account possible correlations between them, may have been responsible for the low

number of allowable responses. In fact, when analyzing the behavior-giving set of 293

input data, a marked correlation structure was found (see also Figure 8). The correlation

between the parameters and the model-response variables was calculated as well, and

Table 1D gives a correlation matrix for the interparameter and parameter-response corre­

lations for the 293 behavior-giving runs.

From the results shown in Table 1, it is obvious that the allowable orthophosphate

level as well as the timing of the algae spring peak are the most critical conditions to

be met. Also, it seems obvious that the behavior definition is not sufficient to force the
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model into cyclic stability in its phosphorus budget, which seems to be an important

condition for a fairly deep lake with a retention time of seven to eight years. Narrowing

the admissible range for the stability criterion (relative difference in total phosphorus

content between initial and final conditions) from 0.5 to 0.25, results in a lower number

of behavior runs, namely 112.

Summarizing, the overall model response was found to cover a very wide range in

response space, and only a very small portion of the range was satisfactory in terms of

the behavior defmition used. Also, the behavior-giving part of the parameter space

observed shows a marked correlation structure. This correlation structure indicates

not only the interdependence of the parameters, but also the possibility of arriving at

one and the same response region of a model, with different parameter combinations.

However, many features of the results are somewhat difficult to interpret due to the high

dimensionality of the hyperspaces involved.

The analysis of model response and parameter-space structure can also be inter­

preted in terms of a sensitivity analysis, where again, through simultaneous variation in

all the parameters, sensitivity for the whole parameter-space and associated behavior­

space region covered can be studied. This is in some contrast to more-classical approaches

to sensitivity analysis (see, for example, Argentesi and Olivi, 1976; van Straten and

de Boer, 1979), which explore only arbitrarily selected subregions of the parameter

space and response space along a very limited number of dimensions. For the behavior­

giving class of parameters sets, the fourth moment, or kurtosis, of the frequency distri­

butions of the individual parameters can be interpreted as a measure of sensitivity (this

is also true for the initial conditions and the forcing-describing coefficients; as they

are also estimated with a certain degree of uncertainty, an analysis of sensitivity is

also meaningful). Also, the linear correlation coefficient for any paired input-output

combination can be used as a measure of sensitivity. Another measure of sensitivity

can be obtained from the correlation structure of the parameter space itself. Here signifi­

cant correlations identify parameter combinations which strongly determine the system

behavior as defined by the constraint conditions, and the sign of the correlation coeffi­

cient is an indication of whether the parameters work together in the same "direction"

or against each other in opposite "directions". At the same time, the parameter-space

structure thus gives some insight into the functioning of the model structure, as dis­

cussed above.

Whenever it is not possible to identify a region of increased probability for a given

parameter to give the defmed behavior, that is, where the final distribution is identical

with the initially assumed rectangular density distribution, that parameter may be

regarded as redundant. Either the available information does not allow its identification,

or it just does not affect the model response; in either case a change in the model struc­

ture may be warranted. This would then lead to a repetition of the previous stage of

the estimation procedure, discussed above. Also, if no behavior-giving value for a given

parameter can be found within the admissible range specified, the function of this

parameter in the model and the concept of the parameter and/or its real-world equivalent

are not well matched, which again requires a reconsideration of the model structure.

These relationships again point to the intimate coupling of the individual steps in the

estimation procedure, since neither model structure nor parameter values can be esti­

ma ted independently of each other.
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CHARACTER-VECTOR-SPACE PROJECTION
COMBINRTIONS FOR BEHAVIOUR GIVING CLASS

UNITS ON X-AXIS' /MONTH
UN ITS ON Z-AX IS' NIDAY

FIGURE 8 Projection from the parameter space and the model response space. (a) Frequency of

parameter combinations giving rise to the deImed behavior; (b) model response (10,000 runs) shown

as frequency distribution over a plane of two response (behavior-eonstraining) variables. The allowable,

behavior-defining response range is indicated.

6.6 Prediction With Ensembles

The ensemble of parameter sets or input sets identified in the estimation procedure

described above, together with the model structure selected, can be viewed as the best­

available (model) description of the system under study, which also represents a certain

compromise between uncertainty and arbitrariness. In view of the uncertainty about

the system behavior as well as the coefficients to be used, any of the data sets in this

ensemble are equally good and valid descriptions of the system. This points directly to

the diffuse picture of the system we are bound to have, unless this picture is arbitrarily

made unambiguous.
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FIGURE 8 Continued. For details see caption opposite.

This uncertainty in the empirical basis, as well as in the theoretical understanding

of the systems being modeled, should consequently be reflected in the predictions

about the future behavior of these systems under changed conditions. The simplest and

most straightforward way to achieve this is merely to use all the possible descriptions

as a basis for a forecast, and thus project an ensemble of future behaviors. Again, such

ensembles will have certain statistical properties which can be used to estimate the

uncertainty (based on data error and model error) of the prediction, and its evolution

over time.

In the modeling exercise described here, the loading-determining coefficients were

altered to represent changes in the external conditions of the system, and for each change

all (or a subset) of the behavior-giving parameter combinations were then used for runs

with simulation times of up to ten years. Figure 9 shows a series of probability distri­

butions, fitted to the model output frequencies, plotted against the changed input coeffi­

cient. Figure 10 shows a dynamic version of the model's first-year response to a pro­

nounced relative change (twofold multiplication) in the nutrient inputs. Finally,
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FIGURE 9 Probability distributions for a model output variable (primary production) for various

levels of an input (phosphorus-loading).

Figure 11 summarizes the general pattern observed, namely the increase of relative pre­

diction uncertainty (e.g., measured as a coefficient of variation for any of the model

outputs) with degree of change in the input conditions and with time.

Uncertainty of the prediction in terms of a coefficient of variation increases with

time as well as with increasing changes in the external or input conditions. This is

certainly what one would expect intuitively. The coefficients of variation reach a certain

maximum in time after several years of simulation, as the model also reaches a new
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equilibrium because of the continuous application of one and the same set of inputs and

parameters. The method thus estimates the uncertainty of the equilibrium state of the

model for a given input condition. This equilibrium uncertainty is now found to be

related to the degree of change in the input conditions, i.e., the loading-determining

coefficients in this example. The larger the change to be simulated, the more uncertainty

there will be in the predictions of the final as well as the intermediate states of the sys­

tem. These results correspond with what one would assume intuitively, and in addition

the method allows one to estimate quantitatively prediction uncertainty or the limits

of predictability for a given initial uncertainty that stems from data uncertainty as well

as system variability.

7 DISCUSSION

To build the complex hypotheses required to describe and explain the structural

and behavioral features of ecological systems, a formal approach and rigorous testing

procedures are required. As has been demonstrated, parts of the observed behavior of

a system may easily be reproduced. This, however, goes in parallel with unrealistic

behavior in other parts of the system. A complex hypothesis or model, however, can

only be accepted as a valuable working tool with explanatory value and predictive

capabilities if it fulfills all the constraints one formulates as defining the observed system

behavior. Violation of one single condition necessitates the rejection of such a model,

which should be just one step in an iterative process of analysis. This represents an

alternative concept of "disagreement" under uncertainty, where a gradual "goodness

of fit" concept is replaced by the more appropriate test of individual conditions.

A basic idea of the approach is to use the available information according to its

relevance for the model's (in other words, the theory's) level of abstraction. Obviously,

the states of a system can be described much more easily on the appropriate level than

can the process rates and controls (just think in terms of phytoplankton biomass versus

production rate). Consequently, the argument of the hypothesis-testing process is turned

around: instead of putting the "known" initial conditions (the rates, among other factors)

into the model structure and deriving the response for comparison, the allowable response

is used as a constraint to identify possible initial conditions. This is to say, a given region

in the response hyperspace of a model is mapped back into the input hyperspace.

The test is then as follows: does this region in the input space exist within the

specified possible or plausible bounds? In addition, several other features of the input

space can be used as a basis for either rejecting or corroborating a given hypothesis, for

example, the uniqueness of the input-space region, whether or not it is closed, and its

structure, which is determined by the interdependence of the individual input values.

In addition, -,:1 these features, including the relationship or correlation of input and

output space, allow us to learn something about the way the proposed system structure

functions. The method facilitates understanding of system behavior on the appropriate

level of abstraction (in terms of the input and output of the model) and it also provides

diagnostic information for hypothesis generation.

The same underlying idea of inverse mapping of response space into the input

space of the model is used in the parameter-estimation procedure. A formal discussion
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of this procedure is given in Fedra et al. (1981). Thus the approach illustrates the inti­

mate coupling between estimation (or calibration) and prediction. At the same time,

it points out the importance of data uncertainty and/or systems variability for the esti­

mation process, resulting in nonunique estimates of the parameters or inputs to be

estimated, which in turn are reflected in nonunique predictions.

The approach emphasizes the discrepancy between the raw data, measurements

or experiments, and the entities conceptualized in the model. Taking into account the

sample nature of the data describing the system, it is necessary to derive a description

of the system that is meaningful in terms of the model entities, taking into account

the sample statistics as well as the problems of interpretation or mapping the data into

the (model) system. This is an attempt to model the system, not the data. In addition,

the approach tries to capture the full behavioral repertoire of the system rather than

to use any (arbitrarily) specific set of observations to test and improve the model's

performance. All these attempts to reduce arbitrariness by explicitly accounting for

various sources and effects of uncertainty, however, lead to seemingly imprecise,

ambiguous results.

The dilemma of an easily defendable, but ambiguous description of a system, and

a seemingly precise, but arbitrary one, is irritating (Fedra et al., 1981); but it should

also lead to a more critical reconsideration of the basic and implicit assumptions of any

model-based analysis, and to a clearer statement of the questions to be addressed and

the objectives of the answers to be expected.

Predictions by means of the above methods quickly degenerate into trivial state­

ments about the future of the system modeled. This, however, should be taken as a

warning to the analyst that there are obvious limits to predictability. In many cases, the

initial information available will not support a quantitative analysis of the response of

the system to changes in its external conditions. If "precision" has to be based on

arbitrary assumptions which cannot be tested against available empirical evidence or

purely logical reasoning based on well-established theories, no useful and reliable fore­

cast is possible. However, the method proposed should also allow identification of data

needs and critical gaps in the available knowledge. The analysis of the structure of input

or parameter space can be very useful in terms of sensitivity analysis, and could even

be used to indicate inadequacies in the model structure and process descriptions.

The probability distributions generated for the model output variables must be

understood as the results of the evolution or propagation of the initial uncertainty in

the available information. This uncertainty can only in part be attributed to problems of

data collection and interpretation; much of the uncertainty may stem from noise in

the driving conditions of the system, such as, for example, weather phenomena. However,

as this part of the uncertainty at least is inevitable and an essential feature of the system

itself, we must learn to live with it and increasingly incorporate it into numerical analysis

and modeling, rather than ignore it.
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1 INTRODUCTION

A variety of water-quality models have been developed to help assess the impact

of land use on water quality. Initially, most models proposed were deterministic. How­

ever, as modelers acquired more information on the functioning of lake-watershed

systems, and as engineers and planners inquired about the reliability of the models,

considerations of uncertainty began to appear. Modelers who examined uncertainty in

their models, and planners who demanded an estimate of the uncertainty in the tech­

niques that they used, realized that they must have a measure of the reliability of their

methods. Without this, there was no way to assess the value of the information provided

by a model. Under those conditions, inefficient or incorrect decisions were more apt

to be made because the model results were given too much or too little weight.

Despite the fact that many water-quality models exist and more are being devel­

oped, this does not necessarily represent a significant duplication of effort. Models are

needed for a range of problems, and thus they are developed to address a variety of

issues at different levels of mathematical complexity and for different degrees of spatial

and temporal resolution. Thus, for a model user, the choice of model to be applied will

depend upon: (1) the issue of concern; (2) the level of spatial and temporal aggregation

appropriate to the issue; (3) the familiarity of the users with a particular model, or the

mathematical sophistication of the user; (4) the cost and time required for acquisition

of data necessary to run the model; and (5) the cost of model acquisition and model

runs.

In the field of lake trophic-quality modeling, ecosystem models (Thomann et al.,

1975; Scavia and Robertson, 1979) have been developed to address the problem of

* Present address: Duke University, Durham, North Carolina, USA.

** Present address: Texas A & M University, College Station, Texas, USA.
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eutrophication in a multidimensional manner, often with a fairly high degree of spatial

and temporal resolution. In order to make these models more useful in the planmng

process, modelers have begun to quantify the error terms for ecosystem models. As

this occurs, lake ecosystem models will become even more useful for the evaluation of

lake-management strategies.

At the other end of the lake-model complexity spectrum, black-box nutrient

models have been proposed for the assessment of certain lake-quality issues where con­

siderable spatial and temporal aggregation is permissible. These models are attractive

to many planners and engineers because they are often more compatible with the

position of the planner/engineer on the model-selection criteria mentioned above

(particularly with regard to mathematical background and financial support). Since it

has been shown that uncertainty analysis is relatively easily applied to the black-box

model, modeling with error analysis is now being undertaken by a group of model users

who might otherwise work strictly with deterministic methods.

This is not to say that all lake-model users addressing management concerns

should be applying black-box models. On the contrary, model-selection criteria (I)

and (2) above clearly state that the model chosen should be appropriate to the issue

of concern. Certainly there are many issues of importance in lake quality that are

not addressed well with a black-box model. Yet, at the same time, there are issues,

and potential model users, who need simple, aggregated models, because of model­

selection criteria (3), (4), and (5). Some of these users may demand an estimate of

the model uncertainty. It is more likely, however, that many of these users may not

have thought a great deal about uncertainty. A procedure that allows these users to

calculate a numerical value for an estimate of prediction uncertainty can be a powerful

tool for convincing engineers, planners, and decision-makers of the importance of

uncertainty.

2 SIMPLE APPROACHES TO LAKE MODELING UNDER UNCERTAINTY

Most simple lake models have dealt with nutrient enrichment or eutrophication

and stem from the work of Vollenweider (1968, 1975, 1976). While there have been

a variety of expressions of Vollenweider's approach, which is generally referred to as

the "phosphorus-loading concept", the models are typically designed to predict a

measure of trophic state (such as total phosphorus concentration) as a function of a

small number of variables representing the lake's loading, morphometry, and hydrol­

ogy. Although some of the models have a theoretical basis, they are generally statis­

tical in the sense that the functional relationships are derived from data for large numbers

of lakes; in other words, they are the result of regression analysis. However, possibly

because some of the seminal contributions were developed in an informal or intuitive

fashion, little was done to quantify the errors associated with these models. Recently,

attempts have been made to estimate the uncertainty of these models as well as to

develop methods for presenting the probabilistic information in an easily utilizable

format (Reckhow, 1977, 1979a,b,c; Chapra and Reckhow, 1979; Reckhow and

Chapra, 1979; Reckhow and Simpson, 1980). In the present report, three of these

papers, which illustrate the progress as well as the deficiencies of efforts to date, are

reviewed.
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2.1 Chapra and Reckhow (1979)

One of the initial attempts to quantify the uncertainty of the phosphorus-loading

concept took the obvious step of determining the standard error of the regression used

to derive one of Vollenweider's (1976) most widely applied models. This model is

expressed rna thema tically as

(I)

where [Ph is the lake's total phosphorus concentration in mg m -3, [Ph is the phosphorus

inflow concentration (which represents the loading divided by the water flow into the

lake) in mg m -3, and T w is the lake's water residence time in years. Data from 117 lakes in

the Northern hemisphere, temperate climatic zone, were used to corroborate this model

form and to estimate the standard error. Figure 1 presents a comparison of predictions,

using eqn. (I) ([Ph,vILcM), with the measured values ([Ph) from the 117 lakes. (The

subscript VILCM denotes Vollenweider's Improved Loading Criteria Model.) Also pre­

sented in Figure 1 is the standard error expressed in terms of prediction intervals. The

logarithmic transform was used to maintain homoscedacity (constant variance).
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By assuming that the standard error was a valid estimate of the uncertainty of

the model's predictions, two methods were presented to suggest how such information

might be structured for use by a lake manager. First, limnological studies were used to

express trophic state in terms of the model's dependent variable (total phosphorus con­

centration). For example, a lake was classified as mesotrophic when [Ph. fell between

10 and 20 mg m -3. Then, by assuming that the standard error was normally distributed,

the prediction was expressed in terms of the probability that a lake will fall within the

bounds of a particular trophic state (as illustrated in Figure 2). For example, if eqn. (1)

was used to predict that the lake in question would have a phosphorus concentration of

20mgm- 3
, Figure 2 could be used to estimate that the lake would have approximately

a 4%, 46%, 49%, and 1% chance of being oligotrophic, mesotrophic, eutrophic, and

hypereutrophic, respectively.

