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Summary 
Uncertainty and Sensitivity Analysis in Building Performance Simulation 

for Decision Support and Design Optimization 
 
Building performance simulation (BPS) uses computer-based models that cover 
performance aspects such as energy consumption and thermal comfort in buildings.  
The uptake of BPS in current building design projects is limited. Although there is a 
large number of building simulation tools available, the actual application of these tools 
is mostly restricted to code compliance checking or thermal load calculations for sizing 
of heating, ventilation and air-conditions systems in detailed design.  
The aim of the presented work is to investigate opportunities in BPS during the later 
phases of the design process, and to research and enable innovative applications of BPS 
for design support. The research started from an existing and proven design stage 
specific simulation software tool.  
The research methods applied comprise of literature review, interviews, rapid iterative 
prototyping, and usability testing. The result of this research is a prototype simulation 
based environment that provides add-ons like uncertainty and sensitivity analysis, 
multi-criteria and disciplinary decision making under uncertainty, and multi-objective 
optimization.  
The first prototype addressing the uncertainties in physical, scenario, and design 
parameters provides additional information through figures and tables. This outcome 
helps the designer in understanding how parameters relate to each other and to 
comprehend how variations in the model input affect the output. It supports the design 
process by providing a basis to compare different design options and leads therefore to 
an improved guidance in the design process. 
The second approach addresses the integration of a decision making protocol with the 
extension of uncertainty and sensitivity analysis. This prototype supports the design 
team in the design process by providing a base for communication. Furthermore, it 
supports the decision process by providing the possibility to compare different design 
options by minimizing the risk that is related to different concepts. It reduces the 
influence of preoccupation in common decision making and avoids pitfalls due to a 
lack of planning and focus.  
The third and last approach shows the implementation of two multi-objective 
algorithms and the integration of uncertainty in optimization. The results show the 
optimization of parameters for the objectives energy consumption and weighted over- 
and underheating hours. It shows further how uncertainties impact the Pareto frontier 
achieved.  
The applicability and necessity of the three implemented approaches has further been 
validated with the help of usability testing by conducting mock-up presentations and an 
online survey. The outcome has shown that the presented results enhance the 
capabilities of BPS and fulfil the requirements in detailed design by providing a better 
understanding of results, guidance through the design process, and supporting the 
decision process. All three approaches have been found important to be integrated in 
BPS. 
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11  
1. Introduction  

Energy efficiency and thermal comfort are of concern in building design. Due to the 
fact that one third of national total annual energy consumption is consumed in 
buildings, it is estimated that substantial energy savings can be achieved through 
careful planning for energy efficiency [Hong et al., 2000].  
According to the World Business Council for Sustainable Development (WBCSD) the 
energy use in buildings can be reduced by up to 60 percent until 2050 when taking 
immediate action. Björn Stigson, president of the WBCSD formulates: “Energy 
efficiency is fast becoming one of the defining issues of our times, and buildings are 
that issue's ‘elephant in the room'. Buildings use more energy than any other sector and 
as such are a major contributor to climate change”.  
In numerous countries already building regulations or directives exist to ensure that 
building energy performance improvement measures are considered by the building 
designer.  However, buildings are still being commissioned every day that will use 
more energy than necessary, and millions of inefficient buildings will remain until 
2050 [Sisson et al., 2009]. Therefore, it is important to improve also the existing 
building stock. The replacement rate of buildings is only around 0.2% a year. More 
than 60% of the building stock was built before 1975 [Sisson et al., 2009]. One 
challenge is therefore retrofitting existing buildings because “more than 80% of the 
current stock need retrofitting for high energy efficiency” [Sisson et al., 2009]. Many 
global projects are being developed to address these issues. The Energy Efficiency in 
Buildings (EEB) project for instance is a project that gives recommendations to 
transform the current building stock. It addresses six markets, Brazil, China, Europe, 
India, Japan and the US, altogether they cover almost two-third of the worlds energy 
use [Sisson et al., 2009]. 
It is necessary to establish building codes and regulations for new as well as existing 
buildings, that consider climate change, enforce energy savings, and reduction of CO2 

emissions. In either case design/retrofit decisions are taken that have a long lasting 
impact on the energy consumption of the building over its service life. Design 
decisions that typically impact the entire life cycle of the building need to consider the 
energy savings under different usage scenarios of buildings. The biggest challenge is to 
increase the comfort and to reduce the energy use at the same time. Traditional thinking 
is dominated by occupant satisfaction and sophisticated HVAC systems, often at the 
expense of energy use. The pressure of economic and ecologic considerations is 
mounting to invent new concepts to satisfy occupant requirements with substantial 
reductions in energy use. This requires new ways of evaluating systems and informing 
design teams to make optimal design decisions. 
Typical decisions include the optimization of the façade of a building, supporting 
structure assisted thermal storage and optimization of heating, ventilation and air-
conditioning (HVAC) systems. 
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Decisions are often suboptimal because not all consequences are studied. The reasons 
can be insufficient knowledge of the consequences but also insufficient knowledge of 
the use of the object. This has a large consequence over time as the variations due to 
different building occupants, climate change, etc. are significant. 
As a consequence we face uncertainty in climate, occupant behavior, building 
operation, increasing the complexity of the necessary tools and methods to support 
design decisions. 
It is therefore necessary to constantly face this complexity and improve our ability to 
predict the impact of changes, the consequences (e.g. risk) that may result. In doing so, 
the level of quality assurance of simulation results need to be increased.  
This thesis’ contribution is to increase our ability to better predict the impact of design 
variables, and therefore make better decisions and provide optimal solutions with the 
help of BPS.   

1.1 The role of Building performance simulation in design 

Building performance simulation (BPS) uses computer-based models that cover 
performance aspects such as energy consumption and thermal comfort in buildings. 
Crawly [2003] describes it as “a powerful tool which emulates the dynamic interaction 
of heat, light, mass (air and moisture) and sound within the building to predict its 
energy and environmental performance as it is exposed to climate, occupants, 
conditioning systems, and noise sources”. 
Although there are a large number of building simulation tools available, e.g., [DOE, 
2003], most use the same modeling principles and are used in similar manner [Hopfe et 
al., 2005]. They are primarily used for code compliance checking and thermal load 
calculations for sizing of HVAC systems. 
BPS is still not routinely applied in building design practice. Despite nearly 40 years of 
research and development, methods for the design assessment are costly to implement, 
time-consuming or not applicable [Preiser et al., 2005]. Design methods can help in 
improving the use of BPS by rapid prototyping and providing multiple design concepts 
for better design solutions.  
For instance, the integration of design optimization is either not applied in simulation 
tools or it is not used because of expenditure of time and effort. 
 
De Wilde [2004] states that simulation tools are neither used to support the generation 
of design alternatives, nor to make informed choices between different design options, 
and they are neither used for building and/or system optimization. 
He furthermore suggests that building performance simulation could be used in a way 
of (i) indicating design solutions by for instance numbers and graphs, (ii) introducing 
an uncertainty and sensitivity analysis for guidance, (iii) supporting generation of 
design alternatives, (iv) providing informed decision making by choices between 
different design options and last but not least (v) building and/ or system optimization. 
 
Building design is a process towards the planning of a building that needs multiple 
professions working interdisciplinary such as architects, building engineers and 
designers, amongst others. The building design process can even last over years, i.e., 
design decisions taken have a major impact.  
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In theory, the design process describes a series of actions and/or operations undertaken 
to solve a design problem. The process is typically structured forming a procedure with 
a start and finish to complete the design task. Its structured character enables to 
sequentially collect and produce design information as an aid for making design 
decisions [Lamb, 2004].  
Typical design assessment criteria are cost, future flexibility, energy efficiency, 
environmental impact as well as productivity and creativity of occupants. The basic 
aim of the building design is to create a fully functional building that meets a set of pre-
defined performance criteria. To achieve that goal, it is necessary for the design team 
members to interact closely throughout the design process [Harputlugil et al., 2006]. 
Within this building design process a number of design stages can be distinguished that 
are shown in Figure 1: decision, program of requirements, preliminary design, final or 
detailed design, and the contract document.  
In the program of requirement or project brief the objectives and requirements are 
defined. In the conceptual or preliminary design stage the main systems are selected 
and a number of concepts is developed. In the detailed or final design stage the 
development and integration of design elements to operate design solutions takes place. 
In the contract document or the specification, the production of site drawings, product 
specification and construction resource documentation is finalized. 
Followed by that and not shown in the figure are the construction and occupancy of the 
building. The design documentation is translated into a finished product, testing and 
commissioning, and product handover. 
 

 
 

Figure 1 Illustration of the relationship between communication and 

simulation during the design process [Stoelinga, 2005]. 

 
The experience from experts concerning the design process is represented in Figure 1. 
Stoelinga [2005] divided the communication taking place during the design process 
into “informative” and “specifying” communication: informative communication 
meaning addressing the high amount of communication in the preliminary design stage. 
The information provided should answer questions such as “would it work” or “how 
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does it perform” [Stoelinga, 2005]. There is a demand to use BPS for design support in 
particular for the generation and selection of alternative design concepts during early 
phases in the design process, where decisions have to be made with limited resources 
and on the basis of limited knowledge. 
 
Opposed to this more qualitative character of communication in the beginning, the 
“specifying communication”, as Stoelinga calls it, is more quantitatively as it is 
considered in the context of specifications in the later design phase. In the final design 
stage there is a peak of informative communication and another peak value of 
specifying communication which should be supported by the use of simulation or other 
tools. In current practice the connection between simulation tools as an evaluation 
procedure and the design analysis communication is poorly developed. The need for 
BPS is very strong in the final design stages in order to support the particularizing 
communication. One means of better connection should be provided by the simulation 
tools in providing a better insight into the role of uncertainties and unknowns on the 
evaluation results. BPS tools should therefore provide support to perform uncertainty 
and sensitivity analyses, and communicating them with other design partners leading to 
informed decision making, and optimization. 
 
BPS should be an essential part in the building design process. Current applications do 
not fulfill the needs considering the support of design decision making or the seamless 
integration of optimization techniques.  
The building design process needs to foresee how the detailed specific decisions relate 
to the resulting performance of the entire building or its functional components [Trinius 
et al., 2005]. In this respect, long term concerns such as life performance, durability, 
life cycle costs, etc. have a higher value than short term arguments such as direct costs, 
construction process for instance [Trinius et al., 2005]. 
Design meeting participants have to match the expected performance with the required 
one to be provided by the design solution [Trinius et al., 2005]. 
 
To sum up, a problem in current design assessment is the lack of ability to explicitly 
deal with the varying expectations, needs, and requirements throughout the design 
process. Tools and methods for different design stages should address this diversity of 
needs and enhance the communication required.  
In the beginning of the design process less information is available caused by the fact 
that many issues are undecided. This leads to many unknowns when inspecting the 
potential impact of design alternatives. Under certain constraints these can be 
interpreted as uncertainties, which will diminish as design evolution proceeds.. 
However, even in the detailed design the building is not without uncertainty as there is 
imprecision in the construction process and natural variability in the properties of 
building components and materials [de Wit, 2001]. Besides, many external factors that 
influence the performance of the building are unpredictable.  
Therefore, performance outcomes are the results of random processes and partly 
unpredictable because of uncontrollable unknowns. The combined assessment of the 
lack of knowledge and the external factors cause the uncertainty in the building 
performance [de Wit, 2001]. 
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To consider these different sources of uncertainty, to include them into diverse 
approaches and therefore to improve the use of BPS during the later phases is the goal 
of this thesis. 

1.2 Role of performance evaluation in late design 

The information required in the final design stage is more detailed and needs to be 
treated more accurately. For example, similar options with slight changes in the layout 
might be compared. The exact specification of the options and the selection of all 
parameters used are therefore very important. Besides, selecting properties (e.g., glass 
properties) requires close coordination with the architect or the design engineer [Olsen 
and Iversen, 2006].  
Possible applications in the final design are summarized by Olsen and Iversen [2006] 
as follows.  

− Applying optimization as support also for decision aid in comparing different 
schemes, options, and systems.  

− Improvement of envelope performance through energy studies determining 
and optimizing material properties such as insulation or glazing performance 
via uncertainty/ sensitivity analysis. 

− Selection and observation of, e.g., different HVAC systems enabling the 
overview and comparison of energy use. 

However, expected challenges according to Olsen and Iversen [2006] in the final 
design are due to as follows.  

− Scheduling uncertainty (time requirement vs. mistakes). 
− Consideration of design team cooperation and coordination. Design team 

members need to be aware of how decisions might affect each other. A model 
that is affected by several disciplines is going to enlarge this problem.  

− Evaluating of different trade-offs through different options. If different 
performance aspects are considered, it might be that one scenario performs 
well in one aspect whilst another performs better in another one. Multiple 
choices with no clear-cut best solution can complicate the decision process. 

1.3 Aim and objectives 

The aim of the current work is to research and enable innovative applications of 
building performance simulation for design support during the later phases of the 
design process. Moreover, it’s objective is to broaden the current use of BPS by 
preparing the next generation of tools and methods with which the influences of 
uncertainty can be studied and incorporated in dialogues that lead to informed decision 
making. 
For that reason, the emphasis of this thesis will not discuss the influence of 
uncertainties on outcomes, but it will show how the application of diverse prototypes 
could benefit and enhance building design methods, with the emphasis on discrete 
decision making and component optimization, under uncertainty.  
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The objectives are to find answers to the following research questions. 
− How is software currently used in the final design? 
− What are the requirements and needs during the final design?  
− What should be improved in currently available simulation tools?  
− What are appropriate performance assessment methodologies for the final 

design stage? 
− How to satisfy simulation output requirements in view of an environmental 

engineer which enables him to communicate with other design team 
members? 

 
The hypothesis that drives this thesis can be formulated as follows. 
The conduction of an uncertainty and sensitivity analysis throughout the design process 
could be of great importance. It is hypothesized that uncertainty in performance 
predictions of competing options is not negligible and therefore should play a major 
factor in the decision.  
It is hypothesized, that decision making between competing design options can be 
enhanced by including the effect of uncertainties in simulation outcomes that are 
presented to the decision makers. This would support a design team to reach an optimal 
decision by using a computational approach. 
Furthermore, it is hypothesized that design optimization can be enhanced by the 
integration of the effect of uncertainties in simulation outcomes that are presented to 
the decision makers, or used in the optimization strategy.  
The connected consequential hypothesis is that current simulation tools can be 
enhanced to deliver this new functionality in a way that is practical and acceptable to 
design practice. 

1.4 Research methodology 

The research starts from a set of existing and proven concepts and tools. All 
development is based on an existing, design stage specific simulation software. 
The following steps are carried out. 
 

1. A literature review is conducted to analyze the current state in building 
performance, design guidelines and rating systems. In order to start with ideas 
of how to improve the current use of BPS, an insight in BPS in practice, 
design simulation tools, optimization techniques, etc., is mandatory.  

2. Interviews with world leading building performance professionals are carried 
out to get an idea of the current use of BPS, needs and wishes of practitioners. 

3. Prototypes are iteratively implemented (development of prototypes, validation 
and testing). In total, three approaches are planned, implemented and 
improved based on the outcome of the literature review and the interviews. 
Three major hypotheses are addressed in these approaches: (i) the 
enhancement of performance prediction and quality assurance with 
uncertainty analysis; (ii) the enhancement of the decision process between two 
competing options by decision making under uncertainty; (iii) the 
enhancement of BPS with the integration of optimization under uncertainty. 
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4. Feedback of professionals (design development, design optimization, case 
studies) is necessary to prove the hypotheses by showing the prototypes to a 
number of professionals.  

 
The first two steps result in a requirement specification in view of the intended role 
(function) of simulation tools. Specific scope of this research will be to support 
consultants in providing uncertainty and sensitivity analysis, support the decision 
process and optimizing façade, structure, etc., of building designs. 
The requirement specification is then used to assess an existing tool and to identify the 
applicability of this tool to enhance the use of BPS and to eventually optimize the 
design. One important analysis tool in The Netherlands and also applied in this 
research is VA114. It is a building performance simulation tool developed by Vabi 
[2009] dedicated to the later phases of the design process.  
Performance aspects considered of high importance will be thermal comfort, energy 
efficiency, indoor environmental quality, etc. 
The backbone of the thesis is thereby uncertainty and sensitivity analysis that is 
expected to enhance the design process in several ways. Uncertainties do exist in 
multiple aspects, caused by insufficient knowledge of physical properties represented 
by input parameters of a model, or uncertainties in the way that the building is 
occupied, controlled and operated. UA can lead to identify uncertainties in the outcome 
of a model. SA is in integral part of the UA as it identifies what parameters are most 
sensitive and have the biggest impact on the uncertainty in the outcome. Furthermore, 
SA allows the analysis of the robustness of a model. It makes aware of unexpected 
sensitivities that might lead to wrong specifications.  
 
The result of this research is a prototype simulation based environment which includes 
several multi level performance indicators for thermal comfort and energy use. The 
focus is to support the profession of an environmental engineer. This is accomplished 
by the following research methodology. 
 
In Figure 2 the research methodology is shown graphically. A prototype simulation-
based design environment covering uncertainty and sensitivity analysis for decision aid 
and for optimization of buildings and systems will be developed. Additional guidelines 
regarding the necessity and applicability of these prototypes for the final design stage 
are provided. 
Figure 2 shows the task structure in general, the different prototypes and their 
validation through practice. 
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Problem formulation

State of the art in decision 

making

State of the art in 
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State of the art in 

optimization

Prototype II in decision 

making

Prototype I in uncertainty/ 

sensitivity analysis

Prototype III in 

optimization

Experience/user testing

Conclusion/future work
 

Figure 2 Illustration of the methodology used in the thesis showing the relation 

between the prototype development and feedback from practice. 

1.5 Thesis outline 

Chapter 2 starts by giving an introduction in background terminology and an overview 
of the current state of building performance simulation and design.  
Chapter 3 introduces the issue of uncertainties. An insight is given in different types of 
uncertainties and techniques to measure uncertainties and sensitivities. Subsequently, 
results of a case study focusing on different groups of uncertainties in the use of BPS 
are presented.  
Chapter 4 describes decision making approaches. The applicability in current building 
performance simulation is shown; followed by the demonstration of one technique 
applied considering uncertainty/ sensitivity analysis. 
Chapter 5 evaluates optimization techniques, for single- and multi-objective problems. 
A case study is implemented showing the added value of optimization also considering 
decision aid for multiple building designs and the integration of uncertainty. 
Chapter 6 summarizes the outcome of mock-up studies and an online survey that was 
achieved based on feedback from practice. Conferring with design professionals was 
crucial to fulfil the requirements in the detailed design stage and to verify the necessity 
and applicability of the developed prototypes.  
Chapter 7 summarizes and concludes the work showing future challenges for research 
effort in this domain. 
In Table 1 the outline of the thesis is illustrated.  
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22  
2. Building performance simulation and design 

2.1 Introduction  

As described in Chapter 1 there is a need for enhancing the use of BPS in detailed 
design. In this section a brief insight in building performance will be given by 
explaining basic concepts such as performance, performance aspects, indicators, etc. 
Other research efforts in building performance will be summarized and important 
insight in design guidelines, rating systems, etc., will be provided. 
Followed by that, an insight is given into BPS explaining briefly the use of BPS in the 
design process and tool related integration efforts are pointed out.  
This chapter ends by summarizing preliminary results of interviews and an online 
survey.  

