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UNCERTAINTY AND LEARNING IN PHARMACEUTICAL DEMAND

BY GREGORY S. CRAWFORD AND MATTHEW SHUM!

Exploiting a rich panel data set on anti-ulcer drug prescriptions, we measure the ef-
fects of uncertainty and learning in the demand for pharmaceutical drugs. We estimate
a dynamic matching model of demand under uncertainty in which patients learn from
prescription experience about the effectiveness of alternative drugs. Unlike previous
models, we allow drugs to have distinct symptomatic and curative effects, and endoge-
nize treatment length by allowing drug choices to affect patients’ underlying probability
of recovery. We find that drugs’ rankings along these dimensions differ, with high symp-
tomatic effects for drugs with the highest market shares and high curative effects for
drugs with the greatest medical efficacy. Our results also indicate that while there is
substantial heterogeneity in drug efficacy across patients, learning enables patients and
their doctors to dramatically reduce the costs of uncertainty in pharmaceutical markets.

KEYWORDS: Uncertainty, learning, pharmaceutical demand, matching, dynamic dis-
crete choice.

1. INTRODUCTION

ECONOMISTS HAVE LONG BEEN CONCERNED with the behavioral implications
of uncertainty in experience good markets, where utility-bearing characteristics
are revealed to consumers through consumption or use. This is particularly
true in pharmaceutical markets, where

[d]octor and patient may not know [...] whether a drug is going to be effective or the na-
ture of the side effects. [...] Some people have to cycle through various drugs [...] to
find an appropriate match between a drug and their particular problems (Baily (1997,
pp. 197-198)).

As this quote illustrates, uncertainty coupled with heterogeneity in pa-
tients’ illnesses and drugs’ effects make any drug-treatment program a com-
plex matching process, requiring time and patience for a doctor to discover the
drug which best matches each of his patients’ conditions.>

In this paper, we measure the effects of uncertainty and learning on pre-
scription choices and treatment outcomes in one large pharmaceutical market:
anti-ulcer drugs. We estimate a dynamic matching model of demand under
uncertainty in which doctors diagnose a patient’s condition and then choose
a sequence of drugs to minimize her expected disutility from illness. Doctors
(and their patients) are assumed to be uncertain both about the effectiveness

'We are grateful to the editor and three anonymous referees for their detailed comments,
which substantially improved the paper. We also thank Dan Ackerberg, Steve Berry, Donna
Gilleskie, Nadia Soboleva, Scott Stern, and seminar participants at Duke, UNC-Chapel Hill,
NBER, NYU, Princeton, Queen’s, UT-Austin, and Virginia. We thank Andrea Coscelli, Giuseppe
Traversa, and Roberto Da Cas for introducing us to the data and acquainting us with features of
Italian pharmaceutical markets.

2See also Temin (1980) and Arrow (1963) for discussions of the implications of uncertainty for
drug choice.
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of alternative drugs as well as the probability the patient will remain ill and re-
quire additional prescriptions. Each drug impacts each patient differently, and
patients learn their idiosyncratic “match values” with each drug through direct
prescription experiences. The model is estimated using a rich Italian panel data
set that tracks patients’ prescriptions for anti-ulcer drugs.

Our modeling of pharmaceutical demand as a dynamic matching process re-
sembles the approach taken in the job-matching literature in labor economics
(cf. Jovanovic (1979), Miller (1984)).* Our empirical model builds upon the
Bayesian learning models in the empirical dynamic discrete-choice demand
literature (cf. Eckstein, Horsky, and Raban (1988), Erdem and Keane (1996),
and Ackerberg (2003)). As noted by Erdem and Keane (1996), patient uncer-
tainty can have two competing effects on drug choices. First, if patients are
risk-averse, uncertainty about drugs’ effectiveness or side effects can lead to
persistence in drug choices, as risk aversion makes patients reluctant to try
new drugs. On the other hand, if patients are forward-looking, uncertainty en-
courages consumers to experiment with drugs they have not previously tried in
order to gain information that will be useful for making future drug choices.
This can lead to diffuse drug choices, counteracting the persistence induced by
risk aversion.*

This paper extends these literatures in several ways to accommodate fea-
tures of pharmaceutical markets which distinguish them from other product
markets. First, we allow drugs to be differentiated along two dimensions, hav-
ing both symptomatic effects, which impact a patient’s per-period utility di-
rectly via symptom relief (or side effects), and curative effects, which impact
a patient’s probability of recovery. Since patients face uncertainty along both
dimensions, the resulting dynamic model features a two-dimensional matching
problem.’ Second, because the demand for drugs is derived from the demand
for good health, we endogenize patients’ length of treatment by allowing their
drug choices to impact their probability of recovery. This accentuates the im-
portance of dynamic aspects of patient behavior, because a sequence of bad

3See Eckstein and Wolpin (1987) for a survey of related empirical models.

“This paper also joins a growing empirical literature on learning-based models of pharmaceu-
tical demand (Currie and Park (1999), Ching (2002)). We differ from these papers in assuming
that patients are forward-looking in their drug choices. There are also a number of theoretical
papers that examine how firms may set price and advertising levels to strategically manipulate the
consumer learning process (e.g., Nelson (1970), Shapiro (1983), Kihlstrom and Riordan (1984),
Milgrom and Roberts (1986), Bergemann and Véliméki (2004)). The latter paper, in particular,
considers a dynamic equilibrium monopoly pricing model in which the consumer decision model
resembles in many respects the learning model presented in this paper.

SBoth Erdem and Keane (1996) and Ackerberg (2003) also estimate learning models with two
signals (use experience and advertising), but both signals are relevant only for consumers’ current
utility.
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choices not only lowers current utility, but also future utility (by delaying the
completion of treatment).5

Despite significant “diagnostic matching” by doctors of patients to drugs, our
results imply substantial heterogeneity in drugs’ match values across patients,
highlighting the importance of the matching problem in this market. We find
that patients learn quite quickly, however: over two-thirds of patients’ initial
uncertainty is resolved after a single prescription. Since patients are estimated
to be risk-averse, this reduction in uncertainty leads to significant persistence
in drug choices after even a single prescription. Counterfactual simulations
comparing actual choices to environments that eliminate uncertainty and the
ability to experiment demonstrate that learning and experimentation enable
patients to achieve levels of discounted utility that are comparable to those
available in a “first-best” scenario where uncertainty is removed. Hence, while
there is substantial heterogeneity in drug efficacy across patients, we find that
learning enables patients and their doctors to dramatically reduce the costs of
uncertainty in pharmaceutical markets.

The rest of this paper is organized as follows. In Section 2, we provide some
background on pharmaceutical markets, introduce the unique patient-level
data set that we employ in our work, and analyze the data for evidence of
uncertainty and experimentation. This motivates the economic model and its
empirical analog developed in Sections 3 and 4. Section 5 presents estimation
results and discusses implications of the estimates, while Section 6 presents
counterfactual simulations to measure the costs of uncertainty in the market.
Section 7 concludes.

2. PHARMACEUTICAL MARKETS AND DATA DESCRIPTION

The available products in any pharmaceutical market are mainly distin-
guished by their active ingredient (or molecule). While molecules differ in
their effectiveness, side effects, or dosage form, competing producers may of-
fer different brands of a given molecule, which differ in price, packaging, and
dosage frequency. Since uncertainty is likely to be most important regarding
a drug’s effectiveness or side effects, we focus on intermolecular choice in the
anti-ulcer market.” In what follows, we use the terms “molecule” and “drug”
interchangeably.

®In this respect, our paper also resembles work in the health literature (cf. Gilleskie (1998),
Blau and Gilleskie (2000)) in which health outcomes are endogenized and allowed to depend
on patients’ previous medical and work choices. While neither of these papers allows for learn-
ing, see Mira (2000) for a dynamic learning-based model of fertility choice, and Chernew,
Gowrisankaran, and Scanlon (2004) for a learning model of health-plan report cards.

In contrast, much of the recent work on the pharmaceutical industry in the United States
has explored the nature of intramolecular (i.e., branded vs. generic) competition (e.g., Caves,
Whinston, and Hurwitz (1991), Grabowski and Vernon (1992), Scott-Morton (1999), Stern
(1996), Frank and Salkever (1997)). In general, this issue does not arise in the Italian market
we study because there are no generic manufacturers in this market. Coscelli (2000) is a study of
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Despite the potential importance of uncertainty and learning in understand-
ing pharmaceutical demand, there is little empirical evidence of its magnitude
or effects. The most closely related pharmaceutical research has focused on
measuring the nature of intra- versus intermolecular substitution in pharma-
ceutical demand using static demand models (Stern (1996), Ellison, Cockburn,
Griliches, and Hausman (1997)). Unfortunately, the cross-section patient-level
data or panel aggregate (market share) data of the type used in these studies
are not rich enough to analyze the importance of uncertainty and learning in
fully dynamic models. Since both uncertainty and patient-level heterogeneity
in drug effectiveness affect choice, patient-level panel data are required in or-
der to disentangle the confounding effects of uncertainty vs. heterogeneity.

We overcome these constraints in this paper by employing a unique data set
of all anti-ulcer prescriptions received by a 10% sample of patients aged 15-85
in the Rome metropolitan area.® The data are reported monthly over the
36 months between January 1990 and December 1992. About 310,000 obser-
vations, which represent prescriptions to over 55,000 patients, are recorded in
this data set. Coscelli (2000) describes the data set in more detail.

Two characteristics of the Italian market differentiate it in important ways
from the U.S. market. The first is that patients’ medical costs are covered by
a National Health System, implying that there is no variation in insurance
status across patients. This feature of the market mitigates the agency prob-
lems associated with heterogeneous third-party payers because doctors face a
uniform incentive scheme.’ Moreover, the anti-ulcer market is almost entirely
drug-based. Agency concerns would appear more acute in therapeutic markets
where doctors must often choose between treatment procedures (e.g., surgery,
radiation) that are hundreds of times more expensive than drugs.

