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requires a selection process, which is carried out as 
part of relative uncertainty and relative sensitiv-
ity analyses. Furthermore, the operational errors are 
compared with construction factors as well as build-
ing physics inputs and design parameters for building 
technology systems to show their reciprocal effects 
as part of a comprehensive investigation. The main 
findings of this paper are that operational errors in 
air conditioning systems play an essential role in 
decreasing energy efficiency and thermal comfort, but 
do not warrant the significance of certain construction 
factors as well as setpoints in building technology. 
Moreover, the impact of operational errors on ther-
mal overheating of the building investigated is minor 
compared to other targets that cause greater model 
input uncertainty.
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Performance gap · Office buildings · Operational 
errors · Air handling units · Uncertainty analyses · 
Sensitivity analyses · Sobol-Jansen estimators · 
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Introduction

Energy-efficient building management as well as 
building technology and its automation increase 
energy efficiency and reduce greenhouse gas emis-
sions. In the building sector, however, the measured 

Abstract Resource scarcity and anthropogenic cli-
mate change require the reduction of performance 
gaps in existing buildings. In addition to unexpected 
user behavior, performance gaps are primarily caused 
by the technical gap due to operational errors in 
building technology. The main objective of this paper 
is to quantify model input uncertainty incorporating 
uncertain boundary conditions in terms of operational 
errors using thermo-dynamic building performance 
simulations and to identify the most relevant input 
parameters for the performance gaps in air condition-
ing systems by means of sensitivity analyses. Model 
input uncertainty is stochastically determined using 
Monte-Carlo Simulations to calculate the target val-
ues “primary energy demand” as well as “over- and 
under-temperature degree hours” for an office build-
ing. Selected parameters are simulated in a specific 
uncertainty and sensitivity analyses using the Sobol’ 
and Jansen estimators, which distinguish between 
a direct influence on the target variables and inter-
actions between the parameters. The methodology 
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values for the primary energy demand (PED) often 
exceed the calculated values (Struck, 2014). The 
increasingly intensively discussed topic of the per-
formance gaps in existing buildings emphasizes the 
difference between planning target values and meas-
urements in the real operation of technical building 
equipment. The reasons for increased energy con-
sumption can be found in building and plant technol-
ogy as well as its automation and can result first from 
a change in the climate (ambient gap). Consequently, 
the climate data, such as outside air temperature, solar 
radiation, wind and shading by trees, used in planning 
do not correspond to the actual climate. Second, user 
gaps may arise due to change in presence time, com-
fort requirements, and unexpected user behavior dur-
ing building operation (user gap). Third, performance 
gaps are also caused by standards and guidelines, 
based on assumptions and simplifications which are 
made during the design and planning process (norm 
gap). Finally, the construction work in connection 
with building services engineering or building phys-
ics as well as operational management can deviate 
from the planning process, which results in technical 
gaps and causes performance gaps. This discrepancy 
not only affects energy consumption but also reduces 
user comfort and increases greenhouse gas emissions 
(Mojic et  al., 2018). If malfunctions are not elimi-
nated before commissioning, system efficiency may 
be impaired. Following the energy efficiency goal 
in building operations will not met or only partially 
achieved.

According to the Swiss Federal Office of Energy, 
more than 60% of non-residential buildings do not 
meet their energy efficiency goals (Reimann & Büh-
lmann, 2016). The two main reasons for these devi-
ations in the calculated energy demand in the plan-
ning phase and the measured energy consumption 
during building operation are on the one hand the 
user behavior (e.g., higher room temperature in win-
ter than expected) and on the other hand operational 
errors in building technology (e.g., simultaneous 
heating and cooling). An analysis of around 150 indi-
vidual operational errors in demonstration buildings 
by the German Federal Ministry of Economics shows 
that a substantial number of errors are caused in part 
or entirely by the faulty building technology (Réhault 
& Zehnle, 2019). Our research project (Auer & 
Lauss, 2020) identified some irregularities and prob-
lems in the operation of air handling units (AHU) 

in non-residential buildings: under-/overrun of the 
defined operating time, deviation (too high/too low) 
of supply air temperature from setpoint and sticked 
bypass damper in the heat exchanger.