2.1.1 Definitions 

 

Performance indicator 

An indicator according to DOE [2009] is a “parameter or value derived from a set of 
parameters” used to provide information or to alert what to consider more and what has 
to be improved in order to communicate trends. A performance indicator is described 
further on as a “high-level performance metric” to simplify complex information and to 
point to general state. An example given is the average building energy use.  
Pati et al. [2006] distinguish hard and soft indicators. Hard indicators or indicators 
based on hard objectives for assessing the performance in terms of energy, thermal 
comfort among others. Soft indicators for incorporating also the interaction between 
built environment and its users.  
 

Performance metric 

A performance metric like the building energy use intensity or the lighting power 
density is “a standard of measurement of a function or operation” [DOE, 2009]. That 
means, it is a measurable quantity that indicates a certain aspect of the performance. In 
Deru and Torcellini [2005] high-level performance metric is described as the means to 
simplify complex information and to point to the general state of a phenomenon. 
 

Performance aspects 

Performance aspects show the needs and requirements associated to a “value”, e.g. in 
the economical or ecological domain. For instance, performance aspects such as visual, 
acoustic and thermal comfort belong to the value domain of “well-being”. Other 
building performance aspects are for instance energy consumption and productivity. 
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Performance concept 

A performance concept can be understood in several different ways. According to 
[Gross, 1996] it can be simply a concept without a systematic approach but it can also 
be understood as a concept that requires analysis and evaluation.  
According to Mallory-Hill [2004] a performance concept is a framework for building 
design and construction in order to evaluate buildings. Human needs are translated into 
user requirements such as safety, comfort, functionality, etc. Furthermore, they are 
transformed into performance requirements and criteria and implemented to guarantee 
a satisfactory long term performance of the building. 
 

2.1.2 Building performance and design 

In this section an insight into non-simulation related information and research efforts in 
building performance will be provided.  
 
Design guideline 

According to DOE [2009] design guidelines are a “set of rules and strategies to help 
building designers meet certain performance criteria such as energy efficiency or 
sustainability”. An example is the ASHRAE green guide. But also for instance LEED 
and BREEAM are often used as design guidelines [DOE, 2009] even though they are 
really only rating systems. 
 
Building performance frameworks 

Frameworks are for instance the building evaluation domain model (BEDM) shown in 
Figure 3 or the performance based building thematic network (Pebbu). The BEDM can 
be described as a 3-dimensional matrix with three axes referring to architectural, 
building, and human system level. It is a model for the incorporation of performance 
evaluation with requirement analysis [Mallory-Hill, 2004].  
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Figure 3 Illustration of the BDEM (building domain evaluation model) 

[Mallory-Hill, 2004]. 

 
The Performance Based Building (PeBBu) [PeBBu, 2009] is an international research 
cooperation project initiated by the international council for building (CIB). Aim is to 
counter difficulties that arise when using the building regulations and standards in an 
European context [Bakens, 2006].  
 

Rating systems 

Rating systems are described by DOE as “a system of rules for comparing the 
performance of a whole building or building system to benchmarks”. Examples are 
LEED [2009], BREEAM [2009], and CASBEE [2009]. 
 
1. LEED (Leadership in Energy and Environmental Design – US) 

LEED, developed by the US green building council, is designed to encourage the 
development of green buildings and to rate the expected performance during different 
design stages.  In the Leeds rating procedure aspects considered cover water efficiency, 
energy, materials and resources, and indoor environmental quality. 
LEED does not suggest the use of simulation as a measure to assess thermal comfort or 
control strategies. 
 
2. BREEAM (Building Research Establishment Environmental Assessment 

Method - UK) 

BREEAM is an environmental rating system to assess the performance of buildings in 
terms of energy use (operational energy and carbon dioxide (CO2) issues), water 
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consumption and water efficiency, air and water pollution issues, indoor environmental 
quality among others.  
Simulation is not an integral part of BREEAM. However, often is simulation used as an 
alternative to estimate the energy consumption and CO2 emissions [DOE, 2009].  
 
3. CASBEE (Comprehensive Assessment System for Building Environmental 

Efficiency - Japan) 

CASBEE is a rating system for the evaluation of the building environmental 
performance and loadings in Japan.  
Two categories are evaluated coded as Q for quality and L for loadings. They are 
further on divided into subcategories. Q covers aspects for the environmental 
improvement such as indoor and outdoor environment or quality of service. L considers 
the evaluation of negative environmental impacts such as resources and material, 
energy, etc. 
 
Initiatives in building performance 

Initiatives such as private public partnerships and the energy performance of buildings 
directive deal with the fact of how to achieve building performance in practice.  
 
1. Private public partnerships (PPP) 

Public-private partnerships (PPP) in building design are partnerships built in order to 
fund and develop public buildings without initial investment outlays by the 
government. They entail large investment sums for contractors and sponsors and 
therefore high risks [Bult-Spiering and Dewulf, 2006].  
One aim of these partnerships is for instance the saving of energy in public buildings 
that leads to budgetary savings and contributes to climate protection (energy saving 
partnerships). 
 

2. Energy performance of buildings directive (EPBD) 

The EU directive for improvement of building consists of three main parts: energy 
performance requirements, energy performance certificates, and energy performance 
inspections.  
Energy performance requirements are set by taking into account the type of building 
(e.g., new or refurbished), etc. Energy performance certificates (see Figure 4) show the 
energy performance of the building. Energy performance inspections of boilers, air 
condition systems, etc., further on aim to reduce the overall energy consumption, and 
also to ensure appropriate advice on improvements/replacements [Warren, 2003]. 
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Figure 4 Illustration of energy performance certificates 
 

[DIAG, 2009]. 

 
US department of energy (DOE) high performance buildings metrics project  

The U.S. Department of Energy initiated the performance metrics research project in 
order to standardize the measurement and characterization of a building with regards to 
the energy performance. First objective was to find out what performance metrics have 
the greatest influence on the energy consumption; second was the development of 
standard methods for measuring and reporting the performance metrics [Deru and 
Torcellini, 2005]. 

2.2 The role of information generated with BPS 

A number of decisions has to be taken in the design process. Many decisions are 
outcomes of design explorations and brainstorming, and therefore hard to describe 
formally and hence difficult to support by evaluation tools. Some decisions however 
typically require the comparison of a set of well defined competing options. This type 
of “discrete” decision can be rationalized as choosing the best option, under the given 
set of constraints. The fitness of an option is usually expressed in terms of measures in 
different performance categories.  The combination of all performance measures of a 
tested option quantifies the fitness of that option to meet or exceed the requirements as 
expressed in the design program. It is important to note that performance measures are 
related to outcomes rather than prescriptive features. 
One first definition of a performance concept in building was given by Gibson [1982] 
as “first and foremost, the practice of thinking and working in terms of ends rather than 
means. It is concerned with what a building or building product is required to do, and 
not with prescribing how it is to be constructed”. 
The performance concept enhances design evaluation against objectively defined 
performance criteria and aims of the designer. In different performance evaluations, 
different performance indicators are relevant. In [Augenbroe, 2006] it is stated that 
performance indicators “are the associations between the design program and the 
design concept. As such, they help to establish a clear design objective and to organize 
the performance thinking around that objective. Thus, the designer can rationally 
establish efficient project goals by delimitating the aspects that influence the design 
decision.” 
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Design aspects considered in different stages of the design process and difficulties are 
summarized by Morbitzer [2003] and shown in Figure 5.  
 

design stages design aspects model creation 

performance 

prediction analysis 

program of 

requriements/ 

outline 

orientation, heavy/ 
light buildings, space 
usage, heat recovery 
systems, etc. 

typical users 
identified 
(architects) find it 
difficult to use 
advanced building 
simulation  

performance 
prediction difficult 
for architects 

preliminary/ 

scheme 

design 

glazing area/ type, air 
change rate, lighting 
strategy 

does not cause 
major difficulties 
to simulation 
expert but time 
consuming 

important to have in-
depth understanding 
of reasons behind  
building performance 

final/ detailed 

design 

different heating/ 
cooling systems; 
different heating/ 
cooling control 
strategies; different 
ventilation strategies 

more challenging 
than scheme 
design, but 
possible for 
simulation expert 

depending on 
simulation study 
ranges from easy to 
complex, tedious and 
time consuming  

Figure 5 Overview of design stages, aspects and performance prediction 

[Morbitzer, 2003]. 

 
BPS in general is used to calculate, through predictive simulation, a variety of 
outcomes of the proposed design, such as energy consumption, performance of heating 
and cooling systems, visual and acoustic comfort, dynamic control scenarios for smart 
building technologies, smoke and fire safety, distribution of air borne contaminants, the 
growth of molds, and others [Augenbroe and Hensen, 2004]. 
The information needed to guide the decisions in the final design stage tends to become 
very detailed, and hence the use of BPS more demanding. An important issue in 
detailed design is how to quantify and qualify the information obtained from a 
simulation study and to translate it into aggregated performance measures that are 
easily understood by the design team and support rational decisions. It is fair to say that 
in current practice, simulation tools do not do this in an efficient manner. Not 
surprisingly, the best established use of simulation is after finalizing the design, i.e. for 
performance verification and commissioning [Morbitzer, 2003]. In essence, that means 
that current BPS is an accepted tool for design confirmation but not mainstream for 
true design support. The thesis is a contribution to many ongoing efforts to ameliorate 
this situation. This work’s focus is on incorporating a transparent view on the effect of 
uncertainties, thus, increasing the resolution of information of the decision stakeholders 
and their need to make optimal decisions in the face of uncertain information. 
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2.3 A review of BPS tools 

2.3.1 BPS in design 

The aim of BPS is to predict real physical conditions in a building by using a 
computational model. Building simulation, according to Morbitzer [2003], expands the 
concept of performance prediction. With the help of BPS, the user can specify 
parameters that have an influence on the overall building performance. The simulation 
results achieved in the prediction are as close to reality as possible.  
Until the 70s simplified calculations for energy use, e.g., based on simplified boundary 
conditions were used [Clarke, 2001]. Clarke [2001] summarizes the evolution from 
tools from traditional calculation to contemporary simulation in four generations from 
handbook oriented computer implementations to new developments considering 
program interoperability, more accessible user interfaces, quality control, air flow 
simulation, etc. (see Figure 6).  
 

 

Figure 6 Illustration of the evolution of building simulation [Clarke, 2001]. 

 
Due to the fact that nowadays buildings are appreciated with a low energy demand, it 
becomes essential to predict the building performance as realistic as possible. This is 
obviously not possible without the use of building performance simulation as tool in 
the design process.  
However, despite the multiple ranges of tools available, there is still high potential in 
BPS due to the results provided, data exchange, and ease of use, among others.  
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2.3.2 Simulation tools 

Different simulation tools such as design tools, analysis tools, modeling tools, etc., 
exist [De Wilde, 2004]. A brief summary of eight different simulation tools for 
dynamic thermal building simulation is described in this section. The tools have been 
selected to provide a brief overview, more or less randomly on the basis that they claim 
to be of use for different design stages. It was developed as part of a critical software 
review in cooperation with Struck and Harputlugil [Hopfe et al., 2005]. A more 
extended report on different energy performance simulation programs can be found in 
[Crawley et al., 2005]. Another overview is accessible on the building energy software 
tools directory from the U.S. Department of Energy [2007]. 
 

MIT Design Advisor  

MIT Design Advisor is an on-line design tool for architects and building engineers. 
This tool has been developed to give preliminary estimates for the performance of 
building facades. Double skin facades may be compared to conventional facades, and 
location, occupancy and depth of the perimeter space may be adjusted and the effects 
viewed. 
 
Building Design Advisor  

The Building Design Advisor (BDA) is a stand alone integrated design tool. BDA 
claims to be most effectively used from the initial design to specific system definition. 
The software download and installation is free of charge and the package runs under 
windows. The tool is supposed to act as data manager and process controller for the 
three calculation modules DCM (day lighting computation module, ECM (electric 
lighting computation module), DOE2 (energy analysis module). It is planned to extend 
its capabilities to integrate Radiance and Athena. 
 
Energy 10  

Energy 10 is a conceptual design tool focused on whole-building tradeoffs during early 

design phases for buildings with less than 10,000 ft
2 

floor area or buildings that can be 
treated as one or two-zone increments. It performs whole-building energy analysis for 
8760 hours/year, including dynamic thermal and day lighting calculations. It is 
specifically designed to facilitate the evaluation of energy-efficient building features in 
the very early stages of the design process. 
 
e-Quest 

eQUEST is a sophisticated, yet easy to use, freeware building energy use analysis tool, 
which provides professional-level results with an affordable level of effort. eQUEST 
was designed to allow to perform detailed comparative analysis of building designs and 
technologies by applying sophisticated building energy use simulation techniques but 
without requiring extensive experience in the "art" of building performance modeling. 
This is accomplished by combining schematic and design development building model 
creation wizards, an energy efficiency measure (EEM) wizard and a graphical results 
display module with a complete up-to-date DOE-2 (version 2.2) building energy use 
simulation program.  
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SEMPER  

SEMPER developed at Carnegie Mellon University, is a multi-aspect building 
performance simulation system [Mahdavi, 1999]. It has been developed as stand-alone 
design support tool. Based on it, SEMPER-II was developed which is an internet-based 
computational design environment handling multiple users and queuing multiple 
request of simulation runs [Lam et al., 2004].  
 
VA114 

VA114 forms part of the uniform environment. The uniform environment is a software 
tool box that allows shifting model files between several tools for different types of 
analysis, including heat loss and heat gain calculation. It is a simulation tool that is 
well-known and widely used in The Netherlands.  
VA114 is a calculation engine dedicated to assess the annual heating and cooling 
demand and the thermal behavior of building, i.e., in particular, the over- and 
underheating risk in buildings. The simulation period can be defined and the set points 
from which the over- and underheating hours will be counted. The model itself is based 
on standard heat and mass transport equations.  
Different climate files can be simulated. However, the most common one is the climate 
file for the reference year “De Bilt 64/65. Current research conducted [Hopfe et al., 
2009; Evers et al., 2008] addresses the integration of climate change scenarios. Based 
on the existing traditional reference year “De Bilt 64/65”, NEN 5060:2008 released a 
new norm that introduces four new climate files for different types of climate 
adjustments. KNMI on the other hand assembled four different future scenarios for the 
expected climate change. The climate files from the NEN and the KNMI future 
scenarios have been combined in a future climate data analysis for usage within the 
simulation software VA114.  

2.3.3 Tool related integration efforts 

Because of to the growing importance of the building sector, the use of computers and 
simulation during the different design stages increases as well. New demands and 
requirements arise due to increased demands on energy and maintenance efficiency, 
maximum flexibility among others [Augenbroe, 1992].  
As a matter of fact, research and standardization initiatives were started pursuing the 
development of common shared building representation. It began early 1990 with the 
initiation of Combine (a European community funded research program) or Ratas that 
arose from efforts from local industry. 
Efforts that try to integrate the use of building simulation into the design process will 
be briefly summarized. 
 
Combine (computer models for the building industry in Europe) 

COMBINE tried to conquer the complexity of large model through subschema 
definitions. It is an interaction tool for actors participating in a design project 
[Augenbroe, 1995].  
It was the first step towards future intelligent integrated building design systems (IIBS). 
The emphasis is on energy performance. The prototype consist of a set of design tool 
prototypes (DTP) that addresses tasks such as, e.g., HVAC design, construction design, 
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or the dimensioning and functional organization of inner spaces in the later design 
process [Augenbroe, 1995]. 
COMBINE 1 (1990-1992) was the first phase of the project resulting in a product 
model for building design information. COMBINE 2 (1992-1995) was the second 
phase of the project addressing the product model of the first phase in an operational 
context [deWilde, 2004].  
 
Design analysis integration (DAI) – initiative  

DAI was started in order to develop solutions for the integration of building 
performance analysis tools in the building design process. “Spearheads are an 
improved functional embedding of performance analysis tools in the design process, 
increased quality control for building analysis efforts, and exploitation of the 
opportunities provided by the internet” [de Wilde, 2004]. 
Aim is to have a more effective and efficient use of existing and emerging building 
performance analysis tool by building design and building engineering teams [de 
Wilde, 2004]. 
 

AEDOT (advanced energy design and operation technologies) 

The objective of AEDOT is the development of advanced computer-based tools in 
order to promote the design and operation of energy-efficient commercial buildings 
[Shankle, 1993]. The energy assistance at the early design stage is emphasized. 
 
BEMAC 

BEMAC is a framework for the integration of existing software tools at different 
design stages such as design, construction and operation of the building. Addressed are 
aspects such as monitoring, analysis and control with regards to energy consumption 
[O’Sullivan et al., 2004]. 

2.4 BPS Challenges  

Building simulation offers “unique expertise, methods and tools for building 
performance evaluation” [Augenbroe and Hensen, 2004]. The integration of physical 
interaction into BPS causes modeling as well as computational problems and 
challenges. In terms of decision making and robustness, the integration of design 
teams, etc., there is a demand of continuous improvement of BPS [Augenbroe and 
Hensen, 2004]. 
The use of building performance simulation in current building design projects is 
limited. Although there is a large number of building simulation tools available, the 
application of these tools is mostly restricted to the detailed design stage.  
One capability, design optimization, was found to be important is missing from a large 
number of tools.  
Many of the building performance tools that are currently in use are legacy software 
tools that have a monolithic software structure and are becoming increasingly hard to 
maintain.  
The use of BPS tools requires expert skills to set up a model and run an analysis that 
the right output is generated from which the desired performance data can be extracted. 
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Design experience is essential for developing design concepts. The use of simulation 
tools enables an impact assessment of different parameters. However the use of BPS 
without experience in of building performance does not bring the benefit aimed for as 
users run the risk to produce results which do comply with the domain characteristics.  
 
Furthermore, it is important that BPS should offer the possibility to consider more than 
one performance aspect, and to allow for their prioritization based on the project type 
and design discipline. 
Another difficulty is the fact that the design stages are barely synchronized across 
disciplines as it is difficult for design disciplines to understand the impact of their 
design on the works of others.  
Not including specific design disciplines early enough in the design process might 
cause the design team to make uneducated decisions, risking sub-optimal solutions or 
additional design iterations.  
There is high theoretical challenge due to the complexity of scale and diversity of 
component interaction. 
 
Augenbroe and Hensen [2004] summarize that “many aspirations remain to be 
achieved, such as the support for rapid evaluation of alternative designs, better 
adaptation of simulation tools to decision making processes, and team support of 
incremental design strategies. Quality assurance procedures and better management of 
the inherent uncertainties in the inputs and modeling assumptions in simulation are two 
other areas where more progress is needed”. 
The key challenge of this thesis, the consideration of uncertainty, the provision with 
quality assurance, the addressing of risk, will be targeted further on. It is conjectured 
that this challenge can be met in the way it is approached in this research. This will be 
shown in the following sections. 