The top portion of Table I provides a list of the drugs available in the Ital-
ian market with market shares greater than 3%. The majority of patients re-
ceive Glaxo’s ranitidine, marketed in Italy under the brand names Zantac
and Ranidil."> Most of the rest of the market is held by Astra’s omeprazole
(marketed under the brand names Losec and Omeprazen), Merck’s famoti-
dine (Pepcid, Famodil), and Lilly’s nizatidine (Axid, Zanizal). Since these four
molecules account for over 85% of prescriptions in the Italian anti-ulcer mar-
ket, we aggregate all but these four leading molecules into a single composite
drug, which we refer to as “drug 5” in what follows.

intramolecular substitution in the Italian anti-ulcer market using the same data employed in this
paper.

8The drugs in our paper are used to treat many gastrointestinal (GI) conditions. The most
common are dyspepsia (i.e., upper-abdominal pain), gastroesophageal reflux disease (GERD),
and ulcers. Despite these different indications, we follow the pharmacological literature and refer
to them as anti-ulcer drugs.

%As such, heterogeneous constraints on doctor choices as induced by health maintenance or-
ganization formularies in the U.S. market do not come into play.

Tndeed, during the sample period, Zantac was the best-selling drug in the world, with annual
sales of over $25 billion dollars.
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TABLE 1
THE ITALIAN ANTI-ULCER MARKET

Summary Statistics from the Data

In-Sample Major Brands? Date of Avgb
# Molecule Patent-Holder Mkt. Share® in Italian Mkt. Entry Price
1 Ranitidine Glaxo 64.4 Zantac*, Ranidil 1981 $2.90
2 Omeprazole Astra 11.0 Losec*, Omeprazen 1990 $3.14
3 Famotidine Merck 6.8 Pepcid*, Famodil 1986 $2.59
4 Nizatidine Lilly 3.2 Axid*, Zanizal 1988 $2.74
5 19 others — 14.6 Various <1981 $1.424

Overall Statistics

Variable Num. Obs. Mean Std. Dev. Min Max
Number of prescriptions 34,972 2.82 3.87 1 80
Number of drugs 34,972 1.16 0.41 1 5
Treatment length (mths) 34,972 5.69 7.70 1 31
Number of spells 34,972 1.19 0.58 1 8
Spell length 41,593 2.37 3.34 1 72
Censoring indicator® 34,972 0.35 0.48 0 1

2 An asterisk (*) denotes patent-holder’s brand.

bU.S. dollars per daily dose. This was calculated from the reported Italian lire per daily dose using a U.S.~Ttalian
exchange rate (from 1991) of $1 = 1,300 lire.

€Share of total number of prescriptions.

dAveraged (using share of drug in basket as weight) over all drugs in the composite and averaged over sample
period.

®The definition of a censored sequence is described in Section 2.1.

Most of the drugs marketed in the late 1970s and the 1980s were based
on “H2-receptor antagonists” (hereafter H2As).!! Ranitidine, famotidine, and
nizatidine (drugs 1, 3, and 4) as well as a majority of the medicines included in
the composite drug 5 are based on H2A agents. During the early 1990s, drugs
based on “protonic-pump inhibitors” (PPIs) were introduced. These drugs
were more effective at treating many GI conditions, but were not (and still
are not) approved for others (Yamada (1995)). Among the drugs in our data
set, only omeprazole (drug 2) was based on a PPI agent.

Drug prices in the Italian market are set by the regulatory Drug Commis-
sion (CUF), following a reference-price scheme in which drugs of therapeu-
tic equivalence—the same active ingredient, the same route of administration,
etc.—are assigned the same price. This limits the extent of price differences
between drugs across time, and in our empirical work, we assume that drug
prices are constant over time.'? Moreover, in the sample period, Italian pa-

1See Yamada (1995) for an account of the pharmacology of anti-ulcer drugs.
2This is a reasonable assumption for drugs 1-4, as there were little or no changes in the regu-
lated Italian drug prices over the sample period. The average cost of the composite drug 5 does
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tients’ copayments in the anti-ulcer treatment class were 50%. Hence, in our
empirical work, we assume that the price of a drug faced by patients is 50% of
the price reported in the top panel of Table 1.

2.1. Data Description

Several steps were involved in preparing the data used in this paper. First,
since our data do not reveal the order in which a patient received multiple
prescriptions within a given month, we exclude all patients who received pre-
scriptions of different drugs within a month."® In addition, for many patients,
we do not observe whether they began or ended an ulcer treatment during our
sample period. To avoid the difficulties associated with left-censoring as well as
ensure homogeneity of patients’ choice sets over time, we include only patients
who are first observed after the sixth month of the sample (i.e., June 1990).'
This month was chosen since it marked the entry of drugs based on the mole-
cule omeprazole into the Italian market. Together, these filters eliminated
14,670 patients from the original sample, leaving us with 34,972 patients (and
a total of 98,634 prescription episodes). Furthermore, we define a prescription
sequence as right-censored if the last in-sample prescription fell within the last
6 months of the sample period. Such a long window was used because large
gaps of several months or more between prescriptions were not uncommon in
the data set. As the bottom panel of Table I shows, roughly one-third of the
prescription sequences are classified as censored.

Patients receive, on average, 2.8 prescriptions for 1.2 drugs over a period
of just under 6 months."” These averages mask important differences in the
intensity of treatment across patients, however. Figure 1 plots the empirical
distributions of several key variables for the patients in our sample. Clearly,
the number of prescriptions among the patients in the data set is very skewed:
54.1% of patients in the sample receive a single prescription, 17.1% receive
two, and only 3.9% receive ten or more. Despite this, the latter group accounts
for 26.2% of total prescriptions written.

Previous research (e.g., Hellerstein (1997), Coscelli (2000)) has documented
significant persistence in drug choices among patients and their doctors, and
these data are no exception. The repeat purchase probability (measured as

change over time as the market shares of its various components change, but this change is suffi-
ciently small that a constant price is not a bad approximation.

B1n principle, these data could be included and (the probability distribution of) their likely or-
der estimated. However, such a procedure quickly becomes computationally costly when a patient
has multiple periods in which she takes more than one drug, so it is not attempted here.

14 Ackerberg and Rysman (2003) discuss the dangers of exploiting variation in choice sets for
demand estimation in static discrete-choice models.

3Tn this section, treatment length is defined for each patient as the month of the last prescrip-
tion received in the sample less the month of the first prescription plus 1. In the estimation and
applications, treatment length refers to the number of prescriptions taken.
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FIGURE 1.—Histogram of prescriptions, drugs, and spells.

the share of patients who took the same drug in period ¢ that they took in
period ¢ — 1) ranges from a low of 74.8% for the composite drug 5 to a high
of 94.1% for the market leader, ranitidine.

We next consider evidence of learning and experimentation in our raw data.
We first examine the incidence of switching between drugs. We define a drug
“spell” to be a sequence of one or more prescriptions to a single drug. The
bottom panel of Table I and Figure 1 show that patients have an average of
1.19 spells, but this distribution is extremely skewed among the patients in
the sample. The average spell consists of 2.37 prescriptions, decreasing only
slightly to 2.08 prescriptions for spells that end with the choice of another drug.
This suggests that it takes some time for patients to learn if a drug is working
for them.

Next, in Table II, we compute the average probability (i.e., frequency) of
switching drugs at different junctures during a treatment.!® Since switching
may be induced by both experimentation (which is strongest when patients are
ill-informed) and information (after consumers have learned that their match
value with a given drug is low), we look for evidence of experimentation at
the beginning of treatments, when consumers have the least information (and
thereby the incentive to experiment is strongest).

16Ty avoid interpretational ambiguities due to censoring of the prescription sequences, we use
only the uncensored observations to compute the figures in this table.
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TABLE II
SWITCHING PROBABILITIES OVER THE COURSE OF TREATMENT?

L Total Treatment Length
Prescription

Number 5 6 7 8 9 10

2 14.3 13.6 109 100 7.8 9.2
3 11.6  11.6 6.3 88 18 6.6
4 8.9 5.6 5.4 3.1 7.8 3.9
5 13.4 79  10.0 8.8 49 5.3
6 11.3 6.3 57 29 53
7 9.5 10.0 7.8 11.8
8 81 49 11.8
9 7.8 53
10 11.8

4The (i, j)th entry is the percentage of treatment sequences of length j in
which a switch was observed during the ith (i < j) prescription.

We see that across several treatment lengths and spell transitions, there
is a marked decreasing trend in the switching probability at the very begin-
ning of treatment. For example, for patients with an eight-prescription treat-
ment length, the probability of switching is 10.0% after the first prescription,
then falls to 8.8% after the second prescription, and falls further to 3.1%."
As treatment proceeds beyond the fourth prescription, however, the switching
probabilities start to rise. While merely suggestive, higher switching probabili-
ties after early prescriptions are consistent with experimentation, while higher
switching probabilities after late prescriptions are consistent with learning.
More definitive statements require a model of pharmaceutical choice under
uncertainty that can disentangle these effects.

3. A BIVARIATE BAYESIAN LEARNING MODEL OF PHARMACEUTICAL DEMAND
3.1. Overview

The model introduced below is a matching model of drug choice. We assume
patients come to their doctor to seek treatment for an unknown gastrointesti-
nal illness.'® Upon arrival, the doctor performs an initial diagnostic of the pa-
tient to assess the severity of her illness. Based on this initial diagnosis and
his resulting beliefs about the efficacy of alternative drugs, the doctor selects
an initial drug treatment. The patient takes this drug and, if not immediately
healed, reports back to the doctor its impact on her condition. Further pre-
scriptions follow—to the same or different drugs—until the patient is healed.