In this paper, an error is defined as a system or 
component operating in a way that adversely affects 
the thermal comfort of users in a building and/or the 
energy efficiency. The abovementioned research stud-
ies have shown that different errors occur in most 
ventilation and air conditioning systems. In this con-
text, single errors such as an offset of temperature 
sensors, e.g., room air temperature, can occur. In con-
trast, several errors can occur simultaneously (e.g., 
simultaneous heating and cooling of the pre-heating 
and cooling coil in air handling units) and result in 
combinatorial effects, which are often greater than 
the sum of the individual errors. Errors can also be 
divided into slow (deterioration) ones (e.g., contami-
nation of a heating or cooling register) and/or sudden 
ones (e.g., a defective fan) (Haves, 1997). In order to 
realistically model operational errors that represent 
real operation of systems engineering, an error data-
base must be developed that covers potential error 
types (e.g., devices, sensors, and control sequences) 
(Li & O’Neill, 2018). For more on operational errors, 
see (Auer & Lauss, 2020; Fisch et  al., 2007; Grob 
et  al., 2002; Hyvärinen, 1996), and (Lauss et  al., 
2020) which were used as a basis to set up a compila-
tion of operational errors in ventilation and air condi-
tioning systems.

The main task of this paper is to quantify the 
effects of operational errors in air handling units as 
well as unexpected user behaviors in terms of energy 
efficiency and thermal comfort related performance 
gaps in existing buildings. Moreover, in this paper, 
the most relevant input parameters for the techni-
cal gaps in terms of the operation of AHUs and user 
behavior including their interactions with building 
technology are identified through sensitivity analyses 
with Sobol’ and Jansen estimators.

Methodology

In the field of building performance simulations 
(BPS), different applications exist to define the uncer-
tainty of input parameters. Burhenne distinguishes 
between model uncertainty, numerical uncertainty, 
and model input uncertainty (Burhenne, 2013). In this 
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paper, the focus is on model input uncertainty which 
arises when one is not completely certain what dis-
tributions and/or parameters to use. An uncertainty 
analysis (UA) is understood as a comprehensive 
investigation of the simulation model input and quan-
tifies the total uncertainty of the result of a model. 
While conventional thermo-dynamic building simu-
lations usually determines only a single value (point 
simulation: without distributions for inputs), a UA 
can also provide information on the variance in the 
results. In order to determine the most influential 
parameters, initial results are compared with results 
of modified parameters. It is thus possible to deter-
mine the likelihood of exceeding or undershooting 
target values. Several methods can be used to carry 
out a UA (Cox & Baybutt, 1981). In this paper, 
Monte-Carlo simulations (MCS) have been chosen to 
carry out the UA because they are commonly used in 
building performance simulations and the principal 
advantage of the MCS is its very general applicability 
due to the lack of restrictions in the nature of the rela-
tionship between input and output (Cox & Baybutt, 
1981). Every input variable in an MCS has a defined 
probability distribution. Samples from the probabil-
ity distributions are selected and combined to form a 
sample matrix (pre-processing) that can be simulated 
and afterwards statistically evaluated (post-process-
ing) (see Fig. 1).

The aim of our paper is to apply the described 
methodology with Monte-Carlo simulations and to 
identify the most relevant operational and user errors 

within a case study for partial air conditioning sys-
tems (PACS). User errors refer to improper user 
behaviors such as the long-term opening of a win-
dow in winter while a ventilation and air condition-
ing system is operating and heating the zones in the 
building. In addition, the parameters are compared to 
construction and building physics factors which have 
already been shown to be sensitive input parameters 
in other research dealing with constructional factors, 
but without regard to operational errors in build-
ing technology (Burhenne, 2013) (Hopfe & Hensen, 
2011) (Ioannou, 2015) (Brohus & Heiselberg, 2009) 
(Corrado & Mechri, 2009). Regarding input param-
eters, three different groups (A, B, C) are defined for 
greater clarity and divided as follows:

• Parameter group A: Operational and user errors in 
PACS

• Parameter group B: Significant construction as 
well as building physics factors and target values 
based on literature research (Burhenne, 2013) 
(Hopfe & Hensen, 2011) (Ioannou, 2015) (Brohus 
& Heiselberg, 2009) (Corrado & Mechri, 2009)

• Parameter group C: Design parameters and plan-
ning foundations for building technology

The simulations are carried out in a multi-stage 
process, which is shown in Fig.  2. Significant 
parameters are simulated in the specific UA and 
specific sensitivity analyses (SA) using the Sobol’ 
and Jansen estimators. The calculation method was 