Another way in which models such as eqn. (1) are used is to determine the loading

that is required to maintain a lake's trophic state at a prespecified level. Figure 3, which

was also developed using the model's standard error, is designed for that application.

With knowledge of a lake's residence time, this plot may be used to determine the

loading level (as reflected by the inflow concentration [P];) that is needed to insure that

the lake would be at a particular trophic state with a specified degree of certainty. For

example, it might be desired that a lake with a residence time of 16 years be 95% certain

of being better than eutrophic «20mgm-3
). Figure 3 can then be used to estimate

that the inflow concentration would have to be set at approximately 50 mg m-3 to

attain this goal.

Obviously, the foregoing exercise entails assumptions and limitations. Some of

these, such as divergence from normality and the effect of parameter error, were tested

and judged to have negligible effect on the plots. Others represent important questions

regarding the efficacy of the technique. The primary deficiency relates to the fact that

there are errors in the estimates of both the dependent and independent variables in

the model-development data set which tend to inflate the model's standard error.

One way to circumvent this shortcoming is to stipulate that the model's application be
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FIGURE 3 Probabilistic loading plot showing the logarithm of the predicted inflow concentration

as a function of the water residence time. Percentages represent the certainty of the effectiveness of

the inflow concentration achieving the expected trophic state.

limited to lakes where observations were gathered at about the same level of uncertainty

as those for the model-development data set. This is obviously a severe limitation on

the model's use since each lake could have a different level of uncertainty in the variables

representing its condition. In particular, nutrient loadings from projected land uses

cannot be measured and must be indirectly estimated, frequently from values in the

literature. These extrapolated literature values may be quite uncertain. An attempt to

account for this is described in the next section.

2.2 Reckhow (1979c)

In this publication, the standard error of another of Vollenweider's models was

estimated. The model, which was derived from 47 north, temperate lakes, can be

expressed mathematically as

[Ph. = L/(1 1.6 + 1.2Qs) = yL (2)

where L is the lake's areal phosphorus loading in g m -2 year-I, and Qs is the areal water

load in m year-I.

In this case, the total prediction uncertainty, ST, was expressed as

(3)
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where sm is the model standard error, and SL is the uncertainty of the loading. The error

terms were converted to mutually consistent units and then added together in variance

form. For mathematical convenience, SL is expressed as a fraction, k, of the loading

SL = kL (4)

As in Chapra and Reckhow (1979), this information can be expressed graphically

(Figures 4-6). For example, for Lake Charlevoix, Michigan: L = O.l2gm-2 year- 1
,

qs = 5.25myear-\ and SL is assumed to be 0.5L. Using Figures 4-6, and the k = 0.5

line, it is then estimated that the probability of Lake Charlevoix being oligotrophic is
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approximately 0.80, the mesotrophic probability approXimately 0.20, and the eutrophic

probability approximately zero.

Such a procedure is valid only if certain assumptions are made. First, parameter

error, dependent-variable error, and error in qs are assumed to be negligible in comparison

to the standard error of the model and the loadings. Second, when the loading is

measured directly it is assumed that the error is approximately the same as for lakes in

the model-development data set. In this case, the uncertainty of the loading is incor­

porated in the model standard error, and the trophic-state probability is estimated using

Figures 4-6 with the k = a lines. In cases where the loading is approximated from the

literature, k may be estimated, and then the appropriate k-curve in Figures 4-6 is used

to assign trophic-state probabilities. While this involves a double counting of loading
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error, it is assumed that the component of the standard error contributed by the loading

estimates in the model-development data set is small in comparison to the uncertainty

associated with the literature loading estimates. The next section describes an analysis

of the error terms, including a procedure for reducing double counting of errors.

2.3 Reckhow and Simpson (1980)

It should be apparent that in order to make these simple phosphorus lake models

truly useful for planners and engineers examining lake-management policy, the model

developer must clearly describe the interpretation of the error terms. This is important
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since, as noted above, a portion of the independent-variable (L and qs) uncertainty is

incorporated in the standard error for the model. This incorporated portion of variable

error represents the variance and bias inherent in these variables in the data set used

to construct the model. Many applications of the models (including all those for which

future projection of water quality is the goal of the analysis) will be undertaken using

data that were acquired in a manner different from the techniques used to acquire the

model-development data set. This means that the model developer must understand

the methods used to collect his data, and he must further understand what these methods

mean in terms of variability and bias. This information is then conveyed to the model

users as model documentation.

The model user in turn, must add, or remove, terms from the prediction error

that represent the difference in variable errors between the model-development data

set and the application lake. As a first attempt at suggesting how this might be accom­

plished, Reckhow and Simpson (1980) have taken the work of Reckhow (1979c) a bit

further by proposing a step-by-step procedure for modeling the impact of watershed

land use on lake trophic quality using Reckhow's model. In their paper, Reckhow and

Simpson attempt to specify the issues of concern when error terms are estimated. By

determining the approximate sources and levels of phosphorus-loading errors in the

model-development data set, Reckhow and Simpson are able to estimate the additional

loading error needed when the model is applied to other lakes. For example, they

recommend that the error term for septic-system phosphorus loading be a function of:

uncertainty in the projection of future population and future occupancy rate; and

the estimated retention of phosphorus by the soil. This latter becomes important only

when the estimated phosphorus loading from septic systems is substantial or when the

average soil retention is thought to be quite different from 90%. These recommendations

for the error term are based on the methods of data collection for the model-development

data set, and the uncertainty in phosphorus loading expected as a result of those

methods. Thus, it was determined that additional loading error, beyond that specified

above, was not necessary for septic-tank phosphorus loading, because of the error already

inherent in the model standard error.

Reckhow and Simpson describe the composition of the other error terms associated

with variable error so that the double counting, or neglecting, of errors is minimized.

This aspect of the error-term defmition is most effective when the model developer has

control over the design of the sampling program used to acquire the model-development

data set, or when the modeler at least has intimate knowledge of this data set. Unfor­

tunately, Reckhow and Simpson relied on data from several sources with different

sampling schemes, some of which probably led to biased estimates of the independent

variables. Therefore, at best, they were able only to suggest the composition of the appli­

cation lake error terms based on limited knowledge and some speculation on the errors

in the model-development data set.

3 WHERE DO WE GO FROM HERE?

Experience to date with the black-box nutrient model and error analysis has

firmly convinced the authors that this approach is useful for lake management. Yet
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some issues clearly exist that need to be addressed before this modeling approach can

achieve its potential effectiveness. Some suggestions are presented below for future

directions of research and development with the black-box lake model.

(1) A better understanding of the data in the model-development data sets is critical.

It is probably not worthwhile examining the data used to develop most existing

models because of the poor sampling design used to acquire those data. How­

ever, for data gathered under a good sampling scheme, data analyses should be

undertaken prior to model development. In particular, the modeler should study

the cross-sectional (multilake) data distributions and the single-lake data distri­

butions. This will help in the identification of appropriate summary statistics,

data transformations, and error terms.

(2) Once the data have been thoroughly studied, a general1y-applicable model may

be developed if the independent-variable error in the model-development data

set is removed from the model standard error. This, of course, can be undertaken

only if the modeler can identify these error terms and estimate their magnitudes.

(3) An alternative is to develop a group of data set-specific models. Under this

approach, different models would be proposed for data sets acquired under

different conditions, so that error levels would be homogeneous within data

sets. Then, essentially all of the prediction error would be contained within the

model standard error, and additional error-accounting processes would not be

necessary. For example, a model should be developed using indirect estimates

of nutrient loading (e.g., literature nutrient-export coefficients) for use in the

prediction of future trophic quality from projected land use. In that case, the

only additional error term needed would be the uncertainty in the future land­

use projections.

(4) Since the distributional aspects of the data and the prediction errors have been

inadequately characterized, a nonparametric approach should be adopted.

Existing work (Reckhow, 1979b; Reckhow and Simpson, 1980) is based on an

assumption of normality, but that cannot be justified at this time. Therefore,

error bounds should be constructed using nonparametric methods un til the

distribu tions are studied and iden tified.

(5) To examine the effectiveness of the first-order error-propagation equation (the

method used here to combine errors from different sources) for this lake­

modeling application, a Monte Carlo simulation should be run, after the distri­

butions are characterized. This may be useful for a number of purposes in

model development (including the analysis of a time-dependent model), and in

the evaluation of lake-management strategies when the necessary resources exist.

In summary, there is a need for a variety of lake water-quality models and for an

analysis of the uncertainty associated with the application of these models. Particular

concerns and circumstances will favor different modeling approaches. For example, the

black-box nutrient model has been found to be useful when the issue of interest may

be analyzed on an aggregated basis, or when the resources of the model user preclude

any other type of mathematical model. Regardless of the modeling/error analysis

procedures employed, however, it is imperative that the communication between the
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model developer and the model user be explicit. Thus, for example, when the model

documentation includes a step for "estimation of the phosphorus-loading error term",

the model user must be told exactly what is meant and the exact intended composition

of this term. Without this clear communication, model-prediction error may ironically

be increased by a well-intentioned but ill-constructed uncertainty analysis.
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STATISTICAL ANALYSIS OF UNCERTAINTY PROPAGATION

AND MODEL ACCURACY

Dennis B. McLaugWin

Resource Management Associates, 3738 Mt. Diablo Blvd., Suite 200,

Lafayette, California 94549 (USA)

1 INTRODUCTION

Until recently the subjects of model uncertainty and prediction accuracy were

largely ignored by water-quality modelers. There were many reasons for this, including

a widespread conviction that model predictions could be made as accurate as desired

simply by increasing the detail and complexity of the governing equations. Enthusiasm

for complex model structures led to a proliferation of sophisticated ecosystem models,

which grew larger and larger and included more and more biological compartments,

chemical interactions, etc. Unfortunately, increases in model size and complexity did

not necessarily provide the expected improvements in prediction accuracy. If anything,

they made the models more difficult to use and the results harder to interpret. It became

apparent that the primary factor limiting model performance in many applications was

not lack of detail but rather insufficiently accurate model inputs.

Classical statistics provides a convenient means for analyzing the effects of input

errors on prediction accuracy when a model's basic structure is adequate, i.e., when the

model has the inherent complexity and flexibility needed to reproduce observed behavior

patterns. In such cases it is possible to quantify propagation of uncertainty from the

inputs of the model (e.g., its coefficients, initial conditions, source terms, etc.) forward

to its predictions of particular water-quality constituent concentrations. Each model

input can be assigned an a priori covariance which measures its uncertainty or probable

level of error. The error-propagation equations then predict the accuracy that would

be achieved if the a priori levels of uncertainty were actually encountered in practice.

One of the major advantages of this approach is its emphasis on "what if" questions,

which focus on the relative sensitivity of each error source rather than on a single aggre­

gated measure of accuracy.

This paper presents an analysis of uncertainty propagation which is particularly

appropriate for distributed-parameter water-quality models satisfying the "structural­

adequacy" requirement mentioned above. A typical example is the familar conservative

constituent mass-transport equation
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ac/at

where

- V" VC+ V"KV'C +S
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(1)

C(x, t)

Vex)

K(x)

sex, t)

x
t

concentration of the conservative constituent,

advective vector velocity (assumed, for simplicity, to be time-invariant),

time-invariant dispersivity (diffusivity) tensor,

source term,

location vector, and

time.

This equation is based on fundamental principles of conservation-of-mass and continuum

fluid flow and should be "structurally adequate" for most water-quality transport prob­

lems. The difficulties in actually applying it result from the need for accurate specifi­

cation of the following inputs: the velocity field Vex) and the dispersivity tensor K(x)

(model parameters); the initial concentration field C(x, to) (initial conditions); values for

C(x, t) or V'C(x, t) on the boundaries of the region of interest (boundary conditions); and

the source term Sex, t). Error-propagation analysis provides a straightforward way to

determine how errors in such inputs influence a model's predictive accuracy.

The paper begins with a review of numerical methods for solving distributed­

parameter model equations such as eqn. (l). This review is followed by a derivation of

the error-propagation equations and a discussion of the a priori covariances required in

the error analysis. The final section provides a brief summary of the major results

described in the paper and an assessment of the practical potential of error-propagation

analysis.

2 STATE-SPACE FORMULATION OF DISTRIBUTED-PARAMETER MODELS

Most distributed-parameter water-quality models are originally formulated as

partial-differential equations similar to eqn. (1). Although such equations may be solved

analytically in certain special cases, numerical solution methods are required for problems

having irregular geometries and/or inhomogeneities. Numerical solutions generally pro­

ceed in two phases. First, the partial-differential equation is discretized in space. Next,

the resulting set of ordinary-differential equations is discretized in time to provide a set

of recursive "state-space" equations. These state-space equations are the starting point

for our statistical analysis of uncertainty propagation.

This section briefly reviews numerical procedures for converting the linear

conservation-of-mass transport model of eqn. (1) into vector state-space form. The

procedures described here apply to any linear distributed-parameter model and may, in

fact, be readily extended to nonlinear models as well (see McLaughlin, 1979). Further

details on numerical methods for solving partial-differential equations may be found in

texts such as Zienkiewicz (1977).

The dependent variable C and the independent variables V, K, and S defined in

eqn. (1) are generally continuous functions of location. In order for this equation to be

solved numerically, the spatial derivatives of these functions - the terms V' VC and
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V· KVC - must be approximated or discretized. Two of the more general methods for

accomplishing this discretization are the finite-difference and finite-element solution

techniques. Both of these techniques conceptually superimpose a grid of N discrete

"node points" on the geographical region of interest. An unknown time-dependent

concentration value Cj(f) is assigned to each node U= 1, 2, ... ,N) and the continuous

function C(x, f) is approximated by a weighted sum of the Cj(f) values:

(2)

where

C = an unknown state vector of nodal concentration values (CI(f) . .. CNCt)),

and

TJ(x) = an unknown interpolation vector of simple location-dependent poly­

nomials which weight the various components of C.

Similar methods may be used to discretize the independent variables u, K, and S. Gener­

ally speaking, these variables need not be discretized as finely as C(x, f).

When the nodal weighting technique of eqn. (2) is used to approximate spatial

variations in the model's variables, eqn. (l) may be transformed into the following

ordinary-differential equation:

where

ac/af = A(a)C + D(a)u + E(a)~ (3)

A(a) an N x N matrix of coefficients which depend on the geometry of the

spa tial discretization grid,

D(a) an N x M matrix of grid-dependent coefficients which weight the influence

of the M discretized source terms,

E(a) an N x P matrix of grid-dependent coefficients which weight the influence

of the P discretized boundary conditions,

u a vector ofM discretized source terms derived from S(x, f),

~ = a time-invariant vector of P discretized boundary-condition terms derived

from specified values of Cor VC along the regional boundaries, and

a = a vector of discretized parameter (Le., V and K) values derived by applying

an approximation similar to eqn. (2) to the functions Vex) andK(x).

Note that the matrices A(ci) , D(a), and E(a) are nonlinear functions of the model's dis­

cretized parameters. These parameters are lumped, for convenience, into a single vector

a. Both Ii and ~ are assumed to be time-invariant in order to simplify subsequent statis­

tical expressions. These assumptions are not essential and may, in fact, need to be relaxed

in certain practical applications.

