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Abstract

A meaningful solution to an inversion problem should be composed of the preferred inver-
sion model and its uncertainty and resolution estimates. The model uncertainty estimate 
describes an equivalent model domain in which each model generates responses which fit 
the observed data to within a threshold value. The model resolution matrix measures to 
what extent the unknown true solution maps into the preferred solution. However, most 
current geophysical electromagnetic (also gravity, magnetic and seismic) inversion stud-
ies only offer the preferred inversion model and ignore model uncertainty and resolution 
estimates, which makes the reliability of the preferred inversion model questionable. This 
may be caused by the fact that the computation and analysis of an inversion model depend 
on multiple factors, such as the misfit or objective function, the accuracy of the forward 
solvers, data coverage and noise, values of trade-off parameters, the initial model, the refer-
ence model and the model constraints. Depending on the particular method selected, large 
computational costs ensue. In this review, we first try to cover linearised model analysis 
tools such as the sensitivity matrix, the model resolution matrix and the model covariance 
matrix also providing a partially nonlinear description of the equivalent model domain 
based on pseudo-hyperellipsoids. Linearised model analysis tools can offer quantitative 
measures. In particular, the model resolution and covariance matrices measure how far 
the preferred inversion model is from the true model and how uncertainty in the measure-
ments maps into model uncertainty. We also cover nonlinear model analysis tools includ-
ing changes to the preferred inversion model (nonlinear sensitivity tests), modifications of 
the data set (using bootstrap re-sampling and generalised cross-validation), modifications 
of data uncertainty, variations of model constraints (including changes to the trade-off 
parameter, reference model and matrix regularisation operator), the edgehog method, most-
squares inversion and global searching algorithms. These nonlinear model analysis tools 
try to explore larger parts of the model domain than linearised model analysis and, hence, 
may assemble a more comprehensive equivalent model domain. Then, to overcome the 
bottleneck of computational cost in model analysis, we present several practical algorithms 
to accelerate the computation. Here, we emphasise linearised model analysis, as efficient 
computation of nonlinear model uncertainty and resolution estimates is mainly determined 
by fast forward and inversion solvers. In the last part of our review, we present applications 
of model analysis to models computed from individual and joint inversions of electromag-
netic data; we also describe optimal survey design and inversion grid design as important 
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applications of model analysis. The currently available model uncertainty and resolution 
analyses are mainly for 1D and 2D problems due to the limitations in computational cost. 
With significant enhancements of computing power, 3D model analyses are expected to be 
increasingly used and to help analyse and establish confidence in 3D inversion models.

Keywords Model resolution matrix · Sensitivity · Equivalent model domain · Model 
covariance matrix

1 Introduction

In geophysical electromagnetic induction methods (Nabighian 1991; Berdichevsky and 
Dmitriev 2008; Chave and Jones 2012), natural or artificial source currents generate the 
primary electromagnetic fields which propagate through the Earth. In conductive bodies 
and over interfaces with conductivity contrasts, induced currents and accumulated surface 
charges generate secondary magnetic and electric fields. Depending on the method, either 
the primary field plus the secondary field or the secondary field is measured at receiv-
ers. The secondary field carries information of the conductive bodies and the locations of 
interfaces with conductivity contrasts. Therefore, using inversion algorithms (Parker 1994; 
Tikhonov et al. 1995; Zhdanov 2002; Tarantola 2005; Aster et al. 2012; Menke 2012), we 
are able to extract the underground conductivity distribution from measured electromag-
netic field data sets. Currently, geo-electromagnetic induction methods are widely used in 
studies of the shallow ( < 300  m depth) subsurface (Tezkan 1999; Commer et  al. 2006; 
Pedersen et al. 2006; Günther et al. 2006; Kalscheuer et al. 2007; Rodriguez and Sweetkind 
2015; Merz et al. 2016; Abtahi et al. 2016; Zhang et al. 2016; Costall et al. 2018) and mon-
itoring and imaging of the deep crust and mantle structures (Chen et al. 1996; Nelson et al. 
1996; Becken et al. 2011; Yan et al. 2016; Dong et al. 2016; Le Pape et al. 2017; Sarafian 
et al. 2018; Kühn et al. 2018).

However, many studies which are based on the inversion of electromagnetic data have 
ignored a key factor that is to evaluate the uncertainty and resolution of the preferred inver-
sion model. In inversion problems, an infinite number of equivalent models exist that can 
explain the electromagnetic data to within a given misfit threshold. This is caused by the 
limited data coverage in time (or frequency) and space, the inevitable data noise and the 
strongly nonlinear relationship of data and model. The preferred inversion solution is only 
one of an infinitely large set of candidate models. In inversion, we need first establish a 
cost function which measures the data misfit between measurements and responses calcu-
lated by an approximation of the underlying physics. The responses of this physical system 
are computed based on a model parameterisation of the underground conductivity struc-
ture. Then, deterministic iterative (i.e. linearised) or stochastic inversion algorithms (Parker 
1994; Zhdanov 2002; Tarantola 2005; Aster et al. 2012; Menke 2012) are employed to find 
a possible model which minimises the cost function to a certain level. The topography of 
the cost function measuring the data misfit may have an infinite number of local minima 
(valleys) and local maxima (hills) (Fernández-Martínez et  al. 2012; Fernández-Martínez 
2015). The preferred inversion model can locate at the bottom point of any such valley. 
A serious problem is that the valley containing this preferred inversion model may not 
include the geologically meaningful true model. To shorten the distance of the inversion 
model to the unknown true model or to make the inversion model locate in the same valley 
as the true model, a constraint or a reference point, such as a Tikhonov regularisation point 
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(Jackson 1979; Tikhonov et al. 1995), must be fixed in this valley, which is implemented 
by adding a model regularisation term to the cost function. The preferred inversion model 
and the true model generally do not locate at the same point, because the bottom of this 
valley generally looks like an extended and distorted saddle shape. The  distance  of the 
preferred inversion model to the true model (resolution) and its possible variations (uncer-
tainty) can be appraised using linearised or nonlinear model analysis.

Linearised model analysis tools can offer quantitative measures for both resolution and 
uncertainty of the preferred inversion model. A quantitative measure of model resolution 
can be computed in form of the model resolution matrix. Quantitative measures of model 
uncertainty can be computed in terms of the model covariance matrix (Backus and Gil-
bert 1968), and equivalent model domains can be calculated using the partially nonlinear 
concept of pseudo-hyperellipsoids (Johansen 1977; Kalscheuer and Pedersen 2007; Kals-
cheuer et  al. 2010). Formally, the preferred inversion model is a sum of the true model 
weighted with the resolution matrix, the reference model (if applicable) weighted with 
the complement of the resolution matrix and the noise in the measurements weighted by 
the generalised inverse (Friedel 2003; Günther 2004; Kalscheuer et al. 2010). Hence, the 
model resolution matrix is considered a blurring filter through which we see the contribu-
tion of the true model in the inversion model. The model covariance matrix describes how 
uncertainties in the true model, the reference model and the data translate into uncertain-
ties of the inversion model. It can be safely assumed that the uncertainty in the true model 
is zero. If no reference model is used (e.g., in a smoothness-constrained inversion) or if the 
reference model is not associated with uncertainty, the only uncertainty projecting into the 
uncertainty of the inversion model is that of the field data. It is valuable to mention another 
quantitative measure of model uncertainty in terms of funnel functions (Oldenburg 1983; 
Menke 2012). In this approach, the upper and lower bounds of the model parameters (or 
the local averages of model parameters) for both linear and nonlinear optimisation prob-
lems are estimated. Subsequently, model parameter uncertainties are computed as differ-
ences between these estimated upper and lower bounds.

Whereas linearised model analysis tools estimate model uncertainty and resolution 
using exactly the same data, data uncertainties and model constraints that were used to 
compute the inversion model, nonlinear model analysis tools do not only account for the 
nonlinearity of the forward problem but utilise the fact that the preferred inversion model 
reflects changes in data, data uncertainties and model constraints (initial model, reference 
model, smoothness constraint, structural and petrophysical constraints). Therefore, in these 
nonlinear methods, the equivalent model domain of the preferred inversion model is gener-
ated by varying the data set (Schnaidt and Heinson 2015), the data uncertainties (Li et al. 
2009), the initial model (Bai and Meju 2003; Schmoldt et al. 2014), the reference model 
(such as methods computing depth-of-investigation indices, in short DOI indices, e.g., Old-
enburg and Li 1999; Oldenborger et al. 2007), the regularisation (or smoothness) opera-
tors (Constable et al. 1987; de Groot-Hedlin and Constable 1990, 2004; Kalscheuer et al. 
2007), and, if applicable, the structural or petrophysical model constraints (Gallardo and 
Meju 2004; Shamsipour et al. 2012; Gao et al. 2012; Kamm et al. 2015; Giraud et al. 2017, 
2019). Only models with responses that agree with the field data to within an acceptable 
data misfit threshold are accepted as equivalent models. In its most simplistic form, nonlin-
ear model analysis is based on the generation of equivalent models by manually applying 
changes to the preferred inversion model and evaluating the data fit or running inversions in 
which the resistivities of the modified cells are fixed (Becken et al. 2008; Thiel et al. 2009; 
Thiel and Heinson 2010; Juanatey et al. 2013; Dong et al. 2014; Lindau and Becken 2018). 
In addition, further nonlinear model analysis approaches generate equivalent models by 
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globally or stochastically searching the model domain (Tarantola 2005). Compared to the 
linearised model analysis tool, where its equivalent models are more or less in the vicin-
ity of the preferred inversion model, most approaches to nonlinear model analysis explore 
a larger part of the model domain. However, we should keep in mind that most currently 
available methods of nonlinear model analysis do not offer information on model resolu-
tion, and many offer only qualitative appraisals of model uncertainty. With regard to model 
uncertainty, this is so, because most nonlinear schemes do not enforce convergence to a 
particular target misfit. However, in linear inversion theory, model parameter uncertainties 
corresponding to a 68 % confidence level are associated with a misfit deviation of 1.0 from 
the misfit of the optimal model. Hence, using the simplistic approach mentioned above, the 
stability of a large-scale target structure with a pronounced resistivity contrast to the back-
ground medium can be grossly evaluated, and in many practical applications this approach 
is fully sufficient. However, in applications where targets are associated with comparatively 
small resistivity contrasts, e.g., tracing a contaminant plume through an aquifer, the accept-
able levels of model uncertainty are small. Hence, it is important to calculate quantitative 
estimates of model uncertainty controlling misfit changes stringently. Furthermore, since 
EM inversion problems are nonlinear, extreme model parameters may not correspond to 
confidence levels of 68 %, even though the extreme models have misfit deviations of 1.0. 
Hence, a comprehensive stochastic analysis of the model space may be necessary.

With the above linearised and nonlinear model analysis tools, we are able to estimate 
model uncertainty and/or resolution. Considering the uncertainty estimates, we can 
establish confidence levels for the various structures observed in the preferred inversion 
model (Fig. 1). Those parts of a model space that have low uncertainties and resolution 
matrix entries with little spread around the main diagonal might be used for assisting 
the geological interpretation or the design of drilling campaigns. In addition, using the 
guideline that the preferred inversion model should have adequately good resolution and 
small ranges of uncertainties, we can apply the results of model analysis to inversely 
optimise the acquisition layout (Fig. 1) or the inversion grid. Optimal survey configura-
tions can help us to collect minimum sets of electromagnetic data, which lead to ade-
quate constraints for the target structures, cost-effective surveys (Roux and Garcia 2014) 
and reduced computational loads of inversions (Yang and Oldenburg 2016).

Fig. 1  Illustration of the relation-
ships among measurements, 
model constraints, the preferred 
inversion model and the results 
of model uncertainty and resolu-
tion analysis
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In this review, we will first comprehensively introduce the basic theory and methodolo-
gies of linearised and nonlinear model analysis. Second, practical computational strategies 
are presented to accelerate the computation of linearised model uncertainty and resolu-
tion estimates. Third, applications using model analysis to appraise the preferred inversion 
model are summarised. Fourth, we discuss the developments in using model analysis as 
tools to design optimal survey configurations and inversion grids. Fifth, we conclude this 
paper with general recommendations both on inversion and model analysis and an outlook 
on future research directions.

2  Methods of Model Analysis

The conductivity distribution of the Earth is discretised into an inversion grid � and an 
associated model vector � (where � is generally a logarithmic function of conductivity). 
Assuming there are M elements or cells in the inversion grid, the size of the model vec-
tor is M. The underlying physical system is controlled by Maxwell’s equations (Nabighian 
1991; Berdichevsky and Dmitriev 2008; Chave and Jones 2012), and it is denoted by the 
forward operator �[�,�] (henceforth, in short �[�] ). The measured electromagnetic 
responses such as scalar and tensor impedances (Lilley 2017) at receivers are arranged into 
an observation data vector � of size N, where N is the number of measurements. The elec-
tromagnetic responses can be acquired on the ground, from aircraft, in the ocean and even 
in boreholes. Uncertainties generally exist in the measured data set due to slight perturba-
tions in the geometric sensor layout, intrinsic noise in the sensors, amplifiers and analogue-
to-digital converters and ambient electromagnetic noise, which may behave like random 
variables with zero mean or lead to a systematic bias away from the true signal. In most 
cases, we assume that the uncertainty �

i
 , i = 1,… , N in each observation originates from 

random noise with a normally distributed probability of zero mean and nonzero standard 
deviation. Then, we design a data misfit term Q

d
 by measuring the difference between the 

observations and the predicted responses for an as yet to be determined model vector � , 
that is (Abubakar et al. 2009; Menke 2012; Aster et al. 2012):

where the weighting matrix �
d
 is diagonal, W ii

d
= 1∕�

i
 , i = 1,… , N , and makes the data 

misfit dimensionless. Superscript T denotes vector or matrix transposition. Now, the 
weighted data misfit describes a �2-distribution with an expectation value of N. Typically, 
Qd is expressed as a root-mean-squared fit RMS =

√

Qd∕N of the forward responses to the 
field measurements.

In the hyperdimensional Q
d
−� plot, infinite numbers of valley and hills exist (Snieder 

1998). Unless there are profound misconceptions (e.g., model dimensionality, anisotropic 
or frequency-dependent material parameters), the true model, which can be considered a 
simplified form of the real Earth, can be assumed to be in one specific valley. Our pur-
pose of inversion is to try to come close to this unique true model using the information 
from the observation data � . However, due to data uncertainty, the limited data coverage, 
and the inherent nonlinear characteristics and fundamental equivalences of the underly-
ing physical system, the inversion problem cannot be solved ad hoc, and meaningful solu-
tion approaches depend on the particular properties of the given inversion problem (Menke 
2012). To this end, we categorise inversion problems following Menke (2012):

(1)Qd = (� − �[�])
T
�

T
d
�d(� − �[�]),
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• In purely under-determined inversion problems, there is not enough information in the 
data to uniquely determine a single model parameter. Formally, cases with M > N may 
qualify for being under-determined. However, depending on the information content in 
the data, even cases with M < N may be under-determined. Under-determined inver-
sion problems have model solutions with zero prediction error, i.e. Qd = 0.

• In contrast to the previous category, over-determined inversion problems are charac-
terised by the fact that all model parameters are uniquely determined, and M < N is a 
necessary, but not a sufficient formal requirement. Over-determined inversion problems 
have solutions with Qd > 0.

• In even-determined inversion problems, all model parameters are uniquely determined 
by the data, M = N , and Qd = 0.

• Mixed-determined inversion problems are the most general case. Here, parts of the 
model domain are over-determined, whereas other parts are under-determined. 2D and 
3D geophysical inversion models are typically mixed-determined, and we will predomi-
nantly consider problems that fall into this category.

Under- and mixed-determined inversion problems are by definition non-unique (Mien-
sopust 2017). One remedy to this non-uniqueness problem is to introduce additional model 
constraints or model regularisation (Jackson 1979; Tikhonov et al. 1995; Zhdanov 2002; 
Menke 2012). The model constraints can enforce the conductivity distribution to vary 
smoothly (Constable et al. 1987; de Groot-Hedlin and Constable 1990; Kalscheuer et al. 
2010), they can include prior geological knowledge, restrict the conductivity distribution 
by rock sampling tests, or be based on structural constraints (Gallardo and Meju 2011; Yan 
et al. 2017b) and petrophysical constraints (Moorkamp 2017; Haber and Holtzman Gazit 
2013) using information offered by other geophysical data sets (such as seismic, gravity, 
magnetic and logging data). Using a properly designed model constraint, the inversion 
algorithm can converge to a model that is close to the true model. Therefore, to obtain 
a geologically meaningful model close to the true one, it is inevitable to enforce model 
constraints, which is accomplished by designing a model misfit term (typically in form of 
a quadratic functional) which measures the distance from the inversion model to the refer-
ence model �

r
 , as (Abubakar et al. 2009; Menke 2012; Aster et al. 2012):

where the weighting matrix �
m

 contains either purely mathematical operators to enforce 
model smoothness or accounts for geological or geophysical constraints (Constable et al. 
1987; Zhdanov 2002). Then, these two misfit terms in form of quadratic functionals can be 
assembled into one single cost function Q:

where the weighting factor or trade-off parameter 𝛼 > 0 balances the contribution of the 
data misfit term Q

d
 and the model misfit term Q

m
 in the cost function Q.

It is a standard choice in the geo-electromagnetic induction community to minimise the 
above l

2
-norm variant of the cost function Q (Menke 2012; Aster et  al. 2012; Farquhar-

son and Oldenburg 2004; Krakauer et al. 2004; Schwarzbach and Haber 2013; Usui 2015; 
Mojica and Bassrei 2015; Jahandari and Farquharson 2017; Wang et al. 2018a). However, 
it may be desirable to use general lp norms instead. To obtain more robustness against data 
outliers and more compact anomalies, for instance, the l

1
 norm may be used. General lp 

norms can be conveniently implemented in a least-squares algorithm using re-weighting 
matrices that are adjusted in each iteration. This technique is generally known as iteratively 

(2)Q
m
= (� −�r)

T
�

T

m
�

m
(� −�r),

(3)Q = Qd + �Qm,
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re-weighted least-squares (IRLS) and has been occasionally used in electromagnetic geo-
physics (e.g., Farquharson and Oldenburg 1998; Oldenburg and Li 2005; Rosas-Carbajal 
et al. 2012). However, we are not aware of any work, where formal model uncertainty and 
resolution estimates were derived for an IRLS algorithm.