Fig. 1  Data generation of a MCS
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introduced by Saltelli (Saltelli, 2002) and Jansen 
(Jansen, 1999), which differentiates between a 
direct influence of the input variable on the tar-
get variable (main effect) and interaction effects 
between the input parameters (total effect). Both 
the main and total effects are between the interval 
[0; 1] and can be calculated employing Eqs.  (1) 
and (2) below for a sample-based method. The 
Sobol’ estimator ( ̂STi,Sobol

 ) is used to calculate the 
main effect and the Jansen estimator ( ̂STi,Jansen

 ) 
establishes the total effect. A high value indicates 
a great influence of the input variable on the tar-
get variable; for more on Sobol’ and Jansen esti-
mators, see (Campolongo et al., 2011) and (Saltelli 
& Annoni, 2010). In this simulation step, applying 
the specific UA/SA, the probability distributions 
and the value ranges are selected for each input 
variable.

The Sobol’ and Jansen estimators are computa-
tionally intensive and can therefore only be used for 
a limited number of input parameters. Using the esti-
mators requires a pre-selection process for all param-
eter groups, which is carried out as part of a relative 
UA/SA. Important parameters are identified here 
using scatter plots and correlation coefficients, which 
require a significantly smaller sample size but are also 
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Fig. 2  Research methodol-
ogy
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less accurate. The identical probability distribution 
with the same relative value range is selected for all 
parameters. In Fig. 2, the overall research methodol-
ogy is summarized.

Case study

In this section, we describe a multi-stage Monte-
Carlo simulation process where operational errors 
in PACS as well as unexpected user behavior are 
examined and compared with construction factors. In 
addition to the model input uncertainty determined 
with MCS, the most significant input parameters are 
identified as part of sensitivity analyses. Due to the 
fact that PACS are often installed in office buildings 
to provide a high level of thermal comfort for users 
as well as to meet requirements for productivity fac-
tors, we investigate the building type “office build-
ings.” The commercial software “IDA Indoor Climate 
and Energy (IDA ICE)” (IDA ICE, 2019) was used 

to model the building and HVAC systems. The MCSs 
were run simultaneously on a commercial worksta-
tion (Intel Xeon CPU E5-2650 2.00 GHz) with eight 
cores. An energy standard that requires a certain 
degree of automation for the investigated object was 
selected; therefore, the heat transfer coefficients of the 
building envelope in our study are based on (DIN, EN 
15232, 2017) as well as (EnEV., 2007) and are sum-
marized in Table 1.

The PACS is controlled by the exhaust air tempera-
ture (see Fig. 3: temperature controller 5.19) and sup-
plies the zones with constant air volume (CAV) flow. 
According to Werner et al. (2008), in office buildings, 
PACS are more prevalent than full air conditioning 
systems; this in turn means that the simulation model 
contains the following components: a heat exchanger 
for heat recovery, a pre-heating coil as well as a post-
heating coil (for dehumidification purposes), and a 
cooling coil (see Fig. 3). The fans in the PACS deliv-
ers a total volume flow of 3320  m3/h for the air supply 

Table 1  Building physics 
and user parameters 
according to DIN, EN 
15232 (2017) and (EnEV., 
2007)

Parameter category Parameter Value Unit

Building physics parameters U value external wall 0.35 W/(m2K)
U value roof 0.25 W/(m2K)
U value baseplate 0.40 W/(m2K)
U value window 1.10 W/(m2K)
Lighting 13 W/m2

120 lm/W
User parameters Illuminance level 500/200/100 lx

Internal loads 100 W/person
Usage time 5:00–18:00 o’clock

Fig. 3  Partial air condition-
ing systems (PACS)
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as well as the exhaust air, meaning that 40   m3/h is 
available for every person (DIN, V 18599-10, 2018).

A gas condensing boiler in combination with radi-
ators provides the thermal energy for space heating. 
The supply of cold water for the cooling register of 
the PACS is ensured by a compression refrigerator. 
The following Table 2 shows the input parameters for 
building technology which are divided into controlled 
values and installation performance values.

The PED in kWh/(m2a), as well as the thermal 
comfort, will be used as the output signal (“target 
variable”). The thermal comfort in Kh/a is evalu-
ated based on thermal comfort valuations defined in 
DIN, EN 15251 (2012) and calculated using Eqs. (3) 
and (4) below. The target variables for thermal com-
fort are divided between overheating hours (OHH) 
and underheating hours (UHH). The current German 
primary energy factors are used to evaluate the PED. 
The standard defines a factor of 1.1 for electricity 
and 1.8 for natural gas for the non-renewable portion 
(DIN, V 18599-1, 2018).