A number of different temporal discretization techniques are typically used to

integrate eqn. (3). Most of these approximate at/af and C at time fk+1 with functions
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of Ck and Ck + l , the nodal concentration vectors at tk and tk + l , respectively. The resulting

ordinary-difference equation for Ck + 1 may be written as

(4)

where

ell (a), r (a), A(a) = N x N, N x M, and N x P matrices that depend on A(a), D(a),

E(a), and t::.t (the time step); and

Uk = source term vector U evaluated at time tk .

Equation (4) can be conveniently generalized if the coefficient matrices are allowed to

vary with time. This can be indicated symbolically with appropriate subscripts:

(5)

Equation (5) is solved recursively, starting with a vector of initial concentrations Co
defmed at each of the N node points. On each time step, all time-dependent terms are

updated and the next concentration vector Ck + 1 is computed.

In some applications, the variables of most interest are not the nodal concentrations

but concentrations at other locations such as monitoring sites. The nodal weighting tech­

nique of eqn. (2) provides a way to predict concentrations at any desired set of locations.

The method is conveniently summarized by the following equation:

(6)

where

Zk+l a vector of predicted concentrations (at time tk+l) at L specified points

(Xl, X2, ... ,xd in the region of interest, and

H an L x N matrix of coefficients constructed from the weighting functions

T](x) evaluated at Xl, X2, ... , XL'

The rows of the matrix H weight appropriate nodal concentrations to give interpolated

concentration values at the locations Xl, X2, ... , XL' The resulting model output vector

Zk+l depends, directly or indirectly, on the initial condition, parameter, source rate, and

boundary-condition values specified by the modeler. Errors in these values clearly have an

effect on the accuracy of the model's predictions.

3 FIRST-ORDER ANALYSIS OF MODEL ERROR PROPAGAnON

The preceding section demonstrates how a typical distributed-parameter water­

resource model may be formulated in "state-space" terms, Le., as a set of linear-difference

equations. This set of equations summarizes the modeler's deterministic view of reality.
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The equations for a deterministic model for simulation and prediction are
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(7)

(8)

In order to perform an a priori analysis of the potential accuracy of this model, it is

convenient to postulate a stochastic (nondeterministic) model of the real world. This

stochastic model has an overall structure similar to the deterministic model of eqns. (7)

and (8) but includes a number of random terms and coefficients.

The equations for a stochastic model for accuracy analysis are as follows

where

(9)

(10)

Wk+l

Ck

Zk+1

Co

C!lk' rk,Ak, H

random parameter vector,

random source-sink vector,

random boundMy-condition vector,

random sampling-error vector (measurement noise),

random vector of "true" nodal concentrations,

random vector of concentration measurement,

random initial condition vector, and

sy5tem matrices defined previously.

This stochastic model can be viewed as an attempt to explain the quasirandom (never

completely predictable) behavior of the real-world system. In a sense, field observations

(the Zk values of eqn. (10)) behave as if they were produced by complicated noise

generators which add random variations to the "known" deterministic inputs a , ~ , Uk,

and C. The detrimental effects of these hypothetical noise generators can be derived

from a statistical analysis of the model state and output errors.

Since Ck + 1 is the deterministic model's simulated state and Ck + 1 is the supposed

"true" state, the model's state error may be measured by the difference between Ck + 1

and Ck + I' Inspection of eqns. (7)-(10) shows that this difference is:

(11)

The statistical properties of the state error Sk+1 can be better explored if the nonlinear

functions of a are expanded. This can be done with the Vetter calculus (see, for example,

Dettinger and Wilson, 1979) or a simple perturbation approach may be used. The non­

linear functions of interest may be written as:
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where the SC!l, Sr, S A are random (matrix) error terms caused by differences between the

parameter vectors of the deterministic and stochastic models. Similarly, the true state,

source rate, and boundary-condition vectors may be written as:

where the Sh , V h , S ~ are random error terms.

With these defmitions, eqn. (11) may be written as a function of the known system

matricesC!lh(a), rk(a), and Ak(a) and random error terms:

(12)

The last term on each line of this expression is a second-order error term (the product

of two errors) while the other terms are first order. Note that eqn. (12) does not depend

on any approximations - it is exact.

Some approximations must now be introduced if the effects of parameter errors

are to be included explicitly in the error analysis. One alternative is to define two non­

linear vector functions of a

first order: tea) = SC!l(a, a)Ch+ sr (a, a)Uh + SA(a, a)P

second order: g(a) = SC!l(a, a)Sh(a) +sr(a, a)"k +SA(a, a)S13

Each of these functions may be expanded in a Taylor series about a, as follows:

tea) = tea) + D,,,(a)S,, + higher-order terms

where

(13)

(14)

(15)

Df,,(a) = matrix of tea) gradients, taken with respect to a and evaluated at <I, and

S,,=a-a.
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The derivatives in the second-order (g( a)) expansion are fairly difficult to evaluate, either

numerically or analytically. Since we wish to illustrate the concepts of error propagation

with a minimum amount of mathematical complexity, we will retain only the first-order

(t(a)) terms of eqn. (12). A first-order analysis can be informative and revealing, even

though it is admittedly approximate. Further details on second-order analysis of the state

error (specifically, second-order mean analysis) are presented in Dettinger and Wilson

(1979).

The first-order f(a) expansion of eqn. (15) may be written as:

+ second-order and other higher-order tenns ignored in first-order analysis

(16)

Since f(a) is zero and the second bracketed term in eqn. (16) is independent of t f(a) is

(17)

where Dak is a sensitivity matrix with element ij given by

The sensitivity matrix may be evaluated numerically at each step of the simulation, either

with simple perturbations or with the Vetter calculus (see Dettinger and Wilson, 1979).

Substitution of eqn. (17) into eqn. (12) gives, when second-order terms are

omitted, the following expression for the state error:

(18)

This equation contains only deterministic (known) coefficient matrices (cJlk(a), rk(a),

I\k (a), and Dak ) and random error vectors (Sk' v k, ~ , S a). The statistical properties of

Sk+l may be recursively derived from eqn. (18) if the properties of all the noise-generating

random vectors are defmed. In particular, the first and second moments of each random

error source must be specified, together with appropriate information on cross-correlations

between errors and on the temporal correlation properties ofv k. Although many alter­

natives are possible, the following seem reasonable:

First moments (means)

E[So] = E[~] = E[Sa] a

E[Vk] a (for all k)
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Second moments (covariances)

cov [50] Po

cov ~] PiJ

cov [50:] Po:

cov [Vk] = Qk

Cross-correiations

D.D. McLaughlin

E[So13] = E[5 0 So:]

Temporal correlation of Vk

o

The rationales for the assumptions reflected in these definitions are as follows:

First moments. It is reasonable to assume that all error means are zero since if any­

error had a known nonzero mean, this mean would be incorporated into the deter­

ministic model as a compensation factor. Of course, the errors may have unknown

nonzero means but there is no way to deal with this without complicating the error

analysis further.

Cross-correlation. It is reasonable to suppose that the fundamental error sources ­

initial condition errors, parameter errors, source-sink errors, and boundary-condition

errors - arise from different statistically independent effects (this is one of the reasons

the errors are classified into four separate categories). Statistical independence implies

zero correlation.

Temporal correlation ofvk. In many situations the errors influencing source-sink

terms are statistically independent from time to time, location to location, and sample

to sample. When available field information indicates this is not the case, the error

equations may be modified to account for temporal correlation of Vk, provided that good

estimates of the correlation function can be obtained. Otherwise, it is best to assume that

the source-sink errors are completely uncorrelated.

With the above assumptions, the first and second moments of5k+l may be obtained

directly from eqn. (18):

(19)

where
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Pk

PkiJ , PiJk , Pka, Pak

cov [Ok], and

cross-covariances defined below.

The dependence of the coefficient matrices on eX is now assumed rather than indicated

explicitly. Also, note that Ok and Vk are uncorrelated because Ok depends only on va

through Vk-l, which are uncorrelated with Vk.
The first-order state error mean of eqn. (19) is zero because all of the component

error source means are zero (the second-order state error mean is not zero but, instead,

depends on the error source second moments). The first-order state error covariance of

eqn. (20) depends on three types of terms: the propaeated error covariances, the propa­

gated cross-covariances of Ok and J3 (PkiJ and PiJk ), and the propagated cross-covariances

of Ok and a (Pka and Pak ). The error covariances Po, Qk, PiJ, and Pa are specified (i.e.,

assumed a priori). The cross-covariances PkiJ , PiJk, Pak , and Pka are, on the other hand,

obtained from separate recursive equations. This is illustrated by the derivation of

Pk + 1•iJ from eqn. (18):

or

(21 )

Note that the cross-terms containing E[VkJ3T] and E[oaJ3T] are zero because J3 is assumed

uncorrelated with Vk and oa' Also, P013 is zero because the initial condition error 00 and

boundaI)' condition error J3 are assumed to be uncorrelated. Similar reasoniag may be

used to show that:

(22)

The other cross-covariances PiJ.k+1 and Pa.k+l are the transposes of Pk+ [.13 and Pk+ 1.a'

Equations (20)-(22) constitute a coupled set of recursive algorithms for computing

the error covariance of the model state vector at any time. The first term (<t>kPk<t>f) of

eqn. (20) describes the evolution of uncertainty in Ck forward to Ck +1 • If the linear

system is stable, scalar metrics of <t>k Pk<t>f will be smaller than Pk , indicating that the

system dynamics tend to damp initial-condition uncertainty (in a sense, Ck is the initial

condition for Ck + I)' The nex t three terms of eqn. (20) describe the incremental addition

of uncertainty between times tk and tk + 1 due to random source, boundaI)' condition,

and parameter errors. Since the boundary condition and parameter errors are assumed

to be time-invariant, theIr incremental uncertainty contributions (from time step to

time step) will be correlated. The last four terms of eqn. (20) are "correction factors"

which account for this correlation effect. The correction factors depend on cross­

covariances such as PkiJ which are, in turn, derived recursively (in eqns. 21 and 22) from

the parameter and boundaI)'-condition covariances, Pa and PiJ.

The state error covariance is a measure of the "closeness" of the simulated state

Ck to the true state Ck . A similar error covariance can be derived to measure the closeness

of the simulated model output Zk to the field measurement vector Zk' Equations (8)

and (10) imply that:
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(23)

The statistical properties of the measurement error (.o)k+1 may be defined by analogy

with the model error sources discussed earlier:

o

It is reasonable to assume that the measurement error mean is zero since any known

nonzero mean (bias) would be subtracted from the measurement during or subsequent

to field sampling. It is also reasonable to assume that the measurement error during the

simulation period (i.e., after model calibration/parameter estimation has been com­

pleted) is uncorrelated with the other random errors included in our analysis. Output

measurement errors during this period generally arise independently of any errors

influencing the model's initial conditions, source terms, boundary conditions, or parame­

ters. It is worth noting, however, that the parameter error may be correlated with output

measurements taken prior to the simulation period if these earlier measurements were

used to estimate the parameter vector a. This prior parameter/measurement correlation

does not influence E[Wk+150:] because the measurement error sequence is assumed to

be temporally uncorrelated, i.e., w k+1 is not correlated with errors in the measurements

used to estimate a.
With the statistical properties of the measurement error defined, the first and

second moments of E k+1 may be obtained directly from eqn. (23):

(24)

(25)

Also of interest is the mean of the scalar sum-squared output error, which is often used as

an empirical measure of model accuracy:

This expression reduces (see Kendall and Stuart, 1973) to:

E[S] = L {Tr[HTPk+1 H] + Tr[Rk+1]}

"
(26)

where Tr [ .] is the scalar trace of the matrix in brackets. Equation (26) suggests that

the sum-squared error computed from a comparison of model outputs with field



Statistical analysis ofuncertainty propagation and model accuracy 315

observations will depend on both model errors (Hf'Pk + 1Hk ) and measurement errors

(Rk + 1). The sum-squared error computed from any particular set of field observations is,

of course, a single sample from a random population having a mean E[S]. The variance

of this population depends on higher-order moments of S k+ I and to) k+ I and generally

decreases as the number of measurements increases.

Equations (24)-(26) complete our analysis of uncertainty propagation. Although

the error covariance equations derived in this analysis appear complex at first glance,

they may be readily incorporated into a model's normal computational cycle. The only

complication is evaluation of the parameter sensitivity matrix Dak , which adds somewhat

to the overall computation cost since an additional (perturbed) simulation must be per­

formed at each time step. In return, the modeler obtains a step-by-step, node-by-node

breakdown of his model's performance which provides estimates of the relative influence

of each potential error source. Needless to say, this information can be valuable not only

to the model-user concerned with prediction accuracy but also to the model-developer

seeking to reduce the detrimental effects of input errors.

4 SPECIFICATION OF A PRIORI COVARIANCES

The error-propagation analysis presented in the preceding section is implicitly

based on a Bayesian viewpoint, which assumes that an a priori probability density func­

tion can be assigned to each error source. The a priori covariances Po, PiJ, Pa, Qk> and Rk

are the covariances of these density functions. If no measurements of input or sampling

error are available, the a priori density functions reflect the modeler's own subjective

uncertainty about the "true" values of the model inputs and field measurements. In

some applications, the a priori densities must be based entirely on intuition and common

sense. But often enough data are available to suggest at least a range of reasonable values

for a priori statistics. The types of data likely to be used to help define apriori covariances

in water-resource applications are discussed briefly below.

4.1 Errors in Initial Conditions and Boundary Conditions

The initial conditions and boundary conditions needed to solve eqn. (I) or other

similar distributed-parameter model equations are often estimated from field samples

taken at scattered monitoring sites. Even if field-measurement procedures are perfect

(which they rarely are in water-quality applications), errors arise when the measure­

ments are extrapolated over an entire nodal grid. The magnitudes and distribution of

these errors depend, of course, on the extrapolation/interpolation method used. Auto­

mated interpolation methods such as spline-fitting routines or Kriging algorithms are

particularly convenient from an error analysis point of view because they provide esti­

mates of their own accuracy (see Delhomme, 1976; Moore and McLaughlin, 1980).

Most Kriging programs supply contour maps of estimation error variance which define

the initial-condition error covariance Po and boundary-condition error covariance PiJ used

in eqns. (20) and (21). These maps can also help the modeler decide where to draw

regional boundaries and where to propose additional sampling sites.
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4.2 Source Rate Errors

In most water-quality simulation studies, source rates such as pollutant-loadings

are either hypothesized or inferred from extrapolations of historical measurements. In

the first case, the source rate errors depend on the accuracy of the modeler's hypotheses

and must generally be estimated subjectively. In the second case, the errors depend on

the accuracy of the historical measurements and the extrapolation procedure used to

extend these measurements forward in time. If the extrapolation procedure can be

described statistically it may be possible to assign approximate variances to the source

rate errors associated with a particular simulation. For example, the mean, variance, and

autocorrelation function of pollutant-loading rates extrapolated from a least-squares

trend line may be readily derived if certain assumptions are made about the statistical

properties of the residual errors. Such statistical measures can help define the elements

of the source rate error covariance Qh used in eqn. (20).

4.3 Measurement Errors

Measurement errors depend on both field-sampling and laboratory-analysis pro­

cedures. The statistical properties of such errors can be derived from a careful analysis

of each stage of the sampling procedure, using manufacturer's specifications or published

guidelines to establish the accuracy of measuring instruments or laboratory tests.

Alternatively, replicate samples can be collected in the field and the pooled statistics of

these replicates used to define the error covariance matrix Rh + 1 required by eqns. (25)

and (26).