7Similar patterns arise if one considers only transitions from the first spell.
8While there are a number of related conditions treated by the drugs we study, for simplicity
we will refer to all of them as ulcers and to this class of drugs as anti-ulcer drugs.
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Conditional on the initial diagnosis, each doctor (and his patient) is assumed
to have uncertainty about the effectiveness of various drug alternatives for that
patient. This uncertainty is modeled by patient-specific “match values” (which
are unknown at the beginning of treatment) associated with each drug in the
market. A given drug’s match values can differ across patients, thereby accom-
modating heterogeneity in drug effectiveness across patients. In the bivariate
learning model considered in this paper, we allow patients to have two separate
match values for each drug, corresponding to the two important dimensions of
differentiation among the choices in many drug (and medical) markets. First, a
drug’s symptomatic effect measures its impact to patient utility from symptom
relief and/or side effects and, second, its curative effect measures its impact to
a patient’s probability of recovery.

Each patient (and her doctor) learns about her two match values through the
experience signals coming from direct use of alternative drugs. Doctors have
prior beliefs about these match values that differ depending on the outcome
of the patient’s initial diagnosis as well as the doctors idiosyncratic experience
with the various drugs. The prescription experience signals for each patient, in
turn, are assumed to yield noisy signals about their match values. Whereas util-
ity is a function of experience signals and these signals depend on the match
values, patients have an incentive to learn their match values for each drug.
An optimal sequence of drug choices is then obtained as the solution to a dy-
namic Bayesian learning model.

Each doctor is forward-looking and selects the sequence of drugs that maxi-
mizes his patient’s (present-discounted) expected utility,

(1) max  Ep ) B'djuttju(l— w0,

D={{dju 1%, )
where d;,, is an indicator that equals 1 if patient j takes drug » in period ¢,
u;,, measures the single-period utility flow to patient j from taking drug » in
period ¢, wj, is an indicator for whether patient j recovers after period ¢, and
B € [0, 1] is a discount factor.” The expectation is taken over the distribution
of future utilities and treatment lengths induced by the policy sequence D. The
doctor for patient j maximizes (1) by choosing the sequence D, which specifies,
in each period ¢ (for t =1, ..., 00), the drug n that should be tried.?

There are two sources of patient-level uncertainty in the model. First, even
given the initial diagnosis, a doctor does not know his patients’ drug-specific

YTn our empirical work below, B is not estimated, but rather fixed at a value of 0.95.

2Drug choice is only one part of the treatment process, which also includes the decision to
go see a doctor and being prescribed drugs (versus some other treatment). Since our data set is
silent as to either the incidence of gastrointestinal conditions in the population or the incidence
of doctor visits resulting in a prescription, our results necessarily apply only to the population of
ulcer sufferers who obtain (and fill) a prescription for a drug therapy, and should be interpreted
with that caveat.
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match values and learns about these values only gradually over time, as his
patient receives experience signals from the drugs that he prescribes. For
patient j, each drug n is characterized by two time-invariant match values,
W, and v;,, which summarize, respectively, the symptomatic and curative ef-
fects of the drug for that patient. Subsequently, each prescription yields two
separate signals, corresponding to these two different match values. The symp-
tomatic signal x;,, which patient j derives from taking drug »n during period ¢,
is drawn from a distribution with the symptomatic match value w;, as the un-
known mean. The curative signal y;,, is likewise drawn from a distribution cen-
tered around the curative match value v;,.

Second, a doctor does not know his patient’s length of treatment. After each
prescription, patient j has some probability of recovering, requiring no further
prescriptions. The probability that patient j recovers by the end of period ¢ can
potentially depend on all the curative signals that patient j has obtained from
her previous drugs, up to (and including) period ¢. As patients take alternative
drugs, they learn about the symptomatic and curative effectiveness of each.
Prescriptions continue until the patient recovers (i.e., w;, = 1).

On patients and doctors

The focus of this paper is the therapeutic uncertainty facing patients and
their doctors about the effectiveness of pharmaceutical drugs for a given pa-
tient. An important related issue in drug markets is the therapeutic uncertainty
facing doctors about the (average) effectiveness of drugs across patients.*' Our
patient-level data do not permit us to directly analyze learning by doctors
across patients. We do, however, accommodate its effects for omeprazole, the
innovative entrant in this market, by allowing doctors’ beliefs for omeprazole
to evolve over time. This is similar to the approach taken by Ching (2002) in
the market for cardiovascular, antidepressant, and antibiotic drugs, and is em-
pirically important in our application.*

We also assume that doctors are selecting drugs exclusively to maximize the
utility of their patients, in effect making doctors and patients a single decision-
maker. This abstracts away from important agency problems that can arise due

Z'While it has long been recognized that many factors, including direct experience, results of
clinical trials, and promotional material provided by drug makers, influence doctors’ prescription
patterns, the growing field of pharmacogenetics, or personalized medicine, is analyzing the impact
of a patient’s genetic makeup on the incidence and severity of various illnesses and the effective-
ness of alternative drug therapies. It is widely believed that the long-term future of the pharma-
ceutical industry will depend on the effective development of personalized medicines (Reuters
(2004), Arnst (2004)). Until diagnostic procedures able to identify genetic responsiveness to drugs
are developed, however, both types of learning are likely to be important in pharmaceutical mar-
kets.

22See also Coscelli and Shum (2004) and Ferreyra (1999) for empirical models of doctor-level
learning.
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to informational asymmetries between doctors and patients that influence doc-
tors’ decisions about the drugs to prescribe and are not directly related to a
given patient’s medical condition.?® Of particular interest in the economic lit-
erature are the impact of insurance status and out-of-pocket expenditure on
drug choices (cf. Mott and Kreling (1998), lizuka (2004)).

The assumption that doctors are perfect agents for their patients is a strong
one and has important implications for our model of drug choice. In particu-
lar, perfect agency rules out the possibility of “doctor effects” conditional on a
patient’s diagnosis: all doctors in our model have the same probability of pre-
scribing a given drug to a patient with a given diagnosis in a given time period.
If doctors face the same distribution of diagnoses, then the probability distrib-
ution for their prescribed drugs should be identical. In our model, the only way
that doctor effects would appear is in an unconditional sense, i.e., if different
doctors face different distributions of diagnoses.

While some of the institutional features of the Italian pharmaceutical market
described in Section 2 might mitigate concerns about agency issues, we would
of course like to allow for and estimate any relevant doctor effects. Unfortu-
nately, our data do not provide sufficient doctor-level information to do so.*
Our results should therefore be interpreted with this caveat in mind, leaving
the analysis of agency issues in pharmaceutical markets as an important topic
for further research.

3.2. Model Details
Diagnostic matching and patient types

Prior to writing any prescriptions, we assume doctors engage in the “diagnos-
tic matching” of patients to drugs. In particular, we assume that doctors make
an initial diagnosis of the type and severity of a patient’s illness. Given this
diagnosis, we assume they then prescribe one of the available drugs that they
feel will best treat the patient’s condition. While a patient’s diagnosis and her
doctor’s beliefs are known to each patient and her doctor, they are not known
to the econometrician and are therefore a source of unobserved heterogeneity.
This is an important problem in our setting, because failing to accurately cap-
ture doctor beliefs at the time of the initial prescription can bias our estimates
of the degree and consequences of patient-level uncertainty in drug choices.

BSee Mott, Schommer, Doucette, and Kreling (1998) for a survey of relevant agency rela-
tionships in pharmaceutical markets and Stern and Trajtenberg (1998) for a recent empirical
examination of the possible importance of this issue.

24We estimated a model that allows for doctor-specific random effects where the distribution
of these effects depended on limited presample doctor prescription histories. We found very little
evidence of doctor effects. A full treatment of the question, however, would ideally include full
prescription histories and information on exposure to pharmaceutical marketing (e.g., detailing
visits, free samples received, etc.) for each doctor in the data, something we do not observe.
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To address this problem, we allow doctors to diagnose that a patient’s con-
dition falls into one of K types. These patient types influence the model in
two ways. First, because patients with different conditions may differ in the
underlying severity of their illness, we allow patient types to differ in their ini-
tial probability of being healed. In particular, let 4j; denote the probability
that patient j can be healed without any treatment at all. We refer to Ay, as
patient j’s “initial illness severity” and assume that patient j’s doctor is able
to determine hy; at the initial diagnosis.” In our empirical work, we assume
that A, takes one of K values,

(2) hojzek W.p. Pks k=1,...,K,

where 0 < p; <1,) p;=1,and 0 < 6y, ..., 6k < 1. In what follows, we refer
to patients with an initial illness severity 0, as Type i patients, fori=1, ..., K.
Second, because patients with different conditions are likely to react differ-
ently to the various available drugs, we allow their doctors’ prior beliefs regard-
ing the symptomatic and curative match values to differ across patient types.

Preferences

Patient j’s single-period utility from drug » in time period ¢, u;,,, is assumed
to be a function of x,,, patient j’s symptomatic signal from taking drug » in
period ¢, and the per-prescription price of drug »n, p,. Given our focus on
uncertainty, the usual linear utility specifications used in the discrete-choice
demand literature are too restrictive because the risk neutrality embodied in
such a specification removes many of the distinctive effects of uncertainty on
the dynamics of individual decision-making. As noted by Erdem and Keane
(1996), it is difficult to generate the substantial persistence in choices without
risk aversion.