For the base case and reference scenario with 
the boundary conditions in line with Tables  1 and 
2, we obtained a specific PED of 92.9  kWh/(m2a), 
at 100.4  Kh/a OHH and 140.9  Kh/a UHH in IDA-
ICE. These results are based on a point simulation 
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(a classical simulation approach without MCS) and 
serve as a benchmark for further simulations with 
uncertain boundary conditions. To implement uncer-
tainty and sensitivity analyses, the software R (R 
Core Team, 2018) is used for pre- and post-process-
ing (see Fig.  1). For the relative analysis, a normal 
distribution (abbreviated as ~ N) of ± 5% standard 
deviation was selected as the probability distribu-
tion, based on (Hopfe & Hensen, 2011) and (Ioannou, 
2015). The analysis differentiated between relevant 
and less significant parameters. The standard devia-
tion was also chosen because of numerical stability, 
which must be taken into account with a large num-
ber of input variables. A uniform standard deviation 
ensures that all parameters are equally weighted and 
make methodological sense, which is important since 
for a large number of parameters there are no meas-
urement results that can be used to select the prob-
ability distributions and the value ranges (Table 3).

The second step of the workflow is the specific 
UA/SA, where probability distributions and value 
ranges for each input parameter are chosen param-
eter-dependent and adapted to real conditions (see 
Table  4). The number of input parameters is sig-
nificantly reduced compared to the relative analysis. 
For a large number of the factors in the parameter 
groups B and C, the distribution can be assigned on 
the basis of measurements and normative foundations 
(Table 4). Other input parameters are operational and 
user errors of parameter group A, which are mapped 
using the same distribution with the exception of 
error 5.19—exhaust air temperature sensor offset and 

Table 2  Input parameters for building technology (controlled and installation performance values)

Parameter category Parameter Value Unit References

Controlled values Minimum room air temperature setpoint 21 °C (DIN, V 18599-10, 2018)
Maximum room air temperature setpoint 24 °C (DIN, V 18599-10, 2018)
Temperature reduction outside of usage time 4 K (DIN, V 18599-10, 2018)
Minimum temperature setpoint for exhaust air 

(protection against icing)
3 °C (Siemens, 2018)

Hot water temperatures for heating registers 70/55 °C (DIN, V 18599-7, 2016)
Setpoint range for the relative humidity in the zones 25–60 % (DIN, EN 16798-1, 2015)
Maximum  CO2 content above the outside air con-

centration
500 ppm (DIN, EN 16798-1, 2015)

Installation performance values Efficiency heat recovery coefficient 75 % (Schramek & Recknagel, 2011)
Gas boiler efficiency 89 % (Schramek & Recknagel, 2011)
EER compression chiller 3 - (Schramek & Recknagel, 2011)
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Table 3  Input variables of 
parameter group A for the 
relative UA/SA

Name and brief description Unit Distribution

Error 1.1—volume flow zone level l/(sm2)  ~ N(1.238; 0.062)
Error 2.1—differential pressure supply air fan Pa  ~ N(600.0; 30.0)
Error 2.2—differential pressure exhaust air fan Pa  ~ N(500.0; 25.0)
Error 2.4—start of operation of partial air conditioning system o’clock  ~ N(05:00; 0.650)
Error 2.5—termination of partial air conditioning system o’clock  ~ N(18:00; 0.650)
Error 3.1—adjustment range of the air recirculation flap -  ~ N(0.000; 0.053)
Error 4.1—blocking temperature heat recovery °C  ~ N(3.000; 0.150)
Error 4.5—heat number of the heat recovery -  ~ N(0.750; 0.038)
Error 5.1—heat transfer pre-heating register -  ~ N(1.000; 0.050)
Error 5.2—control valve pre-heating register kg/s  ~ N(0.000; 0.009)
Error 5.3—pump pre- and post-heating register Pa  ~ N(30000.0; 1500.0)
Error 5.4—temperature spread pre-heating register °C  ~ N(15.000; 0.750)
Error 5.6—heat transfer post-heating register -  ~ N(1.000; 0.050)
Error 5.7—control valve post-heating register kg/s  ~ N(0.000; 0.009)
Error 5.8—temperature spread post-heating register °C  ~ N(15.000; 0.750)
Error 5.10—heat transfer cooling register -  ~ N(1.000; 0.050)
Error 5.11—control valve cooling register kg/s  ~ N(0.000; 0.018)
Error 5.12—pump cooling register Pa  ~ N(30000.0; 1500.0)
Error 5.13—temperature spread cooling register °C  ~ N(6.0; 0.3)
Error 5.19—exhaust air temperature sensor offset °C  ~ N(0.000; 1.080)
Error 6.1—humidity sensor offset %  ~ N(0.000; 1.701)
Error 8.1—number of people -  ~ N(2.0; 0.1)
Error 8.2—sun protection W/m2  ~ N(200.0; 10.0)
Error 8.3—window opening time h/day  ~ N(0.000; 0.550)