2.1  Linearised Model Analysis

Since the forward operator in electromagnetic problems is a nonlinear operator with respect 
to the model parameters, the data misfit function Q

d
 will generally vary with the model 

parameters with larger than quadratic order. This means that the hyperdimensional Q
d
−� 

plot may have multiple side lobes with local minima or a (possibly large) number of equiv-
alent global minima. To transform the misfit function Q to a quadratic one for which a 
solution to the optimisation problem can easily be found, the nonlinear forward operator of 
the model �k+1 of the k + 1-th iteration is expanded to first-order around the model �k of 
the kth iteration using a Taylor series:

where � is the sensitivity matrix or the Jacobian matrix at the kth iteration. Substituting 
Eq. (4) into Eq. (3), we get an approximation to the cost function that is quadratic in model 
�

k+1 . Minimising this quadratic cost function, we get an iterative formula to calculate the 
k + 1-th model (Siripunvaraporn and Egbert 2000; Kalscheuer et al. 2010; Menke 2012):

where �−g
w =

[

�T�T
d
�d� + ��T

m
�

m

]−1

�T�T
d
 is the generalised inverse matrix, and 

�̂k
= � − �

[

�k
]

+ �
(

�k
−�

r

)

 was used.

If model �k is linearly close to the true model �
true

 , we get (Friedel 2003; Kalscheuer 
et al. 2010)

and, hence,

where � denotes the data noise. Substituting Eq. (6) into Eq. (5), we get

where �
M
= �

−g
w �d� is defined as the model resolution matrix. It indicates the dis-

tance from the inverted model to the unknown true model. If we assume that at iteration 
k + 1 the inversion terminates, then �k+1 can be considered as the preferred inversion 

model. Equation  (7) shows that this preferred inversion model consists of contributions 
by the true model, the reference model and the data noise. If the resolution matrix �

M
 

is an identity matrix, the preferred inversion model is said to be perfectly resolved and 
does not depend on the reference model. It is equal to the sum of the true solution and 
the noise in the data weighted with the generalised inverse. In the opposite case with poor 

(4)�
[

�
k+1

]

≈ �
[

�
k
]

+ �
(

�
k+1

−�
k
)

,

(5)�
k+1

= �
−g
w
�d�̂

k
+�r,

� = �
[

�
true

]

+ � ≈ �
[

�
k
]

+ �
(

�
true

−�
k
)

+ �

(6)�̂
k
≈ �

(

�
true

−�
r

)

+ �,

(7)

�
k+1 = �

−g
w
�d[�

(

�true −�r

)

+ �] +�r

= �
−g
w
�d�

⏟⏟⏟

�M

�true + (� − �
−g
w
�d�

⏟⏟⏟

�M

)�r + �
−g
w
�d�

= �M�true + (� − �M)�r + �
−g
w
�d�,
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model resolution, the preferred inversion model consists mostly of the reference model. 
For a given data set, the resolution properties of the preferred model depend strongly on 
the trade-off parameter � (which is contained in �−g

w =

[

�T�T
d
�d� + ��T

m
�

m

]−1

�T�T
d
 

and Eq.  3). Going to a smaller value of the trade-off parameter, the resolution matrix 
will come closer to the identity matrix, as long as the generalise inverse still exists, i.e. 
�

M
→ [�T�T

d
�

d
�]−1�T�T

d
�

d
� = � as � → 0 . At the same time, the generalised inverse 

�
−g

w  will become very large in amplitude as � → 0 such that the noise term is amplified. 
In the opposite case, when the trade-off parameter is set to a very large value, the nonzero 
entries of the resolution matrix will become more spread around the diagonal of the resolu-
tion matrix, meaning poorer resolution, but the noise contribution will be smaller. In the 
first case, we retrieve a well-resolved but unstable model. In the second case, we retrieve 
a stable, but poorly resolved model. Both of these extreme cases are far from optimal, and 
it is clear that a compromise needs to be made when it comes to the choice of trade-off 
parameters. Formally, this trade-off between model resolution and stability is explored by 
plotting the spread of the resolution matrix versus the size of the model covariance matrix 
(see below) for a large range of trade-off parameters (Hansen 1992). The only options that 
we have to obtain a more favourable trade-off curve is to add more measurements which 
should shift the whole trade-off curve to the better or to employ additional geo-scientific 
information in the reference model �

r
 or the model regularisation operator �

m
.

The model resolution matrix �
M

 can be rewritten as

where �i and �i denote the ith row and column resolution vectors, respectively, for 
i = 1,… , M . The row vector �i acts as a linear projection of the true model to the ith inver-
sion model parameter (see Fig. 2), which is referred to as the averaging function, or upon 
normalisation by the areas or volumes of all cells, as the resolving kernel (see Fig. 3, effec-
tively a resolution density). The concept of averaging functions were originally presented 
by Backus and Gilbert (1968). The column resolution vector �i describes how a delta-like 
perturbation in the ith true model parameter spreads over the inversion model vector and 
is generally referred to as the point-spread function (Alumbaugh and Newman 2000). The 
ideal shape of both the averaging function and the point-spread function is a delta func-
tion which has the only nonzero value (a unit value) on the diagonal entry of the model 
resolution matrix, i.e. at the target model parameter (see Fig. 3). There are two definitions 
for unimodularity of a given resolving kernel. In the first definition, unimodularity means 
that the resolving kernel has a single main lobe without any positively or negatively valued 
side lobes. In the second definition, unimodularity refers to the 2D or 3D integrals of the 
resolving kernel over the areas or volumes of all model cells evaluating to one (e.g., Ory 
and Pratt 1995). In the latter case, there is no bias in the form of an average amplitude shift 
from the true model (Treitel and Lines 1982).

The model resolution matrix only indicates how close the preferred inversion model is 
to the true model. It is incapable of estimating the range of all candidate models or equiva-
lent models which all fit the cost function Q equally well to within a certain threshold 
or, conversely, how uncertainty in the measurements translates to uncertainty in the model 

(8)�M =

⎡⎢⎢⎢⎢⎣

�
1

⋮

�
i

⋮

�
M

⎤
⎥⎥⎥⎥⎦
=

�
�

1
… , �i, … �

M
�

,
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parameters. The (a posteriori) model covariance matrix gives us a quantitative measure of 
how uncertainty in the true model, the reference model and the data propagates into model 
uncertainty. Using Eq.  (7), the (a posteriori) model covariance matrix � for the k + 1 th 
model (the preferred inversion model) is computed as (Menke 2012):

where E[⋅] is the statistical expectation operator. Hence,

where we assume that there is no variability in the true model ( 
[

cov�
true

]

= 0 ) and that 
the covariance of data noise [cov �] was correctly identified in the data weighting matrix 
such that �

d
[cov �]�T

d
= � , i.e. [cov �] = (�

i
)
2 ( i = 1,… , N ) when only variances are 

accounted for. As for actual field data sets, the true mean values and covariance structure 

(9)
� =

[

cov�
k+1

]

= E

[

(

�
k+1

− E
[

�
k+1

])(

�
k+1

− E
[

�
k+1

])T
]

,

(10)

� = �M

[

cov�true

]

�
T
M
+ (� − �M)

[

cov�r

]

(� − �M)T + �
−g
w
�d[cov �]�T

d
�
−g
w

T

= (� − �M)
[

cov�r

]

(� − �M)T + �
−g
w
�
−g
w

T
,

Fig. 2  Conceptual model resolution matrix with the averaging function ( �i ) and point-spread function ( �i ), 
�

true
 is the true (unknown) model, mk+1

i
 is the ith component of model vector �k+1 obtained at the k + 1-th 

inversion iteration, and m
true,i

 is the ith component of the true model vector
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of data noise are rarely known. In particular, mean values of data noise deviating from 
zero represent systematic noise and may lead to pronounced artefacts in inversion mod-
els, because the mean values of data noise are assumed to be zero in inversion. If the 
covariance of the reference model can be expressed as 

[

cov�
r

]

=

(

��
T

m
�

m

)

−1

 , we have 
� =

[

�T�T

d
�

d
� + ��T

m
�

m

]−1

 . If the reference model is considered a fixed vector (imply-
ing that 

[

cov�
r

]

= � ) or zero as in some deterministic inversion schemes (such as the 
Occam inversion; Constable et al. 1987), we have:

Both the model resolution matrix and the model covariance matrix are of size 
M × M , where M is the number of model parameters, and symmetric. For 2D inver-
sion problems, storage and direct computation of the generalised inverse matrix 
�
−g
w =

[

�T�T
d
�d� + ��T

m
�

m

]−1

�T�T
d
 as well as the model resolution and covariance 

matrices is not a problem on modern computer systems. However, for 3D problems with 
large values of M it will be difficult to store and directly compute the generalised inverse 
matrix �−g

w  , the model resolution matrix and the model covariance matrix.
Using a Taylor series expansion of the forward model response �

[

�
k+1

]

 around that 
of the model of the kth iteration and substitution of Eq. (5) for the preferred model �k+1 
(iteration k + 1 ), the predicted data �k+1,pre (equalling the model responses �

[

�
k+1

]

 ) can be 
related to the measured data � (Friedel 2003; Kalscheuer et al. 2010; Menke 2012):

(11)� = �
−g
w
(�−g

w
)T .

Fig. 3  Conceptual resolving 
kernels for model parameters 
with nearly perfect (a) and poor 
(b) resolution. Positive and 
negative side lobes, an offset of 
the main lobe from the position 
of the investigated parameter on 
the diagonal (dashed line) and 
a large spread of the resolving 
kernel are characteristics of poor 
resolution
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Here, the data resolution matrix �D = ��
−g
w �d can be thought of as a set of blurring fil-

ters (rows) through which the field data � are reproduced in the predicted data �k+1,pre . 
In the more general case of a mixed-determined inversion problem, but also for an over-
determined problem, the model responses �

[

�
k+1

]

 consist of terms related to the field 
data and the responses of the model of the kth iteration and of the reference model. If 
the response of the model of the kth iteration was linearly close to that of the reference 
model, Eq. (12) would further simplify to �k+1,pre

≈ �D� +

(

� − �D

)

�
[

�r

]

 . In the case of 
an under-determined inversion problem, �

D
= � leading to perfect data fit �k+1,pre

= � . The 
diagonal elements of �

D
 indicate how much relevance a given measurement has in its own 

forward response or prediction. Hence, the diagonal elements are typically referred to as 
data importances. Data importances play an important role in some approaches to optimal 
survey design (see below).

The singular value decomposition (SVD, Hansen 1990) technique is widely used to 
approximate the weighted sensitivity matrix �

d
= �

d
� . Using a threshold (trade-off) value for 

the minimum permissible singular value, all contributions with singular values smaller than 
the threshold singular value are dropped, or, alternatively, all singular values are damped. The 
concept of using the SVD technique to accelerate the computation of resolution and covari-
ance matrices was initially proposed for 1D inversion problems by several pioneers (Gilbert 
1971; Wiggins 1972; Jupp and Vozoff 1975; Lines and Treitel 1984). To determine the trunca-
tion level, there are various different techniques (see below). One particular technique selects 
the truncation level or damping factor, such that the so-called mean-square error (MSE) is 
minimised (Shomali et al. 2002; Pedersen 2004; Plattner and Simons 2017). The mean-square 
error is defined as the sum of the model variances (trace of the a posteriori model covariance 
matrix) and the model bias squared (in SVD terms, the null-space projection squared). Essen-
tially, the null-space projection in the latter term can be considered the complement � − �

p
 of 

the model resolution matrix �
p
 for truncation level p. Hence, the mean-square error describes 

the trade-off between the size (trace) of the model covariance matrix and the spread of the 
model resolution matrix. Whereas the first term (sum of model variances) increases with 
increasing truncation level p, the second term (spread of resolution matrix) decreases with 
increasing p. Hence, the mean-square error attains its minimum at a specific p.

Using the standard SVD technique, it is impossible to consider the effect of the model 
constraint or model regularisation term. Therefore, to be capable of including the effects of 
model constraints in model resolution and covariance matrices, the generalised singular value 
decomposition (GSVD) technique (Christensen-Dalsgaard et al. 1993; Golub and Van Loan 
2012) is presented here. Using the GSVD technique, the weighted sensitivity matrix �

d
 and 

the model regularisation matrix �
m

 are simultaneously decomposed as follows:

Here, the sizes of the orthogonal matrices �
1
 and �

2
 are N × N and M × M , respectively, 

and the columns of �
1
 and �

2
 are the generalised left singular vectors (eigenvectors 

(12)

�
k+1,pre

= �
[

�
k+1

]

≈ �
[

�
k
]

+ �
(

�
k+1

−�
k
)

= ��
−g
w
�d� +

(

� − ��
−g
w
�d

)(

�
[

�
k
]

− �
(

�
k
−�r

))

= �D� +

(

� − �D

)(

�
[

�
k
]

− �
(

�
k
−�r

))

.

(13)�
d
= �1�1�

T
,

(14)�
m
= �

2
�

2
�

T
.
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spanning data and model constraint spaces, respectively). Matrix � is orthogonal and of 
size M × M , and its columns are the generalised right singular vectors (eigenvectors span-
ning model space). The diagonal matrices �

1
 and �

2
 contain N and M singular values �i

1
 

( i = 1,… , N ) and �j

2
 ( j = 1,… , M ) on their diagonals, respectively. Substituting Eqs. (13) 

and (14) into the generalised inverse �−g

w  , we have:

Now, the model resolution matrix in Eq. (7) becomes

Using Eqs. (11) and (15), the model covariance matrix is

After the inversion procedure has converged, we can employ the above techniques to 
compute the model resolution and covariance matrices of the resulting preferred inversion 
model. The model covariance matrix defines an equivalent model domain for the preferred 
inversion model. However, we should keep in mind that the thus computed resolution and 
covariance matrices �

M
 and � (Ogawa et al. 1999) only indicate local and linearised esti-

mates of the reliability of the preferred model as an approximation to the true model, as the 
assumption that the converged model should be linearly close to the unknown true model is 
used. Therefore, the above procedure is also named as linearised model analysis. Based on 
this discussion of linearised model analysis, we describe the general effects of varying data 
quality, model discretisation and model regularisation on model uncertainty and resolution 
estimates. We note that the general trends and patterns described below will also be found 
in nonlinear analyses described in later sections.

2.1.1  Effects of Data Quality on Model Uncertainty and Resolution

For subsequent inversion to be meaningful, it is of vital importance to estimate data with reli-
able statistical uncertainty during processing and to identify and remove data with systematic 
noise. Depending on the measurement methodology, the retrieved numbers of samples may not 
allow for representative data uncertainty to be estimated. In passive methods, such as magneto-
tellurics, long (days to weeks) time series are recorded to increase the number of samples, and 
advanced time-series processing routines are robust with regard to outliers (Egbert 1997; Ritter 
et al. 1998; Smirnov 2003; Garcia and Jones 2008; Chave 2017). Hence, one may argue that 
the estimated uncertainties of MT data are meaningful. In modern controlled-source electro-
magnetic methods, the options for data processing are similarly advanced as in magnetotellu-
rics (e.g., Pankratov and Geraskin 2010; Streich et al. 2013). In some active methods, one may 
resort to reciprocal measurements (Parasnis 1988) to have a gross handle on data control, data 
editing and data uncertainty. In fact, this is a standard approach in geoelectrics, where modern 
multi-channel data loggers can optionally record measurements from reciprocal electrode con-
figurations. For these methods, we note that assignment of uncertainty floors and data editing 
are subjective choices strongly depending on the interpreter’s experience. With more simplistic 
equipment, assumptions about data quality and uncertainty are even more subjective.

(15)
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Increasing data uncertainty floors means that the acceptable ranges of forward 
responses and with that the acceptable ranges of model parameters generally increase. 
However, model regularisation counteracts strong model variability. Thus, when the target 
RMS (typical value of one) is not changed after increasing uncertainty floors, the trade-off 
parameter is often increased such that the variability of the model parameter with posi-
tion in model space may be lower than for a lower uncertainty floor. In turn, this leads to 
increased spreads of resolving kernels, whereas the parameter uncertainties may show little 
change. As evident from Eqs. (10) and (11), a partial increase of model parameter uncer-
tainties owing to an increased data uncertainty floor is, to some extent, counterbalanced by 
the increased trade-off parameter. Note the exact behaviour will depend on the particular 
choice of model regularisation and trade-off parameter and whether the increase in data 
uncertainty floor is balanced by a corresponding increase in the trade-off parameter.

Any systematic noise (e.g., from source effects of infrastructure, buried cables, insuf-
ficient system calibration) remaining after data editing may generate artefacts in inversion 
models. Depending on how strongly the data deviate from their nominal values without 
systematic noise, the associated model parameters may be biased quite heavily into the 
wrong direction generating artefactual model structures with high sensitivity and seem-
ingly good model resolution.

2.1.2  Effects of Model Discretisation on Model Uncertainty and Resolution

The model resolution, model covariance and data resolution matrices depend strongly 
upon model discretisation. In the limiting cases, there may be too many model parameters 
for even a single parameter to be uniquely determined (i.e. the under-determined case), 
or there may be too few parameters in an over-determined inversion problem to explain 
the given data adequately. In the former case, model resolution is poor, but data resolu-
tion is perfect. In the latter case, model resolution is perfect, but poor data fit makes the 
model meaningless. Hence, the number of model parameters needs to be increased to the 
point where data fit becomes acceptable and model resolution is still good. Increasing the 
number of model parameters may render a previously over-determined inversion problem 
mixed-determined leading to increased model uncertainty and deteriorated resolution (e.g., 
Kalscheuer et al. 2015). Similar effects are observed when the number of model param-
eters is increased turning a mixed-determined problem to an under-determined problem. 
In the mixed- and under-determined 2D and 3D inversion problems that we are concerned 
with here, one may argue that regions with focused model resolution should be further 
refined, if measurements with high sensitivities to these model regions have too high mis-
fit (see below). Similarly, one may argue that the inversion grid should be coarsened in 
model regions with poor resolution to make the inversion problem more economic. If the 
model was discretised sufficiently to explain a given data set, one might argue that further 
refinement of the inversion model should not lead to significant changes in model structure, 
other than smoother transitions, given the refinement was balanced by a corresponding 
adjustment in model regularisation. Clearly, such refinement will lead the nonzero entries 
in the model resolution matrix to be spread over a correspondingly larger number of cells. 
Despite such rather profound changes in the model resolution matrices, there will be little 
change in the resolving kernels beyond a certain level of discretisation. This is simply so, 
because resolving kernels can be thought of as resolution densities that approach there con-
tinuous limits with advancing refinement. Considering Eqs. (10) and (11), mesh refinement 
leads to decreased sensitivities and, with that, to an increase of the part of model parameter 
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uncertainty related to the sensitivity matrix. However, mesh refinement is often accom-
panied by an increased trade-off parameter, possibly offsetting the increase in parameter 
uncertainty related to sensitivity. Note the exact behaviour will depend on whether Eq. (10) 
or Eq. (11) is used to compute uncertainties, the particular choice of model regularisation 
and whether the mesh refinement is balanced by a corresponding increase in the trade-
off parameter. For instance, if Eq. (11) is used (i.e. uncertainty in the reference model is 
neglected), the effects of diminishing sensitivity will dominate leading to increasing model 
uncertainty with progressing refinement. In contrast, if (1) Eq. (10) is used (i.e. uncertainty 
in the reference model is accounted for), (2) the model regularisation matrix is regular, 
and (3) the trade-off parameter is increased, the model regularisation term may balance the 
effects of diminishing sensitivity with progressing refinement.