Therefore, we consider a quasilinear utility specification, additively separa-
ble in a concave “subutility” function of the drug return and a linear term in
price. We assume a Constant Absolute Risk Aversion (exponential) specifica-
tion for the subutility function, yielding

(3) u(xjnu Pns 6_jnt) = —CXP(_V * xjnt) —ax p,+ €jnt>

where r (>0) measures the degree of risk aversion and €;,, is an additive idio-
syncratic error that measures idiosyncratic tastes for drug n by patient j in
period 7.2

BThis reflects reasonably well the nature of the diagnosis process: the presence and severity
of an ulcer is relatively easy to diagnose (via patient interviews, stomach x-rays, and/or endo-
scopies), so that uncertainty regarding illness severity is likely to be resolved during the initial
diagnosis, while uncertainty regarding a patient’s specific reaction to a specific drug is resolved
only gradually over time via the patient’s direct prescription experiences with the drug.

%Moreover, up to the idiosyncratic error €, the per-period utility derived from drug use
is negative. This is appropriate because we normalize the terminal utility associated with being
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Recovery probabilities

Let hj, denote the probability that patient j recovers by the end of period ¢
(after she has taken a drug in period ¢). We assume that the sequence of recov-
ery probabilities for this patient evolve as

h4
jt—1
(1—;,],,1 ) + djnt Yjnt

(4) hjt(hjt—b yjm) = jt—1
+ ((755) + dincin)

with the initial condition A; as defined in (2).”” As we remarked before, we
assume that the illness severity parameters, h;, are observed by the patient
and her doctor, but not by the researcher, and is thus a source of unobserved
heterogeneity. Furthermore, since 4, depends on y;,, the curative signal for
the drug prescribed to patient j in period ¢, hj, is random when patient j is
deciding which drug to take in period t.

3.3. The Learning Process

Doctors are assumed to begin treatment with prior information about their
patient’s two match values, u;, and v;,. Each doctor’s prior beliefs about these
idiosyncratic match values are summarized by a multivariate normal distribu-
tion?

o ()] 5 2))

In this expression, u, and v, denote the prior mean match values of drug n
and the standard deviations (¢, 7,) are measures of the accuracy of these
prior means. In (5), the k subscript denotes the illness severity type of patient j
(cf. (2) and the discussion around it).

While patient j does not know u;, and v;, as she commences treatment,
she receives prescription signals which allow her to update regarding these

healed to zero. With a zero terminal value, if utilities were positive, then patients in our model
may rationally delay recovery as long as possible in order to continue receiving positive utility
from drug use. Such a motive appears implausible for pharmaceutical (or health) markets.

ZSince signals can potentially be negative, if a particular realization of y;,, becomes too large
and negative, the expression in (4) will no longer be a valid probability. While it is difficult to
restrict the parameter values explicitly so that this does not happen, we confirm that this does not
happen for each set of parameter estimates that we report below.

ZEstimating the bivariate learning model is computationally costly due to the large number of
state variables. As such, we do not explore the possibility that either signals or priors for drugs’
symptomatic and curative match values are correlated. See Ackerberg (2003) for a related discus-
sion of the computational difficulties associated with a two-signal model with correlation in the
priors.
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unknown quantities. The symptomatic and curative signals are assumed to be
independent and distributed normally across periods,”

Xijnt ~ Mjn 0-13 0
o ()] 152D
where (u;,, v;,) are patient j’s unknown match values for drug n (i.e., the
means of the distribution of patient j’s symptomatic and curative signals for
drug n) and (o7, 72) measure the variation in, respectively, the symptomatic
and curative signals around their mean.

We assume that doctors have rational expectations, so that their prior be-
liefs correspond to the actual distribution of the idiosyncratic match values
(mjn, vj) for each drug n across patients j and types k in the market. Accord-
ingly, an alternative interpretation of these prior beliefs is that w,, (resp. v,,)
is the population mean symptomatic (resp. curative) match value of drug n
and o, (resp. 7,) measures the heterogeneity or dispersion in symptomatic
(resp. curative) match values across patients of type k. The values w, v,
(k=1,...,K), g,, 7, 0,, and 7, are all assumed to be known by the_patient
(or her doctor), and are parameters to be estimated.

The rational expectations assumption is less attractive for drug 2, omepra-
zole, which entered at the beginning of our sample period. We therefore al-
lowed the prior means u,; and v,, to vary across time, and take different values
in 6-month intervals (i.a, Jun-Dec 1990, Jan—-Jun 1991, Jul-Dec 1991, Jan-Jun
1992, and Jul-Dec 1992). We imposed rational expectations only in the final
half-year period, so that we allow doctors’ beliefs concerning omeprazole to
differ from the true distribution of match values in the sample period before
July 1992. In this way, we accommodate learning regarding omeprazole’s effi-
cacy that is common across doctors as might arise from attendance at medical
conferences and/or publication in leading medical journals.

Letting [}, denote the number of times that patient j has taken drug 7 up to
(and including) period ¢ and defining the initial values u), = p,x and V) = o,
patient j’s posterior beliefs regarding her symptomatic match value u;, are
given recursively by the sequence of normal distributions with the following

YThe normality assumptions imply that the posterior beliefs on the match values at any
point in time follow a normal distribution characterized by two scalar parameters: the posterior
mean and the number of signals received to date, which are the state variables in the dynamic
optimization model. Without normality, the posterior distributions themselves are the (infinite-
dimensional) state variables of the dynamic optimization problem, leading to difficulties in com-
putation and estimation.
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mean and variance (see DeGroot (1970, Chap. 9)):

— + 2.t t
v! o2 _ O-n/‘"‘jn + I/jnxjnH—l

b

(7) /-Lt'+1 _ VLt + L2 0',% + Vji,

if drug n taken in period ¢ + 1,
,u;.n, otherwise,

1 ogla? . . .
= , if drug n taken in period ¢ + 1,

Ji+1 2 lt+1 2

pr_ ) o+l o
j - 2 2
mn Oh Ty

p .
Vi otherwise.

The analogous expressions for the posterior beliefs on the curative match
value are
Tth +R;ny/'nt+l

n”jn

, if drug n taken in period ¢ + 1,

1
®) u'={ n+E,
V}n , otherwise,
7272
———— ifdrug n taken in period ¢ + 1
R;:l — Trzl + I;III%’ 5
R: otherwise,

jn?

where vj, and R, are the mean and variance of the normal distribution
that characterizes patient j’s beliefs at prescription ¢, with initial conditions

0 _ 0 _
Viy =V and Rjn =7,

3.4. Dynamic Drug Choice

In our bivariate dynamic learning model, there are four categories of state
variables. The first are patient j’s posterior mean match values uj, and vj ,
for drugs n =1,...,5. The second are counts of the number of times that
patient j has tried each drug, i.e., l;n, n=1,...,5. The third state variable
is hj,, the recovery probability for patient j at the end of period ¢. Finally,
there are the idiosyncratic errors €;,,n =1,...,5. We use &, to denote the
vector of state variables (W, - .-y Riss Vjis s Viss s ooy Ly Rjes €10 - -+, €551)
for period ¢.

The transition rules for all the state variables can be written in Markovian
form. The rules for the posterior means uj, and v, are given in the first row
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of (7) and the transition rules for the /; ’s are simply

lt+1 —

n L otherwise.

jn?

{ I}, +1, if drug n taken in period ¢,

Finally, the transition rule for the recovery probability, /4, in the baseline
model is given by (4).

Dynamic decision-making

The value function W (S,) in the infinite-horizon problem defined by (1) is
recursively defined via Bellman’s equation,

(9) W(St) = mrf:lXE[u(ij, DPn> €jnt)
+B(1 - wjt)E[W(St+1)|xjnz, Yints n]|8t]
= max E[u(Xju, Pu» €jur)
+ B(1 = E[wjelyju DEIW (Ss)1 X juts Yinr» 11| S]

= m':chE[u(xjnta Dn> €jnt)

+ 81— hjt(hjt—l 5 y]'nz))E[W(St+1)|xjnt, Yint> 1] |St]

n

1
= max{—exp(—r/u,;” + E,J(a-j + VJL)) —ap, + €y

+ BE[(l - hjt(hjt—l, ant))E[W(St+1)|xjm, Vint> 1] |Sz]}

= max{W,(S)},

where the fourth equality follows from the exponential form of the per-period
utility function and the foregoing distributional assumptions made on the pri-
ors and signals.*® In the above, S,,; denotes the values of the state variables in
period ¢ + 1 and W, (S,) denotes the choice-specific value function for drug n.

NThat is,
(10) E

Xjnt

Ujpy = _E,U.Ex\,u, exp(_rxjnt) —a* p,+ €jnt

1
=-E, exp(—r/u,-,, + Erzo'nz) —a*p,+ €y

1
= —exp(fr,u,},, + Eﬂ(oﬁ + V;,)) —a* Pyt €j.
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Hence, the optimal policy takes a very simple form: in each period ¢, patient j
should choose the drug n with the highest value function W,(S,). The term
(ol + V) represents the “risk premium,” the disutility incurred by patient j
due to the uncertainty she faces regarding both her match value u;, as well as
the drug return x,,. It is clear, from the equations above, that risk aversion
generates persistence in drug choice via the risk premium.*! Patient j’s previ-
ous use of drug n reduces the posterior variance V;, and, therefore, increases
the expected utility of drug n relative to drugs that patient j has not previously
used. This, in turn, increases the probability that patient j chooses drug 7 again.
Indeed, the risk premium functions as a “switching cost,” by making patient j
reluctant to choose drugs that she has not tried before (and for which the vari-
ance V7, is high).