4.4 Parameter Errors

Model parameters are frequently estimated indirectly from field measurements of

related variables, often with the aid of the simulation model itself. The diffusion coeffi­

cients of a transport model such as eqn. (1) may, for example, be estimated from

historical measurements of pollutant concentration during periods when loading rates

and boundary conditions were well known. A wide variety of parameter-estimation

procedures have been proposed in the literature, including such statistically-oriented

techniques as least-squares, Kalman fIltering, instrumental variables, and maximum likeli­

hood (see Beck and Young, 1976; Lettenmaier and Burges, 1976; Moore, 1978). Most

of these procedures include algorithms for computing the covariances of their parameter

estimates, given certain assumptions about the model and measurement errors acting

when the estimates were derived. These covariances may be used to define the matrix

Pa reqUired in eqns. (20) and (22).

It should be emphasized that the covariance values supplied by statistical analyses

such as those outlined above are approximate and can be modified by the modeler if

desired. The Bayesian approach does not require that the a prio.ri covariances in

eqns. (20)-(26) be estimated from field data. Derived estimates of such covariances
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serve merely to refme the modeler's subjective assessment of input and measurement

uncertainties.

5 SUMMARY AND CONCLUSIONS

The error-propagation analysis presented in this paper provides a set of recursive

equations for computing the mean and covariance of the states of a linear distributed­

parameter simulation model. The equations, which are summarized in the Appendix,

depend on two types of matrix variables:

Coefficient matrices - the matrices «Ph, r h, Ah, Dah , and H, which may be numeri­

cally or analytically derived from the model's governing equations, discretization

procedures, and interpolation algorithms.

- A priori covariance matrices - the matrices Po, Qh, Pa , P!1, and Rh , which are

measures of the modeler's a priori uncertainty about the magnitudes of errors in

initial conditions, source rates, parameters, boundary conditions, and field measure­

ments.

In practice, the modeler assigns a priori covariance matrices which reflect the levels of

input uncertainty likely to be encountered during a model simulation run. The error­

propagation equations then predict the accuracy (error covariance) that would be

achieved if these a priori levels of uncertainty were actually attained. This approach to

error analysis allows the modeler to evaluate the effects of a range of input uncertainties,

from very optimistic levels to very pessimistic levels. The "most likely" input covariances

falling in the middle of this range can be based on quantitative measures of input accuracy

derived from statistical analyses of field data, if sufficient data are available.

The error-propagation algorithms derived in this paper are easy to program and can,

in fact, be incorporated into most simulation models with a minimal amount of effort.

Although there are few examples of formal error-propagation studies in the water-quality

field, it is likely that the number of practical applications will increase dramatically in

the near future. Related studies of groundwater flow models have already been reported

by Dettinger and Wilson (1979). As such applications become more common, water­

quality modelers will undoubtedly begin to appreciate the advantages of quantitative

error analysis and will rely on it increasingly, both as a research tool and as a practical

method for evaluating model performance.
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APPENDIX: SUMMARY OF FIRST-ORDER ERROR-PROPAGATION EQUATIONS

Error Means

State error mean (eqn. 19):

Measurement error mean (eqn. 24):

Recursive Error Covariance Equations

State error covariance (eqn. 20):

o (for all k)

o (fora11k)

Pk+1 = cJlkPkcJl~ + rr.Qkr~ + AkPI3A~ + DCl!kPCl!DJk--- ------- ------ '---...--'"

state source boundary parameter

error error condition error

propagation propagation error propagation

propagation

+ ~cJlkPkI3A~ + AkPl3kcJl~

state-boundary condition correlations

state-parameter correlations
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State-boundary condition cross-covariance (eqn. 21):

State-parameter cross-covariance (eqn. 22):

Measurement-error covariance (eqn. 25):

Error Covariance Initial Conditions

319

Pk+1•iJ = <l>kPkiJ + AkPiJ

Pk + 1.", = <l>kPk", + D"'k P",

cov [Ek+d = HPk+1H
T + Rk+1

Initial state error covariance:

Initial state boundary condition cross-covariance:

Initial state parameter cross-covariance:

Variable Definitions

Po ~ Po

POiJ 0
Po", = 0

Time-dependent coefficient matrices derived from the model's

governing equa tions and discretization procedures,

Parameter-sensitivity matrix evaluated at each time step with

element ij given by

H = Matrix of coefficients constructed from spatial interpolation

functions relating nodal locations to measurement locations,

Po, Qk, PiJ, P"" Rk = A priori covariance matrices for errors in initial conditions,

source rates, boundary conditions, parameters, and measure­

ments, respectively,

Pk+1 Covariance of the error between true and simulated nodal con­

centrations at time k + 1,

cov [Ek+ d Covariance of the error between model outputs and field

measurements at time k + 1,

PkiJ, Pk"', P"'k, PiJk Cross-covariances computed as intermediate variables in the
error-propagation equations.

Detailed definitions of these variables are provided in Sections 2 and 3 of this paper.
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NONTIDAL RIVERS: THE BEDFORD OUSE STUDY

P.G. Whitehead

Institute ofHydrology, Wallingford, Oxfordshire (UK)

1 INTRODUCTION

In addition to being the major sources of water, river systems are used as the prin­

cipal disposal pathways for waste material from man's activities. Such waste material alters

the concentration of many chemical substances in water and impairs the quality and thus

the usefulness of that water. Moreover, the variety of pollutants generated by a highly

industrial society appears to grow continuously and as discussed by Stott (1979), "the

problems of water quality are now more difficult and demanding than water quantity".

While, in general, average water quality in the UK has tended to improve, in certain

respects there have been grounds for concern. For example, some water authorities

have been observing progressively increasing levels of nitrates in their system. The mech­

anisms governing these increases are not wholly understood and, as a result, strategies

for the management of nitrate levels have not been fully identified. In particular, nitrate

levels in the River Thames and the River Lea have increased dramatically over the past

ten years with the average concentration increasing from 4 mg N 1-1 in 1968 to an average

of 11.1 mg N 1-1 in 1977 in the River Lea (Thames Water Statistics, 1978). This level

is close to the World Health Organization (WHO) limit of 11.3 mgNl- 1 and at certain

times of the year nitrate levels in the River Lea have in fact exceeded the WHO limit,

thereby preventing the abstraction of water for potable supply. Moreover, the observation

that certain acceptable limits of quality are exceeded from time to time indicates that

desirable stream quality is not only quantified in terms of, say, yearly average indices;

transient, intermittent deterioration of quality is also important, and may be of growing

concern for the future.

In this paper water-quality models developed during the recent Bedford Ouse Study

(Bedford Ouse Study, 1979; Whitehead et aI., 1979, 1981) are briefly described and

applied to assess the impact of effluent on the river system. Concern over the future

water quality in the Bedford Ouse has led to the development of an extensive automatic

water-quality monitoring and computer-controlled telemetry system. Water-quality

models are included in the mini/microcomputer system and provide forecasts for opera­

tional management. In this paper, models of ammonia and dissolved oxygen are developed
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using the extended Kalman filter (EKF) technique applied to data obtained from the

automatic monitors and the utility of such forecasting schemes is discussed.

2 MODELING FOR WATER-QUALITY MANAGEMENT

There has been a tendency in recent years to categorize water-quality models as

either planning or operational management aids. However, such a breakdown is not

strictly correct since planning models provide the "steady state" or annual average

water-quality conditions and identify measures which alter the natural distribution of

water quality in time and space in accordance with an overall development objective.

Steady-state planning models do not account for the uncertainties in the system such as

errors associated with sampling measurement and the imprecise knowledge of system

mechanisms; they provide only a rough guide to likely future water-quality levels.

By contrast operational management is concerned with the short-term (hourly or

daily) behavior of water quality and models are required for selecting optimal operating

rules and control procedures and providing real-time forecasts of water quality in river

systems.

A third intermediate stage between planning and operational models is required

during the detailed design of a water-resource system. Here, there must be some con­

sideration of risk and information on the day-to-day changes in river quality is required,

since it is the transient violation of water-quality standards that creates particular prob­

lems. The approach of digital simulation provides a convenient method of analyzing

systems during this design phase and historic and synthetic inputs can be simulated and

information on the distributions of water quality used to assess risk.

If the model is to be useful for the purpose of design it should possess the following

properties:

I. It should be a truly dynamic model, capable of accepting time-varying input

(upstream) functions of water quality which are used to compute time-varying

output (downstream) responses.

2. The model should be as simple as possible yet consistent with the ability to charac­

terize adequately the important dynamic and steady-state aspects of the system

behavior.

3. It should provide a reasonable mathematical approximation of the physicochemical

changes occurring in the river system and should be calibrated against real data

collected from the river at a sufficiently high frequency and for a sufficiently long

period of time.

4. It should account for both the inevitable errors associated with laboratory analysis

and sampling, and the uncertainty associated with imprecise knowledge of the

pertinent physical, chemical, and biological mechanisms.

3 AN INTEGRATED MODEL OF FLOW AND WATER QUALITY

Mathematical models which satisfy these four properties have been developed

during the recent Bedford Ouse Study (Whitehead et al., 1979, 1981) and the principal
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FIGURE 1 Interaction between hydrological and water-quality models.

interactions between flow and water-quality components of the model are illustrated

in Figure 1. The underlying hydrology of a river system is modeled using a deterministic

nonlinear storage model to relate flow variations at downstream points on the system

to input flows at the upstream system boundaries. Having accounted for most of the flow

variations with the deterministic streamflow model, the residual between the deter­

ministic model output and the observed downstream flow is modeled using stochastic

methods of time-series analysis (Whitehead, 1979). The stochastic time-series models

represent the residual flow variations due to rainfall and runoff effects. As snown in

Figure 1, information on flow is transferred to physicochemical models of water quality

which contain the principal mechanisms governing water-quality behavior, based on a

mass balance over the reach.

The structure of these models is based on a transportation delay/continuously

stirred reactor (CSTR) idealization of a river (Beck and Young, 1976). The mathematical

formulation of this model is in terms of lumped-parameter, ordinary-differential

equations and draws upon standard elements of chemical engineering reactor analysis

(see, for example, Himmelblau and Bischoff, 1968). As indicated by Whitehead et al.

(1979), this idealization can be shown to approximate the analytical properties of the
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distributed-parameter, partial-differential equation representations of advection dis­

persion mass transport in addition to the experimentally observed transport and dis­

persion mechanisms (Whitehead, 1980).

The principal advantages of this model over the equivalent partial-differential

equation descriptions are:

(a) the simplified computation required to solve the lumped-parameter differential

equations;

(b) the availability of statistically efficient algorithms for model identification and

parameter estimation, which can only be readily applied to the lumped­

parameter form;

(c) the availability of extensive control system methods which may be used for

management purposes and are most suited to the ordinary-differential equation

model.

The rna thema tical form of the model is derived from a component mass balance.

For the CSTR

(dx/dt)(t) = (Q/V)(t) li(t) - (Q/V)(t)x(t) +Set) + ~(t)

and for the transportation delay

li(t) = u(t - ret))

where

(1)

u(t)

ii(t)

x(t)

S(t)

~ ( t )

Q(t)

V=
ret)

t =

the vector of input, upstream component concentration (mgl- I),

the vector of time-delayed input, upstream component concentration

(mgl- I),

the vector of output, downstream component concentration (mg I-I),

the vector of component source and sink terms (mg I-I),

the vector of chance, random disturbances affecting the system (mgl- I),

the stream discharge (m 3 day-I),

the reach volume (m3
),

the magnitude of the transportation-delay element (day), and

the independent variable of time.

The errors associated with the laboratory analysis and sampling are included in the

observation equation

yet) = x(t) +'let)

where

(2)

yet) the vector of observed (measured) downstream component concentration

(mgl- I), and

'let) the vector of the chance measurement error.
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Equations (I) and (2) provide the basic description of the conceptual water-quality

model. The identification and estimation of these models against water-quality data is

given in detail elsewhere (Beck and Young, 1976; Whitehead et a!., 1979, 1981).

4 THE BEDFORD OUSE STUDY

The Bedford Ouse Study was initiated in 1972 by the Great Ouse River Division

of the Anglian Water Authority and the Department of the Environment. The objective of

the study was to develop and utilize water-quality models in the planning, design, and

operational management of the Bedford Ouse River system in central eastern England.

In particular the development of the new city of Milton Keynes (see Figure 2) is likely

to have a considerable impact, and effluent from the city is discharged about 55 km

upstream of an abstraction plant supplying water to Bedford.

The research has therefore been directed towards obtaining models of water quality

which could be used to investigate the impact of effluent on the aquatic environment.

Details of the Bedford Ouse Study are given elsewhere (Bedford Ouse Study, 1979;

Whitehead et al., 1979, 1981) and the integrated models of flow and water quality

discussed in the previous section have been extensively applied to the Bedford Ouse

River system. For example, a typical simulation of flow based on data from the upstream

flow-gauging stations and the daily rainfall in the area is given in Figure 3. This shows

the simulated river flow superimposed on the observed flows together with a plot of

the residual error. The mean percentage error of 8.6% is within the accuracy of the

flow-gauging stations estimated at 10% by the Great Ouse River Division. In addition,

the model explains 99% of the variance of the original flow series and the errors are

Bedford
effluent

• Automatic monitors

o Flow gauging stations

River Ouse \

River Ouzel Milton Keynes
effluent

FIGURE 2 The Bedford Ouse River system.
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FIGURE 3 Simulated, observed, and residual flows on the Bedford Ouse over 1972.

within 10% of the observed flow for 70% of the time. The model has been validated using

several years data and it appears that the combination of a deterministic flow-routing

model and the stochastic rainfall-runoff model provides a satisfactory representation of

the system.

4.1 Assessing the Impact of Effluent on River Water Quality

Water-quality models for the Bedford Ouse have been developed for chloride, dis­

solved oxygen (DO), biochemical oxygen demand (BOD), total oxidized nitrogen (TON),

and ammonia.
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A typical simulation for nitrate over 1974 is given in Figure 4 and again upstream

water-quality information can be used to reliably simulate downstream behavior. In

addition, since the models are based on mass-balance principles, it is possible to assess

the impact of effluent in the river system. Figure 4 shows the effect on downstream

nitrate levels assuming an effluent flow from Milton Keynes of 114,OOOm3 day-1 with

nitrate levels of 10 mg I-I. During high flow conditions the impact of the effluent is mini­

mal because of dilution effects, and upstream sources of nitrogen and runoff effects

predominate. In this situation nitrate treatment at Milton Keynes would have relatively

little effect and alternative methods of overcoming the high nitrate levels are required,

such as blending with groundwater or reservoir water at the abstraction plant at Bedford.

During low flow conditions and increased temperature levels during summer, the back­

ground levels of nitrogen fall, and the effluent effect is more significant.

In addition to providing time-varying concentrations at the downstream point,

the models may be used in a Monte Carlo simulation study to provide predictions directly

in terms of probability distributions rather than exact values (Whitehead and Young,

1979). The stochastic simulation approach is extremely useful where analytical solutions

are difficult or even impossible to obtain, as is often the case with reasonably complicated

dynamic systems. The system calculations (usually simulations) are performed a large

number of times, each time with the values for the stochastic inputs or uncertain parame­

ters selected at random from their assumed (i.e., estimated) parent probability distri­

butions. Each such random experiment or simulation yields a different result for any

variable of interest and when all these results are taken together the required probability

distribution can be ascertained to any required degree of accuracy from the sample

statistics. The degree of accuracy of the probability distribution function estimated in
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this' manner is, of course, a function of the number of random simulations used to

calculate the sample statistics, but it is possible to quantify the degree of uncertainty

on the distribution using nonparametric statistical tests such as the Kolmogorov-Renyi

statistics.