2.1.3  Effects of Model Regularisation on Model Uncertainty and Resolution

Often, we hardly have any prior knowledge and, hence, the model regularisation is based 
on ordinary smoothness constraints, where the adjustable parameters are the weights on 
horizontal and vertical smoothness, the order of the smoothness constraints and the type 
of the smoothness constraints (direct differences or spatial derivatives). Higher horizontal 
and vertical weights will lead to reduced vertical and horizontal spreads, respectively, of 
the resolving kernel. Certainly, if we use prior information in the form of a reference model 
or a model weighting matrix �

m
 that is not correct, this will bias the inversion model to 

a wrong solution. This means that both the model weighting matrix �
m
 and, if applica-

ble, the reference model �
r
 should be judiciously selected. In particular, non-unimodular 

resolving kernels (here those that do not integrate to one) introduce systematic bias, as 
the non-unimodularity leads to an average amplitude shift of the model parameters (Trei-
tel and Lines 1982; Ory and Pratt 1995). This non-unimodularity is a direct consequence 
of the choice of the regularisation operator. It was shown by Ory and Pratt (1995) that 
regular model constraints (i.e. a regular model weighting matrix �

m
 for which an inverse 

exists) introduce non-unimodularity, whereas singular first- or second-order smoothness 
constraints give unimodular resolving kernels. As a consequence, we advocate construc-
tion of a preferred inversion model using smoothness constraints with local modifications 
to account for known structural contrasts (e.g., Yan et al. 2017b), if applicable. Other types 
of regularisation may introduce unintended bias and, in the absence of compelling prior 
evidence, reference models should only be used for hypothesis testing. In case that both 
smoothness constraints and a reference model are used, the inversion will project struc-
tural boundaries in the reference model to the inversion model preserving the resistivity 
contrasts of the reference model. This becomes directly evident by considering the model 
regularisation in, for instance, a 1D inversion with first-order direct differences as smooth-
ness constraints and a structural boundary in the reference model between cells j and j + 1 . 
In this case, the corresponding term of the model misfit function attains its minimum, if

meaning the inversion tries to preserve the resistivity contrasts of the reference model in 
the inversion model. In model regions where the information in the reference model is 
less reliable, this effect may introduce artefacts (which in this case is undesirable bias) to 
the inversion model. In such cases, it is advisable to remove or reduce the strength of the 

(18)
0 = (mj+1 − mr,j+1) − (mj − mr,j)

⇔ mj+1 − mj = mr,j+1 − mr,j,
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smoothness constraints across structural boundaries in the reference model, to modify the 
reference model or to use separate regularisation terms for model smoothness and proxim-
ity to the reference model (i.e. model smallness involving a diagonal regularisation matrix, 
e.g., Loke 2001; Oldenburg and Li 2005; Yan et al. 2017a). Finally, we note that biasing 
the inverse model using well-established prior constraints (e.g., from borehole logs) may 
be the only meaningful approach to model construction when data coverage is sparse and/
or data quality is low.

In probabilistic inversion schemes, the product �T

m
�

m
 is nothing else but the a priori 

model covariance matrix. Thus, if the a priori variances and covariances are small in size, the 
resulting inversion model will be more tightly constrained than for larger a priori variances 
and covariances.

2.2  Partially Nonlinear Model Analysis

Now, we investigate the range of model variations △� or models � ( � = �
∗
+△� ) in the 

equivalent model domain around a preferred model �∗ that corresponds to a maximum per-
missible variation △Q of the cost function, i.e. Q ≤ Q

∗
+△Q where Q

∗
 is the value of the 

cost functional for �∗ . Re-examining the cost function, we have

Using the linear approximation �
[

�∗ +△�
]

≈ �[�∗] + �[�∗]△� , we get:

The condition of ∇
�

Q vanishing at �∗ , i.e. at △� = 0 , implies

Thus, we get

where 

This formula tells us that the cost function is a quadratic function in the model varia-
tion △� in the neighbourhood of the preferred model (Johansen 1977; Kitanidis 1996). 
Depending on the degree of nonlinearity in the forward problem, the cost function may 
have valley- and hill-like structures at larger distance (Fernández-Martínez et al. 2012).

Defining △Q = Q(�) − Q(�∗) , and using the GSVD results in Eqs.  (13) and (14), we 
obtain:
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where � = �T △� is the generalised (or transformed) model parameter vector in the 
space of matrix � . (If we set either �

m
= � or � = 0 , the above GSVD result is reduced to 

the SVD result.) If a threshold value for the minimum permissible singular value is used, 
the dimension of vector � will be much less than M. The relationship between △Q and the 
vector △� in Eq. 24 defines a hyperellipsoid that can be rewritten in terms of the trans-
formed model parameters � as

where pi is the ith generalised model parameter, si =

√

△Q∕
(

(�i

1
)2 + � ⋅ (�i

2
)2
)

 is the length 

of the semi-axis along the ith column vector of � (or model eigenvector). The above formula 
defines a hyperellipsoidal domain of equivalence in which each model generates electromag-
netic responses within a variation △Q of the cost function value Q(�∗) of the preferred 
model. If the inversion problem was linear, the choice △Q = 1 would correspond to an equiv-
alent model domain with a 68 % confidence level for the model parameters (Johansen 1977). 
However, for nonlinear inversion problems, the association of a given misfit variation with a 
confidence level is, at best, approximate (Kalscheuer and Pedersen 2007). Usage of the linear 
approximation to the forward operator � in Eq. (21) implies that the obtained equivalent model 
domain is still a result of linearisation. The linear approximation is evident by the equality of 
the semi-axes in the directions of both negative and positive model eigenvectors.

Due to the nonlinearity, the actual semi-axes along the negative and positive directions 
of the eigenvector can be different. Thus, as a first step that accounts for nonlinearity takes 
this inequality into account. Since the nonlinearity in directions other than those of the 
model eigenvectors is neglected, this procedure generalises the hyperellipsoid to a pseudo-

hyperellipsoid (see Fig.  4 for an example of two model parameters). For a given misfit 
variation △Q , the lengths of the semi-axes are determined by the positions in model space 
where the pseudo-hyperellipsoid (black line) coincides with the true misfit surface (red 
line). The computation of the actual semi-axis can be formulated as finding the roots of the 
following equation (Johansen 1977; Kalscheuer and Pedersen 2007):

(25)
M
∑

i=1

pi
2

si
2
= 1,

Fig. 4  Conceptual misfit hyper-
surface (red line) defined by 
misfit deviation △Q from misfit 
Q(�∗) of a preferred model �∗ 
for a model � =

(

m1, m2

)T

 with 
two parameters. The pseudo-
hyperellipsoid (black line) is 
described by the semi-axes s+

1
 , 

s
−

1
 , s+

2
 and s−

2
 along the model 

eigenvectors and yields a first 
improvement in the description 
of nonlinear effects on model 
uncertainty (e.g., deviations of 
m

min

1
− m

∗

1
 and mmax

1
− m

∗

1
 from 

m
∗

1
 ). In contrast, the most-squares 

inversion determines the de 
facto models with minimum 
(e.g., mmin

1true
 ) and maximum 

deviations (e.g., mmax

1true
)
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with � = �
∗
+ s

±

i
�

i
 , i = 1,… , M . Equation  (26) is a function of typically higher than 

quadratic order in the nonlinear semi-axes s
±

i
 , where s

−

i
 and s

+

i
 indicate the semi-axes 

along the negative and positive directions of model eigenvector �
i
 , respectively (Fig. 4). 

The stronger the nonlinearity, the larger is the difference between the lengths of s−
i
 and s+

i
 . 

For electrical resistance tomography (ERT) and magnetotelluric (MT) 2D inversion prob-
lems, Kalscheuer and Pedersen (2007) and Kalscheuer et al. (2010) demonstrated that the 
lengths of the linearised semi-axes and the nonlinear semi-axes differ strongly along those 
eigenvector associated with small singular values. This pseudo-hyperellipsoid spanned by 
the nonlinear semi-axes defines an equivalent model domain around the desired model �∗ 
over which the condition of the cost function to vary by no more than △Q is fulfilled 
more closely than by the hyperellipsoid stemming from a linear approximation. A large 
axis length means that dramatic model changes along this direction only lead to small vari-
ations of the cost function. If the axis has an infinite length, an infinite number of candidate 
models exists so that the model parameter is not constrained. In contrast, if the axis has a 
small length, small model changes lead to significant variations of the cost function, which 
implies that the parameter is well constrained (Fernández-Martínez et al. 2012). The con-
cept of using the pseudo-hyperellipsoid to describe the nonlinear equivalent model domain 
was introduced by Johansen (1977) and Pedersen and Rasmussen (1989).

For the jth model parameter, its minimum and maximum values (e.g., j = 1 , mmin

1
 and 

m
max

1
 in Fig. 4) on this pseudo-hyperellipsoidal approximation to the cost function can be 

estimated by locating the coincident points of this pseudo-hyperellipsoid and the hyper-
plane characterised by a normal vector �j with wj,i = ±1 if j = i else wj,i = 0 if j ≠ i . This 
requires the gradient of the cost function to be parallel to the normal vector �j , which 
implies the following relationship

where △Q is given in Eq.  (24), and ej is an arbitrary scalar to be determined. Thus, 
Eq. (27) becomes (Johansen 1977)

where we set �1,2 = �
T

1
�1 + ��

T

2
�2 . Using Eqs. (23) and (26), we get

Now, we get the extreme model variation for the jth parameter as the jth component of

where � =
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T
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−1
�j , and the diagonal values 

√

△Q

�
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 are systematically replaced by the 

nonlinear semi-axes s
±

i
 (for detail cf. Johansen 1977; Kalscheuer and Pedersen 2007). If 

wj,j = −1 , the estimated parameter m∗

j
+△mj is the extreme minimum value, otherwise if 

wj,j = 1 , it is the extreme maximum one. Performing the above procedure for all model 
parameters, we can obtain an extreme parameter set which is an equivalent model domain for 
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which the cost function varies by no more than △Q . If the inversion problem was linear, the 
choice △Q = 1 would yield extreme parameter sets with model parameter changes △mj that 
correspond to one standard deviation (see above). Note that this method takes the nonlinear-
ity of the forward problems into account only through the nonlinear semi-axes along the 
model eigenvectors. Therefore, the above model uncertainty analysis is referred to as a par-

tially nonlinear model analysis. In comparison with uncertainties estimated from linearised 
analysis (Eqs. 10 and 17), partially nonlinear model uncertainty estimates may give an indi-
cation on the severity of nonlinear effects. However, owing to the limitation of studying non-
linearity in the directions of model eigenvectors, uncertainty estimates from partially nonlin-
ear model analysis may be far off those computed using methods that account for nonlinearity 
to a fuller extent, such as most-squares inversion (see below). For radio-magnetotelluric and 
geoelectric 2D inversion examples, Kalscheuer and Pedersen (2007) and Kalscheuer et  al. 
(2010) found that, depending on the case, uncertainties estimated using most-squares inver-
sion were 0.7 to 100 times the partially nonlinear model uncertainty estimates. Hence, even 
partially nonlinear model analysis may grossly underestimate model variability.

2.3  Nonlinear Model Analysis

We divide the available nonlinear model analyses into deterministic and stochastic 
approaches and discuss these in the following. In particular for the deterministic methods, 
we try to sort the methods into different categories. However, there is conceptual overlap 
between the methods and the categorisation is, to some extent, arbitrary.

2.3.1  Deterministic Methods

The equivalent models obtained by the above linearised or partially nonlinear model 
analysis tools operate solely in the vicinity of the preferred inversion model �∗ . To get 
more reliable estimates of the confidence levels of the model parameters, larger parts of 
the model domain need to be explored, involving nonlinear model analysis tools. Recall-
ing the inversion procedure, the inversion solution depends on the data, the data weighting 
matrix (data uncertainties), the forward responses and their accuracy, the data misfit, the 
regularisation weighting factor, the initial model, the reference model, the model weighting 
matrix (model constraints), the model misfit and the value of the cost function. Therefore, 
considering different combinations of these factors, we can take different approaches to 
analyse the effects of nonlinearity. Typically, these approaches aim to find △� around the 
preferred inversion model �∗

subject to variations of the data △� , variations of data uncertainties △�
d
 , different 

numerical errors in computed forward responses △� , variations of data misfits △Q
d
 , vari-

ations of trade-off factors △� , changes of initial models △�
0 , changes of reference mod-

els △�
r
 , variations of model weighting matrices (e.g., smoothness constraints) △�

m
 , 

variations of model misfits △Q
m

 , and variations of values of cost functions △Q.
Generally, we only vary one parameter in Eq.  (31) at a time and fix the other param-

eters. The various methods listed below explore different parts of the model space. 
Hence, it is meaningful to use different approaches to explore the equivalent domain more 

(31)
△� = △�(�∗,△�,△�d,△�,△Qd,△�,△�

0,△�r,△�m,△Qm,△Q)



65Surveys in Geophysics (2020) 41:47–112 

1 3

comprehensively. In particular, we need strategies which have the capability of jumping 
over local maxima in the cost function or traversing through possible valleys of the cost 
functional. No single method is guaranteed to have these properties. Again, this empha-
sises the need to consider different methods. As described in Sect.  2.2, deviations of a 
given model parameter from its value in the preferred model �∗ by one standard deviation 
correspond to variations △Q in the cost function or △Q

d
 in the data misfit (depending on 

the case) by a value of one. Thus, in exploring model uncertainty, models obtained by the 
various methods listed below should be compared and evaluated based on the actual vari-
ations △Q or △Q

d
 from the values of the cost function Q(�∗) or the data misfit Qd(�

∗) 
for the preferred model �∗ . Except for the edgehog method and most-squares inversion, 
strict threshold values are often not applied to △Q or △Q

d
 . In some cases, e.g., when the 

data uncertainties are changed, a stringent comparison may not even be possible. There 
is also a trivial reason why model variations △� derived by a comparison of different 
methods may not be consistent. Most researchers are used to consider RMS misfits (where 
RMS =

√

Q
d
∕N ) and do not translate deviations in RMS misfit back to misfit deviations 

△Q
d
 . Eventually, it is also a decision made by the user as to what misfit deviation seems 

to be acceptable and meaningful for a given problem. However, it is important to note that 
different “equivalent” models should generally be compared based on their misfits and that 
model variations △� for values of △Q or △Q

d
 differing from one would even in close to 

linear cases not correspond to model uncertainties associated with 68 % confidence levels.
In the categories outlined above, these are the most commonly used methods:

• Variations △�
∗:

 This approach builds on manual variation of the preferred inversion model. It is also 
loosely referred to as a nonlinear sensitivity test, because the forward responses of 
the modified model are computed to study the effect of model variation on data fit. 
Several model regions of particular geophysical or geological interest are selected. 
A set of new synthetic models is built by varying the resistivities or geometries of 
these selected areas. Using forward modelling, those synthetic models which generate 
acceptable data misfit (RMS) are treated as equivalent candidate models. Hence, mod-
els � = �

∗
+△� that fulfil the condition 

 are added to the equivalent model domain, where Q∗

d
 is a threshold value for data misfit 

deemed acceptable. Compared to other uncertainty analysis tools, this tool may be the 
most economical tool as only several forward modelling computations are needed to 
evaluate the model variations (Nolasco et al. 1998; Hübert et al. 2009; Juanatey et al. 
2013; Hübert et al. 2013). More advanced versions of this approach account for the fact 
that model parameters outside a given region of interest need to be adjusted to gener-
ate forward responses with sufficiently low misfit. Thus, the model parameters of the 
region of interest are kept fixed in an inversion where the remaining model parameters 
are allowed to change (Park and Mackie 2000; Hübert et al. 2009; Juanatey et al. 2013; 
Hübert et  al. 2013). We also can generate equivalent models by inverting responses 
computed from these new synthetic models and contaminated with noise representative 
of the field conditions (Kühn et al. 2014; Haghighi et al. 2018; Attias et al. 2018).

• Variations △�:
 Bootstrap re-sampling builds on randomly sampling a data set (population) K times and 

replacing L individual data points in each random sampling step. This makes it pos-
sible to calculate statistical properties in the form of averages and covariance matrices 

(32)Qd(�
∗ +△�) < Q∗

d
,
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of these K data sets. In model analysis, this can be taken advantage of by computing K 
inversion models from these K data sets. For MT model analysis based on bootstrap-
ping, Schnaidt and Heinson (2015) suggested to replace the complete impedance tensor 
by drawing from a Gaussian distribution in which the distribution mean and standard 
deviation are the actual measurement and its uncertainty, respectively. For appraisal 
of the model ensemble, two measures were introduced—one for the variability of cell 
wise model resistivities and one for the variability of model structures using the cell 
wise cross-gradient of two models. Schnaidt and Heinson (2015) emphasised that the 
bootstrapping method can be implemented without access to the source code of the 
inversion algorithm. The conceptual simplicity of the bootstrapping method is appeal-
ing. However, this comes at the cost of an increased computational load, as K full inver-
sions need to be run. Generalised cross-validation (GCV, e.g., Aster et al. 2012) gener-
ates a suite of N different models by removing a certain number of data points at a 
time from the original data set and inverting the remaining data. These GCV-based 
modifications to the data set are used in order to identify a suitable Lagrange multi-
plier (see below). However, we are not aware of geo-electromagnetic examples where 
this sampling of the model space was used to appraise the preferred inversion model. 
Global seismological tomography problems often use travel time residuals with respect 
to the responses of a layered Earth model as input data to the inversion. The 2D or 
3D model parameters are velocity perturbations to the layered background model. One 
of the approaches to model uncertainty analysis in global seismological tomography 
is to randomly redistribute the travel time residuals. Since the permuted residuals are 
assumed to correspond to pure noise, the resulting inverse solutions are considered rep-
resentative of model uncertainty (Spakman and Nolet 1988; Bijwaard et al. 1998; Tryg-
gvason et al. 2002). Typically, inversion models of several such permuted residual vec-
tors are computed and the maximum velocity perturbations of the individual 2D or 3D 
cells are considered upper limits of model uncertainty. Note there is no direct analogue 
to this approach in electromagnetic methods, because we do not consider residuals.