Assuming stationarity of the optimal policy and letting X;, = (x},, y;»)" de-
note the vector of symptomatic and curative signals obtained from a prescrip-
tion of drug », the Bellman equation becomes

(11) W(S) = maxE{u(xju, Pu, €n)
+ B - h;(hbyjn))E[W(S,)l)-éjmn]|8}7

where the primes (") denote next-period values. A number of researchers have
surveyed the available methods for computing the value function; see, for ex-
ample, Judd (1998, Chap. 12) or Rust (1996). We employ a variant of the Keane
and Wolpin (1994) approximation method for computing the value function;
we describe it in more detail in the Appendix.

4. THE ECONOMETRIC MODEL

For each patient j, our data yield observations on the sequence of drugs cho-
sen, dji, ..., djn:, as well as the treatment length 7;. Let I; denote a censoring
indicator for whether patient j’s treatment length is censored by the end of
the sample period (i.e., if I; =1, then 7 is a lower bound on patient j’s actual
treatment length).

Define W,,, = W,(S,) as patient j’s value function for drug n during pe-
riod ¢ and let X, x = {Xju1k» - - - » Xjuiks> Yintks - - - » Vinek} denote the experience
signals received by patient j up to (and including) period ¢. Note that her initial
healing probability, A, «, and these experience signals depend on the patient’s

3 As is clear from (9), the parameter r measures both the “utility scaling” of signals x, as
well as the coefficient of the risk premium o2 + V.5, To address this, we estimated an alternative
version of our baseline model that allows for the coefficient on the risk premium to differ from

the coefficient on x. We found that the estimated coefficient on the risk premium did not differ
appreciably from %?2, where 7 denotes our estimated value for r. For that reason, we did not

pursue this point further.
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type, k, that is observed by the both doctor and patient but not by the econo-
metrician. Note also that we only observe patients who obtain at least one pre-
scription (i.e., wy; = 0 for all patients j in the sample). Hence, for patient j, the
likelihood for period ¢ is

(12) HE /51 Wn] k> I/an’l,ka n # ”'))djn1 fort= 1;

E)-ij—l,k>h0j,k [((1 - hjt—l,k)

X 1_[E€j11 ..... €51 (H(I/ant,k > W/jn’l,ky n/ # n))djm)}

n

forl<t<Tj,
E-

XjnT/-,kthj,k[(l — 1) * thj,k] fort=T;

(for the censored observations, we have no information as to whether pa-
tient j is healed after period 7; or not). If we make the assumption that
€j11s - - » €5, are 1.i.d. Type I extreme value,” then the choice probabilities
51mplify to the multinomial logit expression E(L(W, i > Wik, n' # n)) =
exp(Wn i)/ [Zn _1eXp(Wyi k)] = Ajui. Because a patient’s type k is unob-
served, the likelihood for all the observations of patient j is

K
(13) Zpk 'Eff,'nTj,khoj,k|:l_[<(1 - Jlk)l—[)\]r/l:tk)j| JT kl—[)‘]rlznTTk
k=1

for an uncensored (i.e., I; = 0) observation, and

Tj-1

[T (- moTT) | T

t=1

K
(14) Z Dk - E?/;;T}-,k\hoj',k |:
k=1

for a censored (i.e., I; = 1) observation.

Simulation estimation

In equation (13), the expectations are difficult to calculate because the di-
mensionality of the joint distribution of (X;,r, x, ho;«) can be large. We there-
fore use simulation to approximate these expectations. We first draw S vectors

32This assumption has been made often in the existing literature (cf. Rust (1987), Hotz and
Miller (1993)) for computational convenience.
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of the unobservables, (k, X iTjk) for each patient. Then the simulated likelihood
for an uncensored patient j is

S K
) é Z Z P [H<(1 = i) l_[()‘fm,k)djm)} ik H(Afnn,k)df”f,
t n "

s=1 k=1

where s denotes the sth drawn vector of unobservables for patient j, and
Aj.x 18 the logit choice probability for patient j with type k choosing drug n
during period ¢ for the sth draw. (An analogous expression can be derived for
the case that patient j’s prescription sequence is censored.) In practice, we use
30 simulation draws per patient when calculating the likelihood function.*

4.1. Identification

In this section, we briefly consider the structural features of the model and
the variation in the data that help to identify the model parameters. The main
identification restriction in our bivariate learning model is that a drug’s symp-
tomatic effects only impact a patient’s utility, while its curative effects only
influence the recovery probabilities (cf. (3) and (4)). In this sense, variation in
drug choices across patients and prescriptions is important for identifying the
parameters related to the symptomatic match value distribution, while varia-
tion in recovery frequencies conditional on different sequences of drug choices
is important for identifying the parameters related to the curative match value
and illness heterogeneity distributions.

Specifically, the parameters related to the symptomatic match value distrib-
ution, w,, o2, and o, as well as the risk aversion parameter r, enter the model
via the per-period utility expression (3). Market shares at patients’ initial pre-
scription help identify the prior symptomatic match values u,, because doctors
are basing their decisions mostly on their prior beliefs at this early juncture
of treatment.** Furthermore, because doctors’ drug choices late in treatment
(especially for those patients with long treatments or those who have tried
many drugs) will tend to be based on their true match values, the difference

*¥In calculating the standard errors, we use the outer product of the gradient form for
the asymptotic approximation of the variance—covariance matrix, which is valid if § — oo and
VN /S8 = 0 (cf. Gourieroux and Monfort (1996, Chap. 3) and Lee (1992, p. 258)). See Pakes and
Pollard (1989) for a general asymptotic theory for estimators obtained by maximizing simulated
objective functions and see Lee (1992, 1995) for discussions of the asymptotic theory appropriate
for the smoothed simulated maximum likelihood procedure employed in this paper.

3Unlike static discrete-choice models, however, the u,’s are not drug-specific utility intercepts
that can freely adjust to reflect overall market shares. The w,’s must also adjust to fit dynamic
patterns in drug choice. a
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in the choice probabilities early versus late in treatment will help identify o2,
which measures the dispersion in symptomatic match values across patients.*

The separate identification of the risk-aversion parameter, r, and the stan-
dard deviations of the signals, o, is more subtle. Risk-averse patients are reluc-
tant to switch drugs, even if their experience to date suggests that their match
value for the current drug is low or the drug is expensive. Hence, the degree of
risk aversion is identified by the degree of persistence in drug choices.*® While
the overall incidence of switching identifies r, the extent that switching changes
with the number of times patients have taken a drug, [}, identifies o,. To see
this, note that in the posterior variance formula (7), o, parameterizes how
much patients’ perceived variances fall—and thus utility and purchase proba-
bilities rise—with increasing experience, as measured by /.

Turning to the curative match values and the illness heterogeneity distrib-
ution, (10) shows that the quantities v,, 7,, 7,, and hy; enter the model only
through the expression for the expected recovery probability,

( it ) + djni Yjni
(16) E[hjt(h/t 15 y/m)|8] - y}mh/],, - hfrll e ‘St s
L (55 + i)

where the first expectation is taken over N (v}, Rj,), the period-¢ posterior
7., and 7, enter only in the

distribution of »;,|S,. Since the parameters nj, T

expressions for the posterror mean v, and variance R, (cf. (8)), and the illness
severity Ao, enters only in the expressmn for the healrng probabilities, A,
(cf. (4)), these parameters are jointly identified.

The particular exponential functional form chosen for the per-period util-
ity function (3) is important in separately identifying the mean symptomatic
match values, u,, from the price parameter, a. Because neither p, nor the drug
prices vary over time, we would not be able to separately 1dent1fy Mpand @ina

utility specification in which the posterior symptomatic mean uj, ‘and the drug
price enter linearly, since both would be collapsed into a drug-specific intercept
term. In our exponential specification, however, u}, enters interacted with V,

]”’

3Specifically, as o, — 0, all patients will have the same match values, identically equal to the
prior match values w,, n =1,...,5. This implies that market shares near the end of treatment
should equal market shares at the beginning of treatment.

3% As noted by a referee, persistence in drug choices can be generated not only by risk aversion,
but also by serial correlation in perceived qualities, uf,, induced by patients’ match values. The
rational expectations assumption is important in overcoming this identification problem, because
it implies that high and low signals (relative to the prior mean match value) are equally likely
after a patient’s first use of a drug. Hence, a patient is equally likely to “update up” as “update
down” from her first use of this drug so that, without risk aversion, the repeat purchase probability
after this first use should be, on average, no higher than her purchase probability before this use.
In contrast, risk aversion always generates persistence after the first use via reductions in the
risk premium, so that the repeat purchase probability after first use should be, on average, much
higher than her purchase probability before this use. This is what we find in the data.
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the (time-varying) perceived variance. Hence, u, is identified from variation
in drug choices across patients and prescriptions given different levels of expe-
rience, leaving cross-sectional variation in market shares to identify the price
coefficient, «.”” Finally, unobserved heterogeneity in initial illness severity ap-
pears necessary to convincingly explain some features of the data.*®

5. ESTIMATION RESULTS

Tables I1I and IV contain the estimates for the parameters of our bivariate
dynamic learning model.*” The first panel of Table III presents our estimates
of the patient type distribution. As suggested by (2), we allow for a discrete
distribution of patient types.** We began by allowing for two unobserved types
(K =2) and then increased the number until there were negligible changes in
both model fit and the qualitative conclusions from the model. This yielded an
estimated four type parameters.

As described earlier, each patient type begins treatment with a different
initial illness severity and draws its drug-specific match values from different
distributions. Hence, for each of the four patient types, we estimate differ-
ent initial recovery probabilities and mean match values wy, ..., ws, v, ..., Vs.

Discussion of results

The parameter estimates for the distribution of patient types provides strong
support for illness heterogeneity in the population of ulcer sufferers. The first
panel of Table III reports that Type 1 patients are those with mild conditions
who begin with a 43.3% chance of recovering after their first prescription and
make up 59.3% of the sample. Type 2 patients are the sickest patients, who

37While the specific functional forms for the utility function are important, we performed sim-
ulations of the model to ensure that certain empirical implications of this utility specification are
confirmed in the actual data. The positive results from these simulations support our specifica-
tion. We thank a referee for this suggestion.