2.5 The role of uncertainties in building simulation 

Building performance simulation is a multi-disciplinary, problem oriented, dynamic 
tool using numerical methods that approximate a solution of a realistic model. 
The difference between traditional and simulation tools is in the complexity of the 
models. Present computer simulation, often including more than 10000 variables have 
therefore a bigger need for quality assurance [Olsen and Iversen, 2006].  
 
Uncertainty and sensitivity analysis are part and parcel of many ongoing research 
activities. They find use in several approaches embedded for, e.g., parameter screening 
and reduction [Alam et al., 2004], or robustness analysis [Topcu et al., 2004; Perry et 
al., 2008]. 
The effective integration of issues related to risk and uncertainty in design has a great 
importance. That applies also to sensitivity analysis. Sensitivity analysis could assess 
the relevance of studying change options within the design and modeling process. 
Uncertainty and sensitivity analysis for instance can provide information about 
reliability towards design parameters, respectively to the overall design. 
At a certain level of resolution, design evolution can be viewed as a series of decisions 
under uncertainty. The reason is that the process of decision making is claimed to be 
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ill-defined, and decision problems human oriented. Uncertainties arise from 
“unquantifiable information, incomplete information, unobtainable information and 
partial ignorance” [Fenton et al., 2006]. The problem of imprecision and subjectivity 
[Fenton et al., 2006] requires that decision making considers uncertainty analysis, risk 
management and confidence. Especially in decision making with user judgment, one 
major aspect is uncertainty.  
Uncertainty integrated in decision making is used within the decision process to 
explicitly support the outcome of BPS and make the user aware about the risk that one 
option is exceeding in a performance aspect. SA on the other hand supports the 
decision maker in identifying the most sensitive parameters.  

2.6 Practitioners perspectives 

As mentioned earlier, a number of BPS tools exist but the current design with 
simulation is not adequate. To deal with uncertainty and risk is one key challenge of 
this thesis.  
One of the first steps of this work is to get an insight in professional experience with 
current BPS. Therefore, a number of interviews with international design professionals 
and an online survey are conducted.  
Furthermore, this section will end showing how to close the gap between design and 
simulation and how based on the practitioners feedback, the hypotheses from Section 
1.3 can be approached. 

2.6.1 Interviews 

The results of the interviews in this section were achieved in cooperation with Struck 
and Harputlugil [Hopfe et al., 2005]. 
Fifteen professionals were interviewed. Eight mechanical engineers, four building 
physicists, one civil engineer and two architects; three of them were academic, the 
other twelve were professionals. 
The key issues of the interviews were: 

A. Introduction of the interviewees and definition of their project involvement. 
B. Problems repeatedly encountered during the design process. 
C. Experiences using computational tools to support building design 
D. List of issues in future design support tools should address.  

 
The results were divided in four categories and can be found more detailed in [Hopfe et 
al., 2005; Hopfe et al., 2006]: 

1 Classification of the interviewees 
2 Perspective of the design process 
3 Practice 
4 Computational support 

 
A short summary of the computational support category is given: 

Asked if the use of computational support was common practice during the design 
process all interviewees responded positively. However, it depends on how the support 
is defined. Subsequently the interviewees were asked whether they use computational 
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simulation support in general and if, in which phase of the design. The tools themselves 
were discussed, and the way of using (visualization/ simulation/ results presentation) 
them, ascertained. The interviewees were asked where they locate a lack in using 
computational support and how they expect the computational support to develop in the 
future. 

It was stated that the use of simulation tools enables an impact assessment of different 
parameters. However the use of simulation tools without having an idea of building 
performance simulation does not bring the necessary benefit. 

It was found that the interviewees have a different understanding when it comes to 
simulation. Whilst they agreed that simulation is the representation of physical 
processes, the techniques used to simulate differ significantly. And this was reflected 
while conducting the interviews. For some interviewees, simulation is drawing/ 
sketching concepts. For instance, one interviewee told the interviewers about 
simulating room conditions with actors in real world. Whilst for others, a simulation is 
conducted by using a computational tool. 

The comments made on future expectations of computational support were 
contradictory. It was stated by the interviewees that tools should address a multitude of 
performance aspects, should be easy to use, be able to represent complex scientific 
phenomena, and that they should be tested and validated. A computer program should 
be an intuitive tool, offering 3D modelling capabilities, with an easy interface and a 
copy and paste opportunity - to facilitate the possibility to reuse parts of projects in 
compiling new projects. Such a tool should be able to produce initial results from a 
rough building representation and then allow for detailing parts of the building. 

2.6.2 Online questionnaire 

The presented results in this section come from on online survey conducted in the final 
year and are solely addressing the final design stage. Three main questions are 
summarized asking the current use of BPS, tool requirements, and improvement 
capabilities for BPS.  
 
How is software currently used in the final design stage? 

− As a capacity calculation tool mostly for fire safety of parking garages (CFD), 
inner climate of large atria and special functions. 

− For making calculations to help to take the right decisions. 
− For production of energy performance certificates. 
− As a communication and control system of human intuition. 
− For code compliance checking. 
− To check if design parameters, dimensions and capacities can fulfil the 

requirements and expectations. 
− To check that design/ concept solutions lead to specified comfort level. 
− To check the necessary cooling and heating demand and to realize the internal 

comfort, e.g., pmv for internal use. 
− To permit application and capacity determination (building simulation tools 

such as VABI). 
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− For proof of concept (advanced building simulation tools, e.g., CFD). 
− For dimensioning heating and cooling systems.  
− To analyse possibilities for cost reductions (e.g., what are the consequences if 

shading devices are omitted); life cycle and/or investment. 
 
What are tool requirements during the final design stage? 

− To keep it to the subject and not integrate the 'design process' in it. 
− To be a good analysis tool for results in graphs and a good reporting tool. 
− To provide a good overview of input data. 
− To give the possibility for directly editing input files and batch processing. 
− To allow building regulation testing used with air leakage tests to, e.g., check 

that carbon dioxide emissions are not above minimum standards. 
− To work like high level human decision makers do (top-down not bottom up). 

Informed decisions are usually made by digging down into the determining 
details not by solving every minor item, which by definition makes the result 
difficult to communicate and understand. 

− To be easy to handle and to give good insight in comfort, sensitivity and 
alternatives. 

− To provide good communication abilities. 
− To determine the result in a predictable and repeatable way. 
− To present bandwidth of reliability of results supporting communication with 

design team/principal at an appropriate level in accordance with technical state 
of the design. 

 
What should/ could be improved in currently available simulation tools? 

− User interface and speed of use and the re-use of data from former projects. 
− Flexible control strategies for installations with simple rule and template based 

input. 
− To learn from strong points of already existing tools. There are already too 

many too simple tools available (evolution and no revolution).  
− To focus on inner climate/comfort; energy use is not the most important topic 

in building design. 
− To show the effect that parameters have on each other. 
− To be easier to use, to provide better and realistic models with integrated 

process control. 
− To allow a better judgement of different installation concepts. 
− To implement uncertainty and sensitivity analysis. 
− To provide informed decision making. 
− To include optimization techniques.  
 

 

To summarize, Figure 7 shows the current satisfaction level of tools dedicated to the 
detailed design stage.  
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0% 20% 40% 60% 80% 100%

Understandability of results/

background information

Ability to support communication
with others (e.g. client, architects

etc.)

Integration of informed decision
making

Support of choices between different

design options

Guidance through the design
process

Integrated uncertainty and

sensitivity analysis of parameters;
awareness of uncertainties in

Integrated optimization of parameters

above average below average to poor
 

Figure 7 Summary of the current satisfaction level in BPS according to 

professionals’ perception. 

 
Research efforts in initiating new projects to enhance the use of BPS have been 
conducted widely. Nevertheless, this chapter also has shown that there is a need for the 
improvement of BPS in the final design stage.  
The aim of the current research is therefore to start from existing and proven simulation 
programs. No new simulation tool will be developed. The research presented will be 
based on existing and proven according to professionals wishes (evolution and no 
revolution). 
Design stage specific simulation software is considered and with aid of iterative 
prototyping, the existing design tool will be assessed.  
That means, prototypes will be developed, validated and tested especially according to 
the feedback of professionals. 
 
The hypothesis that drives this thesis is that decision making between competing 
design option and design optimization can be enhanced by including the effect of 
uncertainties in simulation outcomes that are presented to the decision makers, or used 
in the optimization strategy. Current simulation tools can be enhanced to deliver this 
new functionality in a way that it is practical and acceptable to design practice. 
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To close the gap between design and simulation and to approach the hypothesis of this 
work, three approaches will be developed according to professionals preferences. This 
is shown in Figure 8. 
 

0% 20% 40% 60% 80% 100%

Uncertainty and sensitivity analysis

Informed decision making (decision
making with uncertainty/ sensitivity

Parameter optimization

important to very important less important
 

Figure 8 Wish list of techniques for the integration in BPS for detailed 

design use according to professionals. 

 
The integration of uncertainty and sensitivity analysis is shown in Chapter 3. It is 
hypothesized that uncertainty in performance predictions is not negligible and therefore 
should play a major factor in the decision. The aim is to provide a better 
comprehension of standard BPS results and give background information of the 
parameters used. 
In Chapter 4 the integration of informed decision making by providing additional 
information about the uncertainty and sensitivity of parameters is demonstrated. It is 
hypothesized, that decision making between competing design options can be enhanced 
by including the effect of uncertainties in simulation outcomes that are presented to the 
decision makers. 
The integrated optimization of parameters is described in Chapter 5. It is hypothesized 
that design optimization can be enhanced by the integration of the effect of 
uncertainties in simulation outcomes that are presented to the decision makers, or used 
in the optimization strategy. 
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33  
3. Uncertainty/sensitivity analysis for 

design support 
 

3.1 Introduction 

As shown in Chapter 2 the state of the application of BPS is still limited whilst it could 
provide relevant design information by, e.g., indicating directions for design solutions 
or uncertainty and sensitivity analysis. A major challenge in simulation tools is how to 
deal with difficulties through large variety of parameters and complexity of factors 
such as non-linearity, discreteness, and uncertainty. It is hypothesized that conducting 
an uncertainty and sensitivity analysis throughout the design process would be of great 
importance.  

The purpose of uncertainty and sensitivity analysis can be described as identifying 
uncertainties in input and output of a system or simulation tool [Lomas, 1992; 
Fuerbringer, 1994; MacDonald, 2002].  

In practice UA/SA have many additional benefits such as follows. 
(1) With the help of parameter screening it enables the simplification of a 
model [de Wit, 1997].  
(2) It allows the analysis of the robustness of a model [Litko, 2005].  
(3) It makes aware of unexpected sensitivities that may lead to errors/ wrong 
specifications (quality assurance) [Lewandowska et al., 2004; Hopfe et al., 
2006; Hopfe et al., 2007] 
(4) By changing the input of the parameters and showing the effect on the 
outcome of a model, it provides a “what-if analysis”. It is for instance used in 
multiple decision support tools [Gokhale, 2009].  

 
In the following section a summary of the terminology used in this chapter will be 
provided followed by a discussion of the techniques that exist for UA/SA.  

Subsequently, a case study is performed based on an office building with respect to 
various building performance parameters. UA/SA are accomplished and results 
considering energy consumption (annual heating and cooling) and thermal comfort 
(weighted over- and underheating hours) are demonstrated and elaborated. The added 
value and usefulness of the integration of UA/SA in BPS is shown. 

 



 

 28 

3.2 Overview methods in UA/SA 

There are different techniques to conduct UA/SA and to analyze the provided output 
[Saltelli et al., 2005]. 

3.2.1 Local and global methods 

Local methods (e.g., automated differentiation) can be only applied if the correlation 
between inputs and outputs is linear. A local method for instance is differential 
sensitivity analysis (DSA) or perturbation analysis that is applied in [Lomas et al., 
1992]. It gives insight in the individual sensitivity meaning the influence on predictions 
of variations in each individual input parameter. The remaining parameters stay 
identical at their “base-case” values [Lomas et al., 1992]. However, by making changes 
in many inputs and therefore having suitable assumptions made, it can also provide 
insight in the total sensitivity that is due to uncertainties in the entire input file. Besides 
the ability of covering both, individual and total sensitivities, another advantage of the 
method is that its implementation is easy. In comparison to other techniques it is 
claimed to be computational faster [Lomas et al., 1992]. 
A drawback is that problems with non-linearity arise; input parameters need to be 
assumed behaving linearly and superposably in their effect to receive the total 
uncertainty.  
In global methods the uncertainty in a specific input parameter is used to determine the 
uncertainty in the output. All variables are sampled simultaneously. The distribution 
assigned is typically a normal distribution. The main differences of global and local 
methods are summarized in Table 2. 
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Table 2 Comparison of local and global methods [Hoes and de Vaan, 2005] 

  
 

Local methods Global methods 

1 
 
 
 

Aim 
It is meant for the determination 
of the partial derivation of the 
output in relation to input. 

It is meant for the determination 
of uncertainty of a specific input 
parameter in relation to the 
overall output. 

2 
 

Input 
parameters 

The input parameters are 
sampled one by one. 

The input parameters are 
sampled simultaneously. 

3 
 
 

Correlation 
between 
input and 
output 

A linear correlation is assumed 
between input and output of a 
model. 

A linear correlation is assumed 
between input and output of a 
model. 

4 
 

Choice of 
distribution 

There is only one assigned 
distribution possible in the input.

In the input each variation/ 
distribution is possible. 

5 
 
 
 
 

Distribution 
of variables  

The distribution is based on 
assumed boundaries that are 
usually valid for all variables. 

The distribution of input is based 
on an assumed distribution of 
each parameter; that implies an 
insight in the behavior of the 
parameters. 

6 
 
 

Number of 
simulations 

On average a high number of 
simulations is necessary 
(depends on the method). 

In comparison to local methods 
not so many simulations are 
necessary.  

 

3.2.2 Monte Carlo and linear regression 

Monte Carlo filtering, regression, and correlation analyses are sampling based methods. 
Their objective is to identify regions in the input corresponding to the output. 
 

The Monte Carlo analysis (MCA) is a simple analysis, where the expected value E  

and the variance V  of the output Y are estimated by the following well-known 
expressions: 
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where N = number of samples and i  = number of input parameter. 
 
MCA is an external global analysis method and it is one of the most commonly used 
methods to analyze the approximate distribution of possible results on the basis of 
probabilistic inputs. All uncertain inputs must be assigned a fully specified probability 
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distribution. All input parameters are varied simultaneously. This is important in order 
to consider the total sensitivity due to the uncertainties in the entire input.  
One advantage of this method is that there is no problem with non- linearity in the 
input-output mapping. That means the correlation of the individual input parameter 
does not need to be linear to the output. In the context of BPS this is necessary, because 
the individual parameters are not behaving linearly in relation to the output considered. 
The method itself is easy to implement (which will be shown in Section 3.3) and the 
post processing leads to comprehensible results.  
Drawbacks are that only total uncertainties can be considered due to the fact that the 
input is varied simultaneously, i.e., sensitivities of the predictions to the individual 
input parameters are not presented. 

The regression analysis is important for the analysis of the SA. Regression analysis 
shows more quantitative measures of sensitivity. A multivariate sample of the input is 
generated by some sampling strategy and the corresponding sequence of a number of 
output values is computed using the model under analysis [SIMLAB, 2009]. 

However, regression analysis often performs poorly when the relationships between the 
input variables are non-linear. By using rank transformations the problem with poorly 
linear fits to data can often be avoided. It is a simple procedure where the data in the 
output achieves a corresponding rank, i.e., the most sensitive gets rank 1 assigned down 
to the number of parameters varied. 

 

3.2.3 Screening methods 

Screening methods are a particular case of sampling based methods. Like other 
sampling based methods (e.g., Monte Carlo) they also consider the global sensitivity 
meaning the input parameter are varied over the whole range of their possible values. A 
well-established representative is the Morris analysis. The method of Morris varies one 
factor at a time and is thus referred to as OAT method. In Morris analysis, the 
uncertainty of the output is characterised by a value called “effect”. By varying the 
input parameter set, the “effect” is calculated several times [Zador et al., 2006]. It 
allows the selection of important input parameters, by evaluating the model with 
different inputs. 
The results of the Morris analysis consist of one graph where the averaging coefficient 
for each parameter (μ) is compared against the dispersion (σ) from this coefficient per 
parameter. One high averaging means a higher tilt angle and consequently a big 
sensitivity; a small averaging one implies less sensitivity.  
Another advantage is that it is possible in the method of Morris to distinguish 
parameters with linear effects from parameters with nonlinear effects.  
A drawback of the Morris analysis is that it does not allow uncertainty analysis due to 
the fact that it does not take the shape of the probability density function of the 
parameters into account. [De Wit et al., 2002] 
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3.2.4 Variance based methods 

Variance based methods are sampling-based methods but besides, they rely on the 
computation of conditional variances. They allow a global, quantitative and model 
independent sensitivity measure. Therefore, it is also understood as sort of subset of, 
e.g., Monte-Carlo based methods. 
For non-correlated input factors (i.e., measures that do not need a linear or additive 
model behaviour) shortcuts are available, e.g., the FOURIER amplitude sensitivity test 
(FAST) that does not cover uncertainty. 
FAST for instance is a variance based method to solve non-linear, non-monotonic 
problems (non-linear sensitivity analysis). It estimates the expected value and the 
variance of a model prediction by performing numerical calculations [Saltelli et al., 
2008].  
Variance based methods are of great importance if the model consists for unknown 
linearity or additivity [Saltelli et al., 2008]. An example of a variance based method for 
correlated input factors is the brute force method [Hwang et al., 1998]. The system is 
solved repeatedly while varying one or more input parameters at a time and holding 
others fixed. 
Advantages are the appreciation of interaction effects among input factors, i.e., the 
analytic structure of the model to be analyzed can be unknown. Furthermore, the 
capacity to tackle groups of input factors as well as the capacity to capture influence of 
full range of variation of the input factors [Saltelli et al., 2008]. 
However, because of the advantages mentioned, to conduct a variance based method a 
high number of simulations need to be run compared to other sensitivity methods 
[Hoes, 2007]. Therefore, a disadvantage of this method is high computational costs as 
complexity and numbers of parameters increase.  
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The main arguments of all methods are summarized in Table 3. 
 

Table 3 Comparison of four different methods to conduct global sensitivity 

analysis 
 
[European commission, 2009]. 

  I II III IV 

Local methods no no no yes 

Monte Carlo analysis yes yes yes no 

Screening methods no/yes yes yes yes 

Variant based methods yes yes yes yes 

 

I Input 

  

The input should incorporate the effect of range of input variation 
and the probability density function (pdf). It is of importance if the 
pdf is normal or uniform distributed.  

II Variation of input factors 

  

Contrary to the computing of partial derivatives (local methods) 
the evaluation of a factor whilst the other input variables are 
changed as well. 

III Model independence 

  

The SA should perform well even if the model is not linear. 
Problems arise when effect of changing two factors is different 
from the sum of their individual effects. 

IV Treatment of group factors as if they were single ones 

  
This is important for agility of the interpretation of the results (no 
dense tables).   