• Variations △�
d
:

 Changes to the data uncertainties in matrix �
d
 or application of error (uncertainty) floors 

to the data uncertainties generate a set of alternative models � ( � = �
∗
+△� ). Since 

models should be evaluated for equivalence based on their data fit and the uncertainties 
are changed, we prefer to refer to these models as alternative models rather than as equiv-
alent models. We can first use an initial uncertainty level to obtain the preferred inversion 
model �∗ . Then, a set of other inversion models can be obtained by gradually adjusting 
uncertainty levels. As the uncertainty values are changed gradually, it can be expected 
that these newly generated model variations are around the preferred model �∗ . When 
the maximum level of data uncertainty is tested, the maximum level of model variation 
is obtained. Changing uncertainty levels is a natural idea to test the model variability (Li 
et al. 2009), as actual noise levels are generally unknown in real field data.

• Variations △�:
 Over the last ten years, remarkable advances were made to decrease errors in the pre-

ferred inversion model caused by inaccurate approximations to the underlying physics. 
Improved forward modelling algorithms were developed to accurately include topo-
graphic effects using unstructured tetrahedral and hexahedral grids (Sambridge and 
Guðmundsson 1998; Ren and Tang 2010; Ansari and Farquharson 2014; Jahandari and 
Farquharson 2015; Yin et al. 2016; Cai et al. 2017; Yang et al. 2017; Li et al. 2017), to 
utilise accurate boundary conditions (Franke-Börner 2013), to employ accurate direct 
and iterative solvers for the resulting system of linear equations (Streich 2009; Kordy 
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et  al. 2016) and to adaptively refine the forward modelling mesh across pronounced 
contrasts in material parameters generating sharp changes in the electromagnetic field 
(Franke et al. 2007; Li and Pek 2008; Nam et al. 2010; Key and Ovall 2011; Schwar-
zbach et al. 2011; Ren et al. 2013; Ren and Tang 2014; Grayver and Kolev 2015; Ren 
et al. 2018). Therefore, we can ignore the effect of numerical errors of the approxima-
tion to the underlying physics, that is, △� → 0.

• Variations △�:
 To obtain the optimal weighting factor � , we should follow the physically meaningful 

idea that a reasonable inversion procedure is to gradually add small or local-scale fea-
tures into the large-scale or background model during the inversion iterations. We can 
start with a large value of the weighting factor so that the initial inversions reconstruct 
predominantly the large-scale structures of the model. During later iterations, the value of 
� can be gradually decreased so that small-scale changes in the data misfit term become 
more important. Thus, small-scale structures or anomalies are added to the inversion 
model. This approach of gradually reducing � is often referred to as a cooling procedure. 
Alternatively, we can automatically estimate an optimal weighting factor by using the so-
called discrepancy principle (Constable et  al. 1987; Siripunvaraporn and Egbert 2000; 
Kalscheuer et al. 2010), the L-curve technique (Hansen 1992) or the generalised cross-

validation (GCV) method (Farquharson and Oldenburg 2004; MacCarthy et  al. 2011). 
The discrepancy principle determines the optimal weighting factor by performing a line 
search and selecting the weighting factor that yields a model with a data misfit close to 
the target data misfit, i.e. a model that is commensurate with the level of noise assumed 
in the data. Using, the L-curve criterion, the L-shaped Q

d
− Q

m
 curve plot is built by 

running inversions with different weighting factors. The point where the maximum cur-
vature occurs and the data misfit is acceptable is chosen as the optimal weighting factor. 
The GCV method applies the leave-one-out (or leave-a-certain-number-out) methodology 
to the data set in order to establish a new function in which � is its only variable. Then, 
an optimal value of � is obtained by minimising this newly created function. Both the 
L-curve and the GCV techniques can effectively determine optimal values of the weight-
ing factor � (Farquharson and Oldenburg 2004; Krakauer et al. 2004; Mojica and Bassrei 
2015). However, the GCV technique has a tendency of biasing the final value of � to 
its initial value. Therefore, it is better to use cooling strategies together with the GCV 
technique in initial iterations such that the constraints from the model regularisation term 
are adequately considered, which is essential to stabilise the inversion and guarantee the 
preferred inversion model approaching the geologically meaningful true model (Farqu-
harson and Oldenburg 2004; Krakauer et al. 2004; Schwarzbach and Haber 2013; Usui 
2015; Mojica and Bassrei 2015; Jahandari and Farquharson 2017; Wang et al. 2018a). 
The above three methods of changing � are routinely used in inversions to produce the 
preferred inversion model. With different weighting factors � (including the optimal one), 
we can explore the model space a bit.

• Variations △�
0:

 Owing to the nonlinear nature of electromagnetic inversion problems, different initial 
models �0 lead to differences in the inversion result �∗ . Depending on the nature of 
the forward problem and the model regularisation, the differences may be more or less 
pronounced. By including a Marquardt–Levenberg damping term that regularises to the 
model of the previous iteration, for instance, the dependence of the preferred inversion 
model on the initial model may be quite strong. Thus, varying the initial model �0 is a 
fairly direct approach of constructing a limited domain of equivalent models (Bai and 
Meju 2003; Schmoldt et al. 2014).
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• Variations △�
r
 and △�

m
:

 In the following, we concisely describe three nonlinear model analysis tools which 
are designed for this task. Approaches based on variation of model constraints try to 
explore larger parts of the model domain by using different reference models (Olden-
burg and Li 1999; Oldenborger et al. 2007), different regularisation (smoothness) con-
straints (Constable et al. 1987; Kalscheuer et al. 2007) and structural or petrophysical 
constraints relating to models from other geo-scientific methods (Gallardo and Meju 
2004; Meju 2009; Gallardo and Meju 2011; Gao et al. 2012; Giraud et al. 2017) . It 
needs to be noted that variations in the model constraints change the misfit function Qm 
and, with that, Q in Eq. (3), such that direct comparisons of misfit values Qm computed 
using different model regularisations are not meaningful. However, in the absence of 
compelling evidence from other geo-scientific methods that is included in Qm , we can 
argue that the typically employed smoothness constraints are a mathematical method to 
overcome the non-uniqueness of the inversion problem and that we may not be particu-
larly interested in the actual values of Qm . Most inversion algorithms follow this line of 
thought implicitly by evaluating convergence purely based on RMS fit. If the inversion 
is run with different reference models �

r
 or model weighting matrices �

m
 , the inver-

sion models will locate in different regions of the model domain. Unless the RMS mis-
fits are unacceptable, these inversion models should, at least in part, be close to the true 
model. This assumption is used to derive a depth-of-investigation (DOI) index for each 
model cell and was originally presented by Oldenburg and Li (1999). To analyse the 
model using DOI indices, we require two inversion models to compute a model quality 
measure vector � = {Dj, j = 1,… , M}

where �1 and �2 are two inversion models obtained using different reference mod-
els or constraints, in this case using different reference models �1

r
 and �2

r
 . When Dj 

is close to zero, this suggests that the similarity in the inverted model parameters is 
caused by the data and, thus, that the jth model parameter is well resolved. The suc-
cess of the DOI-based model analysis strongly depends on the experience of the users 
in trying different reference models. DOI indices can only be meaningfully computed 
for inversion models that have nearly identical RMS misfits. This is so, because sys-
tematic differences in data fit correspond to localised deviations between the inversion 
models. These localised deviations will falsely reflect in high DOI values, even though 
the model regions are well determined by the data. This means that the chosen model 
constraints are inappropriate in at least one of the inversions.

• Variations △Q
d
 and △Q

m
:

 The Edgehog method (Jackson 1973) can be used to compute another larger equivalent 
model domain corresponding to a deviation △Q . It tries to generate the equivalent 
model domain � ( � = � ∗ +△� ) by using two inequality conditions △Q

d
≤ △Q∗

d
 

and △Q
m
≤ △Q∗

m
 , where △Q

d
+ � △ Q

m
= △Q , and △Q∗

d
 and △Q∗

m
 are two 

threshold values for maximum deviations of data misfit and model misfit, respectively. 
To find △� , we need to solve the following two sub-problems: 

 and 

(33)Dj =

m1

j
− m2

j

m1

r,j
− m2

r,j

,

(34)△Qd = △Q∗

d
and △ Qm ≤ △Q∗

m
,
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 The equality condition above defines a closed hypersurface and the inequality condi-
tion defines a solid volume, that is, a hyperellipsoid in linear inversion problems. In the 
Edgehog method, the intersections of these hypersurfaces and closed volumes define 
the equivalent model domain. Compared to the most-squares method (see below), 
where the goal is to estimate model uncertainty by allowing for maximum variations of 
the cost function which is a sum of the data misfit and model misfit terms, the Edgehog 
method estimates the model uncertainty by individually considering the variations of 
either data misfit or model misfit. The Edgehog method was initially used in seismic 
problems (Lines and Treitel 1985). However, it is rarely used in geo-electromagnetic 
induction problems.

• Variations △Q:
 The most-squares method (Jackson 1976, 1979; Lines and Treitel 1985; Meju and Hut-

ton 1992; Meju 1994, 2009; Kalscheuer and Pedersen 2007; Kalscheuer et  al. 2010; 
Mackie et al. 2018) is generally used to compute a more representative equivalent model 
domain � ( � = �

∗
+△� ) than that obtained by the partially nonlinear pseudo-hyper-

ellipsoid technique. This equivalent model domain is constructed by identifying the 
extreme points of a scalar functional �T

� subject to the requirement that the maximum 
allowed variations of objective function Q is △Q . This idea is formulated as: 

where � is a constant unit vector along the direction of a parameter or a parameter 
combination of interest, and Q(�∗) is the value of the cost function at the preferred 
inversion model �∗ . Using a Lagrange multiplier � , Eq.  (36) is transformed into a 
unconstrained optimisation problem. Its goal is to find the extreme model increments 
( △� ) around the given minimum-misfit model �∗ , such that the cost functional 

is minimised. As Qms is a non-quadratic functional with respect to △� , Eq.  (37) 
has to be solved iteratively. To guarantee the stability of the approach and to allow 
the algorithm to adjust to deviations of the iso-surfaces of Q from hyperellipsoidal 
form, it seems imperative to keep the Lagrange multiplier � in Q (Eq. 3) fixed at the 
value that generated the minimum-misfit model �∗ , to perform a relatively large num-
ber of iterations (20-30 per direction) with progressively increasing target misfit and 
to safeguard the inversion algorithm with additional Marquardt–Levenberg damping. 
The latter avoids abrupt jumps in model space, but requires an optimal damping fac-
tor to be searched in every iteration. It is not unusual that the analysis of one model 
parameter takes about twenty times the computational effort to construct �∗ . Hence, 
in 2D inversions only the uncertainty levels of a few to several representative cells are 
investigated. The reliability of a most-squares inversion is highly affected by the qual-
ity of the chosen preferred model �∗ . If this model does not have minimum misfit, 
deviations from the minimum-misfit model will directly reflect in modifications to 
the most-squares inversion results and mislead the interpretation by giving the false 
impression of an increased level of nonlinearity in the forward problem. Note that the 
nonlinear semi-axes in a pseudo-hyperellipsoidal description of the misfit hypersurface 
(cf. Section 2.2) are also adversely affected by a displacement of the preferred model 

(35)△Q
m
= △Q∗

m
and △ Q

d
≤ △Q∗

d
.

(36)
minimise or maximise �

T
�

subject to Q = Q(�∗) +△Q,

(37)Qms = �
T
� + �[Q − Q(�∗) −△Q]
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from the minimum-misfit model. The most-squares method was developed by Jackson 
(1976) and Jackson (1979) for linear problems. Subsequently, Meju and Hutton (1992) 
extended its capability to dealing with nonlinear problems. After a further extension 
to include prior information (Meju 1994), Meju (2009) presented a generalised most-
squares method with the additional capability of dealing with multiple uncertainties 
and constraints (e.g., cross-gradient constraints) to compute extreme parameter sets.

2.3.2  Stochastic Methods

Global search algorithms or stochastic inversion algorithms naturally perform a compre-
hensive model analysis as the entire model domain can be explored based mostly on forward 
computations. The key idea of these fully nonlinear stochastic optimisation algorithms is to 
randomly generate a large set of candidate models which represent the entire model space in 
terms of their cost function distribution. Using a particular rule to accept or reject these can-
didate models, we finally obtain an ensemble of models which forms the stochastic equivalent 
model domain.

Stochastic inversion algorithms are based on the Bayesian theorem which states (Tarantola 
2005)

where p(�|�) is the a posteriori probability density function, which indicates the probability 
of having the model � which satisfies the given measured data set � , p(�|�) is the condi-
tional probability density function of the data � for a given model � , p(�) is the prior prob-
ability density function for the model parameters, and p(�) is the evidence density function. 
As the measured data set can be considered a fixed vector, p(�) is a constant number which 
can be ignored. The conditional probability density function p(�|�) establishes a relation-
ship between the measured data set and the model parameters, which can be written as:

and the prior probability density p(�) can be written as:

Substituting Eqs. (40) and (39) into Eq. (38), we have:

where C
d
 , C

m
 and CQ are three normalising constant factors. Comparing Eq. (3) to Eq. (41), 

we conclude that deterministic linearised inversion algorithms try to locate the desired 
model by minimising the quadratic function formed by Taylor expansion, whereas stochas-
tic inverse algorithms try to build an ensemble of models sampling the above posterior 
probability density function p(�|�) in terms of different sampling methods such as the 

(38)p(�|�) =
p(�|�)p(�)

p(�)
,

(39)
p(�|�) = Cd exp

(
−(� − �[�])

T
�

T
d
�d(� − �[�])

)

= Cd exp
(
−Qd(�,�)

)
,

(40)
p(�) = Cm exp

(

−
(

� −�r

)T
�

T
m
�

m

(

� −�r

)

)

= Cm exp
(

−Q
m
(�)

)

.

(41)
p(�|�) = CQ exp

(
−(Qd(�,�) + Qm(�))

)

= CQ exp(−Q),
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random walk or the Metropolis–Hastings sampling algorithm. When stochastic inverse 
algorithms terminate, the resulting model ensembles are supposed to be representative of 
the posterior probability density function and to have high and low numbers of ensemble 
members in high- and low-likelihood regions, respectively. Hence, for each model param-
eter mj , its marginal (normalised) density pj(mj) is available. Based on this, the ensemble 
mean value of the jth model parameter ( m̄j ) and its variance ( Cj ) are estimated as:

Generally speaking, stochastic inversion algorithms naturally offer model variances or 
the equivalent model domain, but they do not offer a mechanism to estimate the model res-
olution matrix. Also, on the order of hundreds of thousand ensemble models are required 
to obtain a reliable presentation of the posterior distribution leading to a high computa-
tional load in solving forward problems. For more detail on the progress of model uncer-
tainty estimation using Bayesian algorithms in geo-electromagnetic problems, please refer 
to a recent review paper (Pankratov and Kuvshinov 2016).

2.4  Computationally Efficient Approaches

The construction of the equivalent model domain using linearised and nonlinear model 
analysis tools needs powerful computational resources. The speed of nonlinear model anal-
ysis mainly depends on the efficiency of the forward modelling solver and, where applica-
ble, the speed of the inversion routine. The acceleration of nonlinear model analysis tools 
will depend on developing fast linear solvers (Egbert and Kelbert 2012; Chung et al. 2014; 
Newman 2014; Koldan et al. 2014; Kelbert et al. 2014; Puzyrev et al. 2016; Shantsev et al. 
2017), efficient usage of supercomputers (Key and Ovall 2011; Egbert and Kelbert 2012; 
Puzyrev et al. 2013; Weiss 2013; Ren et al. 2014; Kelbert et al. 2014; Grayver and Kolev 
2015; Kruglyakov and Bloshanskaya 2017; Castillo-Reyes et al. 2018), improvements of 
the available nonlinear model analysis methods and development of new nonlinear model 
analysis tools. In the remainder of this section, our emphasis is to introduce several accel-
eration strategies or algorithms to compute the model resolution matrix �

M
 and model 

covariance matrix � . Their performance is the key factor for practical linearised and non-
linear model analyses.

2.4.1  Parallel Direct Solvers

As evident from Eqs.  (7), (10) and (11), if the sensitivity matrix is explicitly computed, 
then the direct computation approach is a natural way of computing the resolution matrix 
�

M
 and covariance matrix � . In the model analysis of the linear seismic tomography prob-

lem, direct matrix computation is popular, because the involved sensitivity matrices are 
highly sparse. For instance, Boschi (2003) and Soldati and Boschi (2005) successfully used 
the parallel Cholesky factorisation technique to compute the model resolution matrix in 
global body wave tomography. Bogiatzis et al. (2016) used the sparse QR factorisation to 
compute the full resolution matrix of the seismic tomography problem. In contrast, the 

(42)m̄j = ∫ mjpj(mj)dmj,

(43)Cj = ∫ (mj − m̄j)
2pj(mj)dmj.
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sensitivity matrix is dense in geo-electromagnetic inversion problems. However, using 
state-of-the-art parallel matrix solvers (Verbosio et  al. 2017; Amestoy et  al. 2001), the 
direct matrix computation approach is preferred for 1D and 2D geo-electromagnetic data 
sets, as it can naturally account for both data misfit and model regularisation terms.