Monte Carlo simulation is a flexible, albeit computationally expensive tool with

which to investigate certain design problems. For example, the water-quality standards

that are proposed in the Bedford Ouse Study (1979) are presented in terms of the

percentage of time that a water-quality level is exceeded, and therefore, provide a

reference against which the water quality can be tested. It would be possible to

perform Monte Carlo simulation analysis using the water-quality models developed

for the study section of the Bedford Ouse and making various assumptions about

future levels of effluent input. The outcome of such an analysis would be probabil­

ity density functions for the water-quality states, which could be compared directly

with the water-quality standards. Such information would be extremely useful in

assessing the impact of effluent on the system and determining the degree of treatment

necessary at Milton Keynes in order to ensure satisfactory water quality at the abstraction

point.

TABLE 1 Effluent conditions used to assess the impact on aquatic environments.

Flow rate BOD concentration in effluent Variance of
(m 3 S-I) (mgl- 1

) BOD levels

Case 1 0.1 5 1

Case 2 0.4 10 4

Case 3 1.0 10 4

An initial assessment of the impact of Milton Keynes effluent on the aquatic

environment may now be obtained using Monte Carlo simulation; details are given in

Whitehead and Young (1979). Altogether three effluent conditions were considered at

different flow rates and BOD levels, as shown in Table 1. It was assumed that the effluent

has no dissolved oxygen present; this condition represents the worst situation but is

not unrealistic, since the effluent is to be pumped directly from the treatment works

via a 4-km pipe into the river. Effluent BOD levels fluctuate in practice and a stochastic

component defmed by a noise signal of variance of 1, 4, and 4mgl-\ respectively, was

added to the three BOD levels shown in Table 1. The distributions of BOD and DO at

Bedford given these three effluent conditions are compared with the present situations

in Figure 5. At low discharge conditions there is relatively little effect on the aquatic

environment. At the 1m 3 s- 1 condition, however, the mean BOD level has risen to

4.5 mg I-t, the mean DO level has fallen to 6.5 mgr1
, and the DO distribution ranges

from 4.5 to 9 mg I-I. These distributions represent only an initial assessment of the

impact of Milton Keynes effluent, and an updated prediction based on a reestimated

model in two years time may indicate an improved situation. On the other hand the DO

levels may be adversely affected by the changing biological nature of the river and some

form of control action may be necessary to improve the DO distribution.



Modeling and forecasting water quality in non tidal rivers: the Bedford Ouse 329

.? 1.0 ~ - . : ; : - - - > 1.0../ .'=
i~I I

.g 0.8 I. / ..a 0.8I .

'"
[/

..a I I ..a ./

0 /. i 0 I.

a. 0.6 a. 0.6 / I
I l ./

Ql I I Ql
1/

> 0.4 ;. i .~ 0.4
II

.;:; ./

~ I l
./ ,.

'" II

E0.2 fi
I

~ 0.2 i I

~/ /1'-

80.0 80.0 /-./ ,-

0.0 3.0 6.0 9.0 12.0 15.0 0.0 3.0 6.0 9.0 12.0 15.0

BOD (mg/I) DO (mg/l)

FIGURE 5 Distributions of DO and BOD at Clapham obtained from the Monte Carlo simulation

study.

5 THE REAL-TIME MONITORING SCHEME FOR THE BEDFORD OUSE

In the short-term operational management of water-resource systems, a major

requirement is for information on the present condition of the river system and on future

changes in water quality. Operational managers must be able to respond quickly to

emergency situations in order to protect and conserve the river and maintain adequate

water supplies for public use. Moreover, the costs of water treatment and bankside

storage are particularly high and there are therefore considerable benefits to be gained

from the efficient operational management of river systems from the viewpoint of water

quality (Young and Beck, 1974; Whitehead, 1978; Beck, 1979; Rinaldi et aI., 1979).

In recent years there has been some progress towards providing more efficient

operational management by the installation of automatic, continuous water-quality

monitors on river systems. These measure such water.quality variables as dissolved

oxygen, ammonia, and temperature, and, if combined with a telemetry scheme relaying

information to a central location, provide immediate information on the state of the

river for pollution control officers. Whilst the reliability of such schemes is still rather

poor, there is now an opportunity to use this information together with mathematical

models for making real-time forecasts of water quality.

The practical problems associated with the continuous field measurement and

telemetry of water quality have largely limited the application of on-line forecasting

and control schemes. Continuous flow of water past sensors for measuring water quality

gives rise to severe fouling of optical and membrane surfaces, thereby drastically reducing

the accuracy of the data produced. In recent years, however, there have been several

studies and applications of continuous water-quality monitors (Briggs, 1975; Kohonen

et a!., 1978). Most UK water authorities have established monitoring and telemetry

schemes (Cooke, 1975; Hinge and Stott, 1975; Caddy and Akielan, 1978) and report

reasonable reliability provided the monitors are regularly maintained. More recently,

Wallwork (1979) has described an application on the River Wear in northeast England

where a continuous monitor is used to protect an abstraction point.

The application of particular interest in this paper is an extensive monitoring

and telemetry scheme which has been developed along the Bedford Ouse River system.
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FIGURE 6 Monitoring, telemetry, and mini/microcomputing system operational management.

As indicated in Figure 6, automatic water-quality monitors have been installed at several

sites along the river and data on dissolved oxygen, pH, ammonia, and temperature are

telemetered at four-hourly intervals to the central control station located in Cambridge.

It is proposed to extend this telemetry scheme to include information on flow and such

variables as rainfall and solar radiation, and to use a mini/microcomputer located in

Cambridge to analyze the data on-line. The system will provide rapid information on

the present state of the river and will incorporate a dynamic water-quality model for

making real-time forecasts of flow and quality at key locations along the river system.

The data from the automatic monitors are telemetered at four-hourly intervals

to the central master station in Cambridge and, in order to assess and model the short­

term behavior, data have been obtained for the monitoring stations located at Sharnbrook

and Tempsford (see Figure 2) for the period from July to November 1978. The stretch

of river between these two sites is of particular interest to the Anglian Water Authority

because of the location of the Bedford Water Division abstraction plant at Clapham,
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the discharge of effluent from Bedford Sewage Works, and the abstraction of water at

Offord just downstream of Tempsford.

Data have been obtained for dissolved oxygen, ammonia, flow, temperature, and

solar radiation together with data on the quality and quantity of effluent from Bedford

Sewage Works. A plot of dissolved oxygen at the upstream site is given in Figure 7 and

shows clearly the daily oscillations caused by oxygen production and consumption

processes, and the longer-term fluctuations which are due to other variables such as

temperature and streamflow. Initially, mathematical analysis of these data has been

restricted to the first 108 samples (18 days) since this period corresponds with a major

storm event and high levels of ammonia in the river downstream of the sewage works.

6 AMMONIA AND DISSOLVED OXYGEN MODELS

The model of ammonia and dissolved oxygen is based on the mass-balance descrip­

tion of eqn. (1) but contains additional terms to describe source and sink processes

such as the nitrification of ammonia and the production of oxygen by photosynthesis.

The river between Sharnbrook and Tempsford has been divided into four reaches with

reach boundaries corresponding to the abstraction plant at Bedford, the Bedford Sewage

Works, and an intermediate point between the sewage works discharge and the Tempsford

monitor. The upstream ammonia concentrations are particularly low « 0.05 mg r 1
)

and therefore the ammonia model has been formulated for just the two reaches below

the sewage works. The models identified using the EKF are as follows:
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Dissolved oxygen

P. G. Whitehead

dxddt (3)

(4)

(5)

Ammonia

(6)

dxs!dt

where

(7)

(8)

Xl, X2, X3, X4 = DO at the downstream boundary of the four reaches (mgr 1
),

Xs, X6 = the ammonia concentrations at the downstream boundary of the

third and fourth reaches,

u 1 = the upstream DO concentration entering the first reach at Sharn­

brook (mg 1-1),

Ue = the ammonia in the effluent discharge calculated as the effective

instream ammonia level (mg 1-1),

Q = the flow rate measured at Bedford (m 3 day-I),

S = a sunlight term to account for addition of oxygen by photosyn­

thesis,

VI, V2 , V3 , V4 = volumes of the reaches (m
3
),

k 1 = the rate constant associated with oxygen production by photo­

synthesis (day-1),

"-2 = the loss of DO caused by BOD upstream of Bedford (mg 1-1 day-I),

k3 = the loss of DO caused by BOD downstream of Bedford (mgl- 1

day-I), and

k4 = the nitrification rate (day-I).

The sunlight term, S, is a function of solar radiation, Sr (see Water Research Centre

Annual Report, 1968) and is determined as

The constant 4.33 in eqns. (5) and (6) represents the mass of oxygen removed from the

water for each unit mass of ammonia nitrified.

One feature of particular interest in this model is the inclusion of the flow term,

Q, in the ammonia nitrification expression in eqns. (5)-(8). The flow is included to

account for the lower nitrification rate occurring under high flow conditions (Garland,
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FIGURE 8 Recursive estimate of ammonia-decay coefficient and measured flow at Tempsford.

1978). During the initial EKF runs the flow term was not included and the parameter

k4 , as shown in Figure 8, is estimated recursively and appears to be inversely propor­

tional to the flow, Q. Inclusion of the flow term and reestimation of k4 produced an

essentially constant or slowly varying parameter, as shown in Figure 9. The higher flows

tend to flush the reach of the nitrifying bacteria which are responsible for the conversion

of ammonia to nitrite and nitrate and hence reduce the nitrification processes. The EKF

is particularly useful in identifying this behavior and reducing an essentially time-varying

parameter model to a model which is time-invariant (Whitehead, 1979).

The other parameters in the dissolved oxygen model do not vary significantly

over the sampling period, as shown in Figure 9, although the parameter k 1 increases

slightly during the estimation. This is most probably due to the presence of large algal

populations in the river, which have not been explicitly included in the model. During

the course of the Bedford Ouse Study (1979) the sunlight term was modified to account

for the algal populations using cWorophyll-a concentrations as a measure of the oxygen­

producing matter in the river. In the present study, cWorophyll-a data are not available

and the sunlight term is therefore dependent on solar radiation only. As shown in

Figure 10, there are large diurnal variations in dissolved oxygen which are indicative

of algal activity, and further work incorporating the algal components is therefore

required.

The simulation of dissolved oxygen and ammonia, as shown in Figure 10, is

reasonable although the peak of the ammonia is considerably underestimated. This may

be due to the inaccurate measurement of effluent flow from the sewage plant during

the peak of the storm and the additional inputs along the reach from agricultural and

urban runoff.

7 CONCLUSIONS

The design of a water-resource system from the viewpoint of water quality has

conventionally been based on "steady-state" models which provide information on

annual average conditions. However, for many design problems, detailed information

on the transient behavior of water quality is required together with a description of the
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stochastic aspects of water quality. Such information can be obtained using the inte­

grated models of flow and water quality developed during the Bedford Ouse Study.

In this paper the models have been used to assess the impact of effluent on the Bedford

Ouse River.
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In recent years continuous water-quality monitoring schemes have been developed

in conjunction with telemetry systems to provide real-time information for operational

management. The rapid development in microcomputers has enhanced such schemes

by providing considerable analytical power for on-line data-processing at relatively low

cost. The application of real-time forecasting and control of water quality along critical

stretches of river systems is therefore an option available to operational management.

Such an application has been considered for the Bedford Ouse river system and this

scheme is currently being implemented by the Anglian Water Authority and the Institute

of Hydrology.
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ADAPTIVE PREDICTION OF WATER QUALITY IN THE

RIVER CAM

H.N. Koivo and J.T. Tanttu

Tampere University of Technology, Tampere (Finland)

1 INTRODUCTION

Modeling can be used for two main purposes - prediction or control. This must

be kept in mind when methods for either, or both, of the purposes are chosen. In this

paper the prediction of water quality in a river is investigated.

Prediction or forecasting has received much attention, especially in the time·series

literature (Brown, 1963; Coutie, 1964; Box and Jenkins, 1970). Applications of fore·

casting methods to water-pollution research have been described by, for example,

Kashyap and Rao (1973) and Beck (1977). In addition, a very thorough account of

related modeling aspects has been given by Beck (1978), in which river water quality

is specifically discussed. In this volume, the papers by Ikeda and Itakura (1983) and by

Tamura and Kondo (1983) describe the application of the group method of data handling

to forecasting.

In this paper a recently developed adaptive self·tuning predictor for multivariable

stochastic processes (Tanttu, 1980) is used for real-time prediction of water quality in

the River Cam.

The field data are given in Beck (1978). The basic idea of a self· tuning predictor

is easy to explain: instead of identifying plant parameters and then constructing a multi·

variable predictor, predictor parameters are identified and updated at each step. This

technique was suggested by Wittenmark (1974) and Holst (1977) for the scalar case. It

was motivated by the success of self·tuning controllers (Astrom and Wittenmark, 1974;

Koivo, 1980) and, especially in the multivariate case, by the ease with which compu·

tations can be performed compared with the explicit scheme.

2 REVIEW OF THE SELF·TUNING PREDICTOR

Many time-series can be described by an autoregressive moving average (ARMA)

model (Box and Jenkins, 1970), which in the multivariable case takes the form
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+ Cnce(t - nc) (t == 0, 1, ...) (1)

where yet) E SfP is the (measured) output, e(t) ESfP and teet), t == 0, 1, ... } is a

sequence of independent, equally distributed random vectors with zero mean and

covariance R. Introducing the backward shift operator q-I, q-Iy(t) := yet - 1), eqn. (1)

can be written in the more compact form

(2)

where the p x p polynomial matrices are given by

The matrices Ai, Ci (i == 1, 2, ... , n) are assumed to be time-invariant and they may

also be zero. It is further required that det A(z) and det C(z) have all their zeroes outside

the unit disk, i.e., the process is stationary and invertible (Box and Jenkins, 1970).

The following notations will be used below. yet + kit) is the k-step-ahead prediction

of outputy(t + k), kEf. The prediction error at time t + k is

E(t + k) == y(t+ k)- y(t+ kit)

It can be shown (Tanttu, 1980) that model (2) can be written in the form

(3)

(4)

where yet + kit) is the prediction that minimizes the loss function (the minimum variance

prediction) :

the prediction error is then given by

E(t + k) == E(q-I )e(t + k)

The key aim is now to estimate recursively the parameters of the model

(4')

so that the estimation error wet) is minimized. The matrices A(q-I) and B(q-I) can be

calculated if matrices A(q-I) and C(q-I) of model (2) are known. Then according to

eqn. (4) the minimum variance prediction is obtained from
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(5)

If model (4') is used, however, and the matrices A(q-l) and B(q-l) are estimated recur­

sively, the new prediction is calculated from

(6)

Now the prediction algorithm can be presented.

2.1 The Prediction Algorithm

2.1.1 Step 1: Choosing the Model and Initial Values

Choose the integers m and I in eqns. (7) and (8):

(7)

(8)

and the initial values of the matrices ..10 , AI, ... ,Am' Bo,R1 , ••• ,Rz•

2.1.2 Step 2: Estimation

Choose the matrices Ai (i = 0, 1, ... , I), Rj (j = 0, 1, ... , m) in

so that the estimation error {W(t)TW(t)} is minimized.

2.1.3 Step 3: Prediction

Compute the predicted value ofy(t + k) from

The well-known recursive parameter-estimation algorithms, in particular the recursive

least-squares (RLS) method (see Appendix) and its variant the square-root algorithm

(Peterka, 1975; Koivo, 1980) can be used in step 2 if the data vector, parameter matrix,

and "measurement vector" are defined as follows:

z(t) = E (t)

(9)

(10)

(11)
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Using the above notation the prediction algorithm takes the following form.

2.1.4 Algorithm 1

(I) Read the new outputy(t).

(2) Form the vectorsx(t) and z(t) according to eqns. (9) and (11).

(3) Update the parameter matrix

using the RLS method.

(4) Compute the new prediction from

(5) Set t := t + I and return to (I).

2.2 A Modified Algorithm

Usually the predicted signal contains deterministic or almost deterministic com­

ponents. These parts of the signal may be handled by adding an extra measurement

vector vet). Now we estimate the parameters of the model

where vet - k) is the additionalp-vector and

is a p x p polynomial matrix. The new prediction is computed from

This can be stated in the form of the following algorithm.