 

3.3 Overview UA/SA in BPS 

The effective integration UA/SA in BPS for design information and quality assurance 
is of high importance and will be discussed further on. UA/SA for instance can provide 
information about reliability towards design parameters, with respect to the overall 
design. 
In BPS, UA and SA are an important part of many ongoing research activities. They 
find use in several approaches applied for parameter screening/ reduction [Alam et al., 
2004], meta-modelling [Leung et al., 2001], robustness analysis [Topcu et al., 2004; 
Perry et al., 2008], model validation [Pietrzyk et al., 2008] among others. 
Other approaches in building performance are for instance shown in [Verbeeck et al., 
2007] where a methodology is developed to optimize concepts for extremely low 
energy dwellings. A perturbation analysis supports in analyzing the sensitivity for 
errors and error propagation.  
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Pietrzyk et al. [2008] describe the reliability in building physics design in terms of the 
probability of exceeding the critical values by physical measures as result of changes in 
climatic, structural, or serviceability parameters. They provide an example for the air 
exchange showing the reliability in the design of ventilation.  
Marques et al. [2005] for instance evaluate the reliability of passive systems by firstly 
identifying the sources of uncertainties and the determination of the important 
variables. Secondly, the uncertainties are propagated through a response surface. 
Finally, there is a quantitative reliability evaluation with the help of Monte-Carlo 
analysis.  
The integration of UA and SA to Esp-r software is shown by Macdonald [2002]. He 
quantifies the effects of uncertainty in building simulation by considering the internal 
temperature, annual energy consumption and peak loads. In [MacDonald and Strachan, 
2001] the partial application of uncertainty analysis is demonstrated by reviewing 
sources of uncertainties and incorporation of UA in Esp-r. 
De Wit [2002] determines uncertainties in material properties and uncertainties 
stemming out of model simplification for design evaluation. In [Hopfe et al., 2009] 
uncertainties in physical properties and scenario conditions are used to support decision 
making due to differences in climate change. 
 
 
The previous section provided important insight in the use, techniques and types of 
uncertainties. Furthermore, it has shown that UA/SA are part of reliability testing or 
parameter reduction in current BPS.  
In the following section a case study will be presented showing the application of 
UA/SA in BPS. The intent is to show the effective integration of UA/SA in BPS for 
design information. The methodology will be described and it will be shown how 
UA/SA are conducted. Furthermore, different types of uncertainty are emphasized, 
such as uncertainties in physical, scenario, and design parameters. The impact, the 
different groups have, will be demonstrated. Finally, the added value of UA/SA in BPS 
is demonstrated. 
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3.4 Prototype description of applying UA/SA  

By means of a case study it will be shown how to conduct UA/SA. The intent of the 
study, the methodology, and the procedure in detail will be described in the following 
section.  
The process can be divided into: 

(i) Pre-processing. 
(ii) Simulation. 
(iii) Post-processing. 

In the pre-processing, all the considered input parameters are sampled with Latin 
hypercube sampling 200 times. This is done with the freeware tool Simlab [2009].  
For the UA/SA, the MCA is selected. Further on, five different files for the BPS tool 
are generated out of the sampled input parameters. In these files all the necessary 
information for the simulation of the case study with VA114 is saved, e.g., the material 
properties of the construction, the internal heat gains, infiltration rate, amongst others. 
The generation of these files is done with Matlab.  
The generated files are passed to VA114 and the simulation is started 200 times. This is 
done automatically via Matlab. The simulation output considered is energy 
consumption and thermal comfort. 
In the post-processing, the output from the 200 VA114 simulations is compared to the 
sampled input files. The output analysis of the UA/SA is conducted with Matlab. 
The flowchart is shown in Figure 9. 
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Figure 9 Illustration of the methodology of processing UA/SA divided into the 

three steps pre-processing, simulation, and post-processing. 

 
As mentioned, focus of attention in the presented results is on energy consumption and 
thermal comfort. The results for energy demand are divided into annual heating and 
annual cooling in [MWh] for three different uncertainty cases.  
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The assessment of thermal comfort needs more explanation as a Dutch criterion is 
used. In VA114 there is one main criterion available which is called GTO-criterion. It 
is a criterion, published by the Rijksgebouwendienst [ISSO 2004]. The weighted under- 
or overheating hours (Dutch: gewogen temperatuur overschrijding (GTO)) criterion is 
based on theory of Fanger. The extent in which a predicted mean vote (PMV) of +0,5 is 
exceeded is expressed by a factor WF(Dutch: weegfactor). 
Each hour during operation time this factor is determined. The sum of these hourly 
factors over the year results in the weighted overheating hours. A corresponding 
criterion exists for the weighted underheating hours where the predicted mean vote 
(PMV) is less than -0.5. In case the system is improperly sized, the number of weighted 
overheating hours can be rather high, even higher than the number of operation hours. 
In case the number of weighted overheating hours stays below 150h per year the indoor 
conditions are in an acceptable range. The same is valid for the weighted underheating 
hours.  
The GTO value of 150 hours per year is calculated with an operation time of 8 hours 
per day. The limit of 150h arises out the 2000h/y (8h/d* 5d/w*52w/y) *5% [percentage 
of below/ upper]*1.5 [averaged value]. 
 

3.5 Case study of applying UA/SA 

The setup of the previous section will be described in more detail, starting with the 
intention of the UA/SA simulation, before describing the three steps of pre-processing, 
simulation, and post-processing. 
 

3.5.1 Objective of the UA/SA 

The aim of the UA/SA study is to support the design process by providing additional 
information of the parameters chosen. Different sources of UA/SA that play a role in 
the input of BPS have to be considered. It is hypothesized that uncertainties in the 
outcome due to physical, design or scenario uncertainties have a different impact on the 
outcome. 

On the one hand, with the help of UA/SA it was aimed to show the effect of one group 
on the outcome in the uncertainty (normal distribution and range) and the sensitivity 
(order of most influential parameters). On the other hand, it was important to consider 
all three categories at the same time, as they all are supposed to play a role according to 
practitioners’ experience in the final design process. This is shown in Table 4. 
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Table 4 Respondent results to the impact of three different 

uncertainty categories (physical, scenario, and design) in the 

conceptual, preliminary, and final design stage.  

  
physical 

uncertainties 
scenario 

uncertainties 
design 

uncertainties 

Conceptual design 
stage 30%  30%  40%  

Preliminary design 
stage 25%  41%  34%  

Final design stage 36%  28%  36%   
 
Table 4 shows the feedback from practice that was requested about the necessity of 
different uncertainty categories in different design stages. It summarizes the answer to 
the question of which group (physical, scenario, and design) they wanted to have 
considered in BPS tools in which phase of the design process. 

It can be noticed that in the final design stage all categories of uncertainties are equally 
distributed. Thus, in order to identify all sensitive input parameters from the three 
different groups, four different cases are studied in this section. 

The flowchart from Figure 9 is extended for the different cases developed in the pre-
processing part and shown in Figure 10. The four different models for the generation of 
parameters are shown on the left hand side.  
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Figure 10 Illustration of the methodology of processing UA/SA divided into the 

three steps pre-processing, simulation, and post-processing and showing the four 

different input cases for physical, design, scenario, and combined uncertainties.  

 
The procedure will be explained in more detail.  
 

3.5.2 Pre-processing  

The following steps were conducted in the pre-processing part of the UA/SA: 

 

1. Selection case study. 

In this research one case study was simulated. The simulation was conducted 
with an office building called “het bouwhuis” built in the Netherlands and 
shown in Appendix A.  
Design option 1 is considered that uses conventional central heating and 
mechanical cooling. The building is conditioned by an all air conditioning 
system with constant air volume (CAV) consisting of an air handling unit, 
supply and return fans, ducts and control units. For more information see 
Appendix A. 
Physical properties changed are listed in the Appendix B. They cover 
thickness (t), conduction (λ), density (ρ), specific heat capacity (c) for the 
wall, floor, and roof construction. Besides, the glazing properties, inside and 
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outside absorbtivity and solar absorptivity are changed. In Appendix B the 
mean (μ) and standard deviation (σ) are listed.  

 

2. Description of a target function and consideration of the essential 

input. 

The goal of the integration of UA/SA is to establish the impact uncertainties 
have on the predicted energy use and thermal comfort. The chosen case study 
consists of a number of parameters (more than 80 input parameters) dedicated 
to the different uncertainties groups.  

 

3. Assignment of a normal distribution to the selected variables. 

In order to analyze the approximate distribution of possible results on the basis 
of probabilistic inputs, all uncertain inputs are assigned a normal probability 
distribution. 
The normal distribution maximizes the information entropy among all 
distributions with a known mean and standard deviation [Simlab, 2009]. That 
is why it is chosen as the underlying distribution for data summarized in terms 
of sample mean and standard deviation. In the normal distributions, no 
negative values are possible for the input parameters. For that reason, the 
normal distribution is truncated in some cases to avoid infeasible values. 
 
The standard deviations are taken from literature. For instance, the infiltration 
rate and casual gains are comparable to a study reported in [Hopfe et al., 2007] 
and can be seen in the Appendix B. The standard deviation of the U-value and 
the solar transmittance (g-value) were fixed to 5 percent. Most of the 
deviations for physical properties can be found in literature, e.g., [Macdonald, 
2002], whilst for design and scenario less information is available.  
The calculated values in Appendix B are estimates reported in [Macdonald, 
2002]. The standard deviation of the thickness of wall, roof, and floor layers 
however, is set to 10% -due to a lack of information. This percentage has been 
estimated and reported in [de Wit, 2001]. 
Furthermore, Macdonald [2002] derived for solar absorption an average value 
from [Clarke et al., 1990], which is based on a collection of data of thermo 
physical properties from standards and measurements [Breesch, 2006].  
 

4. Generation of input matrix.  

200 different samples have been generated with the help of Simlab. For the 
generation LHS was used.  

In literature multiple suggestions about the number of simulations necessary 
can be found. For instance, in [MacDonald, 2002; Lomas, 1992] it seems that 
the reliability of results from the UA/SA does not increase after a number of 
60-80 simulations – independent of the number of variables considered. 
Breesch [2002] mentions that the number of simulations should be 1.5 times 
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the number of input variables taken into consideration in order to achieve 
reliable results.  

In Figure 11 the relation of the total number of Monte Carlo simulations to a 
confidence interval of 95%/ standard deviation is shown published in [NEN 
5128, 2001]. 

 

 

Figure 11 Reliability of the total number of MCA 

simulations [NEN 5128, 2001]. 

 

5. Selection of a method.  

For assessing the influence or relative sensitivity of each input factor based on 
the target function a methods needs to be selected. The Monte Carlo analysis 
(MCA) is applied to analyze the approximate distribution of possible results 
on the basis of probabilistic inputs.  

MCA is chosen because it is one of the most commonly used methods for 
UA/SA. MCA considers the total sensitivity due to the uncertainties in the 
entire input. That means, all input parameters are varied simultaneous.  

 

3.5.3 Simulation  

The simulation with VA114 was started with Matlab and conducted 200 times with 
different input files. VA114 is a commercially available, industry strength, and 
extensively used BPS tool in The Netherlands.  

For the 200 simulations and the 80 variables five different input files were necessary 
for the BPS tool. In these files, the sampled parameters for material properties, 



 

 40 

geometry of the building, internal heat gains, infiltration rate, switch for single/ double 
glazing are saved. 

3.5.4 Post-processing 

The post-processing was done in Matlab after the 200 simulations. The histogram and 
the normality plots are chosen for demonstrating the results of the UA. The 
standardized rank regression coefficient is used for sensitivity analysis in this study. 
The values achieved in the end, are the indicator for the sensitivity of the parameter. 
The higher the value the more sensitive the parameter is. 

The standardized rank regression coefficient (SRRC) is used for sensitivity analysis in 
this study. The usual least square regression analysis is then performed entirely on 
these ranks from the according regression analysis, which is the standardized 
regression coefficient (SRC) in this case. The values achieved in the end, are the 
indicator for the sensitivity of the parameter. The higher the value the more sensitive 
the parameter is.  

3.6 Results crude uncertainty analysis 

In literature it is distinguished between two types of uncertainty: aleatory and epistemic 
uncertainties.  
Main focus of interest in the current research is the epistemic uncertainty that is 
reducible or even resolvable with the help of building performance simulation.  
Uncertainties belonging to the epistemic group, and discussed in this work, do arise 
from many different sources and can be divided into three groups caused by different 
parameters: physical, design, and scenario uncertainties. 

To cover uncertainties in physical parameters in the presented case study, all material 
properties have been varied. The mean and standard deviations of physical variables 
are summarized in Appendix B.  

For the uncertainties in design parameters adjustments in the geometry as well as glass 
surface and glass properties have been made. The uncertainties in boundary conditions 
are covered by internal parameters such as infiltration rate and internal gains (loads 
people, equipment and lighting).  
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Table 5 List of the properties for uncertainties in 

scenario conditions and in design variations. 

 μ σ 

Infiltration AC Rate [ACH] 0.5 0.17

Loads people [W/m²] 15 2.4

Loads lighting [W/m²] 15 2.4

Loads equipment [W/m²] 20 3.2

Glass surface [%] 75 22.5

 

Room size [m²] [182, 325]
Switch between single/ 
double glazing yes/ no 

 
The results will be shown in the beginning for all categories combined that address 
physical, design and scenario uncertainties at the same time.  
 
The UA in Figure 12 to Figure 15 show the distribution of the output caused by the 
uncertainties in the input which is demonstrated in a wide spread shown in the 
histogram on the left hand side. 
The figures on the right demonstrate in how far the distribution matches the 
assumptions by means of a normality plot. Its purpose as described earlier is to 
graphically assess whether the data follows a normal distribution.  
 

 

Figure 12 Frequency distribution and normality plot of annual cooling 

when considering uncertainty in all parameters. 

 
The results for the annual cooling vary between 1 and 33 kWh/m². The normality plot 
on the right hand side follows a normal distribution. 
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Figure 13 Frequency distribution and normality plot of weighted 

underheating hours when considering uncertainty in all parameters. 

 

The results for the weighted underheating hours vary between 20 and 140h. The 
normality plot on the right hand follows a normal distribution. 
 

 

Figure 14 Frequency distribution and normality plot of annual heating 

when considering uncertainty in all parameters. 

 

The results for the annual heating vary between 30 and 117 kWh/m². The normality 
plot on the right hand follows a normal distribution. 
 

 

Figure 15 Frequency distribution and normality plot of weighted 

overheating hours when considering uncertainty in all parameters. 
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The results for the weighted overheating hours vary between 40 and 210h. The 
normality plot on the right hand does not follow a normal distribution.  

3.6.2 Results of the sensitivity analysis 

The results for the SA will be shown for annual cooling/heating and weighted over- 
and underheating hours. The results are interpreted for the SRCC coefficient. The 
figures in the following section represent an extract of the ten most sensitive 
parameters relating to one performance aspect. For the energy, the ranking is based on 
the sensitivity of the annual cooling demand, and for the comfort criterion on the 
weighted overheating hours. Furthermore, it can be seen which effect a parameter has 
with the output, positive or negative. 
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U value double glass

Thickness wall layer 2

Conductivity wall layer 3

Switch single double glass

Conductivity floor layer 1

Loads equipement

Glass surface window

Conductivity floor layer 4

Size room

Infiltration rate

Annual cooling Annual heating
 

rank Annual cooling Annual heating 

1 Infiltration rate Infiltration rate 

2 Size room Size room 

3 Conductivity floor layer 4 Switch single double glass 

4 Glass surface window Loads equipement 

5 Loads equipement Loads lighting 

6 Conductivity floor layer 1 Loads people 

7 Switch single double glass Conductivity floor layer 4 

8 Conductivity wall layer 3 U value single glass 

9 Thickness wall layer 2 Conductivity wall layer 1 

10 U value double glass Glass surface window 

 
 

Figure 16 Sensitivity plot and table showing the 10 most sensitive parameters 

based on annual cooling and compared to annual heating when considering 

uncertainty in all parameters. 
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SRRC thermal comfort design sensitivities
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Specific heat capacity floor layer 6

Conductivity floor layer 5

Glass surface window

Conductivity floor layer 4

Switch single double glass

Loads people

Loads lighting

Size room

Loads equipement

Infiltration rate

Weighted overheating hours Weighted underheating hours
 

rank Weighted overheating Weighted underheating 

1 Infiltration rate Infiltration rate 

2 Loads equipement Loads equipement 

3 Size room Size room 

4 Loads lighting Switch single double glass 

5 Loads people Loads lighting 

6 Switch single double glass Loads people 

7 Conductivity floor layer 4 U value single glass 

8 Glass surface window Conductivity floor layer 5 

9 Conductivity floor layer 5 Conductivity floor layer 4 

10 Specific heat capacity floor layer 6 Specific heat capacity floor layer 2  

Figure 17 Sensitivity plot and table showing the 10 most sensitive parameters 

based on weighted overheating hours and compared to weighted underheating 

when considering uncertainty in all parameters. 
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3.6.3 Discussion  

The previous section has shown a crude analysis covering all sorts of uncertainties 
arising in the design and decision process.  
The observed results are based on a normal distribution on assessed 95% confidence 
interval for all the parameters. The parameters ranked highest, such as infiltration rate, 
size of the room, etc., need deeper consideration. Furthermore the uncertainties 
addressed will be separated as they deserve focus also considering their difference in 
assessment. 
The data and knowledge on the various uncertainty types is limited. However, it is 
difficult and dangerous to combine them in the way it was done in the previous section. 
The three different categories of uncertainties differ in their sort of nature, and the 
significance they have on simulation, performance, and the building design.  
 
That is why a distinction will be made in the following sections showing the separation 
between uncertainties in physical parameters, scenario conditions and design 
variations.  
 

3.7 Uncertainty in physical parameters 

As mentioned earlier it is dangerous to combine different sorts of uncertainties because 
their different source of nature, controllability, etc. Thus, a distinction will be made.  

In this section only uncertainties in physical properties will be considered. Physical 
uncertainties are mostly identifiable as the standard input parameters in energy or 
thermal comfort simulation. Physical uncertainties refer to physical properties of 
materials such as thickness, density, thermal conductivity, etc., of wall, roof and floor 
layers. As a matter of fact, they are always there, and thus, inevitable.  

Taking these uncertainties into account is related to quality assurance. The designer has 
no influence on this type of uncertainty. 
The standard and mean deviations of the parameters are summarized in Appendix B. 
Besides, a change in the infiltration rate is considered that is varied between 0 and 
0.2ACH. This change seems feasible as it can be caused through bad workmanship or 
cracks in the façade. 

3.7.1 Building regulations 

As mention in Chapter 2, in order to fulfill building requirements by the Dutch law, a 
brief check is provided to guarantee that the variations lie in specified boundaries and 
the results represent reliable variations of the output.  
 
The thermal insulation according to article 5.2 and 5.3 Bb is limited as follows.  
The thermal resistance Rc of the envelope, floor and roof construction should be equal 
or higher than 2.5m²K/W. The parameter variations are shown in Table 6 to Table 8. 
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Table 6 Limitation of thermal resistance according to building regulation for 

the roof construction. 

Thickness 

[m] 
Material 

Conductivity 

[W/m·K] 

Resistance = thickness / 

conductivity [m²K/W] 

0.01 stone 0.96 0.01 

0.005 bitumen 0.5 0.01 

0.15 cast concrete 1.13 0.13 

0.1345 glass fibre quilt 0.04 3.36 

0.019 ceiling tiles 0.056 0.34 

    Rc: 3.85 

max. value    4.70 

min. value    2.45  
 
 

Table 7 Limitation of thermal resistance according to building regulation for 

the wall construction. 