BWithout illness severity, for example, the large number of patients who are healed after a
single prescription to the composite drug 5 yields—contrary to the medical evidence—a high
estimated curative value for that drug. Once we allow for unobserved illness heterogeneity, how-
ever, the curative match values estimated for drug 5 decrease substantially because such short
treatments may now be attributed to mild conditions (permitting the curative match value to be
identified by the (in)effectiveness of drug 5 at treating longer sequences).

*¥1In our empirical specification, we imposed several additional restrictions on the parameters.
First, while we allow the variances of the symptomatic signals, o2, to vary across drugs, we restrict
the variance of the curative signals to be identical across drugs (72 = 72, V¥ n). Furthermore, the
estimated prior variances, &3, were quite similar, so we imposed the restriction that they are
identical across drugs, o2 = o?, 2 =12, V.

“This follows Heckman and Singer (1984). While the results are not reported here, we have
also tried continuous heterogeneity distributions, including Gamma and a mixture of Normals.
The estimates for these specifications supported an extremely skewed distribution that seemed
to us well approximated by the four-point discrete distribution given in (2).
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TABLE III
DYNAMIC MODEL: PARAMETER ESTIMATES

Parameter Est. Std. Err. Est. Std. Err.
Illness heterogeneity distribution Recovery Probability Type Probability
0: (Type 1) 0.433 0.003 0.593 0.006
0, (Type 2) 0.127 0.003 0.335 0.006
05 (Type 3) 0.199 0.007 0.043 0.001
04 (Type 4) 0.432 0.011 0.029 0.002
Means, symptom match values® Type 1 Type 2

1 0.927 0.282 1.195 0.369
Mo 0.928 0.287 0.428 0.166
3 0.481 0.197 —0.028 0.178
e 0.335 0.161 —0.145 0.079
s 0.451 0.174 —0.483 0.137
Means, curative match values® Type 1 Type 2

v 0.014 0.003 0.006 0.000
v,° 0.015 0.005 0.006 0.001
v, 0.013 0.030 0.006 0.095
v, 0.013 0.084 0.014 0.009
s —0.034 0.000 —0.038 0.000
Std. dev., symptom match values

o 1.574 0.448

Std. devs., symptom signals

oy 0.998 0.287

o 1.134 0.326

o3 1.375 0.395

oy 1.159 0.333

o3 0.931 0.268

Std. dev., curative match values

T 0.007 0.000

Std. dev., curative signals

T 0.007 0.001

Price coefficient, o® 1.080 0.091

Risk-aversion parameter, r 0.990 0.274

Discount rate, 8 0.950 Fixed

Number of observations 34,972

Number of similar draws 30

Log likelihood function —124,484.34

4Price in thousands of lire.

bPrior symptomatic and curative means are reported for two highest probability types. For prior means corre-
sponding to all types, see Table IV.

CPrior means for drug 2 are reported for the Jul-Dec 1992 period. For prior means corresponding to earlier
periods, see Table IV.
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TABLE IV

DYNAMIC MODEL: PARAMETER ESTIMATES (CONT’D): MATCH VALUES FOR ALL TYPES
AND ACROSS TIME FOR OMEPRAZOLE

Type 1 Type 2 Type 3 Type 4

Parameter Est. Std. Err. Est. Std. Err. Est. Std. Err. Est. Std. Err.

Match values, all types
Symptom match values

M1 0.927 0.282 1.195 0.369 0.489 0.163 0.151 0.091
ﬁza 0.928 0.287 0.428 0.166 0.577 0.198 0.573 0.199
ﬁ3 0.481 0.197 —0.028 0.178 1.762 0.531 0.013 0.167
ﬁ4 0.335 0.161 —0.145 0.079 -0.111 0.305 0.504 0.184
s 0.451 0.174 —0.483 0.137 —0.113 0.125 —0.561 0.220
Curative match values
v, 0.014 0.003 0.006 0.000 0.011 0.002 0.014 0.010
2% 0.015 0.005 0.006 0.001 0.011 0.006 0.015 0.003
12 0.013 0.030 0.006 0.095 0.004 0.001 0.013 0.329
v, 0.013 0.084 0.014 0.009 —0.035 0.214 0.012 0.003
Vs —0.034 0.000 —0.038 0.000 —0.037 0.054 —0.034 0.409

Time-varying priors for omeprazole

Symptom match value, w,
Period 1 0.805 0.258 0.306 0.140 0.454 0.171 0.451 0.172
Period 2 0.910 0.285 0.411 0.166 0.560 0.197 0.556 0.198
Period 3 0.722 0.237 0.223 0.122 0.371 0.151 0.368 0.152
Period 4 0.979 0.301 0.480 0.181 0.628 0.212 0.625 0.214
Period 5* 0.928 0.287 0.428 0.166 0.577 0.198 0.573 0.199

Curative match value, v,
Period1  —0.007 0.011  -0.016 0.010 —0.011 0.011  —0.007 0.010
Period2  —0.001 0.012 -0.011 0.011  —0.006 0.012  —-0.001 0.011
Period 3 0.015 0.016 0.005 0.015 0.011 0.016 0.015 0.016
Period 4 0.013 0.017 0.004 0.016 0.009 0.017 0.013 0.017
Period 5° 0.015 0.005 0.015 0.001 0.011 0.006 0.015 0.003

aPrior means for drug 2 are reported for the Jul-Dec 1992 period. Prior means corresponding to earlier periods
are reported in the bottom panel of this table.

begin treatment with only a 12.7% chance of recovering and make up 33.5%
of the sample. The remaining 8.2% of patients are Type 3 and Type 4 patients,
who begin treatment with a 19.9% and 43.2% initial recovery probability.
Table III reports the parameters of the match value distributions for the
Type 1 (“not-so-sick”) and Type 2 (“sick”) patients that make up over 90% of
the sample.*! The point estimates for the parameters of the symptomatic match
value distribution indicate substantial heterogeneity in match values across pa-
tients. First, the estimates of the mean match values w4, ..., us indicate that
the ranking of these drugs along the symptom-relief dimension is (2, 1, 3, 5, 4)

“Table IV presents the same estimates for all the patient types.
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for Type 1 patients and (1, 2, 3,4, 5) for Type 2 patients. The estimate of the
standard deviation of symptomatic match values, o (1.58), is large when com-
pared to the magnitudes of the across-drug differences in the mean match val-
ues. In Figure 2, we graph the estimated densities for the symptomatic match
values for these two patient types. The substantial overlap in the supports of
these density functions exhibited in each graph implies that, for all patient
types, the drugs are clearly horizontally differentiated, so that the symptomatic
ranking among the drugs is very likely to be different even for two patients of
the same patient type. Since match values are unknown to patients and doc-
tors at the beginning of treatment, the heterogeneity in match values implied
by these results highlights the importance of the matching problem in this mar-
ket.

The point estimates obtained for the parameters of the curative match value
distribution provide further evidence of heterogeneity in match values across
patients. The average ranking of drugs in this dimension is (2,1, 3,4,5) for
the Type 1 patients and (4, 1, 2, 3, 5) for the Type 2 patients. Significantly, the
composite drug 5 is estimated to have negative curative mean match values on
average for all patient types. Moreover, the estimated magnitude of 7 is large
compared to differentials in the mean curative match values v, across drugs,
which indicates substantial horizontal differentiation across patients along the
curative dimension, just as with the symptomatic match value densities plotted
in Figure 2.

In Table IV we present the symptomatic and curative match values for all
four patient types as well as the trend in the estimated prior match value means
for omeprazole. The top half of Table IV reports that Type 3 patients, repre-
senting 4.3% of the sample, are fairly ill and prefer the symptomatic effects of
drug 3, while Type 4 patients, representing 2.9% of the sample, prefer drugs
2 and 4. Whereas Types 3 and 4 represent a small share of the patient popula-
tion, we do not focus further on these results.

The bottom half of Table IV presents the estimated evolution in doctors’
prior beliefs for omeprazole, the innovative molecule that entered at the be-
ginning of our sample. We see that, as might be expected, these prior means
generally rise over time—particularly in the curative dimension—implying that
beliefs about the efficacy of omeprazole became more optimistic over time.
This indicates that, for omeprazole, there are important sources of learning by
doctors that are driving prescription behavior. This is not surprising, given that
omeprazole is the newest drug in the sample and that its active ingredient is
markedly different from the active ingredients of the other available drugs.

A number of our results reconcile important differences between inferences
of drug quality obtained from market shares versus the medical literature in the
anti-ulcer market. As might be expected of a market leader, drug 1 (ranitidine)
performs well in all dimensions among all types of patients. Drug 2, (omepra-
zole), is a therapeutic innovation that, despite having a significantly lower mar-
ket share (and a higher price) than drug 1 in the data, is nonetheless estimated
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FIGURE 2.—Heterogeneity in symptomatic match values: Type 1 and Type 2 patients. Density
of symptomatic match values uj, across patients. Solid line, drug 1 (ranitidine); circle, drug 2
(omeprazole); plus, drug 3 (famotidine); triangle, drug 4 (nizatidine); cross, drug 5 (small brands).

to have a slightly higher mean match value to drug 1 in the curative dimension
for Type 1 patients and comparable curative match values for the other patient
types. Furthermore, drug 2’s relatively poor symptomatic performance among
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sicker Type 2 patients (its mean symptomatic match value of 0.428 is a dis-
tant second behind drug 1’s value of 1.195) is consistent with medical evidence
about its approval for use.*> On the other hand, drug 5, a composite of older,
milder drugs, appears effective only in relieving symptoms for the least sick
Type 1 patients, who presumably also have milder symptoms than the other
patient types. Finally, our estimates of the standard deviations of the symp-
tomatic signals, o7, ..., 03, indicate that drugs 1 and 5 yield less noisy signals
than drugs 2-4, which is consistent with the observations that the former drugs
are older than the latter drugs and that the experience signals may be expected
to be more precise for the older drugs.