2.2.1 Algorithm 2

(1) Read the values ofy(t) and vet).

(2) Form the data vector

x(t) = [ET(t-k),ET(t-k-I), ... ,ET(t-k-m);

yT(tlt -k),yT(t - lit - k - 1), ... ,yT(t -lit - k -I);

vT(t-k),vT(t-k-1), ... ,vT(t-k-r)]

(3) Update the parameter estimate matrix

(13)
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(4) Compute the new prediction from

(5) Set t := t + 1 and return to (I).

3 A CASE STUDY - THE RIVER CAM

343

The algorithms developed were applied to the field data presented in Beck (I978)

on the DO and BOD concentrations of the River Cam. A restriction was that only 81

samples were available (80 days). This could have caused problems because in the com­

puter simulations it usually took 10-20 steps before the prediction and parameter esti­

mates became satisfactory.

The origin of the data and several models of DO-BOD-algae interaction are dis­

cussed in Beck (I978). In the present case the following notation is used. The data

obtained at measurement station D (see Figure 1) are denoted by

[

YI (t)J
y(t) =

Yz(t)
(t = 0, 1, ... , 80)

where YI (t) is the measured DO concentration (g m-3) and Yz(t) the measured BOD con­

centration (g m-3), both at time t.

EFFLUENT DISCHARGE

WEIR
\ BAIT'S BITE,

RIVER FLOW

BOTTISHAM

200 m 1100 m1-1·--- 4 . 5km ---~_\ \.

I I I WEIR

I I-- DEFINED SYSTEM ----l

U D

FIGURE 1 Schematic definition of the study reach showing the location of the effluent discharge

from Cambridge Sewage Works.
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Similarly the data at measurement station U are denoted by

H.N. Koivo. J. T. Tanttu

(t=0,1, ... ,80)

vet) is used as an auxiliary variable in Algorithm 2; another auxiliary variable, r, was also

used, defined as

(t = 0, 1, ... , 80)

where ri(t) is the stream temperature CO C) and r2(t) is the duration of sunlight (h day-i).

The aim was to predict y(t + k) based on known data at time t, that is y(n) and v(n)

{r(n)}, 0 ,.;;; n ,.;;; t. In the following, one-step-ahead predictors are discussed.

When Algorithm 1 is used, only measured values yet) .. .y(O) are employed to

predict yet + 1). Though the algorithm is self-tuning, some parameters must be pre­

selected: (1) the order of the model, that is, integers m and I in eqns. (7) and (8); (2) the

initial values for the parameter estimation algorithm (see Appendix), that is, P(O) the

initial covariance matrix and 8(0) the initial parameter estimates; (3) (0";;; A";;; 1), the

"forgetting factor"; and (4) the initial values for the predictor. The effect ofP(O) can be

seen from eqns. (A2) and (A3) in the Appendix. It is usually chosen as r x I, where I is

an identity matrix and r a large positive constant. The forgetting factor A is used to put

more weight on recent data; its value should be chosen as less than 1, especially when the

system is time-variant.

Extensive simulations of both self-tuning predictors and controllers have shown

that the effects of parameters described in (2) and (4) above are not significant when

hundreds or thousands of simulation runs are used.

In all examples, the so-called square-root algorithm (see Appendix) was used, since it

is numerically more reliable than the original RLS method. In all the examples that fol­

low, S(O) = 10001 (eqn. A6 in the Appendix), and initial parameter estimates are set equal

to zero, except for Bo, which is equal to I (Bo is inverted in the prediction algorithm).

The initial prediction vector is equal to [8.0,2.oF which is near the true value

[8.0,2.3 F =yeO). Different values of A and different predictor structures are compared

in Table 1. The loss function V is defined as

80

V = (1/61) L ET(t) E(t)
20

TABLE 1 Values of the loss function using Algorithm I.

~ = 1.0 ~ = 0.98
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The initial value in the calculation of V is 20 because the predictor only "settles" after

10-20 prediction steps (this is due to the parameter estimation algorithm). For com­

parison, V = 1.082 when the "trivial" predictor yet + lit) =yet) is used.

The prediction results are shown in Figures 2-5 together with the parameter esti­

mates. The best results are obtained with m = 0, 1= 1. The final values of the elements

of matrix Al are about a x 10-5
, 0 < lal < 1, and thus it is sufficient to estimate matrix

Ao only.

There is also a slight drift in some elements of matrices Ao and 8 1 , Using a for­

getting factor of less than unity yields, however, slightly worse results. It is also inter­

esting to note the similarity of estimated matrices Ao and 8 1 after about 10 steps. This

also holds true for the other cases. The fmal values of these matrices are as in Figure 2:

_ [1.00 -0.00565]
Ao -

0.184 0.698

_ [-0.999 -0.00296]
8 0 -

0.00197 -1.01

_ [1.00 -0.00555]
8 1 -

0.185 0.698

So if we assume that Ao = 8 1 and 8 0 = - I, the model is

or

I(t) = AOI(t -1) + (-1 + Aoq-I)y(tlt - 1) + wet)

(1- Aoq-I)(I(t) + )I(tlt- 1))- wet) = 0

Noting that I (t) +y(tlt - 1) equals yet) we obtain the first-order autoregressive

process

yet) = Aoy(t - 1) + wet)

where

[

1.00 -0.0057]
Ao R::

0.19 0.70

12
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FIGURE 6 Fixed predictor y(t + lit) = AoY(t).
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Also the fixed predictor

yet + lit) = Aoy(t)

was used, and the results are given in Figure 6. The loss function V is equal to 0.209,

which is much worse than the values obtained with self-tuning predictors.

When Algorithm 2 is used, the remarks about preselected parameters hold. There is,

however, one parameter more to select, that is, integer r in eqn. (13).

The results when auxiliary variable v (upstream DO and BOD concentrations) is

used are presented in Table 2, and are also shown in Figures 7-10. It can be seen that

Algorithm 1 gives better results. It is again obvious that Al parameters are not needed

because this matrix is practically zero.

The auxiliary variable r was only used with the structure m = 0, 1= 1, r = 0

(Figure 11). The results were almost equal to those shown in Table 1. So the effect of

r is negligible, which can also be seen from the values of the Go parameters.

12 12
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FIGURE 9 Same predictor structure as in Figure 6(a) but Ais 0.98.
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FIGURE 10 Same predictor structure as in Figure 7(a) but Ais 0.98.
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TABLE 2 Values of the loss function using Algorithm 2.

A = 1.0 A = 0.98

m

o
I

o
o

v

1.052

1.182

m

o
I

r

o
o

v

1.082

1.123

It is clear that the prediction method presented cannot be utilized in real time,

since BOD measurement requires five days to complete. Thus, at time t, only values

Y2(O),Y2(l), ... ,Y2(t - 5) and V2(O), V2(1), ... ,V2(t - 5) are available.

4 CONCLUSIONS

A multivariable self-tuning predictor has been applied to real field data, with

encouraging results. The ease of implementation of the self-tuning predictor is obvious.

The proposed prediction algorithm is particularly useful when the system model is not

well-known or when the system parameters vary slowly with time. The algorithm is

suitable for short-term prediction, but should not be used in long-term forecasting.

A more straightforward prediction algorithm would first fit the system model

and then recursively identify the parameters, which would then be used in a precalculated

optimal predictor. However, computationally this method is more laborious than that

proposed, and therefore it was not used here.
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APPENDIX: RECURSIVE LEAST-SQUARES METHOD

Here the recursive least-squares method is reviewed briefly. We introduce the fol­

lowing notation: a row vector x(t) E.9t P which contains data known at time t, a parame­

ter matrix a= r81 ,8 2 " •. , 8 p ], and a "measurement vector" z(t) E ~ P .

If we try to fit a model of the form

z(t) = aT X(t)T

between z and x, the columns of the parameter matrix can be computed recursively as

follows:

ai(t) = 9 i(t-I)+K(t)[zi(t)-x(t)9i(t-I)] (i= I,2, ... ,p)

K(t) = P(t)x(t)T[I+x(t)P(t)XT(t)r1

P(t+ 1) = {P(t)-K(t)[1 +x(t)P(t)xT(t)]KT(t)}/A

(AI)

(A2)

(A3)

In eqn. (AI), Zi(t) denotes the ith component of z(t). In eqn. (A3) the scalar A is the

exponential "forgetting factor", which is usually chosen so that 0.9 < A:o( 1.0.

In the square-root algorithm the main difference is that, instead of the pet) matriX,

its square-root Set) is updated. Now the equations become

K(t) = sP /a~

P(t+ 1) = S(t+ I)ST(t+ I)

where

(A4)

(AS)

(A6)

Set + I)ij (i,j = 1,2, ... ,p) (P = dim x)
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where Ais the forgetting factor, and

aj = (aJ_1+fj)l!2 U=1,2, .. "p)

j

fj = L S(t)ijX(t)i U= 1,2, ... ,p)
i=1

H.N. Koivo, J. T. Tanttu

(i = 1,2, ... , f)
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UNCERTAINTY AND DYNAMIC POLICIES FOR THE

CONTROL OF NUTRIENT INPUTS TO LAKES

I.H. Fisher

Resource Engineering Department. University ofNew England, Armidale.

New South Wales (Australia)

1 THE PROBLEM OF NUTRIENT INPUTS TO LAKES

Both natural and man-made lakes are receiving increasing nutrient loads, particu­

larly in the forms of sewage and runoff from agricultural land. These inputs may be

treated to a greater or lesser extent prior to discharge into lakes. A lumped representation

of this situation is given in Figure 1. The output is neglected in the following discussion

on the assumption that its impact on the total nutrient load is small in comparison with

the inputs and biological sources-sinks.

The major reason for controlling nutrient inputs is taken to be the prevention of

accelerated primary production, usually in the form of algae and especially blue-green

algae, and the consequent deterioration in the quality of water for drinking or recre­

ational uses. It is usual to postulate that the maintenance of algal concentration at

acceptable levels can be accomplished by maintaining certain nutrient concentrations

below specified levels. This is generally an impossible task for two reasons. Firstly, there

are usually uncontrolled inputs to the lake of a significance comparable with the amounts

removed from the controlled inputs. Secondly, the sedimentary and biological sources­

sinks of nutrients within lakes are subject to large, uncontrolled disturbances, for

example, by wind-induced currents.

Under these circumstances, the best that can be hoped for is the maintenance of

nutrient concentrations below specified levels for a specified proportion of the time.

This is in direct contrast to the aim of achieving specified trajectories (or nutrient con­

centrations), which is so common in the literature of state-variable control theory. It

reflects a fundamental philosophical difference between the physical and environmental

sciences. Given the lack of understanding of the ecological behavior of lakes, it would

be presumptuous, if not dangerous, to aim to achieve particular trajectories of nutrient

concentrations over time. Indeed, from the point of view of maintaining resilience

(Holling, 1978), the system state should be as unconstrained as management objectives

will permit.

The above aim is to be achieved by using an optimal operational policy for the

(partial) control of nutrient inputs, within the constraints of the present plant available
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FIGURE 1 Lumped input-output representation of a lake.

for nutrient removal. The term "optimal" is defined here in a welfare sense; that is, an

optimal policy is one which results in smaller social net costs, however defined, than do

alternative policies. It is quite distinct from the notion of minimizing some squared

deviation from a nominal trajectory of state - a notion often criticized in the control

theory literature (see, for example, Rosenbrock and McMorran, 1971).

2 DEVELOPMENTAL DECISIONS AND OPERATIONAL POLICIES

Management of lake water quality may be considered to comprise two broad

types of decision, namely developmental (long run) and operational (short run). The

former type usually involves capital investment, and results in a decrease in social costs,

however defined, over a future period of many years. Such decisions are taken infre­

quently. The installation of equipment to remove phosphates from river water before

it enters a lake is an example of a developmental decision which might be taken in the

context of controlling nutrient inputs to lakes.

In contrast, operational decisions are made relatively frequently and can be

readily and substantially reversed over time, even if at some significant cost. For such

decision-making, some level of development is assumed to have resulted from develop­

mental decisions taken in the past. Continuing the above example, the degree of phos­

phate removal by the plant over a given time would constitute an operational decision,

which would depend substantially upon the characteristics of the plant installed.

Because the behavior of complex systems must be obtained numerically rather

than analytically from their mathematical representation, it is convenient to assume that

operational decision-making is a discrete process; that is, the decision taken remains

in force for a specified period (the decision period), at the end of which a new decision

is taken. However, there are often practical reasons for using the same decision struc­

ture. Then the operational management of the system involves a sequence of decisions

which are to some extent interrelated through their effects on the system state. Further­

more, it is intuitively evident that each decision in the sequence should be related to the

current system state, if the system's assimilative capacity is not to be impaired. Returning

to the previous example, the degree of phosphate removal should be somewhat dependent
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upon algal biomass or other variables which denote the phosphorus-dominated state of

the lake at a given time.

An operational policy is therefore defined as a procedure for selecting a sequence

of operational decisions (one for each decision period) which takes due consideration

of the system state.

This paper discusses the applicability of simulation and certain techniques from

control theory to the derivation of optimal operational policies for controlling nutrient

inputs to lakes, under the uncertainty associated with uncontrolled disturbances to

the quality of the water impounded. The problems of uncertainty in the estimation of

model parameters and the related uncertainty of field measurements are assumed to

have been resolved previously. However, the effect of these uncertainties on the pre­

dictions will be considered in relation to the combined simulation/dynamic programming

procedure developed in Section 5.

It may be argued that optimal operational policies for nutrient input control may

be derived from operator experience or from simpler models which depend upon the

availability of intensive time-series data for both the inputs and the lake. However, this

is feasible only if the plant (or other developments) have already been installed. Such an

approach is not applicable to the problem of determining optimal plant capacity (or

scale of other developments), because no time-series data are available during the planning

phase. Yet the solution to such a problem is in general strongly related to the operational

policies to be adopted for the proposed development. The remainder of this paper is

written with such problems in mind.

3 SIMULATION

Simulation is the most direct method of deriving optimal operational policies for

renewable resource systems. System dynamics are represented by a set of differential

or difference equations of state which may incorporate constrain ts on system behavior.

Given the initial values of the state variables, methods for calculating inputs, and a

plausible operating policy, the equations of state may be solved simultaneously to yield

the system state over the long-term period of interest. Furthermore, the contribution

of system operation towards some specified objective can be computed for the same

period.

To obtain the optimal operational policy, another simulation run is performed

which differs from the first only in that an alternative operational policy is implemented.

The policy which results in the larger contribution toward the specified objective is

denoted as currently optimal. Other plausible policies are similarly tested against that

currently optimal policy until no further improvement can be found. Then the currently

optimal policy is regarded as the true optimal operational policy for the system. The

procedure is illustrated in Figure 2.

A major advantage of this approach is that complex models and trial operational

policies may be tested. The only requirements are that the state equations and the contri­

bution of system operation to the objective can be formulated algorithmically, and that

computing facilities are adequate for the task. Simplicity of the optimization procedure

is an added benefit. However, there are several inherent difficulties.
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FIGURE 2 Procedure to obtain optimal operational policies by direct simulation. Vi is the value of

the objective function resulting from applying the ith policy; Vopt is the current optimal value of the

objective function; Uopt is the policy resulting in Vopt .

The first disadvantage of the simulation approach is that the currently optimal

policy may yield only a locally optimal value of the objective function. The greater the

complexity of the simulation, the more frequent is the occurrence of local optima, the

more complex is the operating policy, and the less likely are search methods such as

steepest descent or the "complex" method to fmd the globally optimal policy. When

faced with this problem, Zuzman and Amiad (1965) used a partial factorial experimental

design to determine the regions of the problem space which were to be examined by

steepest descent. If the number of such regions is large, this may be unacceptable because

of the computing time involved.