Thickness 

[m] 
Material 

Conductivity 

[W/m·K] 

Resistance = thickness / 

conductivity [m²K/W] 

0.005 steel 50 0.00 

0.127 glass fibre quilt 0.04 3.18 

0.2 concrete block 1.41 0.14 

    Rc: 3.32 

max. value     4.50 

min. value     3.10 
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Table 8 Limitation of thermal resistance according to building regulation for 

the floor construction. 

Thickness 

[m] 
Material 

Conductivity 

[W/m·K] 

Resistance = thickness / 

conductivity [m²K/W] 

0.8 london clay 1.41 0.57 

0.28 brickwork 0.84 0.33 

0.1 cast concrete 1.13 0.09 

0.0635 dense eps slab ins 0.025 2.54 

0.025 chipboard 0.15 0.17 

0.015 synthetic carpet 0.06 0.25 

    Rc: 3.95 

max. value     4.85 

min. value     2.68  
 
The limitation of the air infiltration according to article 5.9 Bb varies between [0, 0.2] 
ACH. 
 

3.7.2 Results of uncertainty and sensitivity analysis 

 

Figure 18 Frequency distribution of annual cooling and annual heating when 

considering uncertainty in physical parameters as shown in Appendix B. 
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Figure 19 Frequency distribution of weighted over- and underheating hours 

when considering uncertainty in physical parameters as shown in Appendix B. 
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Density floor layer 2

Thickness roof layer 1

Density floor layer 1
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Thickness roof layer 2
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Infiltration rate

Annual cooling Annual heating
 

Figure 20 Sensitivity plot showing the 10 most sensitive parameters based on 

annual cooling and compared to annual heating when considering uncertainty in 

physical parameters as shown in Appendix B. 

3.7.3 Robustness analysis 

The model described is based as shown earlier on certain assumptions such as a normal 
distribution. If the distribution has outliers, the assumption and therefore also the 
parameters estimates, confidence intervals, etc., become unreliable. To provide the 
decision maker with the guarantee of reliable results, a robustness analysis is 
conducted.  
In this section it will be shown a robust fitting compared to ordinary least squares.  
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A weight to each data point is assigned. This is done by iteratively re-weighting least 
squares. 
This robustness analysis will be exemplified for the most sensitive parameter 
infiltration rate. The resulting figure shows a scatter plot with two fitted lines. There 
are two lines showing the robust regression and the ordinary least squares regression. 
Both lines match each other for the performance aspect annual cooling.   
 

 

Figure 21 Robustness analysis comparing robust fit to least square 

when considering infiltration rate shown in relation to annual cooling.  
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The following figure shows the plot of least squares regression and robust regression 
for the performance aspect weighted underheating hours. 
 

 

Figure 22 Robustness analysis comparing robust fit to least square 

when considering infiltration rate shown in relation to weighted 

underheating hours. 

 
For the performance aspect weighted underheating hours as shown in Figure 22 a 
mismatch between both regressions is noticeable. This mismatch results in less 
robustness of the model. Bringing the right-most data point closer to the least squares 
line makes the two fitted lines nearly identical. The adjusted right-most data point has 
significant weight in the robust fit. For the infiltration rate considered in this study it 
leads to the conclusion that a variation above 0.05ACH should be assumed.  

3.7.4 Stepwise regression and standardized rank regression coefficient 

One possibility to conduct a sensitivity analysis is to construct regression models as 
mentioned earlier. The order of sensitive parameters is already demonstrated in Figure 
20. It is one possibility of regression results provided by the standardized rank 
regression coefficient (SRRC). 
Multiple methods such as linear or non-linear regression models or regression in a 
stepwise manner exist. Two of them will be exemplified showing sensitivity analysis: 
the non-linear regression model SRRC and a stepwise regression analysis. 
In the construction of regression models in a stepwise manner, firstly the most 
influential variable needs to be determined based on the coefficient of determination 
R². The coefficient R² is the square of the correlation coefficient between the output of 
the model and the values used for prediction. It gives an impression of the goodness of 
fit of a model. R² varies between 0 and 1, i.e., if R² equals 1.0 the regression line fits 
perfectly the data. 
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The significance or sensitivity of a parameter is approached by a stepwise selection and 
the increase of the R² value, as additional variables are addressed in the stepwise 
regression. An example will be shown. 
The regression model is shown for the weighted underheating hours. The most 
influential parameter infiltration rate is determined based on R² for the regression 
model. After, a regression model is done with infiltration rate and the second most 
sensitive parameter which is the conductivity of the floor layer 4. This parameter is 
determined based on R² containing the infiltration rate and the remaining variables.  
The process continues until R² equals 1.0, i.e., the consideration of further parameters 
does not lead to an improved prediction, ergo, no other influential parameter can be 
identified.  
 

Table 23 Comparison of stepwise regression analysis and the 

standardized rank regression coefficient for the 8 most affecting 

parameters on the weighted underheating hours. 

Step Parameter R² SRRC 

1 Infiltration rate 0.917705 0.989439

2 Conductivity floor layer 4 0.922615 0.0805242

3 U value single glass 0.927646 0.0617967

4 Thickness roof layer 4 0.932054 -0.0672

5 Conductivity roof layer 4 0.935914 0.0515716

6 Thickness roof layer 1 0.938452 0.000892

7 U value double glass 0.94057 -0.0153

8 Density roof layer 5 0.94273 0.0206818

: : : :

: : : : 
 
The steps signify the movements taken in the stepwise regression. The steps determine 
all parameters in a stepwise manner that are most important. This procedure continues 
until the consideration of an additional parameter does not lead to an increase of R². 
However, it can be noticed that infiltration rate already causes a regression coefficient 
of more than 0.91. The further consideration of more parameters just increases the 
value slightly.  
It shows that infiltration rate is the most dominant parameters even though it varies 
only between 0 and 0.2ACH. Other parameters considered affect the output as well 
although with lesser effect 

3.8 Uncertainty in design parameters 

Uncertainties in design parameters can be described as design variations that occur 
during the planning process. They are fully determined by the decision maker/ designer 
himself. They can be either caused due to a lack of knowledge of the designer or they 
arise due to changes or irregularities in planning phase of the building.  
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For instance, in the conceptual design, aspects such as building mass 
(heavy/lightweight) or orientation might be unknown. Opposed to this, in the detailed 
design the designer is more indecisive regarding the glazing area or type used, the type 
of system and so on. 
The consideration of design uncertainties could improve and enable design decision 
support, in particular if it would be augmented by sensitivity analysis.  
Design variations discussed in this section will cover changes in the room geometry 
and the window size as well as the switch between single and double glazing.  
The range of parameters is summarized in Table 9. 
 

Table 9 List of the properties for uncertainties in s 

design variations. 

 μ σ 

Glass surface [%] 75 22.5

 

Room size[m²] [183, 274]
Switch between single/ 
double glazing yes/ no 

 
Further on, it will be shown what impact these variations have, how sensitive the 
performance aspects are considering decisions by the designer or if some changes don’t 
matter at all.  

3.8.1 Results of uncertainty and sensitivity analysis 

 

Figure 24 Frequency distribution of annual cooling and annual heating when 

considering uncertainty in design variations as shown in Table 9. 
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Figure 25 Frequency distribution of weighted over- and underheating hours 

when considering uncertainty in design variations as shown in Table 9. 
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Figure 26 Sensitivity plot showing the sensitive parameters based on annual 

cooling and compared to annual heating. 
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Figure 27 Sensitivity plot showing the sensitive parameters based on weighted 

underheating hours and compared to weighted overheating hours. 

 

3.8.2 Robustness analysis 

The following figure shows a scatter plot with two fitted lines. These two lines as 
explained earlier show the robust regression and the ordinary least squares regression. 
Both lines match each other for all performance aspect considered. The results are 
shown only for the weighted underheating hours compared to the room size.   
 

 

Figure 28 Robustness analysis comparing robust fit to least square when 

considering room size in relation to weighted underheating hours. 
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3.8.3 Stepwise regression and standardized rank regression coefficient  

The regression model is shown for the annual heating and annual cooling. 
. 

Table 29 Comparison of stepwise regression analysis and the 

standardized rank regression coefficient that affect the performance 

aspect annual heating.  

Step Parameter R² SRRC 

1 Size room 0.9955 0.99644

3
Switch single/double 
glazing 0.9989 -0.0479

2 Size glass surface 1 -0.0212 
 

Table 30 Comparison of stepwise regression analysis and the 

standardized rank regression coefficient that affect the performance 

aspect annual cooling. 

Step Parameter R² SRRC 

1 Size room 0.730358 -0.873

2 Size glass surface 0.974628 0.491649

3
Switch single/double 
glazing 1 0.0425974 

 
The most influential parameter for both performance aspects is the size of the room. In 
fact, for the annual heating it is very dominating. The second most sensitive parameter 
for annual heating is the switch between single and double glazing, whilst for the 
annual cooling the amount of the glass surface has a higher impact.  
The process continues until R² equals 1.0, i.e., the consideration of all three varied 
parameters is taken into account. 

3.9 Uncertainty in scenario parameters 

Uncertainties in scenario conditions are very different compared to physical and design 
uncertainties in the sense that they can change during the building life time. 
Taking scenario uncertainties into account is related to design decision support, in 
particular when considering design robustness and (future) flexibility of the building. 
They originate from considering the wide range in the possible usage of a building 
typically referred to as usage scenarios. Scenarios encompass the influence of 
infiltration rate (the operation of window openings), climate change (for instance due to 
global warming), lighting control schemes, and other occupant related unpredictable 
usage of the building.  
 



3. Uncertainty/sensitivity analysis for design support 

 57 

Scenario uncertainties or uncertainty in boundary conditions can be divided into 
internal or external scenario uncertainties. Internal uncertainties are related to the 
building operation such as internal heat gains from people, equipment, lighting, 
different set points, occupant behaviour due to control of shadings, windows, internal 
doors, etc. For instance, in natural ventilated buildings the airflow can be controlled by 
the occupants by, e.g., openable windows. External scenario uncertainties are caused by 
uncertainty in weather data or climate change.  
 
Usually, uncertainty analysis is studied quantitatively by assuming a normal 
distribution. This becomes dangerous when scenario uncertainties are considered. 
Scenario uncertainties are based on a random process. The statistical assumption of 
Monte Carlo therefore is not verified. Thus, instead of sampling internal gains as well 
as the ventilation, a model needs to be created under a priori fixed scenarios.  
 
An example is the consideration of different user behaviour related to operable 
windows. In [de Wit, 2001] for instance, a distinction between energy- friendly user 
and less energy friendly was conducted.  
At present, models are created dealing with the user behaviour in buildings. Tabak 
[2009] developed a model that simulated the use of spaces by occupants in buildings. 
Hoes [2008] uses this model already and couples it with a BPS tool to predict realistic 
energy saving of occupants-sensing lighting control.  
This approach is a first in dealing scenario uncertainties that would even make it 
possible to run different simulations assuming realistic internal heat gains.  
 
An example presented in this case study is the assumption of a new building owner that 
changes the building layout by considering a changed amount of employees in the 
building and a higher or lower amount of internal gains for equipment.  
In this case, the uncertainty analysis considers two different scenarios and the 
uncertainty variation is solely over the physical parameters. 
An example of the changed order of sensitivity for the weighted over- and underheating 
hours is shown in the next section. Two simulations have been run, one under the 
assumption of lower internal heat gains for people (9W/m²) and one under higher 
internal gains (16W/m²).  



 

 58 

3.9.1 Results of sensitivity analysis 
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Conductivity floor layer 2

Specific heat capacity wall layer 3

Thickness floor layer 6

Conductivity wall layer 3

Conductivity roof layer 4

U value single glass

Conductivity floor layer 1

Thickness roof layer 4

Conductivity floor layer 4

Infiltration rate

Lower internal gains: weighted underheating hours Higher internal gains: weighted underheating hours
 

rank 
Lower internal gains: weighted 

underheating hours 

Higher internal gains: weighted 

underheating hours 

1 Infiltration rate Infiltration rate 

2 Conductivity floor layer 4 Conductivity floor layer 4 

3 Thickness roof layer 4 Conductivity roof layer 4 

4 Conductivity floor layer 1 U value single glass 

5 U value single glass Thickness roof layer 4 

6 Conductivity roof layer 4 Thickness wall layer 3 

7 Conductivity wall layer 3 Conductivity wall layer 3 

8 Thickness floor layer 6 Thickness floor layer 6 

9 Specific heat capacity wall layer 3 Density roof layer 5 

10 Conductivity floor layer 2 Conductivity floor layer 2  

Figure 31 Sensitivity plot and table showing the 10 most sensitive parameters 

based on weighted underheating hours for lower internal gains and compared to 

weighted underheating hours for higher internal gains when considering 

uncertainty in physical parameters. 
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rank 
Lower internal gains: weighted 

overheating hours 

Higher internal gains: weighted 

overheating hours 

1 Infiltration rate Infiltration rate 

2 Conductivity floor layer 4 Conductivity floor layer 4 

3 Conductivity wall layer 3 Conductivity roof layer 4 

4 Density roof layer 5 U value single glass 

5 Conductivity floor layer 1 Thickness roof layer 4 

6 Conductivity floor layer 2 Thickness wall layer 3 

7 Thickness floor layer 6 Conductivity wall layer 3 

8 Conductivity floor layer 6 Thickness floor layer 6 

9 Specific heat capacity floor layer 6 Density roof layer 5 

10 Thickness roof layer 4 Conductivity floor layer 2  

Figure 32 Sensitivity plot and table showing the 10 most sensitive parameters 

based on weighted overheating hours for lower internal gains and compared to 

weighted overheating hours for higher internal gains when considering 

uncertainty in physical parameters. 

 

3.10 Discussion 

In the presented UA/SA the Monte-Carlo analysis and LHS for uncertainty and 
sensitivity analysis is used due to its ease of implementation. Other advantages are that 
different sensitivity analyses techniques such as standardized rank regression and 
stepwise regression are available. Furthermore, LHS is a stratified sampling, i.e., it 
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allows a dense range of the sampled parameters. It is a very sufficient method in 
analysing the verification of a model due to its robustness and correctness.  
Uncertainties have been analyzed, identified and are propagated through the model to 
assess the resulting uncertainty; sensitive parameters are ranked. The SA allows the 
analysis of the robustness of a model. Furthermore, it makes aware of unexpected 
sensitivities that may lead to errors or wrong specifications (quality assurance). With 
the help of robust regression the robustness of the parameters compared to performance 
aspects are demonstrated.  
Stepwise regression analysis is a method to identify most uncertain parameters that 
affect the uncertainty of performance aspects such as annual cooling/heating and 
weighted over-and underheating hours.  
The parameter importance can be carried out with the rank regression coefficient and a 
stepwise regression by indicating the order of sensitive parameters being selected in a 
stepwise procedure. 
This evaluation gives an idea of the significance and relevance of uncertainties for 
design decisions.  
 
The focus of the analysis is a specific aspect of performance analysis in office 
buildings, meaning the energy consumption and the weighted over- and underheating 
hours in an office room.  
The previous section showed different types of uncertainty analysis. Three different 
sets of parameters are considered: uncertainty in physical, design, and scenario 
parameters.  
Physical uncertainties are due to uncertainties in physical properties. They are 
inevitable, however, they can be identified with measurements and tests. Taking 
physical uncertainty into account leads to quality assurance of the model. Their 
significance in the use of BPS is very high. 
Considering design uncertainties could improve/enable design decision support, in 
particular if it would be augmented by sensitivity analysis. The input to a decision 
problem which system to use (option A and B) is very important in the meaning of the 
building design process.  
Taking scenario uncertainties into account is related to design decision support, in 
particular when considering design robustness and (future) flexibility of the building.  
All different types of uncertainties are essential with regard to simulation, performance, 
and building design. The integration of uncertainties in BPS can benefit design team 
meetings and dialogues with building partners. 
In the case that several alternatives are provided to the decision maker, the designer can 
choose the design option that fits best his needs covering objectives such as best 
comfort, low energy demand as defined.  
A designer might also leave the design as it (material properties) and consider different 
systems or change the building design, e.g., the glazing area and room geometry.  
Many aspects take impact on this decision procedure. These aspects are difficult to 
judge, some of them are subjective, some objective. It is difficult to weight those, 
besides the weighting might differ in a decision making group. 
To achieve the above, a special focus will lie on decision making approaches in BPS 
discussed in the following chapter. 
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3.11 Conclusion  

A realistic case study has been simulated adapting UA/SA. Four different cases were 
shown considering three different groups of uncertainty: (i) physical, (ii) design and 
(iii) scenario uncertainties.  
The results give a practical example of UA/SA for a specific case study identifying 
physical, design, and scenario uncertainties as being highly influential. 
 
The integration of UA/SA could support the design process and provide additional 
information. The output of the UA/SA is presented in different figures and tables. 
These figures and tables would help the designer in several ways.  
 

(i) Understanding of how parameters are related to each other.  
(ii) Comprehension of how variations in the model input affect the output. 
(iii) Support in the decision process by providing a basis to compare different 

design options. 
(iv) Enhancement of the use of BPS by providing additional support, and 

therefore, leading to a better guidance in the design process. 
 
In what manner the presented results will help in supporting the designer in designing 
building and systems and further in improving the planning process, will be evaluated 
with the help of mock-up studies and an online survey in Chapter 6.  
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44  
4. Multi-criteria decision making 

4.1 Introduction 

Decision analysis (DA) describes theory and methodology to handle decision making 
in a formal manner. Multiple methods, procedures, algorithms and tools applying those 
approaches are available for structuring a problem into formal representation, guiding 
to a common consensus, addressing risk and uncertainty or experts experience.  
DA according to Zhou [2006] can be structured as follows. 
1. Decision making under uncertainty including decision tree, influence diagram, and 
multiple attribute utility theory (MAUT). 
2. Multi-criteria decision making (MCDM) such as multi-objective decision making 
(MODM) or multi-attribute decision making (MADM). 
3. Decision support systems (DSS) such as intelligent DSS based on intelligent agents 
or artificial intelligence (IDSS). 
 
These techniques differ in complexity and set of strategies. E.g., MADM chooses from 
small, finite, or countable number of alternatives in the decision problem whilst 
MODM focuses on a large, infinite, or uncountable number of alternatives. 
Furthermore, MCDM is mostly classified based on the type of input data or on the 
calculation of the best solution. However, regardless which techniques are applied, in 
literature it was mostly referred to as MCDM. 
 
Many reviews of MCDM have been conducted in the past. To mention some, Hobbs et 
al. [1994] describe methods for resource planning. DA in energy and environmental 
modelling under uncertainty is a review by Huang et al. [1995]. Salminen et al. [2006] 
present a review about multi-criteria methods for environmental planning. Pohekar et 
al. [2004] summarize application areas and trends in the context of sustainable energy 
planning, etc.  
 