2.4.2  Partial or Truncated SVD Analysis

Instead of computing all eigenvectors in the SVD method, the truncated SVD (TSVD) 
technique only uses the first p eigenvectors with p much smaller than the number of model 
parameters M, p < M . The TSVD technique is typically used to decompose the weighted 
sensitivity matrix and, thus, to study the contributions to model resolution and uncertainty 
that are purely related to the data. Ignoring the contributions that come from the model 
constraints in Qm is justifiable in situations where no meaningful prior information exists 
and model constraints, e.g., smoothness constraints, are added to make the inversion prob-
lem unique (Kalscheuer and Pedersen 2007; Miller and Routh 2007). At most, the TSVD 
analysis allows for a damping model regularisation term (i.e. the Marquardt–Levenberg 
damping factor). The TSVD of the weighted sensitivity matrix is (Xu 1998; Golub and 
Van Loan 2012; Li and Li 2017):

where the columns of orthogonal matrix �
p
 of size N × p are the first p eigenvectors of 

�
d
�T

d
 , the columns of matrix �

p
 of size M × p are the first p eigenvectors of �T

d
�

d
 , and 

diagonal matrix �
p
 contains the first p non-negative singular values in descending order. 

Considering the corresponding expressions of the GSVD method in Sect.  2.1, setting 
�

m
= � leads to � = �

T

2
 and �

2
= � and, with that, to the above truncated singular value 

decomposition with additional Marquardt–Levenberg damping. Using Eq. (44), the model 

resolution matrix can be computed as �
M
= �p(�

T

p
�p + ��)−1

�
T

p
�p�

T
p
 , and the model 

covariance matrix is evaluated as � = �p(�
T

p
�p + ��)−2

�
T

p
�p�

T
p
 . Rather than computing 

a full SVD and then only picking the contributions of the first p singular values, it is mean-
ingful to compute a partial SVD and compute and add contributions of singular values with 
higher index p as needed. Gilbert (1971) first proposed that using eigenvector decompo-
sition can provide flexibility and numerical stability for estimating the model resolution. 
Using the standard SVD algorithm, Wiggins (1972) analysed the model resolution and 
model uncertainty for surface-wave and free-oscillation observations, and Pedersen (1977) 
accelerated the generalised linear inverse approach. Jupp and Vozoff (1975) and Lines and 
Treitel (1984) applied the TSVD inversion and analysis to geoelectric and MT data and to 
reflection seismic and gravity data, respectively.

An analogy to the SVD analysis is the fast LSQR algorithm for sparse linear equa-
tions and sparse least squares (Paige and Saunders 1982), which can be thought of as an 
approach to iteratively reduce matrix �

d
 into a bi-diagonal matrix and two orthogonal 

matrices. The advantage of the LSQR method is that it only needs the multiplication of 
matrices and vectors during the iteratively performed decomposition. Therefore, it has the 
capability of speeding up the model analysis for large-scale 2D and 3D problems. Cur-
rently, the LSQR technique is widely adopted in the linear seismic tomography problem 
(Zhang and McMechan 1995; Yao et al. 1999; Tryggvason et al. 2002; Vasco et al. 2003; 
Osypov et  al. 2013; Chen and Xie 2017). Until now, the LSQR technique has not been 
widely used in 2D and 3D geo-electromagnetic induction problems. But, we note that the 

(44)�d ≈ �p�p�
T
p
,
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potential advantages of the LSQR method deserve further investigation in dealing with 
geo-electromagnetic induction problems.

2.4.3  Krylov Subspace Methods

Conjugate gradient (CG), nonlinear conjugate gradient (NLCG) and limited-memory quasi 
Newton (LMQN) methods (Nocedal and Wright 2006) are popular choices for iteratively 
minimising the cost function in large-scale 2D and 3D electromagnetic inversion problems 
(Mackie and Madden 1993; Rodi and Mackie 2001; Avdeev and Avdeeva 2009; Egbert 
and Kelbert 2012). Therefore, development of 2D and 3D model analysis algorithms that 
utilise and integrate with these iterative solvers is highly desirable. To our knowledge, no 
attempts in this direction have been made in the electromagnetic induction community to 
date. However, there are several papers on seismic inversion (e.g., Zhang and McMechan 
1995; Minkoff 1996; Yao et al. 1999) which may serve as a source of inspiration for future 
development.

In one of these examples, Minkoff (1996) applied the CG method to iteratively solve 
the normal equations. However, neither the sensitivity matrix nor the generalised inverse is 
explicitly computed and stored in the CG method. Thus, an approximate model resolution 
matrix was generated during the inversion by computing eigenvalues and eigenvectors of 
the generalised inverse with the Lanczos method (Minkoff 1996). Following a similar line 
of thought, Yao et al. (1999) computed approximations to the model covariance and resolu-
tion matrices while an augmented system of linear equations was iteratively solved using 
the LSQR method.

2.4.4  Extraction of Rows, Columns and Diagonals

For problems with large numbers of observations and model parameters, a practical way of 
conducting the model analysis is to extract only the rows, columns or diagonal entries cor-
responding to the model parameters of interest from the resolution and covariance matri-
ces. Since �

M
= �

−g
w �d , the jth row of �

M
 equals the jth row of the generalised inverse 

�
−g

w  times the weighted Jacobian matrix �
d
 , where �−g

w = �−1�T
d
 with � = �T

d
�

d
+ ��T

m
�

m
 , 

here matrix � is symmetric. Now, in computing the jth row of the generalised inverse 
matrix �−g

w  , the time-consuming part is to compute the jth row of the inverse of matrix � . 
Noting the identity ��−1

= � , where � is a unit square matrix, and denoting the jth column 
of �−1 (which is its jth row as �−1 is symmetric) by vector �j and �j as the jth column of the 
identity matrix, we have (Menke 2015):

Since matrix � is assumed to be symmetric positive definite, we can employ well-estab-
lished iterative solvers such as the conjugate gradient solvers (Saad 2003) or the LSQR 
decomposition solver (Paige and Saunders 1982) to quickly obtain the jth column ( �j ) of 
matrix �−1 , and finally the desired row of the resolution matrix, �j . The routine of comput-
ing the multiplication of matrix � with vectors which is needed by iterative solvers can be 
accelerated, if the sensitivity matrix is arranged to have a suitable structure. For instance, 
in the popular ModEM inversion code (Egbert and Kelbert 2012; Kelbert et  al. 2014), 
the authors observed that once the rows of the sensitivity matrix could be grouped into 
independent sets according to transmitter affiliation, computation of the sensitivity matrix 
could be easily parallelised over the transmitters and significantly accelerated. Similarly, 

(45)��
j
= �

j
.
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the above methodology can be directly applied to compute rows (or columns) of the sym-
metric model covariance matrix � given in Eq. (11).

To compute the jth column ( �j ) of the model resolution matrix (the point-spread func-
tion), we have �j

= �
M
�

j . Considering the discussion preceding Eq.  (45), �j satisfies the 
following linear system of equations:

Again, we can use conjugate gradient solvers (Saad 2003) or the LSQR decomposition 
solver (Paige and Saunders 1982) to quickly solve the above linear system of equations.

When all model parameters are perfectly resolved, i.e. when the problem is even- or over-
determined, we have �

M
= � . Hence, diagonal entries that differ from one indicate deterio-

rated model resolution. Furthermore, the diagonal elements of the model covariance matrix 
are the standard variances of model parameters. Therefore, the diagonal elements of the 
model resolution and covariance matrices are used as proxies in evaluating model uniqueness 
and uncertainty. We can either use the above naive direct matrix computation approach or 
the above row and column extraction approaches to compute the diagonal entries. Johansen 
(1977) suggests that the success of using diagonal elements is from the fact that the nonline-
arity of the original inversion problem with conductivities or resistivities as model parameters 
is reduced to a moderate one when the model parameter is transformed to the logarithm of 
conductivity or resistivity. For simple layered Earth models, Auken and Christiansen (2004) 
directly extracted the diagonal elements of the model covariance matrix to assist the inter-
pretation of laterally constrained inversion models computed from direct-current resistivity 
data. Similarly, Juhojuntti and Kamm (2015) used the directly extracted diagonal elements of 
the covariance matrix to evaluate single and joint inversion models of seismic refraction and 
resistivity data. For the computed three-layered models with undulating interfaces, the joint 
inversion model was demonstrated to have the lowest uncertainty.

For large-scale 2D problems and 3D problems, we may prefer the following stochastic 
algorithm to quickly extract the diagonal elements of resolution and covariance matrices. 
Using a set of s random vectors with length of m, �j , j = 1,… , s , the sth estimate of the 
diagonal matrix �s of a general square matrix � can be calculated as:

where ⊙ represents element-wise multiplication of vectors and ⊘ denotes element-wise 
division of matrices. When the components of the random vectors �j are equally probably 
drawn between the values of 1 and -1, the convergence of the estimated diagonal matrix 
�

s to the true diagonal of matrix � can be mathematically guaranteed (Hutchinson 1990). 
In a practical implementation of this stochastic-based algorithm to compute the diagonal, 
we can try different sets of random vectors to check its convergence, for details please 
refer to Bekas et  al. (2007). In Eq.  (47), we only need to compute the multiplication of 
matrix � to a random vector, that is, ��j . Using the relationship �

M
= �−1�T

d
�

d
 (with 

� = �T

d
�

d
+ ��T

m
�

m
 ), this multiplication is transformed to solve the following linear sys-

tem of equations by setting � = �
M

:

which will produce the diagonal of resolution matrix �
M

 . By setting � = � = �−1 , we 
have:
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which will produce the diagonal of covariance matrix � . Similar results can be obtained 
for the case of � = �−1�T

d
�

d
�−1 as defined in Eq. (11) where the reference model is con-

sidered a fixed vector. Since matrix � is symmetric positive definite using appropriate 
model regularisation terms, the above linear system of equations can be easily solved by 
fast iterative or direct solvers (Saad 2003). This stochastics-based estimation algorithm 
for matrix diagonals was adopted by MacCarthy et al. (2011) who achieved their goal of 
quickly computing the diagonal of the model resolution matrix for a Tikhonov-regularised 
teleseismic inversion problem with approximately 260,000 model parameters. Similarly, 
Trampert et  al. (2013) successfully carried out model resolution analyses for large-scale 
seismic tomography problems with 8000 model parameters. Please refer to An (2012) and 
Fichtner and van Leeuwen (2015) (and references therein) for other stochastics-based fast 
matrix extraction techniques. The success of the above algorithm to compute matrix diago-
nals arises from the capability of random probing techniques to extract properties of gen-
eral and large matrices. Currently, these fast computation algorithms are only widely used 
in seismic tomography problems, but the geo-electromagnetic induction community could 
expect benefits by using these methods in model analysis (Mitchell and Oldenburg 2016).

2.4.5  Iterative Update Formula

Sometimes, we want to compute the updated resolution and covariance matrices for a newly 
acquired data set starting from existing resolution and covariance matrices computed from 
the data of an earlier experiment. This assumes that the modelling mesh does not have to be 
changed when adding new data. For simplicity, we assume that only one new measurement is 
added. Then, the new sensitivity matrix with N + 1 measurements takes the form

where �N is the existing sensitivity matrix for an experiment with N measurements and 
M model parameters, and � is the new row sensitivity vector of size 1 × M containing the 
sensitivities of the new measurement to the model parameters. We rewrite the model reso-
lution matrix as �

M
= �� , where � = [�T

d
�

d
+ ��T

m
�

m
]−1 and � = �T

d
�

d
 , and denote the 

resolution matrix of the base problem (with N measurements) by �N

M
= �

N
�

N . Using the 
Sherman–Woodbury formula (Shelrman and Morrison 1950; Hager 1989), �N+1 and �N+1 
for the updated set of measurements can be computed as:

where � = ��N . The resolution and covariance matrices can be easily updated as 
�

N+1

M
= �

N+1
�

N+1 and �N+1
= �N+1 , respectively. The above formula also works in the 

case that, instead of one measurement, a set of measurements is added (where � would con-
tain the sensitivities for these new measurements), and it avoids the computationally heavy 
task of performing the matrix inverse operation in �

M
 . Only multiplications of matrices 

to vectors and vectors to vectors are needed. Therefore, the computational cost of the 
update formula is significantly less than that of the original one where the matrix inverse 
is involved. In practical applications, we can start with a base problem with a moderate set 
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of measurements. Then, by iteratively adding new measurements, the final resolution and 
covariance matrices for large-scale 3D problems can be efficiently computed in terms of 
the above update formula.

2.4.6  Model Reduction Techniques

The huge computational cost makes 3D model analysis nearly impossible. To reduce the com-
putational cost, we may be able to reduce the number of model parameters by transformation. 
Assume �∗ is the optimal model obtained by an inverse algorithm. Taking the 2D case as an 
example, the model vector can be naturally arranged as a model matrix with size of r × c = M , 
where r and c are the dimensions along the horizontal and vertical directions, respectively. 
The model matrix can be decomposed using the TSVD technique:

where the diagonal matrix �
p
 contains p nonzero singular values �

i
 , and �

i
 and �

i
 are the ith 

columns (eigenvectors) of �
p
 and �

p
 , respectively. The benefit of the above decomposition 

is that, after applying a threshold value to the singular values, the number of nonzero sin-
gular values should be much less than the dimension of the real model matrix, p < r, p < c 
so that p < M . Therefore, the model dimensionality has been significantly reduced. Here, 
the p matrices �

i
�

T

i
 with i = 1,… , p act as the basis to expand the model matrix in a linear 

space, and the singular values �
i
 are the expansion coefficients. Imaging the geometry of 

the topography of the cost function where the desired optimal model �∗ locates in a val-
ley where the cost function is minimised, its nearby models should belong to the same 
linear space as model �∗ . The bounds of these equivalent nearby models can be estimated 
by using prior constraints, such as its upper limit ( �

up
 ) and lower limit ( �

down
 ). Then, all 

equivalent models in this valley can be expressed as (Tompkins et  al. 2011; Fernández-
Martínez 2015):

Using this expansion, the coefficients a
i
 need to be determined.

Equation (54) actually defines a hyperpolyhedron which not only contains the equiva-
lent models but also contains geologically non-meaningful models. Therefore, this hyper-
polyhedron may contain the pseudo-hyperellipsoidal domain (see Sect. 2.2). As models in 
the pseudo-hyperellipsoidal domain should satisfy the requirement of the misfit being less 
than a given threshold, we need to compute the forward responses to screen out models 
in the hyperpolyhedron domain which violate the misfit criterion. Although Eq.  (53) is 
for a 2D case, higher-dimensional cases such as the 3D case can be formulated using a 
similar approach (De Lathauwer et al. 2000), as we can simply treat 3D model parameters 
as a set of 2D slides along one fixed direction. The above model dimensionality reduction 
technique offers a way of cheaply constructing the equivalent model domain. It generates 
a sampling space in which each model has high probability to satisfy the misfit require-
ment. Therefore, it can naturally work well with stochastic inversion algorithms to reduce 
the sampling cost. Its benefits have been demonstrated in stochastics-based linear seismic 
tomography problems (Fernández-Martínez 2015). Other model reduction techniques 
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using either Fourier bases (Lin et  al. 2012; Fernández-Martínez et  al. 2017) or wavelet 
bases (Kumar and Foufoula-Georgiou 1997; Nittinger and Becken 2016; Liu et al. 2018b) 
have been adopted to reduce the size of the inversion problem and, thus, to accelerate the 
inversion computation. However, to our knowledge, none of these techniques have been 
adopted in uncertainty and resolution analysis of inversion models computed from elec-
tromagnetic data. For time-lapse monitoring of salt water tracers, an adequate model 
reduction technique parameterises the tracer plume using a reduced Legendre moment 
decomposition (Laloy et  al. 2012; Rosas-Carbajal et  al. 2015). Using this approach ena-
bles stochastic time-lapse 3D inversion for the plume parameters and also provides model 
uncertainties. The forward solver of this approach relies upon the plume parameters being 
translated to resistivity perturbations on a finite-difference or finite-element grid. Similar 
problem-oriented parameterisations could be adopted in inversion problems where the aim 
is to determine the geometric shapes of anomalies using a limited number of parameters 
(Abubakar et al. 2009).

In the above, we have listed several techniques to accelerate model analysis. For 1D 
and 2D cases, it is desirable to use the direct matrix computation approach as detailed 
information about model resolution and covariance remains in the analysis results. For 1D 
and 2D problems, the TSVD approach works fine, if the effect of the model regularisation 
is deemed of lower importance than that of the data constraints, and the potential of the 
GSVD technique should be explored, if the model regularisation term is to be included 
in the analysis. For 3D cases, extraction of a few rows and columns from the resolution 
and covariance matrices, or consideration of their diagonal elements as proxies seem to be 
practical approaches. The iterative update formula is suitable for 3D problems when more 
and more new measurements are acquired across a given target and modification of the 
model parameterisation is not necessary. Model reduction approaches offer a cheap way 
of constructing the equivalent model domain in the valley of the cost function. They have 
great potential in stochastic inversion algorithms to reduce the sampling space, so that the 
otherwise prohibitive computational costs of stochastic algorithms can be dramatically 
reduced for 2D and 3D problems.

3  Examples of Linearised and Partially Nonlinear Model Analyses

3.1  Sensitivity Analyses

First, we consider the usage of the sensitivity matrix, because it establishes a first-order 
approximation in how a perturbation of the model parameters affects the measurements, 

that is, △� = �△� with � =

(

�Fi

�mj

)

 , i = 1,… , N and j = 1,… , M (see above). For each 

model parameter, we have a vector to measure the influence on all N measurements. It is 
natural to introduce a scalar measure for each model parameter, which sums all entries in 
this vector. For the jth model parameter, this cumulative sensitivity measure sj (Park and 
Van 1991; Schwalenberg et al. 2002; Robert et al. 2012) is

(55)sj =
1

△j

N∑

i=1

|||||

1

�i

�Fi(�)

�mj

|
|
|||
,



78 Surveys in Geophysics (2020) 41:47–112

1 3

where △j is the size of the jth model cell and �
i
 is the standard deviation of the ith meas-

ured data. A low value of sj indicates that the measurements are insensitive to the jth model 
parameter. Large variations in this model parameter would generate only small variations 
in the measured data set. Consequently, this model parameter is poorly resolved in the 
inversion result. In contrast, model parameters with high values of the above sensitivity 
measure can generally be thought of as being well resolved, with high confidence levels. 
However, it is important to note that inversion artefacts, i.e. model structures caused by 
systematic noise or insufficient sensor calibration, may also have very high cumulative 
sensitivity measures. In a general plot of this sensitivity measure, elements around receiv-
ers and transmitters would have high values. Cumulative sensitivities would decrease with 
depth and approach relatively low values at depths larger than about 1.5 skin depths of the 
lowest signal frequency, due to the skin effect. Normalised by its maximum value, the sen-
sitivity measure sj is in the range of [0, 1]. It is difficult to choose a threshold value for this 
measure, under which the associated model parameters are shown to have low confidence. 
Schwalenberg et al. (2002) used a threshold value of 10

−4 to rule out the unreliable deep 
conductivity structures under the Central Andes using 2D magnetotelluric data. The mini-
mum depth of the Altiplano conductor was estimated as about 50 km, and a localised con-
ductor below the Precordillera was confirmed by high sensitivities. Schmoldt et al. (2014) 
also used 10

−4 as the threshold value to identify the well-resolved areas of a 2D resistivity 
model obtained from magnetotelluric soundings in the Tajo Basin, Spain (Fig. 5). A simi-
lar idea was applied to analyse electrical structures imaged by magnetotelluric data (Ledo 
et al. 2004; Adepelumi et al. 2005; Padilha et al. 2013; Yan et al. 2017a), controlled-source 
electromagnetic (CSEM) data (Christiansen and Auken 2012; Komori et al. 2013; Grayver 
et  al. 2014; Troiano et  al. 2014; Lindau and Becken 2018; Goswami et  al. 2016; Attias 
et al. 2018), ground penetrating radar data (Meles et al. 2012) and direct-current resistivity 
data (Kemna et al. 2002; Hermans et al. 2012).