The second disadvantage of the application of simulation is a consequence of the

simplicity of the optimizing procedure - the number of trial policies obtained by
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selecting, at the start of each of n decision periods, one element from a set of m admis­

sible values of control is m n
- which can be extremely large even when m and n are

quite small. To test even a substantial subset of these policies is unrealistic when the

available computer time is limited or expensive. Furthermore, there may be important

interactions between the initial state of the system and the proposed operating policies

which require further simulation runs to elucidate.

The inputs to lakes within each decision period are not known with certainty.

Frequently, they are assumed to conform to probability density functions whose parame­

ters are possibly seasonally varying and are to be estimated from historical records.

Simulation of such systems requires the generation of a sequence of inputs (one for

each decision period) by random sampling from these density functions. If two different

input sequences are so generated from the same set of density functions, significantly

different optimal operational policies are obtained when the two different input

sequences are used in an otherwise identical simulation procedure. That is, a different

operational decision is chosen as optimal for the same (or comparable) decision period,

when faced with the same system state in each case. Yet, such "mixed strategies" are

suboptimal where the probability densities of the stochastic inputs are stationary or

"cyclically stationary" in time (O'Loughlin, 1971). Any deterministic procedure applied

to system models which incorporate stochastic elements will suffer from this contra­

diction.

In a dynamic programming study of optimal operational policies for simple water­

resource systems, Hall and Howell (I963) suggested that the "pure strategy" which is

expected to exist might be obtained by averaging the corresponding elements of the

optimal policies which were derived under different sequences of the stochastic inpu ts.

O'Loughlin (I 971) found that such average policies were considerably less optimal than

those obtained by the stochastic dynamic programming technique discussed in

Section 4.4.

4 TECHNIQUES FROM CONTROL THEORY

4.1 Conventional Control Theory

Conventional control theory is taken to comprise those methods based on the

use of transfer functions in the frequency domain (see, for example, Horowitz, 1963).

The fundamental objection to the use of such techniques for the determination of

policies for controlling nutrient inputs lies in the assumption of linear relationships

between system inputs and outputs.

It is often argued that the assumption of linearity is reasonable for the treatment

of small perturbations about some long-term (low-frequency) behavior of the observed

variables (see, for example, Brewer, 1974). Even if this is true, the low-frequency behav­

ior is usually assumed to be some equilibrium or simple trend, because this is the desired

trajectory which the control policy aims to achieve. For the present problem, a nominal

trajectory is not to be assumed for the reasons given in Section 1. As a consequence,

nonlinear system dynamics must be assumed from the outset, and conventional control

theory is then inappropriate. A further objection to these methods is the difficulty
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involved in incorporating constraints on state and control variables, which is vital in this

case (Heidari et aI., 1971).

4.2 Modem Control Theory

Modern control theory is taken to comprise those methods of control analysis

carried out in terms of state space. In particular, the methods of state-variable feedback

(Salmon and Young, 1979) have considerable appeal from the point of view of designing

robust control policies. However, they suffer from the same deficiencies as conventional

control theory when attempting to derive control policies for nutrient inputs to lakes.

In contrast, the technique of dynamic programming (Bellman, 1957) may be

applied to general nonlinear systems in state-space terms. Constraints on both state

and control variables actually reduce the amount of computation required and are

readily implemented. It will become apparent from the next two sections that dynamic

programming, by itself, is not without its difficulties when applied to the control of

nutrient inputs.

4.3 Deterministic Dynamic Programming

Dynamic programming is based upon Bellman's (1957) principle of optimality

which states that: "an optimal policy has the property that, whatever the initial system

state and initial decision, the remaining decisions must constitute an optimal policy with

respect to the sta te resulting from the first decision".

For the problem of control of nutrient inputs, dynamic programming may be

reformulated as follows.

If x(t) is a vector of n variables which define the state of the system at any time

t, and u(t) is a vector of m variables which define the operational policy, then the

equations of state for the system may be written in discrete form as

x(t + ot) = x(t) + f[x(t), u(t), tJot (1)

where f is some functional form defining the change of state from t to t + ot. In general,

both x and u may be constrained differently at different times so that x EX(t) and

u E U~, t) are the sets of admissible states and controls, respectively, at time t. If the con­

tribution of the controlled system to the objective function over the time t to t + 0 t is

b.J = r[x(t), u(t), tJot

then direct application of Bellman's principle of optimality yields

l(x,t) = min {r[x,u,tJot+l[x+f(x,u,t)ot, t+ot]}
uEU

(2)

(3)

where l(x, t) is the minimum cost which may be accumulated by proceeding from state
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x at time t to any admissible state at final time t f, and r[x, u, t] is the net cost accruing

per unit time at time t.

The iterative functional equation (3) may be solved for discrete values of x and U

to obtain the optimal long-term operating policy for the system by commencing with

estimated values of l[x, u, tfJ and proceeding backwards in discrete time-steps of at

until the initial time to is reached. Figure 3 illustrates the form of the solution for a

constrained problem in one state variable and one control variable. Although formu­

lations which progress forward in time are possible, these require the inverse of the

equations of state. If these equations are at all complex, finding their inverse is impos­

sible, so that forward formulations are not feasible. In contrast, the backward formulation

permits the use of an algorithmic rather than analytic specification of these equations,

i.e., a simulation of the system over each period t to t + at.

In the case of controlling nutrient inputs, the lake system must be considered

stochastic, not only because of the uncertainty associated with inputs, but also because

there are more variables exerting a significant influence on the state variables than can

be incorporated in the dynamic programming formulation.

4.4 Stochastic Dynamic Programming

There are, fortunately, versions of dynamic programming which treat stochastic

changes of system state over the decision period t to t + at. The equations of state now

include a set of random variables Wi, i = 1,2, ... ,V, which affect some or all of the

state variables, so that

x(t + at) = x(t) + f[x(t) , u(t), wet), tJot (4)

The parameters of the joint probability density function (PDF) of the random

variables may vary with time, but the densities are assumed to be independent between

successive decision periods. That is

P[w(1), w(2) ... w(Tf)] = P[w(1)]P[w(2)] ... P[w(Tf)] (5)

where Tf is the number of decision periods and P(y) denotes the probability of y.

Because future states are partly dependent on wet), only their probability of

occurrence is known, even when the present state and the control policy are known.

Hence a function of present and future states and controls can no longer be optimized.

Instead, the expected value of the function is used. That is

J = E {I r[x(t),u(t), wet), t]ot}
w(I),w(2) ... w(Tf) t=1

and

l(x,t) = min {E[r(x,u,w,t)ot+l(x+!(x,u,w,t)ot,t+ot)J}
uEU w

(6)

(7)

Computationally, the difference between deterministic and stochastic dynamic

programming is the manner of evaluating the term inside the braces. In the latter case,
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for a given discretized state x and control u, each discretized value of w (denoted w(a);

a = 1, 2, ... ,A) is substituted into the square brackets of eqn. (7) and the result is

multiplied by the probability of obtaining that w(a). The sum for all possible w is the

required term. That is

E{r(x, u, w, t)bt + I[x + [(x, u, w, t)bt, t + btl}
w

A

= L p[w(a)j{r(x, u, w(a), t)bt + I[x + [(x, u, w(a), t)bt, t + bt]} (8)
a=1

There are, however, several difficulties with such an approach. Firstly, by inspection

of eqn. (8) it is apparent that a stochastic problem involves approximately A times the

amount of computation associated with the deterministic counterpart. This can lead to

prohibitive processing times for problems involving large numbers of discretized states ­

as is the case for the control of nutrient inputs to lakes.

There is a compensating factor, however. The formulation offers a direct means

of imposing probabilistic constrain ts on nutrient concentrations (or other state variables)

of the form

P[x >xmaxl <P* (9)

where P* is the probability with which the state may be outside the acceptable state, in

a single decision period. These constraints, which were proposed in Section 1 as a major

part of the operational objective, may be implemented as follows.

During execution of the computation implied by eqn. (8), x(t + bt) for a given

control u and for each w(a) are computed from eqn. (4) and checked to determine

whether x(t + bt) <xmax . If any of the x(t + bt) do not satisfy this condition, the

associated values of p[w(a)j are cumulated. If this cumulation exceeds P*, then the

given control u is regarded as inadmissible. Of course, p* may vary with time of year

and is related to an annual probability via eqn. (5).

Secondly, for stochastic dynamic programming to be applied to a problem involving

several stochastic variables, a technique is required for the evaluation of the P [w(a)], the

probability of obtaining a particular set of discrete values of wet), the random variables,

at any time t (see eqn. 8). In the case where the elements of w(a), Wi (i = 1, 2, ... , v),

are uncorrelated, the product of the P[w/a)j yields the desired result, so that knowledge

of the discrete univariate distribution for each Wi is sufficient for the purpose.

In general, some or all of the random variables will exhibit marked correlation with

each other. Then the joint probability of obtaining each combination of discrete values

of the Wi must be evaluated separately and stored for use when needed by the com­

putational procedure. For reasons indicated in the next section, the joint PDF of the Wi

may be specified in continuous form. Its conversion to the discrete form needed for

dynamic programming may be accomplished by first assuming that all combinations of

discrete values of the Wi are placed at the center of (hyper-)rectangles in v-dimensional

space. Then the probability of obtaining a particular combination is given by the (v + 1)­

dimensional (hyper-)volume between its (hyper-)rectangle and the projection onto the

(hyper-)surface of the PDF.
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FIGURE 4 Joint probability associated with a particular combination of the stochastic

variables (two-dimensional case).

The case of two random variables distributed joint-normally is illustrated in Figure 4.

Doran (personal communication, 1972) developed an algorithm based on Gauss-Legendre

quadrature to evaluate the probability elements from this distribution. Fisher (I 974) gen­

eralized this algorithm to suit any multivariate normal distribution. It would, with minor

changes, be suitable for any other multivariate distribution, so that the lack of comprehen­

sive probability tables for multivariate distributions and the mismatching of element

limits needed in the dynamic programming problem with those given in the available

tables are no longer barriers to the application of stochastic dynamic programming.

Instead, the chief obstacle to such an application lies in the specification of the

joint PDF for the random variables (wa so that it is appropriate to the particular system

for which the operational policy is to be developed. It is in this respect that simulation

plays a crucial role, as discussed in the next section.

5 COMBINED SIMULATION/STOCHASTIC DYNAMIC PROGRAMMING

There are two factors which prevent the direct application of stochastic dynamic

programming as presented in Section 4.4 to lake inputs. Firstly it is difficult to specify
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a functional form for the state eqns. (4) which is an adequate representation of the

changes which may occur in the lake state over a whole decision period. Even if this

could be done, it will be virtually impossible to evaluate the joint probabilities P[w/a
)]

with an acceptable degree of statistical confidence due to lack of data, at least in the

planning situation referred to in Section 2.

At this point, it is helpful to recognize that stochastic dynamic programming

actually requires the probabilities of changes in the system state from each given dis­

cretized value x(t) to any admissible discretized state x(t + 8t), during the decision period

t to t + 8t. Subsequently, these are referred to as "state transition probabilities". For

simplicity of explanation here, these probabilities are assumed constant over all decision

periods, but for environmental systems generally, different values for different times

of the year would need to be considered.

In these circumstances, the state eqns. (4) may be replaced by an appropriate

simulation of the internally descriptive type, so that the random variables Wi are replaced

by the combined effects of uncertain (stochastic) inputs and endogenous variables which

are themselves neither state variables nor control variables. In the phosphorus-removal

example, if concentrations of algae, soluble reactive phosphorus, and particulate phos­

phorus were state variables for the lake system, a simulation incorporating phosphorus

dynamics as influenced by endogenous variables such as uncontrolled inflows and wind­

induced mixing could be substituted for eqns. (4), as indicated by eqns. (4a):

x(t + 8t) = g [x(t), u]

where g denotes the transformations in the system state produced by the simulation.

The right-hand side of eqn. (8) would then be

B

LP[x(t + 8t)lx(t)]{r[x, u, t] + I [x(t + 8t), t + 8t]}
b:l

(4a)

(8a)

where B is the number of alternative state transitions which may occur within the

decision period in the dynamic programming formulation.

The frequency estimates of P[x(t + 8t)lx(t)] are obtained from a Monte Carlo

simulation possessing the following properties: the initial condition is set at a discretized

state x*(t), and the simulation period is one decision period, t to t + 8t. Such a simu­

lation procedure must be repeated for each admissible discretized value of initial state

to obtain the full set of state transition probabilities required in the computation of

eqns. (4a).

Because large numbers of discretized states are involved in a realistic dynamic

programming formulation, it will generally require far less total simulation time to

perform one large Monte Carlo experiment with the duration of each run still one

decision period, but with the initial conditions randomly sampled from admissible state

space. The state transition probabilities are then obtained from the fundamental multi­

plication theorem

P[x(t + 8t)lx(t)] = P[x(t + 8t),x(t)]/P[x(t)] (I 0)
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I
Optimal operational
policies

FIGURE 5 Combined simulation/stochastic dynamic programming procedure.

where the last term is the marginal probability which is derivable from the Monte Carlo

estimates of the joint probabilities in the usual manner. The combined simulation/

stochastic dynamic programming procedure is outlined in Figure 5.

Fisher (I974) argued that far less simulation might be needed to obtain state

transition probabilities if some multivariate distribution were assumed for the joint

probabilities P[x(t + 8t), x(t)], its parameters were estimated, and probabilities for

stochastic dynamic programming were computed by Gauss-Legendre quadrature as

described in the previous section. For a joint multivariate normal distribution, this proved

efficient computationally, but it was not an adequate description of state transition in

controlled arid grazing systems. For the case of nutrient inputs to lakes, it is unlikely

to fare better because the simulations are of similar complexity. One of the methods

involving direct frequency estimates of state transition probabilities is therefore to be

preferred.

This discussion of the combined procedure contains an important feature con­

cerning uncertainty. In another paper in this volume, Halfon and Maguire (1983) discuss
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the accumulation of uncertainty in predictions which result from prolonged operation

of a simulation. There is very little such accumulation occurring in the combined

simulation/stochastic dynamic programming procedure just described because no simu­

lation is longer than one decision period.

In this section, the role of Monte Carlo simulation in the combined procedure has

been emphasized. However, the optimal policies are obtained directly from stochastic

dynamic programming. Hence, the problem does not arise that different policies are

found to be optimal under different, but equally likely, sequences of stochastic inpu ts,

as it did in the direct simulation approach of Section 3.

6 CONCLUSION

Any method for deriving management strategies for the control of nutrient inpu ts

to lakes must recognize the uncertainties in their behavior induced by stochastic inputs

and uncontrolled endogenous variables. In the particular case of deriving optimal

operational policies, direct simulation adequately treats the complex dynamic nature

of the problem, but it yields conflicting policies for equally likely sequences of the

stochastic system state. Furthermore, even if systematic search techniques are employed,

the simulation approach is computationally inefficient in comparison with techniques

from control theory, because it does not take advantage of the structure of the sequential

decision problem.

For ecological and philosophical reasons, methods from control theory are con­

sidered to be inappropriate if they require the specification of a target trajectory for the

system state. Stochastic dynamic programming is acceptable from this viewpoint, and

it exploits, to computational advantage, the structure of the sequential decision problem

at hand. Furthermore, probabilistic constraints on the state variables may be incor­

porated; indeed, this can lead to improved computational efficiency. It is, however,

limited in the number of state variables which can be comfortably included in the state

equations. More importantly, some method is needed to obtain actual values for the state

transition probabilities.

With suitable modification of the system state equations, Monte Carlo simulation

may be used to provide state transition probabilities which reflect the uncertainties

resulting from large stochastic inputs and uncontrolled endogenous variables. Further­

more, each run of the Monte Carlo experiment is only one decision period in duration, so

that uncertainty in the predictions of system state does not have a chance to accumulate,

as it does in the direct simulation approach.

REFERENCES

Bellman, R.E. (1957). Dynamic Programming. Princeton University Press, Princeton, New Jersey.