In the following section the theoretical background will be summarized. This chapter 
continues with state of the art of MCDM in building performance evaluation by 
providing a framework and categorizing the diverse approaches into three different 
schools of thoughts.  
(1) Deterministic decision making, assuming one solution after weighting the criteria.  
(2) Decision making with Pareto.  
(3) “Smart” decision making - decision making through the help of expert judgment 
that implies a human process while less relying on a tool. 
Furthermore, a case study is performed showing analytical hierarchy processing 
(AHP), one of the most famous deterministic decision techniques, extended with the 
use of BPS and the integration of UA/SA.  
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4.2 A framework for decision making approaches in building performance 

Figure 33 describes a framework that is developed to show different approaches for 
decision making in the context of the design of building systems. This framework 
shows how decision makers could select the best design alternative for a particular 
performance problem. 
Before the decision making process starts, the scope of the design decision problem 
must be completely defined in the format of the problem statement. This statement 
should describe specific design expectations for the building system of interest. On one 
hand, design expectations should be determined by a set of relevant design objectives 
that must be measurable by specific quantifiable outcomes. On the other hand, 
designers use their knowledge and expertise and combine them with creative thinking 
to generate as many as appropriate design solutions for the building system. Although a 
large number of alternatives for the building system extends the duration of the 
decision making process, it increases the possibility that the best design choice for the 
building system can be found. Design alternatives are characterized in terms of several 
attributes and can be either discrete or continuous. The objective of design decision 
making is to determine the most optimal values for these attributes that define the best 
design alternative for the building system. Thus, in building design decision making, 
specific design alternatives will be compared according to their contributions to 
particular design objectives.  
Several decision making approaches have been applied in the design of building 
systems. These approaches can be divided into two broad categories. The first category 
contains decision making approaches that use building performance assessment models 
and simulations for comparing design alternatives. Approaches in this category can 
further be divided into deterministic and nondeterministic decision making approaches, 
depending on whether or not they consider uncertainty in the values of model 
parameters in design decision making. The second category contains decision making 
approaches that do not use any building performance simulation.  
Building performance simulation has been developed and used to assess the future 
performance of building systems in multidimensional space of specific design 
objectives. Characteristics of design alternatives (A1, A2, …, An) are used as inputs for 
building performance assessment models and outcome values of design objectives (O1, 
O2, …, Om) will be returned as outputs from building performance assessment 
simulation.  
 
Building performance assessment models can be used as the backbone for the analysis 
procedure in a variety of deterministic decision making approaches for building system 
design. The value of model parameters are assumed to be fixed in deterministic design 
decision making approaches. The best design alternative will be selected under the 
certainty assumption. The selection phase that follows the analysis phase is based on 
one of the techniques in multi-criteria decision making theory under certainty. This 
approach will be presented in Section 4.4.1.  
 
Many researchers suggest conducting uncertainty and sensitivity analysis on the chosen 
optimal design alternative(s) to overcome the limitation of fixed parameter values in 
deterministic decision making approaches. Uncertainty and sensitivity analysis helps 
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design decision makers in assessing how changes in parameter values impact the 
performance of building systems. This way to study uncertainty in design decision 
making will be shown in Section 4.4.2 by combining the results from Chapter 3 with 
the classical Analytical Hierarchy Process (AHP). 
However, most of the time it is not easy to pick a single design alternative as the best 
alternative for a building system since design alternatives compete with each other 
across multiple design objectives. Hence, designers perform Pareto optimality analysis 
to determine the frontier of design alternatives that are not dominated by other design 
alternatives with respect to their performance in the multidimensional space of design 
objectives. Several design alternatives will be removed from further consideration 
based on Pareto optimality analysis in deterministic decision making.  
Building performance simulation can also be used as the analysis backbone in 
nondeterministic decision making approaches. The big difference is that the values of 
model parameters are not fixed in nondeterministic decision making approaches. 
Important sources of uncertainty that are identified by designers will be treated as 
nondeterministic parameters in building performance assessment models. The risk 
factors show uncertainty as indicated by (c1, c2, …, ck) in Figure 33. Designers also 
provide the distributions of these uncertain parameters in building performance 
assessment models. Outcome values of design objectives will be computed by building 
performance assessment models for each design alternative. Probability distributions of 
multiple outcome values (or risk profiles of design objectives) will be calculated for 
each design alternative using building performance assessment models. Some 
researchers suggest using one of the multi-criteria decision making approaches under 
uncertainty to choose the best design alternative considering risk profiles of design 
objectives for the all design alternatives [Zhao et al., 2004; Cooke, 2008]. Other 
researchers have used MAUT as a standard decision analysis methodology for decision 
making under uncertainty [Blondeau et al., 2002; Nassar et al, 2003]. Designers 
express their preference for each possible set of outcome values of a design alternative. 
This preference is specified in terms of a single value, which is called the utility value. 
The utility values of design alternatives (A1, A2, …, An) are shown by (U(A1), U(A2), 
…, U(An)), respectively in Figure 33. Probability distributions (or risk profiles) of 
utility values will be summarized for each design alternative. MADM approaches will 
be used to choose the best design alternative considering risk profiles of utility values 
for the entire set of design alternatives. 
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As mentioned earlier, there are also approaches that do not use formal models and 
simulations for design decision making. This can be as a result of limited resources 
(either financial or time wise) or the lack of sufficient knowledge about an underlying 
building system. Anyhow, inputs from outstanding designers are used for the decision 
making. Designers can help decision making in two ways as shown in Figure 33. 
Designers specify sources for uncertainty and evaluate probable errors in terms of a 
certain aspect [Hui et al., 2007]. This direct selection is primarily based on design 
expert opinions without using any formal modelling and analysis.  
In addition, designers can estimate outcome values of design objectives for each design 
alternative [da Graca et al., 2007]. This estimation bridges the gap between design 
alternatives and values of design objective without any need for building performance 
assessment models and simulations.  

4.3 Overview of techniques in DM 

4.3.1 The deterministic weighted criteria approach 

Most decision making is prescriptive or normative. It is aimed at making the best 
decision without taking uncertainties into consideration. Decision makers should have 
the perfect insight and knowledge to take the most rational decision/ solution in the 
end. In the normative theory, a model is provided that allows a rational decision maker 
to keep his preference over certain attributes consistent in his task [Moon et al., 2007]. 
It enables the ranking of available options by decision maker’s preference [Moon et al., 
2007]. The deterministic problem can be expressed in a matrix form that is shown in 
equation (1), where the criteria C indicate the performance to the alternatives A.  
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A set of m alternatives mAAAA ,...,,, 321  is given, as well as a set of n decision 

criteria nCCCC ,...,,, 321 . Furthermore, it is assumed that the decision maker has 

determined the performance value ija  (for the 
th

i  alternative and the 
thj  decision 

criterion) of each alternative; jw as the weight of the 
thj  criterion and ix  as the 

ranking value of the 
th

i alternative of each alternative. 

The weighting jw  defines the importance of the criteria/alternatives. These weights 

are usually normalized. Several techniques have been developed and applied in the 
past. Some of them that have been implemented in BPS will be described briefly.  
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4.3.1.1 Simple multi-attribute rating technique (SMART) 

SMART is based on the theory of multi-attribute utility. Its implementation is simple. 
There is a direct entry of relative score and weights. One example for the additive 

model to obtain the ranking value ix  (performance value) of alternatives jA , taken 

from [Fülöp, 2005] reads 
 

∑∑
==

=
n

j

jj

n

j

iji wwax
11

/ ,  for i= 1,2,…,m    (2) 

 
In BPS only one application of SMART is found. In Salminen et al. [1998] it is used to 
compare it with three other multi-criteria methods. For that reason, they use four 
different real applications in the context of environmental problems.  
An advantage of Smart is that all differences in criteria values are taken into account, 
i.e., differences such as preferences, indifferences, and incomparability are assigned a 
numerical value. It was stated that it is a very easy to implement method. However, it 
was also found out, that it only can be applied with a limited number of criteria; a 
maximum number of eight is advised.  
In order to avoid problems in decision making with a higher number of criteria, 
Salminen et al. [1998] propose to rank the criteria first and then to drop those with a 
lower weighting.  
The proposed formula for SMART is only one example. Different models for the utility 
values can be assumed, e.g., a variant named SMARTS (SMART using swings) 
considers the amplitude of utility values of the alternatives [Edwards et al., 1994]. That 
means the difference from worst to best utility value among the alternatives. 

4.3.1.2 Analytical hierarchy process (AHP)  

The AHP protocol (developed by Saaty in the 1970s) is one of the most widely applied 
and well-known techniques of MCDM. AHP lets stakeholders rank the criteria by their 
importance in relation to the decision problem and in relation to each alternative 
through a pair-wise comparison [Saaty et al., 1980]. The use of AHP applied for a case 
study is shown in Section 4.4. 
AHP is based on the assumption that decision problems can be hierarchically structured 
with an one-directional relation between the decision levels. 

The 
*
AHPscoreA  of the best alternative is calculated by 

 ,max
1

*
j

n

j

ij
i

AHPscore waA ∑
=

=  for i= 1,2,…,m    (3) 

 
AHP is also the most commonly applied technique in decision making in BPS. More 
than 20 recent approaches are found in literature, e.g., such as follows. 
Chiang et al. [2002] published a study on the comprehensive indicator of indoor 
environment assessment for occupants' health.  
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Wong et al. [2008] showed an application of the AHP in multi-criteria analysis for the 
selection of intelligent building systems.  
Kim et al. [2005] developed a housing performance evaluation model for multi-family 
residential buildings considering criteria such as thermal comfort, indoor 
environmental quality, usability, and surroundings. 
In general, it is stated that it is an easy to implement approach, applicable for multiple 
stakeholders and multi-criteria decision problems [Wong et al., 2008].  
 
However, also many criticisms can be found. For instance, that it suffers from rank 
reversal if one of the criteria is deleted during the decision process [Hazelrigg, 2005]. 
Further, it lacks of firm theoretical basis and uncertainties are not considered in the 
conventional AHP.  
Besides, the weighting scale of 1-9 can cause problems in the consistency of the 
ranking which has been shown in [Tam et al., 2006]. Tam et al. [2006] also propose an 
alternative method that limits the scaling to 1-3 and thus, automatically solves the issue 
of the consistency. 

4.3.1.3 ANP (Analytical network process)  

The ANP, also developed by Saaty [2004], can be described as the generic form of 
AHP. It provides a framework that enables the user to handle decision making 
considering dependencies of elements on different levels.  
The ANP opposed to the AHP offers a control network that, instead of a linear 
hierarchy with a goal on the top down to the alternatives on the bottom (AHP), has a 
nonlinear structure. This is beneficial, if the decision problem does not consist of 
elements but groups of clusters. Within this control network, different criteria can be 
dealt with leading to the analysis of risks, opportunities, etc. [Saaty, 2004]. 
An example of the application of ANP in BPS is given in [Cheng et al., 2007]. They 
propose ANP in process models giving an example of strategic partnering. The 
problem is divided into partnering information (e.g., communication, team building), 
partnering application (partnering goals), and partnering reactivation (long-term 
commitment). The three top level aspects, information, application, and reactivation, 
are indirect or direct related to each other. To cover those relations, ANP is a good 
solution.  
If the relationship between aspects and criteria is uni-directional and the elements of 
different decision levels along the hierarchy are uncorrelated, AHP is sufficient.   

4.3.1.4 Weighted sum method (WSM)  

The weighted sum method is according to the equation very similar to the AHP. The 
difference is that in the AHP the criteria are brought into relation and no actual values 
are used.  
 
The WSM is the most commonly applied method in single dimensional problems 
[Triantaphyllou, 2000]. That means, problems, where two criteria exist that have the 
same unit in order to be comparable. As an example, if the criterion is cost related, the 
investment versus the running costs can be evaluated. However, the problem is not 
solvable with WSM, if thermal comfort should be compared to energy consumption. 
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The best alternative is based on the WSM score
*
WSMA :  

j

n

j

ijWSM waMaxA ∑
=

=
1

*
 for i= 1,2,3,..m    (4) 

WSM is based on the additive utility assumption which implies that the total value of 
each alternative equals the sum of products such as in equation (4) [Triantaphyllou, 
2000].  
Examples for the applications of WSM in BPS are in the design for sustainability 
shown in [Ugwu et al., 2007] or in the building environmental assessment by Soebarto 
et al. [2001]. They for instance describe theory and implementation of multi-criteria 
assessment of building performance. For this reason, they convert the multi-criteria 
problem into a two-criterion problem by forming a weighted sum of the benefits and 
costs for each solution.  
However, if the problem is multi-dimensional (different units) the additivity 
assumption is violated [Solnes, 2003].  
Another drawback of WSM is that the domination of one criterion may occur. This can 
be the case with a non-convex Pareto front. Only extreme solutions (solutions on the 
edges) can be found but no sufficient solutions in between [Emmerich, 2006].  

4.3.1.5 Preference ranking organization method for enrichment evaluation 

(PROMETHEE) 

PROMETHEE is a method that uses the outranking principle to rank alternatives. Like 
AHP, it provides pair-wise comparison of alternatives. In [Brans et al, 1986] six types 
of generalized criteria are presented: usual criterion, level criterion, Gaussian criterion, 
amongst others.  
Further on, two ways were proposed: PROMETHEE I for obtaining a partial order of 
parameters and PROMETHEE II for obtaining a complete order.  
 
PROMETHEE is compared to SMART in a BPS study by Salminen et al. [1998]. They 
apply the method in the context of environmental problems and present it as easy to 
implement and with comparable results to SMART.  
Similar to the AHP approach, PROMETHEE suffers also from rank reversal.  
Nevertheless, a disadvantage compared to AHP is that differences in criteria values, 
due to restrictions of the pair-wise comparison, are not taken into account totally. Other 
drawbacks of this method are summarized in [De Keyser et al., 1996]. 
 

4.3.1.6 Elimination and choice translating reality (ELECTRE) 

ELECTRE is after the AHP approach the second most applied decision making 
protocol in BPS. 
The ELECTRE method such as PROMETHEE was introduced to handle outranking 
relations by pair-wise comparison among alternatives [Triantaphyllou, 2000]. It can 
deal with discrete criteria of quantitative and qualitative nature [Pohekar et al., 2004]. 
ELECTRE uses the concordance/ discordance indices as well as threshold values.  
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The concordance index can be defined as the amount of evidence to conclude that 

alternative iA  dominates kA ; the discordance index defines the counterpart. 

The presented index of global concordance ikC  shows the evidence to support the 

concordance among all criteria, assumed that iA outranks kA  [Pohekar et al., 2004]. 

 

( )∑ ∑
= =

=
m
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m
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jkijjik wAACwC
1 1

/       (5) 

 
ELECTRE I is for constructing a partial ranking and choosing a set of promising 
alternatives. In [Blondeau et al., 2002] it is used for finding the most suitable 
ventilation strategy in a summer period considering indoor air quality, thermal comfort, 
and energy consumption. 
ELECTRE II is applied for ranking the alternatives [Fülöp, 2005]. An application can 
be found in [Rutman et al., 2005] for analyzing the quality of an air-conditioned 
environment. Criteria used are thermal and acoustic comfort.  
ELECTRE III is based on a global preference model, expressed by weights assigned to 
criteria [Beccali et al., 1998]. The measures for the ranking can be expressed by a 
degree of confidence. ELECTRE III is the recommended method among three 
techniques (SMART and PROMETHEE) by Salminen et al. [1998]. However, the 
application is also described of appearing rather complicated and time consuming. 
Therefore it is not advised choosing ELECTRE if fast results need to be obtained or the 
ranking of criteria can change during the decision process. 

4.3.2 Decision making with Pareto optimization 

Pareto was an Italian economist who, together with Edgeworth was the first to come 
with the concept of vector dominance or Pareto dominance, defining a partial order on 
the set of objective function vectors of a set of decision alternatives.  
The maximum number of elements of this partial order are said to be Pareto optimal. 
Pareto optimization identifies the set of non-dominated solutions and visualizes the 
projection of this set in the objective space. This projection, the so-called Pareto 
frontier, can be interpreted as a trade-off curve or surface on basis of which the 
decision maker can learn about the nature of the decision conflict and choose a 
compromise solution from the reduced set of alternatives.  
 
Definition Pareto dominance 

It can be said that 1y dominates 2y ( 21 yy f ), if it is better in at least one component 

and minimum equivalent in the remaining components. Dependent on the objective 
function it can be either < or >. 
In case, two points do not dominate each other, they are both equivalent.  
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The amount of non-dominated solutions is called Pareto frontier. 
 

Non-dominated -> 

Pareto frontier 

dominated region

y1

y2

  

y1

y2

Pareto frontier

decision making

dominated region

 

Figure 34 Visualization of the Pareto frontier as a set of all non-dominated 

points in the context of decision making. 

 
In Figure 34 the Pareto frontier is shown as the set of all non- dominated points. In this 
example the maximisation problem is described of a two-order Pareto frontier, i.e., the 
decision problem induces two objectives. In high-order Pareto as in [Kollat et al., 2007] 
three or more objectives are applied.  
 
Different methods enabling the user to generate the Pareto frontier can be found in 
literature [Wuppalapati et al., 2008] such as follows. 

1. Genetic algorithms: a population of search points is moved gradually to the 
Pareto frontier, driven by mutation, recombination and selection operators. 
The non- dominated points are identified and adjustments are done in order to 
fitness the values (see Chapter 5). 

2. Weighting approach: after defining the weighting, results are plotted in 
criterion space. It is applicable for problems with a non-convex Pareto 
frontier.  

3. Constraint method: all except one objective are treated as constraints. By 
gradual relaxation of the constraints a complete picture of the Pareto frontier is 
obtained. 

 
Three different approaches can be defined in Pareto optimization in the context of 
MCDM: a priori, a posteriori, and progressive.  

4.3.2.1 A priori  

The latin phrase "a priori" can be translated as "from cause to effect" or "from what 
comes before". It is a deductive method and implies that a decision regarding the 
preferred solution has to be made before the search of the solution space (decide → 
search). A priori methods are single objective approaches that require experience and 
knowledge from the decision maker when aggregating different objectives.  



4. Multi-criteria decision making 

 73 

For the performance aspects weights have to be assigned. For the constraints boundary 
values have to be set. A classical a priori method is the normative decision making . An 
example shown in Figure 35 is the weighted sum of, for instance, two criteria yielding 
in a single objective function. Wright et al. [2002] show the cost function built out of 

the investment costs ( )(Xf I ) and the running costs ( )(Xf R ) with an assigned 

weighting. 

)()()( XfwXfwXf IIRR +=       (6) 
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Figure 35 Illustration of the weighted sum of 

investment costs and running costs.  

 
It needs to be added that a priori methods are very similar to weighted sum methods 
and have therefore been already discussed in 4.3.1.4. In contrast to Section 4.3.1.4, 
where a deterministic search space is considered, the search space in the context of 
Pareto optimization is much larger. Therefore it might be said that a multi-objective 
optimization problem is solved by recasting it as a single-objective optimization 
problem. 

4.3.2.2 A posteriori  

The latin phrase "a posteriori" stands for “from what comes after”. It is an inductive 
reasoning based on observation or observed facts. It means first search then decide. The 
Pareto optimal set has to be found first, before the decision is taken. The following 

example shows two objective functions )(1 Xf  and )(2 Xf . The non-dominated 

solutions are indicated in Figure 36 by the number "0". It means there is no other 
solution that has a lower value in any criterion; on the contrary the solution labelled "4" 
has four other solutions in the set that dominate it in both objectives.  
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)(1 Xf

)(2 Xf

 

Figure 36 Illustration of a posteriori with two 

objectives to be minimized [Wright et al., 2002]. 