5.1. Model Fit

Before considering some broader implications of our results, we consider
the fit of our estimated model. To do so, we generate simulated prescription se-
quences using our estimated parameters and compare summary statistics from
this data with the analogous statistics for the actual estimating data. While the
observed prescription sequences are censored, the simulated sequences are
not. Therefore, to better assess model fit, we censor the simulated data in a
manner consistent with the censoring in the data set and compare the mar-
ket shares, treatment costs, and treatment lengths after doing this “simulated
censoring.”*

Table V contains average treatment lengths, treatment costs, and market
shares calculated from the actual data as well as from a simulated data set of
5,000 hypothetical patients.* Turning to the first column of Table V, we see that
both the average treatment length and the treatment cost match remarkably

“2In particular, upon initial introduction, drug 2 (omeprazole) was not approved for “main-
tenance therapy” or long-term treatment of some chronic or persistent conditions (cf. Yamada
(1995, pp. 1233-1234)).

“*We begin by constructing a sampling distribution of censoring times that is the empirical
distribution of the censoring times observed in the data. In constructing this distribution, we
follow the assumptions on right censoring presented in Section 4. For the patients with cen-
sored prescription sequences (those for whom we observe prescriptions during months 31-36
(i.e., July-Dec 1992) of the sample), we take the observed treatment length as the censoring
time. For the patients with uncensored prescription sequences (those for whom we do not ob-
serve prescriptions during months 31-36 of the sample), the censoring time is unobserved. For
these patients, we construct the censoring time as 31 — 7, where r is the first month in which
we observe a prescription for this patients; m is measured as the number of months after Jan-
uary 1990. After constructing this sampling distribution of censoring times, we draw a censoring
time for each simulated patient from this distribution and truncate each simulated prescription
sequence at this censoring time if the length of the simulated prescription sequence exceeds the
censoring time.

4“We also considered the out-of-sample fit of our model using data from Jan—Jun 1990, which
were not used in the estimation. The results of this exercise were confounded by left censoring
in the data, however, because the patients in this data likely commenced treatment before the
sample period began. As such, we do not report the results here.
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TABLE V
MODEL FIT: MARKET SHARES AND TREATMENT CHARACTERISTICS

Overall 1st Pres 2nd Pres 3rd Pres 4th Pres
Actual Data

Treat. length® 2.8

Treat. cost® 147¢

Market shares
Drug 1 64.4 57.4 62.7 65.7 67.6
Drug 2 11.0 9.5 11.6 12.4 12.1
Drug 3 6.8 6.9 7.3 7.0 6.7
Drug 4 3.3 3.5 3.2 3.1 3.1
Drug 5 14.7 22.7 15.1 11.9 10.4

Simulated Data

Treat. length 2.8

Treat. cost 146

Market shares
Drug 1 61.4 57.7 56.6 60.9 63.9
Drug 2 14.2 13.8 15.7 14.8 14.4
Drug 3 4.6 4.5 4.8 5.2 5.0
Drug 4 2.6 3.1 2.6 2.8 2.6
Drug 5 17.1 21.0 20.3 16.4 14.1

a@Measured in number of prescriptions.
bMeasured in thousands of Italian lire.
CCalculated as (daily dosage price) * 30 for each month of treatment.

dThe simulated prescription sequences are censored in a manner consistent with the data (see Section 5.1 of the
text).

well in the simulated data. Furthermore, the simulated overall market shares
match the actual market shares in ranking, but the market share of drug 1,
ranitidine, is slightly underpredicted, while the share of drug 5 is overpredicted.

The remaining columns of Table V consider how well our specifications
match dynamic features of the data. The top panel of Table V presents market
shares in the data at the first through fourth prescriptions across all patients.
Two trends are apparent: the market share for drug 1 rises over prescriptions
and that for drug 5 falls over prescriptions. The bottom panel of Table V
presents the analogous shares calculated using the simulated data. While the
magnitudes deviate somewhat from the actual data, both the upward trend in
market share for drug 1 and the downward trend in drug 5 detected in the
actual data are duplicated in the simulated data.

Given our model’s close fit of the average treatment length, we also consider
how well our specifications fit observed treatment lengths and recovery prob-
abilities. In Figure 3, we present plots of the empirical survival functions for
both the actual and simulated data. The fit here is also very encouraging: for
example, the survival function in the actual data at three and four prescriptions
is roughly 21% and 15%, respectively, while the corresponding percentages in
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FIGURE 3.—Empirical survival estimates. All sequences truncated at 20 prescriptions to pro-
vide ease of comparison.

the simulated data are just very close at 24% and 17%. The only deviation be-
tween observed and simulated data is a slight overprediction of recovery prob-
abilities for short treatments and corresponding underprediction of recovery
for long treatments.

6. UNCERTAINTY, EXPERIMENTATION, AND ITS CONSEQUENCES

We next use our estimates to assess the importance of uncertainty, learn-
ing, and experimentation in generating the prescription sequences observed
in the data. We begin by describing the implications of our estimates for the
speed at which patients and their doctors learn whether a drug is effective for
the patient. Our estimates imply that learning occurs quite quickly. For exam-
ple, for drug 1, a Type 1 patient’s perceived variance for symptomatic relief
falls from 2.48 to 0.70 after a single prescription, a decrease of over 70%. The
incremental effects of subsequent prescriptions are fairly low—the majority
of uncertainty reduction (and consequent increase in utility to the first-chosen
drug) comes with first use. Similar results obtain for the speed at which patients
learn about drugs’ curative effects. The very large effects of the first prescrip-
tion implies significant switching costs to patients in pharmaceutical markets.*

4SWhile our focus is on the matching process between patients and drugs based on experience,
a referee has noted that it is critical that we accommodate as well as possible the “diagnostic
matching” of patients to drugs by doctors prior to drug use. Failing to do so will tend to attribute
persistence in drug choices to reduced uncertainty and risk aversion rather than the accurate
diagnosis of a particular drug for a particular condition. We have explored the sensitivity of our
results to alternative specifications of the distribution of patient types (equivalently, diagnosis
types) and found them to be very robust. Later in this section, we present results that measure
the relative importance of matching based on doctors’ diagnoses versus patients’ experience that
finds both effects to be empirically important.
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Our estimates of r, the risk aversion parameter (0.990), and the price coeffi-
cient « (1.080) indicate that a Type 1 patient would value this decrease in the
perceived variance at about 950 lire, which is over 65% of her copayment per
daily dose of drug 1.

While patients appear to learn quickly, there is still the question of the costs,
both monetary and otherwise, of uncertainty in anti-ulcer markets. To assess
these costs, we simulate prescription sequences for 5,000 hypothetical patients
under two counterfactual assumptions. In the first counterfactual, we examine
drug choice in the “best-case” scenario where patients have complete informa-
tion about their match values. To do so, we continue to have patients draw
symptomatic and curative match values from the population distributions,
N (ponks ) and N(v,,,T,.), but set their perceived variance, VI; and R;n,
to zero.*® In the second counterfactual, we preclude experimentation by con-
straining patients to continue taking the first drug they are prescribed, thus
effectively shutting down learning after the first prescription. By comparing
the results from these simulations to the baseline values implied by our esti-
mates, we isolate the effects of uncertainty and experimentation in this market
and assess how actual choices compare to those made when each is removed.

The first panel of Table VI presents baseline estimates of average patient
utility, treatment length, treatment costs, and market shares for each drug im-
plied by the model at the estimated parameter values. Note that the reported
results here are for the uncensored simulated treatment sequences, which dif-
fer slightly from the results presented in Table V for the censored simulated
treatment sequences.

The second panel of Table VI summarizes patient choices under complete
information. The average number of drugs taken during treatment increases by
a third and market shares become much less concentrated, leading to a sharp
fall in the Herfindahl Index (from 4,242 to 2,676). As expected, discounted ex-
pected utility increases.”’” The implications of these counterfactuals are quite
interesting. With complete information, one might expect patients to simply
purchase the drug that yields their highest match and remain with it. Instead,
the average number of drugs increases (from 1.4 to 1.9). This occurs as patients
optimize their choice of drugs over the course of treatment. The increase in
market share of all the drugs at the expense of the market leader is unsur-
prising. As suggested in Figure 2, our estimates suggest drugs’ symptomatic
match values do not differ greatly, but that there are switching costs induced
by patient-level uncertainty that favor the first-chosen drug.

4Note that, even with complete information, patients under this counterfactual still face
uncertainty about the symptomatic and curative signals they receive after each prescription.
However, by removing all uncertainty about their match values, all incentives to experiment are
removed.

4TWhile it appears that average treatment length and treatment cost increase considerably, this
is an artifact of a small number of very long simulated treatment sequences: indeed, the median
treatment cost actually is smaller under this counterfactual than in the baseline specification.
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TABLE VI
RESULTS FROM COUNTERFACTUAL SIMULATIONS

Baseline Specification®

Avg. discounted utility —28.7
Avg. treatment length 4.8
Avg. treatment cost 245
Avg. number of different drugs 1.4
Market shares
Drug 1 60.4
Drug 2 14.1
Drug 3 3.7
Drug 4 2.5
Drug 5 19.3
Herfindahl index 4,242
Counterfactual I: Complete Information®
Avg. discounted utility —26.4
Avg. treatment length 8.8
Avg. treatment cost 385
Avg. number of different drugs 1.9
Market shares
Drug 1 224
Drug 2 12.9
Drug 3 12.0
Drug 4 10.9
Drug5 41.8
Herfindahl index 2,676

Counterfactual II: No Experimentation®

Avg. discounted utility —30.6
Avg. treatment length 4.8
Avg. treatment cost 248

aThese figures differ from those given in the bottom panel of Table V because they were
computed using uncensored simulated prescription sequences, while those reported in Table V
were calculated using censored simulated prescription sequences.

bIn these simulations, we assume that each patient j knows her match values u; and v;.
Therefore, while signals are still stochastic, patients’ perceived variances, V]; and R;”, are set
equal to zero.