Table 4  Input variables for the specific UA/SA

Name and brief description (parameter group) Unit Distribution Step 1 Step 2 References

Error 1.1—volume flow zone level (A) l/(sm2)  ~ U(0.000; 1.609) X - -
Error 2.1—differential pressure supply air fan (A) Pa  ~ U(0.0; 700.0) X - -
Error 2.5—termination of partial air conditioning 

system (A)
o’clock  ~ U(05:00; 24:00) X X -

Error 5.8—temperature spread post-heating register 
(A)

°C  ~ U(0.1; 50.0) X - -

Error 5.19—exhaust air temperature sensor offset (A) °C  ~ N(0.000; 0.970) X - (Brohus & Heiselberg, 2009)
Error 8.1—number of people (A) -  ~ N(2.0; 1.0) X X (Macdonald, 2002)
Error 8.2—sun protection (A) W/m2  ~ U(0.0; 1000.0) X X (Kaltschmitt et al., 2013)
Error 8.3—window opening time (A) h/day  ~ U(0.0; 0.25) X X (Osterhage, 2018)
Minimum room air temperature setpoint (B) °C  ~ N(21.000; 0.970) - X (Brohus & Heiselberg, 2009)
Maximum room air temperature setpoint (B) °C  ~ N(24.000; 0.970) - X (Brohus & Heiselberg, 2009)
Gas boiler efficiency (C) -  ~ U(0.880; 0.990) - X (Schramek & Recknagel, 2011)
Plant engineering (start of operation) (C) o’clock  ~ U(03:00; 05:00) - X (DIN, V 18599-10, 2018)
Plant engineering (end of operation) (C) o’clock  ~ U(18:00; 21:00) - X (DIN, V 18599-10, 2018; Li & 

O’Neill, 2018)
Flow temperature cooling register (C) °C  ~ U(6.0; 14.0) - X (DIN, V 18599-7, 2016)

Energy Efficiency (2022) 15: 4 Page 7 of 15 4
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error 8.1—number of people per zone. According 
to Brohus and Heiselberg (2009) and (Macdonald, 
2002), these two input variables were mapped with 
a normal distribution. The value range of the equally 
distributed error states (abbreviated as ~ U) fluctuates 
between 0 and 100%, i.e., within physical limits. We 
assume that these conditions can also occur in real 
systems, which is why we consider the range of val-
ues to be meaningful. The probability distributions 
and value ranges enable us to compare operational 
and user errors in PACS (which represents parameter 
group A) and parameter groups B and C.

Results and discussion

Specific UA/SA—step 1: parameter group A

The probability distributions and value ranges of the 
specific UA/SA are shown in Table 4. In total, eight 
operational and user errors have proven to be signifi-
cant in the relative UA/SA and are examined in the 
following specific UA/SA. This investigation was 
carried out in two steps: the first step only includes 
parameter group A, and the second one compares 
the most significant input variables of all parameter 
groups (A, B, C). The results are based on a sam-
pling of Sobol’ sequences with 1200 runs (step 1) 
and 1440 runs (step 2). In this context, the sample 
size of 1024 or 2048 would have been better for the 
performance of the Sobol’ sequences (N =  2j where 
j ∈ ℕ+), but due to the restrictive requirements for the 
application of the sensitivity index “Conditional Vari-
ances—Second Path,” these numbers were selected. 
We chose the method of Sobol’ sequences because 
it generates samples which are distributed as evenly 
as possible in the multidimensional parameter space. 
In this process, the random numbers were chosen tak-
ing into account the numbers already drawn in order 
to prevent accumulations and gaps in the parameter 
space. As a result, the MCS converged faster than 
when using other methods to draw samples, which 
is why the Sobol’ sequences show good convergence 
behavior in building simulations according to Bur-
henne et al. (2011) and (Maderspacher, 2017) and are 
commonly used in this field. The sensitivity analy-
ses are carried out with different methods as previ-
ously explained. Besides the correlation coefficients 
and the Sobol’ and Jansen estimators, we employed 