 
Multi-objective evolutionary algorithms (MOEA) support the multi-objective decision 
making; with help of the population-based search multi-objective evolutionary 
algorithms (MOEA) the entire Pareto front can be approximated in a single run of the  
algorithm [Deb, 2001]. Examples are shown in [Kollat et al., 2007] and [Emmerich et 
al., 2008]. 
 

4.3.2.3 Progressive  

The progressive method stands for a decision making where deciding and searching is 
merged into each other (decide ↔ search). The process of guiding and searching is 
conducted interactively by assigning different weights throughout the decision process 
and repeating the optimization. It is obvious that this procedure is computationally 
intense and requires lots of time. This is the reason why it is less applied in building 
performance [Wright et al., 2002]. Examples can be found in [Miettinen, 1998]. 

4.3.3 "Smart" decision making 

Smart decision making means that the decision process includes knowledge and 
experience from experts. It can be described as a snapshot of the experts’ knowledge 
that, based on information, experience, etc., can even change through time. Experts in 
building performance can be stakeholders participating in a design team meeting with 
equivalent or different background depending on the problem situation. Assuming that 
they are qualified, their specific expertise must be recognized. Decision making based 
on expert knowledge is a well-known method of decision analysis in engineering, risk 
assessment, and environmental research. 
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Formal processes can be applied starting by choosing the experts and stating their 
background and knowledge considering one problem area. Further on, the problem 
statement is defined, and methods are chosen to elicit and analyze the judgment. 
Examples in literature, where user judgement is applied, include prediction of 
performance [Jensen et al., 2009], information about what data sets are of importance 
for an analysis [Wong et al., 2008], probability distributions in a problem situation [Hui 
et al., 2007], and importance/ necessity of variables in a statistical study [Chiang et al., 
2002], among others.  
The goal of expert judgement is usually to structure a problem, to find the necessary 
and relevant criteria, to provide estimates of failure, to determine factors for combining 
data sources, etc. The way to express the results/ estimates of expert judgment is either 
in a quantitative form (probabilities, uncertainty estimates, physical quantities, e.g., 
costs or weighted overheating hours) or in a qualitative form (written explanation of an 
experts assumption, physical quantities like "the system performs badly" or comments 
why certain data are relevant and others not) [Meyer et al., 2001]. It is a preferable 
method when information and data are expensive to achieve, or the problem is difficult 
or should involve different interpretation. Besides, it integrates heterogeneous 
information to determine the state of knowledge in a problem (for example, what is 
known and how well it is known) [Meyer et al., 2001]. 
For the analysis of the expert judgment statistics play a major role. Mathematical 
methods are provided for aggregating differing experts' responses, quantifying the 
accuracy of experts’ predictions, combining different types and sources of data, and 
formulating models using the experts' responses [Cooke, 2008]. 
Expert judgement in BPS is often found in combination with Pareto [da Graca et al., 
2007] and deterministic methods like AHP [Wong et al., 2008; Ugwu et al., 2007]. In 
some cases the expert judgment was further on used to achieve a prior estimation for 
distribution. Bayesian methods can be used after "real" data becomes available to 
update expert’s reliability.  
 
A Bayesian network (or Bayesian Belief Network (BBN) or causal probabilistic 
network) is a graphical model that provides support to experts dealing with incomplete 
or uncertain information. It consists of two parts: a probabilistic graphical model and 
its underlying probabilistic distribution [Naticchia et al., 2007].  
It is a well-known method in the field of reasoning under uncertainty and therefore to 
deal with incomplete or uncertain information. Formally, a Bayesian network can be 
described as a directed graph, together with an associated set of probability tables 
[Pearl, 1988]. The graph consists of nodes that represent variables that are either 
discrete or continuous. The arcs encode conditional independencies between the 
variables. 
There exist efficient algorithms that perform inference and learning in Bayesian 
networks, in order to support BBN for probability dissemination purposes and for 
elicitation of conditional probability tables [Naticchia et al., 2007].  
 
 



 

 76 

4.4 Prototype description of applying AHP 

In the previous sections, the state-of the art of several approaches for decision making 
in BPS were presented. None of the approaches that were demonstrated include the 
integration of results that are achieved from BPS and UA/SA of the simulation result. 
Due to the fact that UA/SA is an important subject, the implementation of a common 
decision making protocol coupled with BPS and UA/SA information will be shown in 
the next section. 
 
The prototype description is divided into the conventional and the adapted AHP 
protocol. The setup will be described briefly before the more extensive description is 
shown in Section 4.5. 

4.4.1 The classical AHP 

The AHP protocol is a deterministic decision approach described in Section 4.3.1.2. 
AHP has been chosen as it is one of the most commonly applied techniques in decision 
making. The setup is easy to comprehend and sufficient for multi-criteria decision 
problems being solved by multiple stakeholders. Besides, it will be shown that it can be 
easily extended by the use of BPS and UA/SA. 
First, the classical AHP will be described. Then the traditional decision protocol will be 
extended with uncertainty in performance prediction. The workflow of the classical 
AHP protocol is shown in Figure 37. 
 
The decision making protocol starts with defining the objective of the decision making 
problem, stating number of stakeholders and the criteria relevant to conduct the 
decision.  
The comparison matrix is built by a pairwise evaluation of each alternative and 
criterion. A priority ranking is developed in the end, indicating the best solution of the 
problem defined.  
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Figure 37 Illustration of the workflow showing the classical AHP 

protocol from defining the issue down to developing the priority 

ranking.   
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4.4.2 The adapted AHP  

 
In Figure 38 the conventional AHP protocol is shown on the left hand side. On the 
right, the add-on to the classical approach is shown which will be described in Section 
4.5.2 more detailed. The concept is to include UA/SA in the decision making process 
and to evaluate the performance aspects that are calculated with BPS under uncertainty. 
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Figure 38 Illustration of the workflow of the adapted AHP protocol that includes 

the use of BPS and the conduction of UA/SA.  
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4.5 Case study of applying AHP 

From evidence gathered from previous research, interviews with leading building and 
system designers [Hopfe et al, 2005], and design team observation [Hopfe et al, 2006] 
it can be concluded that decision making in the context of high performance buildings 
requires an integrated team approach.  
Architects, engineers, building physicists, clients, and occupants should be involved 
from the early beginning. Over-restricted and/or unsynchronized design teams run the 
risk of limiting themselves too early in the design process.  
However, even with well-coordinated partners, it can be difficult to find consensus on 
basic design concepts that lead to a design solution that all parties perceive as optimal.  
The main reason for this is the multitude of perspectives, targets, and criteria on one 
hand. And on the other hand, the preferences that are present among each stakeholder. 
This begs for the adoption of rational decision making protocols by multi-stakeholder 
design teams. Most of the reported work found in literature (cf. Section 4.3) does not 
deal with an important aspect of decision making: the role of uncertainty and risk 
attitude of the stakeholders. It is hypothesized that uncertainty in performance 
predictions of competing options is not negligible and therefore should play a major 
factor in the decision.  
At a certain level of abstraction, design evolution can be viewed as a series of decisions 
under uncertainty. A decision is taken based on the design options that produce the 
most desirable outcomes, while accepting the associated risk that this option may also 
produce less favourable outcomes in certain performance aspects. It is further 
hypothesized that in order to support a design team to reach an optimal decision a 
computational approach is needed. This informs the team about predicted building 
performance (also revealing the risk of under-performance) and may initiate a 
discussion aimed at identifying the most favourable concept given the risk attitude of 
the stakeholders. 
 
In the following section a decision making protocol is described to achieve this. The 
case study from Appendix A is taken with an additional option. The building is an ideal 
case study because it combines flexibility and function. In addition the project’s final 
stage confronted the design team with a choice between two options both of which 
were designed in great detail, i.e., both of them ready-to-be build. The first option 
represents a mainstream standard solution: a conventional heating/cooling system like 
the one chosen for the uncertainty/sensitivity study in Chapter 3. The second design 
option represents a novel, “risky” design, incorporating heating/cooling storage in 
combination with a double façade. Both systems are described in Appendix A and B. 
 
The treatment of the case follows common rational decision theory and hence assumes 
that the decision process is purely rational. Furthermore it is assumed that stakeholders 
pursue no other agenda then choosing the best performing design option. In this 
decision process they are only influenced by the objective probabilistic predictions of 
the relevant performance measures, their subjective importance ranking and the risk 
attitude of each stakeholder. The decision problem thus falls in the standard category of 
multi-criteria decision making under uncertainty.  
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The design team of the project consisted of the following members, amongst others: the 
architect [Klunder architecten, 2009], the building physics consultant and systems/ 
building services engineer [Nelissen b.v., 2009]. 
Three members of the design team were asked separately to make a list with the most 
important performance aspects of the building. Performance aspects such as initial 
costs, architectural layout, image/symbolism, energy consumption and thermal comfort 
were mentioned by all participants although with varying levels of significance and 
importance. 
The following table shows the (reduced set of) performance criteria that are the focus 
of the decision making process that is described in the next sections. 
 

Table 10 Listing of the performance aspects that are 

relevant in the decision making process. 

A initial costs 

B indoor resultant temperature 

C overheating hours (weighted) 

D under-heating hours (weighted) 

E individual control 

F floor area per person 

G space height 

H energy consumption 

I architectural form 

J symbolism (image /status) 

K changeability (flexibility)  

4.5.1 The classical AHP 

In the classical AHP protocol the criteria have to be selected and ranked to each other 
by a pair-wise comparison and assigning numbers from 1 as ‘equally important’ up to 9 
for ‘extremely more important’ (see Appendix D).  
Table 11 shows the result of the ranking based on a consensus of three stakeholders. 
The result of the decision makers separately can be seen in the Appendix D. The 
column on the right side of Table 11 is the weighting factor based on normalizing all 
criteria after computing the eigenvalue. As Saaty [1985] has proven mathematically the 
eigenvalue is a good solution for obtaining a set of priorities out of a pair-wise 
comparison matrix. Therefore, the matrix is multiplied with itself, the sum of the rows 
is built and normalized.  
It can be noticed that performance aspect A ‘initial costs’ is not included in Table 11. 
Even though it was stated that initial costs have an impact on the final decision, it was 
requested by the decision makers to exclude the costs in the beginning of the decision 
protocol as they become only relevant in the end of the decision process. The purpose 
is to show graphically the overall performance compared to a cost factor in the end.  
It can be seen that symbolism has the highest impact followed by the weighted under- 
and overheating hours. 
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Table 11 Illustration of the decision matrix for the calculation of the weighting 

factors for the performance aspects B to K. 

 

    B C D E F G H I J K      

B 

indoor resultant 
temperature 1 0.33 0.33 1 5 7 1 0.33 0.2 1  B 0.061 

C 

overheating hours 
(weighted) 3 1 1 3 7 7 3 1 0.33 3  C 0.146 

D 

Under heating hours 
(weighted) 3 1 1 3 7 7 3 1 0.33 3  D 0.146 

E 
individual control 

1 0.33 0.33 1 5 7 1 0.33 0.2 1  E 0.061 

F 

floor area per 
person 0.2 0.14 0.14 0.2 1 3 0.2 0.14 0.14 0.2  F 0.018 

G 
space height 0.14 0.14 0.14 0.14 0.33 1 0.14 0.14 0.11 0.14  G 0.013 

H 
energy consumption 

1 0.33 0.33 1 5 7 1 0.33 0.2 1  H 0.061 

I 
architectural form 

3 1 1 3 7 7 3 1 0.33 3  I 0.146 

J 

symbolism (image 
/status) 5 3 3 5 7 9 5 3 1 5  J 0.287 

K 

changeability 
(flexibility) 1 0.33 0.33 1 5 7 1 0.33 0.2 1  K 0.061  

 

As an example, the results of the weighting for performance aspect B = 0.061 is 
calculated as follows.  
The sum of the products 1-10 from the first row (for B) with column 1 
((1*1)+(0.33*3)+ (0.33*3)+…) until column 10 ((1*1)+(0.33*3)+ (0.33*3)+…).  
 
The result is normalized with all the other weightings, i.e., the total sum of the last 
column is 1. 
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The relative importance is shown graphically in Figure 39 in a Pareto plot. The criteria 
by means of their relative importance are shown in a block diagram and a cumulative 
graph.  
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Figure 39 Illustration of the Pareto plot showing the 

percentage impact of the performance aspects 

considered to the total performance of 100%. 

 
 
After calculating the weighting factor for the performance aspects B to K as shown in 
Table 11, the two options (Appendix A) have to be compared to each other. For that 
reason they have to be assessed for every performance aspect separately. This is shown 
in Table 12 and 13. The perception for each option considering criterion H 
‘architectural form’ and I ‘symbolism’ is judged qualitatively by the stakeholders.  
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An example is shown for the aspect H (architectural form). Design option 2 is 
according to Appendix D “very strongly more important/ better” compared to design 
option 1. This relation is expressed with a ‘7’. The decision matrix is as follows. 
 

  21 optionoption   

2

1

option

option    

2

17

7/11
⎥
⎦

⎤
⎢
⎣

⎡
 

 
For the explanation of the calculation of the ranking for the criteria the following table 
is shown.  
 
 

Table 12 Demonstration of the calculation of the weighting for the performance 

aspect architectural form. 

H: architectural form         

  
design 

option 1 

design 

option 2         

design 

option 1 1 0.14

(1*1)+ (0.14*7)+ 

(1*0.14)+ 

(0.14*1) 2.28
2.28/ 

18.28 0.12 

design 

option 2 7 1
(7*1)+(1*7)+ 

(7*0.14)+ (1*1) 16
16/ 

18.28 0.88 

   ∑ 18.28    
 
The calculation of the final ranking of 0.12 and 0.88 is shown in the italic written parts. 
The weighting factor for design option 1 for architectural form is 0.12 and for design 
option 2 it is 0.88.  
 
Comparable is the approach for the performance aspect symbolism. Design option 2 is 
according to Appendix D “strongly more important/ better” compared to design option 
1 and is assigned with a ‘5’. 
 

21 optionoption  

2

1

option

option    

2

15

5/11
⎥
⎦

⎤
⎢
⎣

⎡
 

 
For the explanation of the calculation of the ranking for the criteria the following table 
is shown.  
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Table 13 Demonstration of the calculation of the weighting for the performance 

symbolism. 

I: symbolism           

  
design 

option 1 

design 

option 2         

design 

option 1 1 0.2

(1*1)+ 

(0.2*5)+(1*0.2)+ 

(0.2*1) 2.4 2.4/ 14.4 0.17 

design 

option 2 5 1
(5*1)+(1*5)+ 

(5*0.2)+(1*1) 12 12/ 14.4 0.83 

   ∑ 14.4  
  
 
The calculation of the final ranking of 0.17 and 0.83 is shown in italics. The weighting 
factor for design option 1 due to symbolism is 0.17 and for design option 2 it is 0.83. 
 
Instead of weighting all performance aspects dependent on the stakeholders personal 
preference, the impact of subjective and thus, uncertain information is reduced. This is 
done by including the outcome of a building performance simulation tool. Results such 
as energy consumption and thermal comfort are calculated and inserted into the AHP 
protocol.  
The approach is shown in Table 14. The amount of weighted overheating hours for 
both options is put into relation and gets normalized. Hence, the weighing factor is 
based on real data instead of users’ preference.  
 

Table 14 Demonstration of the calculation of the weighting for the performance 

aspect weighted overheating hours. 

C: weighted overheating 

hours         

    [h]         

design option 1  17  1-(17/21)  0.19 

design option 2   4   1-(4/21)   0.81 

 ∑ 21       
 
The amount of weighted overheating hours for design option 1 calculated by VA114 is 
17h, for design option 2 it is 4h. The italic part shows the calculation of the final rank 
for both options regarding the weighted overheating hours. 
 
Finally, the outcomes are summarized into one matrix. Table 15 shows a combination 
from data based on experts preference, experience, and personal judgement and on the 
simulation results provided by a tool. 
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Table 15 Ranking of both options for the performance aspects B to K. 

  B C D E F G H I J K 

                      
design 

option 1 0.50 0.19 0.19 0.50 0.25 0.50 0.42 0.13 0.17 0.25 
design 

option 2 0.50 0.81 0.81 0.50 0.75 0.50 0.58 0.88 0.83 0.75  
 
The values for performance aspects B, E, G, I, J, and K are achieved based on 
preferences and attitudes of decision makers according to Table 12. C, D and H are 
calculated by VA114 and normalized according to Table 14. 
 
The final outcome based on the classical AHP protocol but with the help of BPS is for 
design option 1 0.23 and for design option 2 0.77. The final value is calculated by the 
sum of the products row 1 with columns B to K for design option 1 and the sum of the 
products row 2 with columns B to K for design option 2 from Table 10. It shows that 
design option 2 is clearly favourable to design option 1. 
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4.5.2 The adapted AHP  

The traditional AHP protocol does not take into account that performance outcomes 
can be probabilistic variables. For the purpose of solving the application problem, the 
method is extended by adding uncertainty information that relates design options to all 
performance indicators.  
The goal is to include risk assessment in the conventional AHP protocol. Uncertainty 
analysis (UA) is applied to enable the designer in getting an insight in parameters 
chosen for each option. As shown in Chapter 3, UA studies are conducted to show the 
variability in the output of a model that can be referred to different sources of 
variations in the input. 
The workflow of the adapted AHP protocol is shown in Figure 38. This research 
considers 3 different categories of uncertainty: physical, scenario and design 
uncertainty (cf. Chapter 3). In this study the emphasis has been on physical parameters, 
mostly identifiable as the standard input parameters in energy or thermal comfort 
simulation, but also parameters from the other categories have been chosen. 
Approximately 80 parameters have been changed in total. Assessments were made 
under fixed scenarios, which is common in uncertainty analyses. An exception is the 
heat load of equipment, lighting and number of people in the space. The most 
important parameter in design uncertainties is the room geometry. As the decision had 
to be made at a stage where the floor plan in either option was undefined, room 
geometry was entered into the uncertainty analysis.  
As an example, the outcome for annual heating is shown in Figure 40. The square 
shows the result of the first simulation – the result that is actually used in the 
conventional AHP protocol. The range gives an insight how much impact uncertainties 
have on the simulation outcome after conducting 200 simulations. 
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Figure 40 Range of the outcome for the annual heating 

obtained by 200 simulations considering physical, scenario 

and design uncertainties. 
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Due to the consideration of uncertainties in the parameters, the simulation results for 
energy and thermal comfort cover a range as shown in Figure 40. The boundaries of 
this range can be titled as worst and best performance due to the consideration of 
uncertainties. The worst and best performance also affects the weighting factor 
calculated in Table 10. How much both, the uncertainty and the weighting impact the 
result is demonstrated in Table 16. The table shows the typical AHP result (from the 
classical method), and additionally the best and worst performance for both options in 
relation to the entire design team and each design team member separately. The results 
are achieved comparable to the conventional method but with the difference that hereby 
the upper and lower confidence bound of the results are taken to show the best and 
worst performance for energy and thermal comfort apart.  
 