Now, we focus on appraising the inversion results in terms of formal model uncertainty 
and resolution analysis. Since most published inversion results did not contain model 
uncertainty or resolution analysis, we try to cover all published studies of model analysis 

Fig. 5  Cumulative sensitivity (black iso-lines) computed using Eq.  (55) overlain on 2D  model of crustal 
structures in the Tajo Basin (Schmoldt et al. 2014), which was inverted from magnetotelluric data collected 
at sites pic0001 to pic020. Labels of iso-lines are given on a logarithmic (base 10) scale. Areas with values 
less than the threshold value of 10

−4 are assumed to be poorly resolved. The dashed white line denotes the 
crust–mantle boundary
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for geo-electromagnetic induction and electrical resistivity tomography problems in the 
following sections. We try to categorise the following studies into two subsections: the first 
is on models inverted only from electromagnetic data, and the second is on models inverted 
from multiple geophysical data sets.

3.2  Uncertainty and Resolution Analyses of Models Inverted from Electromagnetic 

Data

For 2D inversion models computed from electrical resistivity tomography (ERT) data, 
Friedel (2003) successfully used the SVD technique to compute resolution and covariance 
matrices (Fig. 6). He also presented two simple measures of model resolution that are the 
radius of resolution and the distortion flag. The diagonal elements of the model resolu-
tion matrix are used to compute radii of resolution under the assumption that the averag-
ing functions have small spreads and unique main lobes. The distortion flag is true, if the 
maximum value of the averaging function is off-diagonal; otherwise, it is false. Numeri-
cal experiments show that these two measures are consistent to each other. Slater and 
Binley (2003) used the diagonal elements of the model resolution matrix to analyse the 
inverted conductivity model in a 2D cross-well configuration with 770 measurements for 
monitoring a permeable reactive barrier. According to the model resolution analysis, the 
conductivity structure has decreasing resolution away from the boreholes (and the current 
sources). Using the extraction technique for the columns of the model resolution matrix in 

(a)

(b)

Fig. 6  Resolving kernels RM,jk∕maxk(RM,jk) normalised by their respective maximum values of a 2D ERT 
inversion model (Friedel 2003) where four cells (cell indices j = 125, j = 588, j = 348, j = 722 ) were inves-
tigated (a). The radius of resolution r

res
 is derived from the diagonal elements RM,jj of the resolution matrix 

(b). Cells with white outlines indicate well-resolved model parameters with distortion flags of value false
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Eq. (46), Oldenborger and Routh (2009) carried out the analysis of the point-spread func-
tion for 3D ERT problems. In this study, three measures of the point-spread function were 
introduced, which are the spread attribute, the localisation error and the departure. The 
spread attribute quantifies how the inversion algorithm disperses structure. The localisa-

tion error is able to quantify the inability of the inversion algorithm to accurately map 
impulse variations in the true model. The departure term measures the combined effects of 
both the spread attribute and the localisation error. It is expected that good resolution has 
good localisation.

For geo-electromagnetic induction problems, Pedersen and Rasmussen (1989) applied 
the TSVD technique to compute the actual nonlinear semi-axes of the pseudo-hyperellip-
soid for a 1D magnetotelluric inversion problem. Alumbaugh and Newman (2000) used the 
extraction technique for the column resolution vector to compute the point-spread func-
tions of selected cells in 2D and 3D models computed from cross-well CSEM data sets. 
The capability of dealing with 3D large-scale problems is granted using the column extrac-
tion technique shown in Eq. (46). The burden of computing the point-spread function over 
selected model parameters was eased by iteratively solving a set of large-scale linear sys-
tems of equations using the conjugate gradient method. In this study, the authors also intro-
duced a measure to evaluate the width of the point-spread function (PSF) for each model 
parameter. This measure can be thought of as being continuous in model regions that are 
homogeneous or have gradual changes in model parameters. Given sufficiently dense sam-
pling around resistivity contrasts, the entire map of this measure can be approximated by 
interpolating this width function using its values computed for selected model parameters. 
Muñoz and Rath (2006) proposed an interesting method to explore the equivalence and 
resolution of 2D and 3D models using a hybrid two-step scheme. Starting from a preferred 
inversion model, modified models are randomly generated by replacing the resistivities of 
cells in a model domain of interest. Subsequently, the differences between the modified 
models and the preferred inversion model are projected onto the null-space of the latter to 
identify the equivalent models. This null-space is constructed by TSVD of the sensitivity 
matrix of the preferred inversion model. This approach goes back to earlier work in seismic 
tomography by Deal and Nolet (1996) and Rowbotham and Pratt (1997). For selected cells 
of 2D radio-magnetotelluric inversion models, Kalscheuer and Pedersen (2007) computed 
model uncertainties applying the TSVD technique in both pseudo-hyperellipsoidal descrip-
tions of the data misfit surface and most-squares inversions. Subsequently, the rows of the 
model resolution matrices pertaining to the analysed cells were computed for the trunca-
tion level determined in the uncertainty analysis. For both a synthetic model and an RMT 
field data set, the estimated uncertainties of conductive model cells agree well between the 
extreme parameter set. However, for resistive cells underneath conductive structures, the 
uncertainties computed from the nonlinear semi-axes are significantly smaller than those 
of the more accurate most-squares inversion. Additionally, in terms of the estimated resolu-

tion centres and resolution lengths (Braile and Keller 1975; Pedersen 1977), the latter cells 
have large resolution lengths and their resolution centres strongly deviate from the cells 
themselves. This study confirmed the difficulty of constraining resistive structures below 
conductive structures in electromagnetic induction problems. For a 3D land CSEM data 
set collected to image the  CO2 storage formation in Ketzin, Germany, Grayver et al. (2014) 
computed cumulative sensitivity measures and averaging functions of the model resolution 
matrix (by using TSVD and 7194 singular vectors). For the model with 94400 parameters 
treated in the analysis, this task was time-consuming and could be accomplished using par-
allel techniques on clusters. The results show that the cumulative sensitive measure is high-
est along the profile, and near the transmitters and the receivers. Furthermore, areas with 
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high cumulative sensitivity values were demonstrated to have low values of PSF width. 
More recently, Kalscheuer et al. (2018) applied linearised model uncertainty and resolution 
analysis to evaluate the benefits of adding borehole MT data to surface MT data sets. Lin-
earised analysis suggests that the joint inversion of both surface and borehole electromag-
netic data sets leads to much better constrained models than single inversions of surface 
data. For borehole MT transfer functions, this experiment also confirmed that the vertical 
electric transfer function is sensitive to structures close to a borehole, whereas skin-effect 
transfer functions are sensitive also to structures at greater distance from the borehole.

In summary, for inversions of single-method electromagnetic data sets, most stud-
ies on model uncertainty and resolution analysis were limited to 1D and 2D cases. This 
is because the computational cost would become prohibitive for 3D problems. 3D model 
analysis might be done using powerful computer clusters, but it might be better to consider 
the above acceleration techniques (such as the row/column/diagonal extraction techniques, 
the iterative update formula and model reduction techniques), because these have good 
potential to analyse the reliability and uncertainties of 3D conductivity models at moderate 
cost. Due to the inherent strong nonlinearity of electromagnetic data inversion, different 
model analyses can generate inconsistent indicators. Hence, we must become more cau-
tious when it comes to trusting our inverted conductivity model. Unfortunately, this fact 
is often ignored. Therefore, to increase the confidence in the inverted conductivity model, 
a comprehensive model analysis should be done to offer a measure of the reliability of the 
inversion model, which is particularly important for single inversions of electromagnetic 
data that suffer from equivalence and suppression problems (Menke 2012; Zhdanov 2002).

3.3  Uncertainty and Resolution Analyses of Models Inverted from Multiple 

Geophysical Data Sets

Data sets of different geophysical methods constrain different parts of the model space. 
Hence, each geophysical data set reveals partial information of the unique true model. 
Despite disparities in the material parameters that the different methods are sensitive to 
(e.g., electromagnetic data to conductivity, seismic data to velocity, magnetic data to per-
meability and gravity data to density), models for different material parameters can often 
be expected to have geometrical similarity (Gallardo and Meju 2004; Linde et  al. 2006, 
2008; Gallardo and Meju 2011; Brown et  al. 2012; Zhou et  al. 2014; Wiik et  al. 2015; 
Takam Takougang et al. 2015; Le et al. 2016; Yan et al. 2017b; Giraud et al. 2019; Ogunbo 
et  al. 2018; Agostinetti and Bodin 2018; Wang et  al. 2018b) or can be related by some 
determined or stochastic petrophysical relationship (Moorkamp et al. 2007, 2011; Moork-
amp 2017; Haber and Holtzman Gazit 2013). Thus, joint inversion of multiple geophysical 
data sets can significantly reduce uncertainty and improve resolution of the resulting mod-
els, i.e. these will come closer to the unknown true models than models from single inver-
sions (Abubakar et al. 2012; Gao et al. 2012; Molodtsov et al. 2013).

Until now, model resolution and uncertainty analyses have only been conducted for a lim-
ited number of 1D and 2D joint inversion studies. For 2D joint inversion of electrical resist-
ance tomography (ERT) and radio-magnetotellurics (RMT) data sets, Candansayar and 
Tezkan (2008) computed the model resolution matrix �

M
 and used its diagonal elements to 

evaluate the benefit of joint inversion (Fig. 7). For this particular data set, the diagonal resolu-
tion elements from the inversions of the individual data sets showed that the ERT data were 
more sensitive to the shallow structure (Fig. 7a) and the RMT data set could better resolve the 
deep structures (Fig. 7b). As evidenced by high resolution values, the resistivities of both the 
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shallow and deep structures were better resolved using joint inversion of the RMT and ERT 
data sets (Fig. 7c). Yogeshwar et al. (2012) drew similar conclusions for the 2D joint inver-
sion of RMT and ERT data sets acquired across a groundwater contamination site in India. 
Kalscheuer et al. (2010) estimated the reliability of 2D models computed using smoothness-
constrained joint inversions of ERT and RMT data sets comparing the results of linearised 
analysis and most-squares inversion. Model resolution tests demonstrated that inappropriate 
weighting among different data sets can lead to unnecessarily large model uncertainties and 
large spreads of the resolving kernels, emphasising the importance of proper data weights in 
joint inversions. The 2D model uncertainty and resolution analysis introduced by Kalscheuer 
et al. (2010) was successfully applied to 2D inversion models computed from single and joint 
inversions of ERT and RMT data (Bastani et al. 2011; Kalscheuer et al. 2013; Wang et al. 
2018b). In a review paper, Gallardo and Meju (2011) derived a theoretical framework to com-
pute the model covariance matrix for joint inversions using geometrical similarity constraints 
(cross-gradient method). For the joint inversion of a few electromagnetic data sets (transient 
electromagnetic, audio-magnetotelluric and controlled-source audio-magnetotelluric data) 
collected in the central Okavango Delta of Botswana, Kalscheuer et al. (2015) examined the 
effect of seismic constraints on 1D joint inversion models. Due to the relatively high num-
ber of electromagnetic data (about 600 to 700 per sounding) and the low number of model 
parameters (7 layer parameters and 14 distortion parameters), each layer parameter is perfectly 
resolved leading to a unit diagonal model resolution matrix. Moreover, the seismic constraints 
could significantly reduce model uncertainty for the resistivities and thicknesses of the lay-
ers. Giraud et  al. (2017) tried to use geological information to constrain the petrophysical 
relationship for 2D joint inversions of magnetic and gravity data. Using this geological prior 

Fig. 7  Diagonal elements of 
model resolution matrices com-
puted for a 2D single inversion of 
ERT data, b 2D single inversion 
of RMT data and c 2D joint 
inversion of ERT and RMT data 
from Candansayar and Tezkan 
(2008). The diagonal entries of 
the resolution matrix computed 
for the joint inversion model are 
higher than those for the single 
inversions indicating an improve-
ment of model constraints by 
combining the data sets
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information, the reliability of joint inversion results was significantly improved as evident by a 
measure of the uncertainty in the petrophysical domain. For joint inversions of electric resis-
tivity and seismic refraction tomography data at Äspö Hard Rock Laboratory close to Oskar-
shamn in Sweden, Ronczka et al. (2017) used cumulative sensitivity values (Eq. 55) and the 
model resolution radius to evaluate the reliability of the inverted conductivity models. The 
results of both analysis tools match very well to each other. In the final conductivity model, the 
shallow part has low resolution radii and high cumulative sensitivities, which means the shal-
low part can be trusted with confidence. Using the diagonal elements of the model resolution 
matrices (which are calculated by the stochastics-based diagonal extraction technique) from 
individual magnetotelluric, active source seismic P-wave and gravity data sets, Heincke et al. 
(2017) developed an adaptive strategy to determine the weights for different data misfit terms 
in 1D joint inversion. Resolution analysis indicates that, even with joint inversion, the deep 
structures off the shore of the Faroe Islands (Denmark) are poorly resolved, which suggests 
more geophysical data sets should be acquired.

Fig. 8  Nonlinear sensitivity tests for 2D magnetotelluric inversion models along two perpendicular profiles 
in the Skellefte Ore District, northern Sweden (Garcı́a Juanatey et al. 2013). Bodies RI, RIII, RIV, RVI and 
RVII are resistors, and bodies CIVa, CIVb, CVa, CVb, CVI and CVII are conductors. The data are sensitive 
to resistors RI, RIII and RVI and conductors CVa and CIV, as variations of model resistivities lead to sig-
nificant changes of RMS values. In contrast, the data seem to be insensitive to resistor RIV and conductors 
CVI and CVII
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4  Examples of Nonlinear Model Analyses

Changing the preferred inversion model �∗ (also called nonlinear sensitivity test) may be 
the most economical tool as, in its simplest form, only several forward modelling computa-
tions are needed to evaluate the misfit variations and to construct a very limited equivalent 
model domain. Therefore, this model analysis tool is widely used in geo-electromagnetic 
inversion problems (Becken et  al. 2008; Thiel and Heinson 2010). For instance, Hübert 
et al. (2009), Hübert et al. (2013) and Garcı́a Juanatey et al. (2013) carried out nonlinear 
sensitivity tests of the preferred inversion models obtained for different parts of the Kris-
tineberg mining area in the Skellefte Ore District, northern Sweden. Along two perpen-
dicular magnetotelluric profiles, Garcı́a Juanatey et al. (2013) performed the nonlinear sen-
sitivity test by forward modelling a set of synthetic models which were built by varying the 
resistivities of selected regions or cells (Fig. 8). The bodies RI, RIII, RIV, RVI and RVII 
are resistors, and bodies CIVa, CIVb, CVa, CVb, CVI and CVII are conductors. For each 
body, the resistivity of a selected region was varied in the range of 10

−1 to 10
4
Ωm , whereas 

the resistivities of the remaining model regions were kept unchanged. The differences of 
model responses were measured by the RMS values. This analysis shows that the data are 
sensitive to resistors RI, RIII and RVI and conductors CVa and CIV. In contrast, the data 
seem to be insensitive to resistor RIV and conductors CVI and CVII, because the RMS 
misfits are unchanged as the resistivities of these bodies are varied.

Dong et al. (2014) presented an example of 3D magnetotelluric inversion to study the 
electrical structure of the Ordos Block in the North China Craton. In their preferred inver-
sion model (Fig. 9a) which contains three conductors C1, C2 and C3, the large-scale con-
ductor C1 at depths of 20–60 km has a resistivity of 3 − 100Ωm . C2 is at upper mantle 
depths (90–150 km) with a resistivity of tens of Ωm . C3 is vertically directed and connects 
shallow body C1 and deep body C2. C3 has a resistivity of 3 − 10Ωm . To test the sensi-
tivity of the data to C3, a synthetic model was built by assigning 300Ωm to its resistiv-
ity and 50 − 90 km to its depth range (Fig.  9a, b). The forward modelling results show 
that although the total RMS misfit has only slightly changed (from 1.60 to 1.66), 10–20 % 
changes appear in the responses at receiver sites close to C3 (Fig. 9c–e). Hence, these syn-
thetic forward modelling tests suggest a high level of confidence associated with the exist-
ence of C3.

For an CSEM problem using currents impressed on a 35-km-long segment of a gas 
pipeline in northern Germany as a source, Lindau and Becken (2018) calculated cumu-
lative sensitivities of the inverted subsurface model using Eq.  (55). The inversion model 
indicates a buried conductor C1, but the cumulative sensitivity plot shows the area contain-
ing the conductor has low sensitivity values. The authors then generated a new synthetic 
model by removing this conductor C1, which leads to a significantly increased RMS data 
misfit. Therefore, the authors conclude upon the existence of the buried conductor C1. In 
an example of inverting CSEM towed and ocean-bottom receiver data, Attias et al. (2018) 
first obtained a preferred inversion model, then a new synthetic model was constructed 
with structures from this preferred inversion model. Finally, the authors generated another 
inversion model by inverting the responses calculated for this synthetic model contami-
nated with noise. Similar structures appear in the inversion models for the field data and 
synthetic data establishing confidence in the reliability of the model inverted from the field 
data.