a third method, scatter plots. To enable a ranking 
of the parameters with this technique, the method 
“Conditional Variances—Second Path” was applied. 
First, the  xi range is divided into 10 parts, with each 
part receiving the same number of points; then, the 
mean of the output  yi is calculated in each part and 
the variance of the means of all 10 parts is calculated. 
Finally, the calculated variance is a sensitivity index; 
the higher the variance, the greater the sensitivity. 
Due to the restrictive requirements for the applica-
tion of the “Conditional Variances—Second Path” 
method, a sampling size of 120 (instead of  27 = 128) 
was selected.

In Fig.  4 below, the results of all simulations for 
the target figure primary energy demand, over- and 
under-temperature degree hours are presented in post-
processing on the basis of graphic evaluation meth-
ods using histograms and box plots. Furthermore, the 
histograms show the probability density function with 
the median (black dotted line) as well as the first and 
third quartile (blue dotted line).

The histogram of the target figure primary energy 
demand shows a left skewed distribution with a 
median of 72.6 kWh/(m2a). At first glance, the result 
does not seem to be logical because the median is 
well below the reference scenario (base case PED 
92.9  kWh/(m2a)). The discrepancy and reduction of 
the PED can be explained by the differences between 
the calculation methods in terms of point simulation 
(base case) and MCS. However, the median for both 
the over- and under-temperature degree hours is above 
the reference scenario. Consequently, the reduction in 
primary energy demand decreases thermal comfort. 
Overall, the influence of parameter group A is par-
ticularly strong for the UHH. Surprisingly, the median 
values of the OHH and the UHH are almost identical, 
though the quartiles of the UHH show greater devia-
tions. With a probability of 50%, the quartiles range 
between 106.3 Kh/a and 289.2 Kh/a. For the OHH, a 
maximum value of 217.3 Kh/a was calculated, which 
means that the threshold of 500 Kh/a (DIN, 4108-2, 
2013) for non-residential buildings is not reached. 
This in turn means that the operational and user 
errors are not critical for thermal overheating of the 
building.

The main and total effects of the specific SA of 
parameter group A are shown in Fig.  5 below: the 
greater value of an input parameter signifies a greater 
influence on the target variable.

Energy Efficiency (2022) 15: 4 4 Page 8 of 15
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If the total effects of the two most influential vari-
ables of each target variable are added, the result is 
0.71 + 0.11 = 0.82 for the PED (1. error 8.2—sun 

protection/2. error 2.5—termination of partial air 
conditioning system), 0.77 + 0.10 = 0.87 (1. error 
8.2—sun protection/2. error 2.5—termination of 

Fig. 4  Specific UA of 
parameter group A (top to 
bottom: PED, OHH, and 
UHH)

Fig. 5  Total and main 
effects of the specific SA of 
parameter group A
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partial air conditioning system) for the OHH, and 
0.74 + 0.08 = 0.82 (1. error 8.3—window opening 
time/2. error 8.1—number of people) for the UHH. 
Consequently 82/87/82% of model input uncertainty 
is caused by the two most important input variables. 
In each category, both the main and the total effect 
are dominated by one parameter; the user error 8.2—
sun protection influences the PED with a main effect 
of 68% and the OHH with 75%. The error 8.3—win-
dow opening time shows a main effect of 63% on the 
UHH. The influence of operational errors is less than 
the influence of the user errors on the target values. If 
the total effects of all operational errors of each tar-
get variable are added together, the effect on PED is 
22%, for OHH 14%, and for UHH 12%. In this con-
text, the error 2.5—termination of partial air condi-
tioning system should be highlighted as a high impact 
operational error, which is second in the importance 

for the total effects on PED and OHH, as well as third 
for UHH.