Brewer, J.W. (1974). Control Systems: Analysis, Design and Simulation. Prentice-Hall, Englewood

Cliffs, New Jersey.

Fisher, I.H. (1974). Resource optimization in arid grazing systems. Ph .D. thesis, University of New

South Wales.



370 I.H. Fisher

Halfon, E. and Maguire, R.J. (1983). Distribution and transformation of fenitrothion sprayed on a

pond: modeling under uncertainty. In M.B. Beck and G. van Straten (Editors), Uncertainty

and Forecasting of Water Quality. This volume, pp. 117-128.

Hall, W.A. and Howell, D.T. (1963). The optimization of single-purpose reservoir design with the

application of dynamic programming to synthetic hydrology samples. Journal of Hydrology,

I: 355-363.

Heidari, M., Chow, V.T., Kokotovic, P., and Meredith, D. (1971). Discrete differential dynamic

programming approach to water resources systems optimization. Water Resources Research,

7: 273-282.
Holling, C.S. (Editor) (1978). Adaptive Environmental Assessment and Management. Wiley, Chichester.

Horowitz, I.M. (1963). Synthesis of Feedback Systems. Academic Press, New York.

Larson, R.F. (1968). State Increment Dynamic Programming. American Elsevier, New York.

O'Loughlin, G.G. (1971). Optimal reservoir operation. Ph.D. thesis, University of New Sou th Wales.

Rosenbrock, H.H. and McMorran, P.O. (1971). Good, bad or optimal. IEEE Transactions on Auto-

matic Control, AC 16: 552-557.

Salmon, M.H. and Young, P.c. (1979). Control methods and quantitative economic policy. In

S. Holly, B. Rustem, and M.B. Zarrop (Editors), Optimal Control for Econometric Models.

Macmillan, London, pp. 74-105.

Zuzman, P. and Amiad, A. (1965). Simulation: a tool for farm planning under conditions of weather

uncertainty. Journal of Farm Economics, 47: 574-594.



Part Four

Commentary





373

UNCERTAINTY AND FORECASTING OF WATER QUALITY:

REFLECTIONS OF AN IGNORANT BAYESIAN

Mark Sharefkin

Resources/or the Future, Washington, D.C (USA)

BACKGROUND

I was privileged to join in the Task Force meeting of November 12-14, 1979.

Much of the terminology employed by the water quality modelers was new to me, or

used in new ways: calibration, validation, model structure identification are notable

examples. Because I am more at home in the jargon of decision theory and econometrics,

I assumed at first that no more than the usual difficulties of translation were involved.

I am no longer so sure: in fact, I suspect that the two disciplines share more than

terminological imprecision, and in fact, labor under some of the same substantive confu­

sions. In this note I try to identify those confusions, and I will pose what are perhaps

naive solutions.

2 ECONOMETRICS AND WATER QUALITY MODELING UNDER

UNCERTAINTY: SIMILARITIES

Econometricians work almost entirely with nonexperimental data, whereas water

quality modelers work with measurements they have made - with data that are the

products of a conscious experimental design. However, since the Task Force meeting

hardly touched on the experimental design problem - how best to spend a given budget

in gathering data on a particular river or lake - I put this difference aside.

Much more important is the essential similarity: both econometricians and water

quality modelers often work with data that are quite "poor" relative to the rich and

complicated systems they wish to study. In at least this sense, most of the systems that

econometricians study are, in the terminology heavily favored by several Task Force

meeting participants, "badly defmed systems". What some of those participants call

"model structure identification", econometricians call "specification". Many would agree

that, given a "model structure" or, in econometrics, a "specification", the logically

secondary step of estimation is relatively straightforward and less interesting.
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What to do? Econometricians have generally left the specification problem to

the imagination, or worse. One notoriously common practice is to run all plausible

regressions, choose the one with the highest R 2 value, and report it as if it was the first

regression run.

That something is seriously wrong with this kind of practice has long been recog­

nized by econometricians, but a consensus about just what is wrong, and about what

would be better, is only now developing (see, for example, Leamer, 1978). I cannot

report with authority about the prevailing situation in water quality modeling, but

the discussions in Vienna left me with the impression that something similar may be

happening there.

3 "MODEL STRUCTURE IDENTIFICATION" OR "SPECIFICATION":

WHAT IS THE ISSUE?

Because both econometrics and water quality modeling operate in data-poor (i.e.,

data-expensive) regimes, both must make the best possible use of all available information.

Some information lies buried in the data, and we call it "data information"; sometimes

that data information can be efficiently summarized by a few sample statistics. But some

relevant informa tion is prior information, information held by the investigator before even

looking at the data. It seems to be a fact that there are many varieties of prior informa­

tion: Bayesians learn, or try to learn, to live with that fact and its implications. One

important implication: different investigators will interpret the data evidence in different

ways, because their interpretation of that evidence - their a posteriori estimated model

structure - is the result of an exercise in which prior information and data information

are combined. Bayesians can boast a systematic way of combining the two types of

information; non-Bayesians often make that combination implicitly, and sometimes

opportunistically. Bayesians feel obligated to report fully their prior information and the

map of that prior information into a posteriori information. Non-Bayesians see them­

selves as under no such obligation: frequently their prior information, and the use they

have made of it, can only be seen dimly, in their final, reported estimates.

"Model structure identification" and "specification" are processes in which prior

and data information are combined. At the Task Force meeting I sensed underlying dis­

agreement about what prior information was available on the systems being modeled

and about what that prior information was worth. There also seemed to be open disagree­

ment about how to combine prior and data information. The first such disagreement is

understandable, and even predictable; the second is neither.

4 WHAT KIND OF PRIOR INFORMATION IS AVAILABLE FOR WATER

QUALITY MODELING?

Individuals will differ in their prior information, and from one perspective much

of the discussion at the Task Force meeting consisted of articulation of those disagree­

ments. Two papers, both concerned with specification and estimation of models for the

control of algal blooms in lakes, can be contrasted to illustrate the range of prior infor­

rna tion deemed relevant by at least some water quality modelers.
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Paper A (Chahuneau et aI., 1983) describes a diffusion equation based hydro­

dynamical model of a lake: that model will be one module of a larger management­

oriented model of the lake. All parameters of the underlying partial-differential equation

were assigned a certain prior value, except for two; nonlinear programming was used to fit

those two remaining parameters by minimizing a quadratic distance between observed

and predicted temperatures at two depths. Paper B (Hornberger and Spear, 1983) aims at

determining a best strategy for control of algal blooms in a lake, but the approach is

entirely different. A simple dynamic model of the system is constructed - with relatively

little a priori structure imposed. That model, like the model of Paper A, has many more

parameters than can be "confidently estimated" from data available on the lake. The

authors of Paper B raid the literature for decent values of many of the relevant parameters

which have been measured elsewhere, and then fit the remaining undetermined parameters

by imposing the requirement that the fully-fitted equation reproduce a few rough, quali­

tative features of the lake, including of course the spectacular and objectionable algal

blooms, the control of which motivates the whole exercise.

At one level, the essential difference between the two approaches is a difference

in the interpretation and treatment of prior information. The authors of Paper A bring

to their work two kinds of prior information: measured characteristics of the lake,

including the temperature distribution, and the "prior information" embodied in the

diffusion equation employed, and in the coefficients of that equation assigned fixed

values before the optimization. The authors of Paper B, on the other hand, import prior

information on those physical parameters measured in similar systems elsewhere and

on the gross qualitative features of the system they are trying to control.

Who is right? That question is meaningless. A more instructive question is: which

judgment is closer to the mark regarding the kind of prior information we now have,

and might buy at reasonable cost, on lake ecosystems? Below I offer some speculation:

here, I look at the problem in the following perspective. Because of my ignorance of

the subject, I would be very unwilling to let either prior or data information dominate

the mapping of prior in to posterior for water quality modeling: this much I learned at

the Task Force meeting. For that reason, I would choose to cast prior information in

a form in which it might be substantially modified by the kind of sample information

(data information) readily available on water quality systems. My suspicion is that only

the approach taken in Paper B will do. The only way in which the key piece of prior

information exploited in Paper A - the partial-differential equation - can be "dis­

credited" by the data information is if the optimization assigns the two estimated coeffi­

cients values that are wildly implausible.

But it is a poor critic indeed who cannot find fault with everything. Turning to

the way in which prior information is mapped into posterior information, I can find

fault with both Papers A and B, and can even find a way to make some possibly construc­

tive suggestions.

5 MAPPING PRIORS INTO POSTERIORS

Paper B devises a method for mapping priors into posteriors and is explicit about

that method. Prior information in this case is of two kinds: the four nonlinear dynamic
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equations chosen to represent the system and rectangular prior probability distributions

on the parameters entering into those equations. Those intervals defining the prior

probability intervals are taken from the literature on other, presumably similar, water

bodies.

The "data" information enters in a way that is novel and is the novel feature of

the paper. "Data" means certain gross structural features of the system, in particular

the algal blooms. These are data in the sense that they are the only observed features

of the dynamic system, and they are also data in the sense that they are to be tested

against prior information.

Paper B sets up that confrontation as follows. Each prior parameter set implies

a specific nonlinear deterministic equation set. If that equation set defines a system

trajectory consistent with the "data" ~ the inequality constraints imposed upon the

real-time behavior of the system - then the corresponding parameter-space point is

assigned to one region (behavior), and to another region (nonbehavior) if the inequality

constraints are violated. Monte Carlo methods allow exploration of the parameter-space

hypercube, and - through run-by-run comparison of the output with the inequality

constraints - partition off the original parameter-space hypercube into two (presumably

connected) regions, "behavior" and "nonbehavior". If the behavior subregion is "large",

then the prior information is concluded to be reasonable and reasonably compatible

with the data evidence. The implication, for management and control, is that selection

of a point from the behavior region, and use of the corresponding equation, may be a

sensible procedure.

Much as this procedure cheers a Bayesian, I lodge the following complaint: the

way in which the procedure uses data evidence to map priors into posteriors is, to say

the least, less than subtle, and may seriously distort the data evidence. In particular,

posterior probability distributions are always uniform distributions on a subregion of

the support hypercube of the original prior distribution. Put another way, the data

evidence can never be strong enough to drag us ou t of the original prior parameter region.

The very binary nature of the inequality constraints on system trajectories - those

trajectories are either consistent with the inequality constraints or they are not - rules

out any finer discrimination between prior points. (See the example in the Appendix.)

One of the stronger arguments, if not for Bayesian econometrics then for a style

of presentation of econometric results with a Bayesian flavor, goes as follows: the best

way to get a sense of the power and persuasiveness of the data evidence is to report

the way in which the data evidence maps priors into posteriors. In Paper B, only one

such mapping is presented. In the next section I suggest alternative methods - for com­

putation and reporting - in the spirit of Paper B.

Paper A can be similarly dissected. Prior information in this case is the partial­

differential (diffusion) equation which is the basis for the hydrodynamical model of the

lake, taken together with those coefficient values which are assigned certain point values,

typically from the literature on other, similar water bodies. The data information consists

of the relatively few measurements made on the lake, typically temperatures at specific

points and levels, and several inflow values.

The approach in Paper A is classical (as compared to Bayesian): the remaining

(unassigned) model parameters are determined by nonlinear optimization, with the

criterion being the sum of squared deviations between data and model prediction points.
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For purposes of comparison with Paper B, however, we choose to imagine that the

authors of Paper A were to rework their prior information and data information, this

time in a Bayesian spirit. This could be done as follows. First assign prior probabilities

to the two model parameters that are not assigned certain point values. Those prior

probabilities on model parameters imply corresponding prior probabilities on the physical

variables for which some data exist, obtained by solving the model repetitively over the

prior in tervals.

Now, beginning from the two optimized model parameters obtained in the non­

linear optimization, compute equal likelihood contours in the space of the unassigned

model parameters. Taken together, the equal prior probability surfaces and the equal

likelihood surfaces define a set of best compromises between prior and data information.

They also indicate how decisive or persuasive the data evidence is against the sample

evidence. If, for example, the data likelihood surface embraces all reasonable priors,

then the data evidence is, for this way of comparing data and prior evidence, relatively

weak.

My own suspicion is that, for a large, over-parameterized model, this will usually

be the case. A key criterion in the choice of a model should be the following: that

the model permits a constructive and instructive confrontation between prior and

data evidence. Larger, over-parameterized models typically will fare badly under this

criterion.

6 SOME CONSTRUCTIVE SUGGESTIONS

1 have argued, above and elsewhere, that both the model order criterion - or the

information criterion from which it derives - and least-squares estimation have serious

deficiencies (see Sawa, 1978; Leamer, 1979). The first is simply meaningless, and the

second is, except for a few very special cases, strictly dominated. Here is a proposal

for reform, followed by a proposal for a fair test of the relative merits of the modeling

approaches exemplified by Papers A and B.

My proposals for reform are couched in the form of a set of statements. I hope

these statements will meet with general agreement. First, in water quality modeling

for water quality management, both prior and data information are exploited. This is a

triviality worth repeating: there is data information, typically too sparse to say anything

on its own, and there is prior information, again often too sparse to be decisive on its

own. The reasons for the second situation are different than the reasons for the first.

Some kinds of prior informa tion are relatively weak without certain particular pieces of

information that would be very expensive to obtain. I have in mind here information of

the following kind: the boundary information which, in principle, is needed to apply a

diffusion equation to a large wa ter body.

Second, an ideal reporting style for analyses of a situation in which neither prior

nor data information is decisive is reporting the mapping of priors into posteriors: that

is, in showing how several priors, somehow chosen over a reasonable range, are mapped

into posteriors by the data.

Third, an implied criterion for choosing among water quality modeling approaches

is their convenience and ease in assisting us in this exercise. This criterion will, in practice,
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heavily favor models with small numbers of parameters. That is, the entire procedure of

specifying and adjusting priors becomes cumbersome once more than two or three

parameters are involved.

Finally, a promising suggested test of the approach of Papers A and B. The test

should be made in the context of a particular management problem. Begin with the

assumption that the "true" system is that described by the approach taken in Paper A.

Use the hydrodynamical and ecosystem models of that approach to generate pseudodata

on the behavior of the system: each data set should be generated so as to permit appli­

cation of either the Paper A or Paper B approaches. Now approach that data in two

ways. For the Paper B approach assign some parameters from other water bodies, and

fit the rest with our proposed modification of the approach of that paper. Do the same

for Paper A, this time fitting the unassigned parameters with the technique of that

paper. Finally, assign a loss function on the effect to be controlled, and compare - at

each prior probability/data probability point - the losses imposed by the use of the two

approaches.
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APPENDIX: A SIMPLE EXAMPLE

Suppose that we are studying a dynamical system known to be described by

eqn. (1) and initial condition (2):

x(t) (1)

x(O) - C (2)

We are asked to estimate the two scalar parameters a h a2; the only data we are

given is in the form of one inequality restriction (3) on x(t):

(3)
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Because the solu tion to (i) is:

x(t) = c exp (al t) exp (a2 sin t)

condition (3) implies the inequality

379

(4)

(5)

For each value of t in the interval [tl, t2 ], inequality (5) defines a closed half plane of

the (al, a2) plane, so that the set of restrictions (5) defined as t varies over that interval

defines the intersection of a set of closed half planes. For convenience (and without loss

of generality) choose units so that our prior hypercube in (al, a2) space is the unit square

[0, 11 x [0, 1], and consider the trivial case in which the t·interval reduces to one point:

t l = t2 = f. Then the method of Paper B tells us to summarize the "data" xU) ~ L by

constructing the half plane

and by restricting our attention, in (al,a2) space, to

[0,1] x [0,11 rJH

(6)

(7)

Compare this with an analog of the more familiar form of data summary. Consider

the loci of points in the (al, a2) plane defined by constant values of the loss function

(8)

Those loci are lines parallel to the boundary of the region (7). Clearly the data summaries

provided by (7) and (8) are very different.
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