In these simulations, we restrict patients to take their first drug for the duration of their
entire treatment.

Furthermore, we note that removing uncertainty does not yield a dramatic
change in average discounted utilities. In the complete information case, the
average discounted utility is —26.4, about 9% higher than the average dis-
counted utility obtained in the baseline case with uncertainty. This reduction
in utility levels is smaller than the reduction that occurs when experimentation
is prohibited, as illustrated in the second counterfactual, reported in the bot-
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tom panel of Table IV. Requiring patients to continue taking their first drug
for the entire duration of their treatment does not change simulated treatment
lengths and moderately increases simulated treatment costs, but lowers the av-
erage utility level down to —30.1, which is about 6% below the baseline case,
and which allows for learning and experimentation.” The decrease in utility
levels when experimentation is precluded highlights the role of learning and
experimentation in enabling patients to realize discounted utility levels that are
closer to those attainable in a first-best scenario with complete information.

On diagnostic versus experiential matching

As described earlier, doctors in our model perform the “diagnostic match-
ing” of patients to drugs prior to writing any prescriptions. How important is
this diagnostic matching when compared to matching based on patients’ expe-
rience with the alternative drugs? Table VII evaluates this issue by calculating
the discounted expected utility, treatment lengths, treatment costs, and mar-
ket shares for a counterfactual experiment that eliminates diagnostic matching
by doctors. In this counterfactual, we assume that doctors are unable to un-
cover patient types during the initial diagnosis. To impose this restriction, we
set the prior mean (in both the symptomatic and the curative dimensions) for
each drug to be the weighted average of the type-specific prior means, with the
weights given by the estimated type probabilities p, ..., p4.

TABLE VII
RESULTS FROM COUNTERFACTUAL SIMULATIONS (CONT’D)

Counterfactual ITI: No Diagnostic Matching?

Avg. discounted utility -31.9
Avg. treatment length 6.9
Avg. treatment cost 324
Avg. number of different drugs 1.6
Market shares
Drug 1 41.6
Drug 2 18.3
Drug 3 22
Drug 4 2.4
Drug 5 35.4
Herfindahl index 3,333

a1n these simulations, we assume that doctors are unable to determine the initial illness sever-
ity hq; for each patient during the initial diagnosis. To impose this restriction, we set the prior
mean (in both the symptomatic and curative dimensions) for each drug to be the weighted aver-
age of the type-specific prior means, with the weights given by the estimated type probabilities

“8We thank a referee and Wilbert van der Klaauw for suggesting this counterfactual.
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Table VII shows that expected utility is approximately 11.1% lower, and ex-
pected treatment costs and length are 30-40% higher than in the baseline sce-
nario with diagnostic matching. Indeed the relative loss in utility/increase in
treatment costs and length from diagnostic matching is actually greater than
the comparable gain that would obtain under complete information presented
in the second panel of Table VI. This suggests that the diagnostic process is
at least as important to patients as the idiosyncratic learning that occurs as
patients match to their preferred drug. Interestingly, the “pooling of types”
caused by eliminating doctor diagnoses yields a less concentrated market, sug-
gesting that while diagnostic matching of patients to drugs clearly benefits pa-
tients, it does so at the expense of greater market power for leading drugs.

7. CONCLUDING REMARKS

In this paper, we measure the importance of uncertainty and learning in the
demand for pharmaceutical drugs. To do so, we specify a dynamic matching
model of demand in which doctors choose a sequence of drugs to minimize
their patients’ expected disutility from illness and learn over time about the ef-
fectiveness of available drugs for their particular condition. We extend existing
models of dynamic demand in two ways. First, we allow drugs to be differenti-
ated in two dimensions, having both symptomatic and curative effects. Second,
we endogenize patients’ length of treatment by allowing their drug choices to
impact their probability of recovery.

Our results indicate that these extensions are empirically important in the
market for anti-ulcer drugs. Drugs’ symptomatic and curative rankings differ
in ways that are consistent with the medical literature. We also find strong evi-
dence of learning: despite substantial initial uncertainty about drugs’ effective-
ness (in each dimension), there are sharp reductions in this uncertainty after
even a single prescription. We also find that patients are risk-averse, implying a
strong disincentive to switch away from their first-chosen drug. Despite signif-
icant uncertainty in this market, counterfactual simulations demonstrate that
learning and experimentation enable patients to realize discounted utility lev-
els that are quite close to those attainable in a first-best scenario with complete
information.

The estimated differences in drugs’ symptomatic and curative effects sug-
gests incorporating outcome measures (as here, a patient’s length of treat-
ment) may be an important feature to include in the structural analysis of
consumer demand. The extension to medical markets beyond pharmaceuticals
is clear, but similar approaches may be appropriate for markets with an impor-
tant endogenous temporal dimension, such as markets for “experts” like legal
or business services where performance can be directly (if imperfectly) mea-
sured ex post. More broadly, our evidence on uncertainty and risk aversion
suggests substantial switching costs in pharmaceutical markets, even after a sin-
gle prescription. Inducing strong prior beliefs about drug quality via (especially
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direct-to-consumer) promotional expenditures can therefore dramatically in-
crease profitability and market concentration, even when alternative drugs are
therapeutically similar. This suggests that designing policies to improve infor-
mation diffusion in drug markets might play an important competitive role.
We plan to examine these issues in future work.
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APPENDIX: VALUE FUNCTION APPROXIMATION ALGORITHM

We adapt the Keane and Wolpin (1994) approximation method for discrete-
choice dynamic programming (DCDP) problems to our model. In essence, the
value function is evaluated at only a subset of the (perhaps very large num-
ber of) points in the state space, and a specific form of interpolation is used
to approximate the value function. Recall the general setting (for the sake of
generality, the notation here is simplified from that given in the main text):

e A patient solves the infinite-horizon optimization problem

00 K
(17) maxEY B u(S(1)D,,
t=1 k=1

D)2,

where, each period, one of K discrete choices must be taken (and where D, is
a K vector whose kth element equals 1 if choice k is taken during period ¢
and equals 0 otherwise). The per-period utilities u,(S;) depend on the value
of the vector of state variables S, during period ¢.

e Changes over time in the state variable S, are described by the Markov con-
ditional density function

f(St|Stfla Dl)

e Subject to regularity conditions, the maximum attainable utility of the in-
finite horizon maximization problem (17) can be recursively defined via
Bellman’s equation,

(18) W)= mkax{uk(S) + BEg ;s W (S)},

where W (S) = maxp,= E Yo Bt Zle ui (S,)D;, given Sy = S.
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In usual circumstances, one would solve the dynamic programming problem
by solving the functional equation (18) over a discretized state space, but if
K is large, then the dimensionality of the state space (more specifically, the
number of “grid points” of the discretization) quickly becomes unwieldy. This
quick increase of the state space dimensionality as the number of choices K
increases is often called the curse of dimensionality in DCDP problems.

For the matching model, one point in the state space consists of (p!, p?, p°,
p, p>, h), where p/, j=1,...,5, is a probability that a patient places on
drug j’s being “high” quality and 4 is the current recovery probability for the
patient.

Keane and Wolpin (1994) develop an iterative method that overcomes this
curse of dimensionality by solving the dynamic programming problem at a
small set of points and interpolating over the other points.

Adaptation of Keane—Wolpin method

Fix a number of points in the state space; call this set of points S. Start with
an initial guess of W (S), at each point S € S; call this initial guess W°(S).

Now we posit a relationship between each point W (S) and the elements in
the state space S. In the current specification, we assume that W (S) is linear
in g(S), an /-dimensional (where / need not equal k) vector of functions of the
elements of S; i.e.,

(19)  W(S)=gS) T+, VS €S,

where S, includes a constant term, I is an /-dimensional vector of linear coef-
ficients, and ¢, is a mean-zero error term, i.i.d. over ¢.

For the state points in S , therefore, we run the linear regression (19), to ob-
tain coefficient estimates for I', which we denote I'° (since these correspond
to the zeroth iteration W° of the value function). Based on I', we approxi-
mate W(S) for points S ¢ S by W (S) = S'T°.

Next we iterate the above process. First, for all the points S € S, we construct
the first iteration of the value function,

(20)  W(S) =max{ui(S) + BEsis. W'(S)},

where, for all required points ' ¢ S, we approximate using W (S') = g(S')'T.
Now, based on W!(S), we run a regression analogous to (19) in order to get I'".

We stop this process at a given iteration m if a uniform convergence criterion
is satisfied:

(21) max |W"(S) — W™ (S| < n.
SeS
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After convergence, we use W'(S) as our value function for S € S and use
W (S)=g(S) T" otherwise.”
Each point is (componentwise) drawn randomly. The five discrete state vari-

ables l;’}, e lj’”5 are drawn uniformly from the integers 0, ..., 10. The five pos-

terior means pfj, ..., uj; are drawn randomly from a normal distribution with
mean equal to the mean match value and variance equal to the initial vari-
ance. The recovery probability /7 is drawn from a unit uniform distribution.
(The additional state variables are the logit error terms, which are explicitly
integrated over in deriving the likelihood function.)
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