Specific UA/SA—step 2: comparison of parameter 
group A with B and C

For all three target values, Fig. 6 contains the histo-
grams and the box plots as part of the statistical eval-
uation in post-processing. The characteristic under-
standing of the logarithmic normal distribution is 
the flat descent on one side. It follows that there is a 
limit in the value range for all target variables, which 
increase significantly for unfavorable combinations of 
the input parameters.

For the PED, the median and the upper and lower 
quartile are positioned in a dense area (Fig.  6). The 
values for the OHH are with a high probability in a 
comfortable range from 88.2  Kh/a to 199.8  Kh/a, 

Fig. 6  Specific UA of 
parameter groups A, B, 
and C (top to bottom: PED, 
OHH, and UHH)
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but reach up to a maximum of 1668.8 Kh/a for unfa-
vorable parameter combinations. The medians of the 
OHH and UHH are close, but the distance from the 
quartiles is significantly higher than for the UHH.

Figure  7 shows the total and main effects of the 
specific SA of parameter groups A, B, and C. Adding 
the total effects of the three most influential variables 
for each target variable results in 87% for the PED (1. 
min. room air temperature setpoint/2. max. room air 
temperature setpoint/3. error 8.2—sun protection), 
98% for the OHH (1. max. room air temperature 
setpoint/2. error 8.2—sun protection error/3. error 
8.1—number of people), and 95% for the UHH (1. 
min. room air temperature setpoint/2. error 8.2—sun 
protection/3. error 8.3—window opening time). The 
parameters min. room air temperature setpoint and 
max. room air temperature setpoint followed by error 
8.2—sun protection have the greatest influence on 
PED which is based on the total effects. The strong 
influence of the temperature setpoints on the PED can 
be justified by the choice of the value ranges found 
in Brohus and Heiselberg (2009). Both parameters 
are subject to a standard deviation of 0.97. For unfa-
vorable parameter combinations, the maximum tem-
perature setpoint can reach below the minimum set-
point, so the building is heated and cooled at the same 
time. For the main effect, error 8.2—sun protection 
has the greatest significance on the PED. In this case, 

the influence of the temperature setpoints is weaker. 
Accordingly, these two parameters are strongly influ-
enced by interaction effects. In the context of param-
eter group A, error 2.5—termination of partial air 
conditioning system, with a main effect of 0.09 and a 
total effect of 0.11, is the second most important fac-
tor affecting the PED, meaning it is the most impor-
tant factor for the energy efficient operation of PACS. 
The OHH are determined by the parameter max. 
room air temperature setpoint and have a total effect 
of 89%. Error 8.2—sun protection is considerably 
less significant at 7%. When the value ranges of the 
parameters are analyzed, the difference is as follows: 
the parameter max. room air temperature setpoint 
reaches, due to the defined expected value, 24 °C and 
a defined standard deviation of 0.97 random samples 
which are greater than 26 °C. The room air tempera-
ture of the zones is therefore only cooled by a tem-
perature value that has already exceeded the threshold 
for thermal overheating, according to DIN, 4108-2, 
(2013), which is reflected in the significance of the 
main and total effects for this parameter. With 84% 
(main effect) and 86% (total effect), the min. room 
air temperature setpoint has the greatest importance 
for the UHH. Analogous to the max. room air tem-
perature setpoint, the high significance of the input 
is revealed when the samples fall below the defined 
threshold value for the UHH evaluation. In general, 

Fig. 7  Total and main 
effects of the specific SA of 
parameter groups A, B & C
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there are just small differences between the main and 
total effects for the UHH, so the interaction effects in 
this category can be classified as small.