Due to its simplicity, the nonlinear sensitivity test is also widely used in other prob-
lems, such as analysis of the significance of different electromagnetic field components in 
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resolving a given structure (Spies and Habashy 1995; Colombo and McNeice 2013), deter-
mination of minimum amplitudes of resistivity changes for resistivity monitoring (Didana 
et  al. 2017; Thiel 2017; Liu and Zoback 2017), evaluation of acquisition configurations 
(such as surface-to-surface or surface-to-borehole) (Wirianto et al. 2010; Schamper et al. 
2011; Vilamajó et al. 2013) or 4D time-lapse problems (Auken et al. 2014; Rosas-Carbajal 

Fig. 9  Nonlinear sensitivity test for conductor C3 in a 3D MT inversion model of the Ordos Block (Dong 
et al. 2014). Replacement of conductor C3 in the preferred model (a) by a homogeneous unit of 300Ωm (b) 
leads to data fit that is deteriorated by 10-20 % at sites in the vicinity of C3 (c–e). Symbols indicate meas-
urements. Dashed and solid lines indicate responses of the preferred inversion model in a and the modified 
model in b, respectively
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et al. 2015). Readers are encouraged to read the above papers and references therein for 
detailed coverage.

Variations of the initial model �0 can generate different equivalent models satisfying 
the data misfit criterion (Agarwal et al. 1993). The general approach to designing the ini-
tial model is to use a simple half-space model with initial resistivity estimated from, for 
instance, an average apparent resistivity of the MT data or an average resistivity of rock 

Fig. 10  2D resistivity models inverted from magnetotelluric data (Bai and Meju 2003) using half-space ini-
tial models of different resistivities, 50 Ωm (a), 100 Ωm (b), 300 Ωm (c) and 500 Ωm (d). Regions below 
15 km depth are poorly resolved, as their resistivity values differ from another by up to a factor of four
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samples collected in the survey area. If a priori geological knowledge indicates the under-
ground structure is dominated by layers, the initial model can be a layered Earth model. 
An optimal initial model does not only accelerate the convergence rate of the inversion, 
but also increases the confidence in the preferred inversion model approaching the true 
model. Therefore, we may wish to design different initial models based of different geo-
physical models, such as such as seismic velocity models and density models, or geologi-
cal maps. Given satisfying data misfit, all generated equivalent models should be equally 
considered and interpreted. In using magnetotelluric data to image the deep structure under 
the Himalayan syntaxis, Bai and Meju (2003) ran inversions with half-space initial models 
of four different resistivities, as shown in Fig.  10. In these four inversion models, resis-
tivities below 15  km depth differ significantly from each other (up to a factor of four). 
Hence, regions below 15 km are poorly constrained by the data. It might be worthy to note 

Fig. 11  DOI map (c) of 2D ERT inversion (Oldenburg and Li 1999) with reference models being homoge-
neous half-spaces of 4000 Ωm and 40 Ωm . The white regions of the inverted model are areas insensitive 
to the data (a). The inverted model is superposed by contour lines of the DOI map at an interval of 0.1 (b)
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that Tao et al. (2013) introduced a strategy for designing initial models in magnetotelluric 
inversion studies.

Variations of the reference model �
r
 lead to the depth of investigation (DOI) technique. 

The popular DOI tool was originally presented by Oldenburg and Li (1999) for inversion 
of ERT and IP data. For 2D inversion of ERT data with a total electrode spread of 400 m, 
two homogeneous reference model of 40 and 400 Ωm were used to compute DOI indices 
(Fig.  11). In this particular example, the DOI isoline with a value of 0.4 is located at a 
depth of roughly 75 m and used for fading colours at greater depth, where the model is not 
believed to be constrained by the data. Subsequently, Marescot et al. (2003) used the DOI 
index to estimate the reliability of 2D ERT models in mountain permafrost studies. Miller 
and Routh (2007) established a relationship between the model resolution matrix �

M
 and 

the DOI index. To our knowledge, this connection between the DOI index and the model 
resolution matrix is the only currently used technique to take into account nonlinear effects 
in the model resolution matrix. As described above, Kalscheuer and Pedersen (2007) used 
partially nonlinear uncertainty estimates to determine a TSVD truncation level for which 
�

M
 is computed. However, this approach of accounting for nonlinearity in �

M
 is at best 

indirect. More rigorous approaches would re-compute �
M

 at the extreme models and, pos-
sibly, study the rotation of the model eigenvectors by moving from the preferred model to 
the extreme models.

Oldenborger et al. (2007) extended the concept of DOI to the 3D case and compared 
the 3D DOI to the row-summed resolution matrix and the sensitivity matrix. Hilbich et al. 
(2009) computed the DOI index and the model resolution matrix for 2D ERT monitoring 
of permafrost landforms with strong resistivity contrasts. In addition to a model resolu-
tion analysis based on linearisation, the DOI approach was used to account for the nonlin-
ear characteristics of the ERT method. The comparison shows that both approaches could 
generate similar results. The agreement between these two approaches gave the authors 
confidence in applying ERT to monitor the spatial-temporal heterogeneity of permafrost 
degradation. Meju (2009) extended the concept of the DOI index to cross-gradient joint 
inversions of data sets from methods that are sensitive to dislike material parameters. The 
author used the cross-gradient of the minimum model and the maximum model to measure 
the resolution existing in these two extreme model sets. Monteiro Santos and El-Kaliouby 
(2011) calculated the DOI index for 2D joint inversion models of ERT and time-domain 
EM data sets, where only model roughness was considered in the regularisation, but not 
model smallness. Nenna et  al. (2011) used the 3D DOI for experimental design in elec-
trical resistivity imaging. Caterina et al. (2013) also computed the DOI index, the model 
resolution matrix and the sensitivity matrix in an application of ERT monitoring to hydro-
geological problems. The performances of the model resolution matrix, sensitivity matrix 
and the DOI index were compared. This comparison shows that the model resolution 
matrix and the sensitivity matrix appear to be more suitable quantitative tools and the DOI 
index seems to be more suitable for a qualitative model analysis, because it is difficult to 
select a proper threshold value for the DOI index. Deceuster et al. (2014) tried to identify 
an optimal DOI threshold for ERT inversions. Oldenborger and LeBlanc (2015) compared 
the DOI to the diagonal elements of the resolution matrix for electrical resistivity surveys 
at Iqaluit International Airport, Nunavut, Canada. Recently, Carriere et  al. (2017) com-
pared the performance of the DOI index approach using two model parameter transforma-
tions, i.e. linear resistivity and logarithmic resistivity. The results strongly recommend the 
usage of logarithmic resistivity. For 2D joint inversions of TDEM and ERT data sets, Mar-
tinez-Moreno et al. (2017) used the DOI index to evaluate interpreted seawater intrusions 
in coastal areas. We conclude that the success of the DOI-based model analysis strongly 
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depends on the experience of the users in trying different reference models. DOI indices 
can only be meaningfully computed for inversion models that have nearly identical RMS 
misfits. This is so, because systematic differences in data fit correspond to localised devia-
tions between the inversion models. These localised deviations will falsely reflect in high 
DOI values, even though the model regions are well determined by the data. This means 
that the chosen model constraints are inappropriate in at least one of the inversions.

Changing the target value of the cost function Q is the paradigm common to the most-
squares inversion and the edgehog method. The most-squares approach estimates model 
uncertainty by perturbing the target value of the cost function. For 2D single and joint 
inversions of ERT and RMT data,  Kalscheuer et  al. (2010) used both the TSVD tech-
nique and smoothness constraints to estimate extreme parameter sets by the most-squares 
method. In the analyses that take smoothness constraints into account, the results for the 
linearised model uncertainty estimates and the most-squares method are in good agree-
ment with each other. This suggests that when a model regularisation term is included, 
the linearised model covariance can yield similar results as the more elaborate most-
squares method. This result is not a surprise, because addition of linear constraints, such 
as smoothness constraints, renders the inversion problem more linear. Since a logarith-
mic transformation of model parameters (resistivities � ) is used to ensure that resistivi-
ties are positive, the errors computed by the partially nonlinear hyperellipsoidal description 
(nonlinear semi-axes) and most-squares inversion are factors f − and f + , i.e. the extreme 
parameter values log10 � ± � log10 �

± correspond to a range 
[

1∕f − �, f + �
]

 . When disregard-
ing smoothness constraints, the model uncertainties estimated by the most-squares method 
compare to those of the nonlinear semi-axes calculated by the TSVD technique favour-
ably for conductive cells (e.g., cell D in Fig. 12 and Table 1) and satisfactorily for shallow 
resistive cells that are within the depth of investigation ranges of both methods (e.g., cell 
C in Figs. 12, 13 and Table 1). However, for resistive cells underneath conductive units, 
the most-squares errors are up to two and a half orders of magnitude larger than those 
estimated from the nonlinear semi-axes (e.g., cell B in Fig. 12 and Table 1). This indicates 
that model analyses can be in profound error, if nonlinearity is disregarded. Together, the 
nonlinear model errors computed using most-squares inversion and the model resolution 

(a)

(b)

(c)

(d)

Fig. 12  Synthetic resistivity model (a) and resistivity models inverted from ERT data (b), RMT data (c), 
joint ERT and RMT data (d) (from Kalscheuer et al. 2010). Cells B, C and D are located in the deep resistor 
(purple colour), shallow resistor and deep conductor (orange colour), respectively
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matrices (not shown here) proved that the joint inversion did improve the overall model 
constraints. Other field examples with application of the most-squares inversion were pre-
sented by Bastani et al. (2011) and Kalscheuer et al. (2015) (see above). For 1D models 
computed from electromagnetic induction data acquired across Antarctic sea ice, Hun-
keler et  al. (2016a) and Hunkeler et  al. (2016b) successfully applied the TSVD-based 

(a) (b)

(c) (d)

(e) (f)

Fig. 13  TSVD-based most-squares models for minimum resistivity (left column) and maximum resistivity 
(right column) of cell C calculated for ERT (a), RMT (b) and joint ERT–RMT inversion models (c) (from 
Kalscheuer et al. 2010). Cell C is located in a shallow resistor (cf. Fig. 12). Error factors corresponding to 
the most-squares uncertainties are presented in Table 1

Table 1  TSVD-based most-squares error factors of cells B (deep resistor), C (shallow resistor) and D (deep 
conductor, cf. Fig. 12) for the minimum-misfit models computed in ERT, RMT and joint ERT–RMT inver-
sions (from Kalscheuer et al. 2010)

The corresponding most-squares inversion models for cell C are depicted in Fig. 13

Inversion ERT RMT ERT–RMT

Cell B

Error factors f −∕f + from nonlinear semi-axes 1.30/1.30 1.99/2.00 1.86/1.86

Error factors f −
MSQ

∕f +
MSQ

 from most-squares inversion 81.3/20.2 8.82/143.9 41.8/664.5

Cell C

Error factors f −∕f + from nonlinear semi-axes 1.29/1.27 1.28/1.27 1.26/1.26

Error factors f −
MSQ

∕f +
MSQ

 from most-squares inversion 2.33/3.19 1.44/1.48 1.32/1.34

Cell D

Error factors f −∕f + from nonlinear semi-axes 1.28/1.27 1.30/1.29 1.27/1.27

Error factors f −
MSQ

∕f +
MSQ

 from most-squares inversion 4.98/2.27 1.29/1.43 1.45/2.85



91Surveys in Geophysics (2020) 41:47–112 

1 3

most-squares algorithm presented by Kalscheuer and Pedersen (2007) to estimate the reli-
ability of layer thicknesses and conductivities as free parameters. Rosas-Carbajal et  al. 
(2014) applied most-squares inversions to determine the uncertainties of 2D RMT and ERT 
single and joint inversion models and conclusions similar to those presented by Kalscheuer 
et  al. (2010) were obtained. As an important result of this work, the model uncertain-
ties computed using most-squares inversions were basically confirmed by Monte-Carlo-
Markov-Chain (MCMC) inversions. Note that there is a difference regarding the model that 
the uncertainties are relative to. Whereas the most-squares method computes uncertain-
ties relative to the minimum-misfit model, those of the MCMC method are relative to the 
ensemble mean. This is so, because the MCMC method generates an ensemble of models 
by sampling the likelihood function. From this ensemble, an ensemble mean is computed 
by averaging, and, subsequently, an ensemble covariance matrix is computed relative to 
the ensemble mean (Eqs. 42 and 43). Nevertheless, these results suggest that, for the given 
examples with measurements on the surface, there were not any significant local minima 
and maxima in the cost functions of the RMT and ERT inversion problems. However, 
Kalscheuer et  al. (2018) pointed out that for inversion of borehole magnetotelluric data, 
there are general difficulties for the most-squares method to overcome the highly nonlinear 
effects, in particular in the vertical electric transfer functions. Thus, in its present form, the 
most-squares method cannot be used for uncertainty analysis of models computed from 
borehole magnetotelluric data. The Edgehog method, where either data misfit Qd

 or model 
misfit Q

m
 is changed, was rarely used in geo-electromagnetic induction problems.  

Global search algorithms or stochastic inversion algorithms can be considered as gen-
eralised nonlinear model analysis methods. Stochastic inversion algorithms build synthetic 
models by following certain model space sampling rules. As compared to the nonlinear 
model analysis methods described above, the model domain is sampled much more densely 
and systematically. For 2D inversions, the model ensemble that serves to describe the a 
posteriori probability density function consists easily of 100,000 models (Rosas-Carbajal 
et  al. 2014). Today, the research field of designing stochastic algorithms is very active. 
There are many stochastic algorithms such as the Bayesian approach (Minsley 2011; Guo 
et al. 2014; Rosas-Carbajal et al. 2014, 2015; Berube et al. 2017; Xiang et al. 2018), genetic 
algorithms (Moorkamp et  al. 2007; Akca and Basokur 2010; Akca et  al. 2014), simu-
lated annealing (Prasad 1999; Wang et al. 2012), neural networks (El-Qady and Ushijima 
2001; Singh et al. 2013), evolution algorithms (Balkaya et al. 2017; Grayver and Kuvshi-
nov 2016; Grayver et al. 2016) and particle swam optimisation algorithms (Srivastava and 
Agarwal 2010; Santilano et al. 2018; Liu et al. 2018a). For their applications in 1D and 2D 
geo-electromagnetic inversion, please refer to the above references and also a recent review 
paper (Pankratov and Kuvshinov 2016).

5  Uncertainty and Resolution Analysis of Models Inverted 
from Seismic and Potential Field Data

Linear or linearised model uncertainty and resolution analysis is a standard appraisal 
method also in other geophysical sub-disciplines, such as seismic and potential field meth-
ods. Here, we try to identify similarities and disparities to the approaches taken in the 
geo-electromagnetic community. Further, we provide detail on peculiarities of seismic and 
potential field inversion problems.
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In 2D and 3D teleseismic tomography problems, the inversion parameters are typically 
velocity perturbations with respect to a layered background model. For appraisal of 3D 
velocity models computed from seismological delay time data (travel time residuals) with 
a ray approximation, Spakman and Nolet (1988) combined usage of two inversion algo-
rithms, i.e. the simultaneous iterative reconstruction technique (SIRT, an iterative back-
projection method) and LSQR, analysis of cell hit-counts (i.e. the number of rays passing 
through a cell and, as such, not applicable to diffusive EM problems), cell spike tests (syn-
thetic tests, where the velocity perturbations of individual cells are set to have the same 
value), harmonic model tests (synthetic tests, where the velocity perturbation is based on 
superposition of sine functions) and random redistribution of delay times (see above). For 
a whole Earth tomography problem, Vasco et al. (2003) computed linearised model reso-
lution and covariance matrices based on a truncated SVD. Using a partial SVD up to the 
truncation level, the computational burden of the SVD could be reduced. In an inversion 
of teleseismic data for P and S wave velocities, Eken et al. (2008) considered the diagonal 
elements of the model resolution matrix and synthetic modelling studies to evaluate model 
reliability. Also in teleseismic tomography, Shomali et al. (2002) and Shomali et al. (2011) 
considered a variety of nonlinear approaches to evaluate model reliability including usage 
of different inversion routines such as SVD and quadratic programming with inequality 
constraints, inversion of synthetic data and checkerboard tests. The applications described 
in these two papers are to the Trans-European suture zone and the Zagros collision zone. 
In order to study the non-uniqueness in global and regional tomography problems, De Wit 
et al. (2012) explore the null-space of the forward operator following the original idea pre-
sented by Deal and Nolet (1996). Lebedev et al. (2013) presented extensive 1D modelling 
studies including multi-dimensional plots of the data misfit to explore trade-offs between 
various model parameters involved in identifying the Moho from seismic surface-wave 
data. The study includes an evaluation of maximum data uncertainties that still permits 
identification of the Moho.

In seismic tomography, cell spike tests (Spakman and Nolet 1988; Aster et al. 2012), 
harmonic model tests (Spakman and Nolet 1988) and checkerboard tests (Shomali et  al. 
2002, 2011; Aster et  al. 2012) use synthetic models and the same experimental setup 
(including ray coverage) as a given field data set. These tests illustrate the potential loss 
of resolution (smearing) in the resulting inversion models and deliver important informa-
tion on the general suitability of a given experimental setup (mostly station coverage) to 
constrain a given target structure. Menke (2015) describes the conceptual similarity of 
checkerboard tests and PSFs computed from the columns of model resolution matrices. 
The inversion model resulting from a checkerboard test is essentially the sum of a related 
set of PSFs. However, owing to the use of travel time residuals in seismic tomography and 
the strong damping of electromagnetic fields in conductive structures, these types of tests 
do not seem to have been popular in the geo-electromagnetic induction community.

In potential field problems, one would assume linear model uncertainty and resolution 
analysis to be directly applicable given the linearity of the forward modelling operator in 
the model parameters. However, as noticed by Kamm et al. (2015), transformation of data 
or model parameters (e.g., to ensure model parameters are positive) may make it neces-
sary to use iterative inversion and linearised or nonlinear model analysis. In contrast to 
EM problems, depth resolution is a major concern in potential field problems, and depth 
weighting of the model regularisation has been used to address this problem (e.g., Li and 
Oldenburg 1996; Kamm et  al. 2015; Pilkington 2016, and references  therein). Based on 
damped SVD and GSVD, Fedi et al. (2005) considered the so-called Picard plot (a com-
parison of singular values and the data vector projected onto the left singular vectors vs 
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singular value number) to set an optimal damping factor and derived a depth resolution 

plot. A vector �
i
 with a number of entries Nz , which equals the number of depth layers in 

a 3D model, is constructed for each right (model) singular vector �
i
 , such that the entries 

of �
i
 are the sums of squares of the entries of �

i
 which correspond to a certain depth level. 