Conclusion and outlook

Conclusion

Resource scarcity and anthropogenic climate change 
are one of the main global challenges. To reach the 
climate protection targets, performance gaps must 
be reduced in existing buildings. The main drivers 
for performance gaps are unexpected user behaviors 
and operational errors in building technology. With 
the applied research methodology, we have identi-
fied the most relevant operational and user errors 
for PACS in office buildings, and calculated the 
model input uncertainty for the target values of pri-
mary energy demand, over- and under-temperature 
degree hours. All inputs were classified in three dif-
ferent parameter groups, and the analyses of group 
A showed that operational and user errors cause the 
greatest model input uncertainty for UHH. The risk 
of thermal overheating plays a tangential role and is 
within the comfort range (DIN, 4108-2, 2013) even 
for the extreme values. Unexpectedly, the medians 
of the OHH and UHH have almost identical values, 
while the UHH quartiles have a higher deviation. The 
PED is subject to low model input uncertainty com-
pared to the other target functions. Hence, most errors 
and error combinations appear to lead to only a small 
increase in the PED. An increase up to 118.7  kWh/
(m2a), and thus an increase of approx. 30% com-
pared to the base case with 92.9 kWh/(m2a), is only 
to be feared for unfavorable parameter combinations. 
Every target value is largely dominated by an opera-
tional and user error. The error 8.2—sun protection 
influences the PED with a main effect of 68% and the 
OHH with 75%. The error 8.3—window opening time 
has a main effect of 63% on the UHH. Based on our 
MCS results, the user errors have a greater impact on 
the target values than the operational errors. However, 
only some of the operational errors were examined in 
this paper. The comparison of the parameter groups in 
the context of the specific UA/SA showed that opera-
tional and user errors in PACS are important, but do 
not have the relevance of the min. room air tempera-
ture setpoint and max. room air temperature setpoint, 

which are in parameter group B. The number of OHH 
and UHH in particular is clearly determined by these 
two parameters. From parameter group A, the most 
sensitive operational error is 2.5—termination of 
partial air conditioning system with a total effect of 
11% for the PED and the most important user error 
is 8.2—sun protection with a total effect of 17% and 
7% for the PED and the OHH. For all three target 
values, the histograms are similar to a logarithmic 
normal distribution. For very unfavorable parameter 
combinations, there is a risk of a sharp increase in the 
target values, but with a limit in the low value ranges. 
Overall, the significance of the simulation results was 
significantly increased by comparing the operational 
and user errors with the parameter groups B and C.

The results of our MCS and investigations with 
uncertainty and sensitivity analyses allow us to draw 
conclusions and valuations regarding other configu-
rations of air handling units in general. Depending 
on the configuration, AHUs (ventilation-, partial air 
conditioning-, full air conditioning system) may have 
more or fewer components, so operational errors can 
be increased or reduced. For operational errors that 
can occur in other air handling units as well (e.g., 
error is 2.5—termination of partial air conditioning 
system), this in turn means a similar relevance can 
be assumed for this error scenario. This paper shows 
what potentials for building optimization in terms of 
increased energy efficiency and thermal comfort can 
be achieved with low investment. Our results should 
be relevant for building owners and/or operators as 
well as facility managers due to the fact that a reduc-
tion in energy consumption is followed by the reduc-
tion of operating costs and greenhouse gas emissions. 
Moreover, the relevant input variables should be the 
main focus of building operators to functionally test 
building technology in terms of increasing energy 
efficiency. These variables should also be incorpo-
rated by the major players involved in the planning 
process of buildings and their systems engineering.

Outlook

For the selection process in the context of the relative 
UA/SA, a normal distribution with ± 5% standard devi-
ation was selected in order to weight all input variables 
equally. However, the procedure must also be critically 
examined. If samples are close to the physical limit for 
some parameters, significantly larger value ranges are 
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possible for other input variables. A selection of rel-
evant parameters based on individual probability dis-
tributions and value ranges should be investigated in 
the future. Moreover, the different sampling strategies 
should be compared and analyzed in terms of their con-
vergence behavior as well as robustness for the building 
simulation model.

To improve the process of modeling operational 
errors, future research should be devoted to studying 
error characteristics in greater detail. In this paper, our 
approach was to give all input parameters the same 
probability of occurrence due to the fact that there are 
no long-term measurements or studies that deal with 
the frequency and intensity of operational errors in 
PACS. Our MCS run and analysis methods resulted in 
long computing times of up to 5 days; the simulation 
of operational errors on the basis of replacement mod-
els (mathematical substitute models) should reduce this 
long simulation time, which would make it possible to 
simulate more errors using the computationally inten-
sive Sobol’ and Jansen estimators.

With the operational errors in PACS, one disci-
pline of building technology was examined in our 
research. As the case study shows, building technol-
ogy systems can be efficiently examined with an MCS 
and the sensitivity analysis methods used here. Since 
the method is basically a generic approach, an expan-
sion to further configurations of air conditioning sys-
tems and additional operational errors would be desir-
able and should be implemented in the future. For this 
purpose, we recommend incorporating construction 
factors and target values as they can be mapped in a 
thermo-dynamic building model with little effort, but 
would considerably increase the informative value of 
the outcome and its comparability in the overall con-
text of investigation.
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