Essentially, the depth resolution plot is a column-wise plot of the �
i
 and is one way of con-

densing the huge amount of information contained in the model singular vectors. Given 
appropriate consideration for damping and the Picard plot, the depth resolution plot helps 
identify the maximum depth to which a given data set, including its noise, can constrain 
the model. Based on Picard and depth resolution plots, Paoletti et  al. (2016) evaluated 
the differences in depth resolution between gravity and gravity gradient tensor data. The 
authors concluded that, given comparability in the noise levels, gravity and gravity gradi-
ent tensor data lead to similar inversion models. For 3D inversion of magnetic field data, 
Pilkington (2016) gave a concise exposure to the theory of formal model resolution analy-
sis including averaging functions, point-spread functions, extraction of rows and columns 
of �

M
 and different measures of resolution length (or width). Based on a comparison to 

checkerboard tests, Pilkington concluded that the resolution widths estimated based on the 
averaging or point-spread functions are too optimistic and attributed this to model param-
eter transformation, i.e. the nonlinearity introduced through it, rather than depth weight-
ing. Hence, Pilkington (2016) suggested to compute a more conservative model resolution 
matrix in form of the one without parameter transformation accelerating computations with 
a fast Fourier transform. Approximating the laterally varying sequence of ice, lake water, 
lake-floor sediments and basement of Lake Vostok, Antarctica, with a limited of number 
of rectangular prisms, Roy et al. (2005) inverted gravity data for the corner positions of 
the prisms assuming that the densities of the different units are known. The resulting non-
linear inversion problem was solved using simulated annealing which allowed for quanti-
fication of the model uncertainties and correlations. Aiming at regional studies, Plattner 
and Simons (2017) inverted satellite magnetic data for the coefficients of their internal and 
external parts using the mean-square error (MSE) to balance model uncertainty and reso-
lution spread. The truncation in the MSE criterion was based on the index of the vector 
Slepian basis functions.

6  Survey Design

For a given data set, we aim at finding an inversion model with a low spread of the resolu-
tion matrix and low uncertainty. As given in Eq. 7, the model resolution matrix is deter-
mined by the quality of the observed data set � , the accuracy of the forward modelling 
(or the sensitivity matrix �[�,�] ), the underground conductivity distribution � , the model 
constraints �

m
 , the reference model �

r
 and the trade-off parameter � . If we assume that 

the model constraints are fixed during the inversion and the error of the forward computa-
tion is acceptable, the reliability of the inverted conductivity distribution is only related to 
the quality of the observed data set. In other words, for a given model regularisation, the 
model resolution matrix depends on the data � , the data uncertainties �

d
 and the model 

� . Thus, before conducting a field survey, we should experimentally find the optimal sur-
veying configuration for the particular area. Another benefit of searching for an optimal 
configuration is to optimise the budget, because it is a key factor in approving or denying a 
proposed field survey.
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The quality of the observed data set � is controlled by multiple factors, such as loca-
tions of transmitters �

t
 , locations of receivers �

r
 , the number of transmitters n

t
 , the number 

of receivers n
r
 , the measured components of electromagnetic fields F and the frequency f 

or time t ranges. For a given model parameterisation, experimental design (survey design) 
aims at making the model resolution matrix �

M
 close to the identity matrix � by adding the 

necessary types of measurements. Formally, this optimisation problem is expressed as:

where |.| denotes the matrix norm and �
M

 is a function of variables �
t
 , �

r
 , n

t
 , n

r
 , F, f and t. 

Although the model resolution matrix �
M

 is also a function of the unknown true model, 
homogeneous models or simple models derived from prior information can initially be 
used for testing. Alternatively, we can minimise objective functions that are based on the a 
posteriori model covariance matrix (e.g., Maurer and Boerner 1998; Maurer et al. 2000). 
In cases where it is difficult to change transmitter locations and signal frequencies, we can 
try different arrangements of receivers to satisfy the above nonlinear optimisation prob-
lem. Furthermore, if receiver locations were to be equally distributed across flat terrain, 
we would use three parameters which are the location of the starting receiver, the receiver 
spacing and the number of receivers along the grid to describe the receiver configuration. 
Then, the total number of unknowns are four scalar variables (two for the horizontal coor-
dinates of the starting receiver) in the nonlinear optimisation problem in Eq. (56). In terms 
of standard optimisation algorithms, these four parameters can be solved for with high con-
fidence, because it is a highly over-determined problem.

The concept of optimal survey design has a long history in product quality control 
(Taguchi 1987). Later on, its concept was applied to solve geophysical problems such as 
optimal design of seismic monitoring networks (Kijko 1977; Rabinowitz and Steinberg 
1990; Hardt and Scherbaum 1994) and real-time control of magnetotelluric data acquisition 
in the field (Jones and Foster 1986). Over the last twenty years, geophysicists have used 
optimal survey design mainly in ERT imaging problems (Stummer et al. 2004; Wilkinson 
et al. 2006; Maurer et al. 2010), seismic tomography (Curtis 1999; Haber et al. 2008) and 
seismic full-wave full inversion (Maurer et al. 2017; Nuber et al. 2017). For ERT inversion 
problems, if the typical four-electrodes configurations are used, the maximum number of 
independent measurements is n × (n − 1) × (n − 2) × (n − 3)∕8  (Coles and Morgan 2009; 
Hyvonen et al. 2014), where n is the number of equally spaced electrodes. For an acquisi-
tion system with 100 electrodes, the total number of measurements can easily reach 10

7 . 
Therefore, it is crucial to select a small set of measurements from all possible measurement 
configurations which can still optimally resolve the underground structure. Successively 
augmenting a base set of measurements (Wilkinson et al. 2006; Stummer et al. 2004; Loke 
et al. 2014; Wagner et al. 2015; Uhlemann et al. 2018), we can employ the iterative update 
formulae in Eqs.  (50) to (52) to quickly compute the model resolution and covariance 
matrices of the augmented data set. If the resolution matrix is improved or the uncertainty 
of the model is decreased, the test measurement will be added to the base set. Additionally, 
numerical experiments show that optimal survey configurations derived under the assump-
tion of a homogeneous true model still work fine for practical investigations. This may 
be caused by the fact that nonlinearity is weaker in ERT problems than in EM problems. 
Interested readers can try to further investigate this relatively weak nonlinearity of the ERT 
problem.

(56)
minimise
⏟⏞⏟⏞⏟

�t,�r,nt,nr,F,f ,t

|�M − �|
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As to geo-electromagnetic induction problems, Jones and Foster (1986) conducted the 
first attempt at real-time control of MT data acquisition by monitoring the improvement 
in model resolution matrices in 1D magnetotelluric studies. Based on the application of a 
genetic algorithm to the design of an EM survey using a horizontal electric dipole source 
and vertical magnetic field receivers, the numerical experiments presented by Maurer and 
Boerner (1998) showed that a reduced number of measurements could achieve an inver-
sion model similarly well constrained as the full set of measurements. Maurer and Boerner 
(1998) used an objective function based on the SVD of the a posteriori model covariance 
matrix. For 1D single inversions of frequency-domain electromagnetic (FDEM) induc-
tion data with a horizontal loop transmitter and a horizontal loop receiver and geoelec-
trical sounding data using a Schlumberger configuration, Maurer et  al. (2000) compared 
different survey design approaches based on analysis of forward modelling results, the 
sensitivity matrix, data importance (Sect. 2.1) and a genetic algorithm sampling the same 
objective function as Maurer and Boerner (1998). The presented studies use varying trans-
mitter–receiver distances and frequencies in FDEM and electrode spacing in geoelectrics. 
For the cases considered by Maurer et al. (2000), the optimal survey designs deviated quite 
strongly from the typically used logarithmic equidistant source–receiver spacing and fre-
quency spacing. However, in cases where no or little a priori information is available, the 
nonlinearity of the electromagnetic forward problem makes optimal survey design difficult, 

Fig. 14  Results of the five optimal acquisition configurations (A, B, C, D, E) for a 1D land-based CSEM 
survey (Roux and Garcia 2014). a Plots of optimal frequencies and Tx–Rx distances for each configuration 
which are detailedly shown in Table 2. b Spectrum of normalised eigenvalues for each optimal design. c 
Inverted resistivity models from these five survey designs compared with the given true model (grey solid 
line)
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and comprehensive data sets should be acquired in the field. Similar to Maurer and Boerner 
(1998), Roux and Garcia (2014) applied a genetic algorithm to explore optimal combi-
nations of transmitter–receiver distances and frequencies for a  CO2 monitoring problem 
(see Fig. 14 and Table 2). In terms of a measure of the weighted model covariance (or the 
singular  values), a set of 20 optimal frequencies with different transmitter–receiver dis-
tances (Tx–Rx), which are not equally distributed on a logarithmic axis, were determined 
to resolve a resistive  CO2 sequestration layer embedded in a half-space model.

Only few studies were carried out for designing optimal configurations for electromagnetic 
induction problems. This may be caused by the fact that the number of acquired measure-
ments is less than that of ERT surveys and, depending on the method, it is hard to relocate the 
heavy electromagnetic transmitters and receivers in the field. Although optimal survey design 
is not popular in the electromagnetic induction community and there are the aforementioned 
difficulties with nonlinearity, it can clearly help us to improve the survey reliability and also 
to save money, if adequate a priori information is available before field work.

7  Inversion Grid Design

Utilising the above optimal survey design strategies, the number of measurements can 
be minimised. The next naturally arising task is to decrease the number of model cells or 
unknowns. This would not only decrease the computational cost, but also the ill-posedness 
of the inversion problem. We can use the geophysicist’s practical experience or the physics 
of electromagnetic field propagation to design the inversion grid. For instance, this would 
lead to assigning coarse cells to regions which are at depths larger than about 1 to 1.5 skin 
depths at the lowest signal frequency (Spies 1989). However, these artificially designed 
inversion grids may have too many unknowns in regions where the measurements are not 
sensitive to the model parameters. Hence, a preferred strategy is to implement an auto-
matic and adaptive inversion grid meshing algorithm by which the model parameters can 
be nearly optimally distributed in space.

This idea has been implemented in applied mathematics (Becker et al. 2000; Bangerth 
2002; Becker and Vexler 2004; Bangerth 2008; Bangerth and Joshi 2008) where inver-
sions were reformulated as PDE-constrained nonlinear optimisation problems. Both model 
parameters and model responses are considered as unknowns. In terms of Lagrange vari-
ables, partial differential equation (PDE)-constrained nonlinear inversion problems are 
transformed to so-called all-at-once formulae where three sub-problems are defined (Haber 
et al. 2000; Wilhelms 2016). They are the state problem (using electromagnetic fields as 
unknowns), the adjoint problem (using Lagrange multipliers as unknowns), and the con-
trol equation (using model parameters as unknowns). The state and adjoint problems share 
the same forward modelling operator which can be simultaneously evaluated on the same 
forward modelling grid. The control equation is defined on an inversion grid which is 
independent of the forward modelling grid. The objective function is then a function of 
three  types of parameters which are the model responses, the Lagrange multipliers and 
the model parameters. A posterior misfit estimation algorithm for the nonlinear objective 
function is developed to distribute the misfits of the objective function to residuals of the 
electromagnetic fields, the Lagrange multipliers and the model parameters. Residuals of 
electromagnetic fields and Lagrange multipliers can be estimated based on well-established 
posterior error estimators for forward modelling problems (Franke et al. 2007; Li and Pek 
2008; Key and Ovall 2011; Schwarzbach et al. 2011; Ren et al. 2013; Grayver and Kolev 
2015). As to geophysical inversion problems, Haber et al. (2007) implemented this adaptive 



98 Surveys in Geophysics (2020) 41:47–112

1 3

inversion grid design in 3D ERT inversion problems. Using the gradient of the estimated 
conductivity as a measure for refinement of inversion grids, Haber et  al. (2007) demon-
strated that 3D inversion grids can be gradually and adaptively refined. Similarly, Grayver 
(2015) implemented 3D MT inversion grid refinement in the framework of conventional 
non-constrained optimisation. More interestingly, the author presented a way of designing 
the initial inversion grid using the diagonal entries of the model resolution matrix. Since 
only local mesh refinements are performed, the number of unknowns can be gradually 
increased. Recently, Samrock et al. (2018) successfully applied this 3D MT inversion code 
by Grayver (2015) for imaging the electrical conductivity structure of the magmatic system 
beneath the Ethiopian rift, where the inversion grid has only 79,508 unknowns (Fig. 15).

8  Conclusions and Suggestions

In this review, we first provided a concise exposition to the theory of linearised and nonlin-
ear model analysis tools to estimate model uncertainty and resolution. Model uncertainty 
estimates define an equivalent model domain in which each model can fit the cost function 
(most importantly the measurements) to within a threshold value. The model resolution 
matrix offers a way to examine the contributions of the unknown true model to the pre-
ferred inversion model and can be considered a blurring filter through which we see the 
former in the latter. Importantly, linearised tools can offer information about both model 
uncertainty and resolution. In contrast, the presently available nonlinear tools offer infor-
mation mostly on model uncertainty. The equivalent model domains calculated by differ-
ent linearised or nonlinear model analysis tools may comprise different valleys (regions 
of low value) of the cost function. This is so because different parts of the model domain 
are explored by the various model analysis tools. If comprehensive a priori information 
exists, optimal model constraints can be constructed. These model constraints may include 
a geologically meaningful reference model, a geologically meaningful model weighting 
matrix and, if applicable, petrophysical constraints. The a priori information may consist 
of geological maps, borehole logs and seismic, magnetic and gravity models. Under these 
conditions, the inversion may be expected to converge to a preferred inversion model that is 
close to the unknown true model and that has a model resolution matrix with small spread 

Fig. 15  3D inversion grid generated by adaptive refinement techniques for a set of MT data collected across 
the Main Ethiopian Rift (Samrock et al. 2018). The number of inversion unknowns was gradually increased 
to 79,508. Red dots denote MT sites
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and small model uncertainties. Judicious selection of a priori constraints and their imple-
mentation is of importance to avoid biasing the inversion model into the wrong direction. 
In particular, care needs to be exercised in understanding the combined effect of structural 
contrasts in the reference model and the model weighting matrix on the inversion model. 
We have provided one example of this. Usage of regular model weighting matrices may 
introduce unintended bias to the inversion model in form of average amplitude shifts of the 
model parameters. In contrast, a singular model weighting matrix with smoothness con-
straints does not generate this form of bias, and, in many cases, it may be the preferred 
form of model regularisation. Note that structural constraints can be implemented by re-
weighting the smoothness constraints locally.

Using model analysis tools, we are able to evaluate the quality of inversion models and 
to design optimal survey configurations. Many model analyses employ solely the sensitiv-
ity matrix to study how well the model is constrained by the data. This is so, because it is 
a simple measure and because, using Gauss–Newton inversion algorithms, the sensitivity 
matrix is explicitly available. However, for a reliable model analysis, we should consider the 
model resolution and covariance matrices and, if computationally feasible, nonlinear meth-
ods, such as the most-squares inversion. Model uncertainties estimated by the TSVD variant 
of the most-squares method often are larger than those computed by the partially nonlinear 
pseudo-hyperellipsoid. To reduce the equivalences in inversion models, i.e. to reduce model 
uncertainty and to improve model resolution, we should use multiple geophysical data sets. 
Joint inversion is a popular tool in the geo-electromagnetic induction community. Although 
it is clear that joint inversion reduces the equivalent model domain, surprisingly little work 
has been done on model analysis for 2D and 3D joint inversion problems.

Second, we listed acceleration algorithms to quickly compute complete or partial model 
resolution and covariance matrices offered by linearised model analysis tools. For 1D and 
2D problems, the direct matrix computation approach should be used as it is computation-
ally feasible and preserves detailed information on the resolution and covariance matrices. 
Furthermore, the TSVD method is a suitable choice if we are only interested in the con-
straints provided by the measurements and wish to ignore the effect of the model regu-
larisation term. Analysis including the regularisation term can be accomplished using the 
GSVD method. To our knowledge, an EM model analysis using a model regularisation 
term and the GSVD method has not yet been presented, but it would have the potential to 
be an interesting complement to the literature. For large-scale 2D and general 3D prob-
lems, we may wish to use the row, column or diagonal extraction algorithms to evaluate 
the resolution and covariance matrices for selected cells. This choice may be motivated 
by the desire to condense the large amount of information in the full matrix expressions, 
whereas the large computational load associated with 3D problems may leave it as the 
only computationally practical approach. Uncertainty and resolution may be assumed to 
vary continuously at least over regions in model space that are homogeneous or have only 
gradual changes in material parameters. Thus, representative measures of uncertainty and 
resolution in parts of the model space that have not been analysed may be obtained by 
interpolating the ones computed for selected cells. The model reduction technique has not 
been widely explored either by the EM community, although this technique deserves fur-
ther exploration, because it accelerates the computation and can even increase the quality 
of inversion results. A benefit of the reduced number of model parameters is a presumably 
simpler topography of the cost function. The iterative update formula is particularly useful 
for optimal survey design to study 3D structures. Thereby, the efficiency of additional data 
in aiding target characterisation can be quickly examined.
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Third, we summarised the main findings of published model analysis studies, which are 
mainly for 1D and 2D individual and joint inversion models. This is caused by the prohibi-
tive computational cost of performing full 3D model analysis. We think that in terms of the 
presented fast computation methods, 3D model analysis can be efficiently performed. In 
particular, the integration of model analysis into iterative solvers, such as the conjugate 
gradients (CG), nonlinear conjugate gradients (NLCG) and limited-memory quasi New-
ton (LMQN) methods, deserves attention. Using these fast algorithms, optimal survey 
configurations such as optimal transmitter locations, transmitter numbers, receiver loca-
tions, receiver numbers and optimal frequency ranges can be determined before deploying 
instruments in the fields. Optimal survey design not only can strengthen the reliability of 
inversion models, but also can reduce financial cost. However, we note that the pronounced 
nonlinear effects of electromagnetic inversion problems will lead to difficulty in applying 
optimal survey design in situations, when there is little a priori information on the target 
structures. Summarily speaking, due to significant enhancements of computing power and 
the availability of fast computation methods, we expect more model uncertainty and reso-
lution analyses to be presented for 2D and 3D electromagnetic studies, as well as optimal 
survey design and inversion grid design.
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