Table 16 Demonstration of the relation of the outcome energy and thermal 

comfort compared to the both options dependent on the user. 

    

FS   

[%] 

BP energy 

[%] 

WP energy 

[%] 

BP thermal 

comfort 

[%] 

WP thermal 

comfort [%] 

design 

option 1 all 23 23 23 25 21 
design 

option 2 all 77 77 77 75 79 
design 

option 1 A  25 25 25 26 24 
design 

option 2 A 75 75 75 74 76 
design 

option 1 B 36 35 35 37 34 
design 

option 2 B 64 65 65 63 66 
design 

option 1 C 24 24 24 26 23 
design 

option 2 C 76 76 76 74 77 

       
Legend  FS first simulation  

  WP worst performance  

  BP best performance  

  A,B,C Different users  

 
The percentage factor brings into relation the outcome of the simulation with the 
weighting calculated for energy and comfort. Due to the fact that the weighting differs 
for all three decision makers (A, B, and C) the percentage is also affected. The first 
columns ‘design option 1 and 2 all’ show the consensus of all three decision makers 
based on the weighting factor calculated in Table 11. 
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The differences in performance listed in Table 16 can be also shown graphically. In 
Figure 41 the performance value is compared to a cost factor. For this purpose, the 
performance in percentage includes the calculated comfort from the simulation and its 
confidence interval plus the other performance aspects listed in Table 10 except the 
energy consumption and initial costs.  
The cost factor is composed out of the investment costs for each building plus the 
running costs due to the energy consumption for each option. Results are shown for all 
stakeholders separately in Figure 41. As it can be seen for all designers, design option 1 
is the best performing alternative mainly because of its architectural form and thermal 
comfort. However, design option 1 is also the more expensive solution due to its higher 
investment costs.  
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Figure 41 Illustration of the results for the decision makers separately (A, B, and C) 

comparing the cost factor to the performance.  

 
Figure 41 shows the final output of the adapted AHP technique plus uncertainty 
protocol for comfort and energy. A performance value is compared to a cost factor. The 
performance value includes all performance aspects considered except energy and 
costs. The range in the performance is due to uncertainty and the weighting factor in 
the comfort prediction.  
The cost factor contains the investment costs as well as the running costs based on the 
energy consumption. The range in the cost factor is a result of the uncertainty and the 
weighting in the energy consumption. 
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Figure 42 Illustration of the results for a consensus of the decision makers 

comparing the cost factor to the performance. 

 
The result is comparable to Figure 41. The difference is that instead of separating the 
outcomes based on the weighting of each decision maker, a consensus based on the 
weighting from Table 10 is built. 
 
The risk involved with each option, given by the uncertainty range is shown in Figure 
43.  
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Figure 43 Illustration of the uncertainty range for annual heating, annual 

cooling and the weighted over- and underheating hours obtained by 200 

simulations.  

 
The square shows the results of the first simulation, the line with the barriers shows the 
results of the 200 simulations. The dashed line of the comfort criteria indicates if the 
compliance with a certain requirement is exceeded. These guarantees are stated as 
expressions of minimally required performance for the weighted over- and 
underheating hours. 
 
The output shows that for the better performing design option 2 the amount of 
weighted underheating hours extends the upper confidence bound of 150h per year. In 
order to find out what parameters have the highest influence on the outcome, sensitivity 
analysis is used. Sensitivity analysis (SA) determines the contribution of individual 
input variable to the uncertainty in performance prediction. With the help of SA the 
most sensitive parameters for the weighted underheating hours can be outlined (see 
Figure 44).  
Different techniques are available for the SA, for instance, PEAR, SPEA, PCC, SRCC, 
etc. [Saltelli et al., 2005] (cf. Chapter 3). They all rely on the same principle: the higher 
the coefficient, the more sensitive one variable is. The chosen one for demonstrating 
the results is the partial correlation coefficient (SRCC).  
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Figure 44 Results of the sensitivity analysis for weighted underheating hours 

for design option 1 and 2.  

 
Figure 44 shows in an intuitive manner how sensitive the parameters of the two options 
are: the longer the bar, the higher the sensitivity. 
The most sensitive parameter is infiltration rate, for both design options, followed by 
the single/double glazing, the internal gains for equipment, and the geometry of the 
room. It can be noticed that uncertainties in the so called scenarios have a major 
influence caused by varying boundary conditions in people/ equipment and lighting in 
addition to the uncertainty in infiltration rate. Infiltration in general becomes very 
important (as apparent from the uncertainty analysis); the infiltration rate in practice 
can easily exceed 5 times its as-designed value [Rooijakkers, 2008]. It is also 
noticeable that design design option 2 is more sensitive to infiltration than design 
option 1.  
 
However, most crucial parameters are infiltration rate, the internal gains, and the room 
size. In order to diminish the uncertainty range, two alternatives will be pointed out 
taking the sensitivity into account: (1) Decreasing the risk of the scenario uncertainties, 
e.g., infiltration rate, and (2) adapting the design of the case study. The results will be 
shown for both approaches briefly: 
 

1. Limiting the risk in the scenario uncertainties  

One possibility is limiting the risk in the scenario uncertainties which means 
setting fixed limitations to boundary conditions. As an example, the risk 
limitation will be carried out for the infiltration rate. It is the most sensitive 
parameter and it is linear dependent on the weighed under- and overheating 
hours. This is shown with the help of scatter plots. Scatter plots are plots of 
values Y compared to corresponding values X .The creation of scatter plots is 
one of the simplest sensitivity analysis technique. This approach consists of 
generating plots of the points 



 

 92 

( ) ,,...,1,, miyx jij =  for each independent variable xi [SIMLAB, 2009]. 

The purpose is to show the type of relationship or correlation that exists 
between two sets of data. On the vertical Y axis usually the response variable 
is covered whilst on the horizontal X axes some variable which is suspect to 
be related to the other. Sometimes scatter plots completely reveal the 
relationship between model input and model predictions; this is often the case 
when there is only one or two inputs that dominate the outcome of the analysis 
[SIMLAB, 2009]. This is the fact in case of the relationship thermal comfort 
and infiltration rate (see Figure 45). 

 
 

 

Figure 45 Scatter plot showing the relation between 

infiltration rate to weighted underheating (WOH-) and 

overheating hours (WOH+). 

 
The dashed line in Figure 45 indicates that limiting the infiltration rate to 0.8 
will guarantee not to exceed the minimally required performance of 150h per 
year. In this case, for erasing the risk, the limitation of 0.8 has to be fulfilled in 
order to avoid exceeding the confidence bound. 
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2. Adapting the room size  

The geometry of the room is also very sensitive to the weighted overheating 
hours. Nevertheless, there is no linear correlation to the weighted under- and 
overheating hours recognizable.  
For that reason, a new input file with different geometry data needs to be 
created and the uncertainty analysis needs to be conducted again. A new 
simulation with a slightly decreased room size is started. The results are 
shown in Figure 46. 
 

 

Figure 46 Illustration of the uncertainty range for weighted 

over- and underheating hours after the adaptation of the room 

size for design option 2.  

 
The uncertainty range for design option 2 is shown for the original 
performance and the performance after the changed room size for weighted 
over- and underheating hours. 
The number of exceeding weighted underheating hours is scaled down. 
However, it can also be concluded that improving the range of the design 
parameters in one direction can downgrade the uncertainty of another aspect, 
consequence of which is a slightly increased amount of overheating hours. 
However, it can be inspected that by iteratively adding constraints on the 
parameter ranges of the options, the resulting conditional probabilities turn 
one option into the best option. Granted that, one option is optimal if it does 
not lead to unacceptable risk of under performance.  
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4.6 Discussion 

In this chapter the conventional AHP protocol has been extended by the use of BPS and 
the integration of UA/SA.  
Both, the conventional and the adapted AHP protocol fuse evaluations from multiple 
decision-makers with inconsistent viewpoints. The approaches average the evaluations 
to obtain a single consistent viewpoint (by having multiple decision makers). 
 
For weighting criteria or performance aspects, the traditional AHP uses a qualitative 
ranking. The adapted AHP fuses subjective and objective information.  

(i) Subjective or qualitative performance aspects such as the architectural 
layout. 

(ii) Objective or quantitative performance aspects such as thermal comfort or 
energy consumption.  

 
To handle performance aspects such as energy consumption, in the adapted AHP the 
output of BPS is used to include validated results into the decision process. 
Furthermore, the adapted AHP supports uncertain information. The conventional AHP 
protocol that handles only deterministic information is enhanced by uncertain building 
performance data through the use of UA/SA. The sensitivity analysis in the adapted 
protocol is used to identify the most sensitive parameters that have the highest 
influence on the performance to eventually diminish the risk. The integration of UA/SA 
supports the risk identification as part of the decision process. 
 

4.7 Conclusion  

Current approaches in decision making for BPS do not integrate the combined use of 
simulation and uncertain information in the case study. The adapted AHP protocol is 
used to expand current BPS capabilities to support the design team in making 
decisions.  
MCDM is herewith used to a lesser extent to indicate one solution as the best but to 
show the impact on user preferences to a discrete set of options facing uncertainty.  
An advantage is that both subjective and objective evaluation measures are captured 
such as comfort, energy demand, and architectural layout.  
 
The integration of a decision making protocol with the extension of UA/SA in BPS 
could support the design process and provide additional information. It would help the 
designer in several ways such as follows.  
 

(i) Support of the design team in the design process by providing a base for 
communication. 

(ii) Support in the decision process by providing a base to compare different 
design options.  

(iii) Reduction of preoccupation in decision making and avoidance of pitfalls 
due to a lack of planning and focus. 



4. Multi-criteria decision making 

 95 

(iv) Possibility to minimize risk related to different concepts with the help of 
UA/SA. 

(v) Understanding of how parameters are related to each other.  
(vi) Comprehension of how variations in the model input affect the output. 
(vii) Enhancement of the use of BPS by providing additional support, and 

therefore, leading to a better guidance in the design process. 
 
The developed approach is meant to enhance the information flow in the design process 
as it shows the impact of UA/SA embedded in a decision process. The appreciation of 
the extension of BPS with decision making under uncertainty will be tested with 
practitioners with the help of mock-up presentations and an online survey in Chapter 6. 
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55  
5. Multi-objective optimization 

5.1 Introduction  

The building industry in contrast to other industries (e.g., car or ship industry) is very 
traditional. No prototypes are tried and tested before manufacturing. Each building is 
unique, thereby excluding large scale production. Nevertheless, during the design 
process a great number of decisions need to be taken. Typical design assessment 
criteria are spatial flexibility, energy efficiency, environmental impact as well as 
thermal comfort, productivity and creativity of occupants among others [Hopfe et al., 
2005].  

Design problems in building assessment often have the issue of conflicting objectives 
(energy consumption vs. thermal comfort). Nevertheless, it is aimed to find a well-
balanced solution that takes into account all objectives.  

Furthermore, it is hypothesized to be of great importance to autonomously optimize 
discipline specific designs continuously during the design process from the start to the 
completed example. The comments made on expectations for future developments in 
building performance simulation (see Chapter 2) apply equally to the design 
optimization which may be performed from conceptual to final design.  

As computational power increases, the idea of using multi-objective optimization 
becomes more achievable.  

Optimization techniques aim to solve problems in a systematic way by producing a set 
of solutions based on predefined objectives that are functions of design variables. 

A number of publications are available reporting research that makes use of 
optimization techniques in architecture [Jagielski et al., 1997; Jo et al.; 1998; Michalek 
et al., 2002; Schwarz et al., 1994]. The focus thereby lays on automating the 
optimization process of the building topology and layout in terms of the architectural 
design. The research efforts in evolutionary design have also not gone unnoticed by 
researchers in the field of mechanical engineering. The concept generation and 
optimization using genetic algorithms has been applied to mechanical systems and their 
control mechanisms [Angelov et al., 2003; Wright et al., 2001, Wright et al., 2005]. 
Ongoing research also includes the feasibility of applying more than one assessment 
criterion simultaneously in the search for the optimum [Wright et al., 2002; Nassif et 
al., 2004].  
 
This chapter gives an overview of optimization techniques that have been applied in 
building design optimization. It starts with some general definitions and explanations 
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before it describes single- and multi-objective optimization techniques in the context of 
building performance simulation. 
Finally, the implementation of two multi-objective algorithms NSGA-II and SMS 
EMOA with and without the handling of uncertainties is demonstrated and evaluated 
by means of a case study. 

5.2 Overview  

Section 5.2 gives an introduction in terminology and definitions used in the context of 
optimization. Furthermore, an overview over different optimization procedures and 
different algorithm groups will be provided. However, examples for algorithms 
belonging to different algorithms groups will be already mentioned, before they will be 
described in more detail in Section 5.3. 

5.2.1 Definitions 

In this subsection some definitions are presented in order to understand better the 
descriptions of algorithms and simulation results. 
 
Definition 1: optimization problem 

The general problem formulation in optimization can be summarized as  

maximize/ minimize )(xf
r

 (function to be optimized) , subject to 

0)( ≤xg
rr

 (m inequality constraints),  

0)( =xh
rr

 (p equality constraints),  

with 
n

Rx ∈
r

, 
mRxg ∈)(

rr
, 

pRxh ∈)(
rr

 

The optimization problem is either constrained (with constraints) or unconstrained 
(without constraints). The solution set is reduced through the identification of feasible 
solutions subject to the constraints (linear/ non-linear). 
In the domain of building performance for the design of HVAC systems [Wright et al., 
2002] the optimization problem and its constraints are derived from restrictions on the 
design of coils or the performance envelope of the supply fan. It needs to be ensured 
that the system has sufficient capacity to meet supply air temperature and flow rate set 
points.  
 
Definition 2: objective function 

The objective function (also called cost function or optimization criterion) is the 

function )(xf
r

 that is to be optimized, using an algorithm [Collette et al., 2004]. 

The objective function can be either linear or non-linear [Collette et al., 2004] with 
respect to the decision variables. For special classes of non-linear functions (e.g., 
quadratic functions) sometimes efficient optimization techniques are available. 
 
Definition 3: decision variables 

Decision variables are gathered in vector x
r

. The optimum of )(xf
r

 is searched by 

gradually modifying the vector. When classifying optimization problems, one typically 
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distinguishes between problems with one decision variable (single variable) and several 
variables (multi variables) [Collette et al., 2004]. 
The variables can be continuous (real numbers), integer or discrete variables (integer 
numbers), or combinatorial (e.g., permutation on a set of numbers of finite size) 
[Collette et al., 2004].  
Another differentiation is made by Anderson [2000]. He divides variables into 
independent design variables or parameters, and environmental or external variables 
that affect the design when used. 
Decision/ problem variables, either discrete or continuous, should reflect the total set of 
alternatives measures that is available for improvement of the objective function (e.g., 
material properties such as insulation, production etc) [Diakakia et al., 2008]. 
 
Definition 4: global minimum 

A vector *x
r

is a global minimum of an objective function f if )(*)( xfxf
rr

≤  for 

any Fx ∈
r

with xx
rr

≠*  and F is the feasible subspace of 
nR (no constraint 

violations) (see M3 in Figure 47). 
 

 
 Figure 47 Illustration of the difference of global 

and local minima [Collette et al., 2004]. 

 
Definition 5: strong local minimum 

A solution *x
r

is a strong local minimum of an objective function )(xf
r

 if and only if 

)(*)( xfxf
rr

<  for any *)(xVx
rr

∈ and xx
rr

≠* , where *)(xV
r

 defines a 

neighborhood of *x
r

 (see M2 and M4 in Figure 47). 
 
Definition 6: weak local minimum 

A solution *x
r

is a weak local minimum of an objective function )(xf
r

if and only if 

)(*)( xfxf
rr

≤  for any *)(xVx
rr

∈ and xx
rr

≠* , where *)(xV
r

 defines a 

neighborhood of *x
r

 (see M1 in Figure 47). 
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Definition 7: domination 

 A vector 1x
r

 dominates a vector 2x
r

 if 1x
r

 is as least as good as 2x
r

 for all objectives, 

and 1x
r

 is strictly better than 2x
r

 for at least one objective. 

 
Definition 8: local pareto optimality 

A vector 
n

Rx ∈*
r

 is locally pareto optimal if there exists a real 0>δ  such that there 

is no vector x
r

 which dominates *x
r

 with ),( δxBRx n rr
∩∈ , where 

),( δxB
r

represents a bowl of centre x
r

 and of radiusδ . 

 
Definition 9: global pareto optimality 

A vector *x
r

is globally pareto optimal, if there is no other vector x
r

such that x
r

 

dominates *x
r

. 
 

Definition 10: stationary point 

A stationary point is either a saddle point or a local optimum. Stationary points are 

characterized by the condition 0)( =∇ xf
r

. 

 
Definition 11: trade-offs or Pareto frontier 

The projection of the set of non-dominated solutions is called Pareto frontier or trade-
off. A distinction is made between unbalanced and fair trade-offs. Figure 48 shows the 
meaning of unbalanced and fair trade-offs.  

0

40

80

120

160

200

0 20 40 60 80 100 120 140

Sum annual cooling and heating [kWh/m²]

S
um

 o
ve

r-
 a

nd
 u

nd
er

he
at

in
g 

ho
ur

s 
[h

]

 

Figure 48 Exemplary illustration of the Pareto frontier for the two objectives 

energy consumption and thermal comfort.  

 
The solutions x1 and x4 are ideal or extreme solutions considering one objective (over- 
and underheating hours or annual cooling and heating). Opposed to that, the solutions 
x2 and x3 lie in the area of good compromise solutions (knee points). The move from 
x2 to x3 has a balanced trade-off, whereas for the move from x2 to x1 the trade-off is 
very much in favor of the objective annual cooling and heating. 
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5.2.2 Deterministic and stochastic optimization 

In the deterministic optimization the sequence of points that is evaluated is determined 
solely by the initial point (or starting point) and the geometry of each step of the 
algorithm is governed by a deterministic rule.  
 
In contrast to deterministic optimization, in stochastic optimization some steps of the 
algorithm are governed by randomized decisions. Hence, the sequence of points 
generated by a stochastic optimization algorithm depends also on a set of random 
numbers used in the randomized steps. 
 
As a rule of thumb, deterministic algorithms are considered to be more efficient and 
precise for local optimization than stochastic algorithms, while stochastic algorithms 
are considered to be more reliable in global optimization and robust to numerical noise.  
Moreover, for deterministic optimization algorithms convergence to a local or global 

optimum is usually guaranteed (under certain assumptions on the geometry of )(xf
r

), 

whilst for stochastic optimization algorithms, if any, only probabilistic convergence 
can be guaranteed. An exception to this rule is given by some hybrid stochastic 
algorithms such as evolutionary pattern search [Williams et al., 2001]. 
 

  

Figure 49 Illustration of the distinction between deterministic (left hand side) 

and stochastic optimization (right hand side) [Collette et al., 2004]. 

 
Deterministic algorithms such as coordinate search or Hooke-Jeeve algorithm find 
quickly a local optimum. 
Stochastic optimization algorithms such as many population based optimization 
techniques for instance genetic algorithm, particle swarm, and genetic programming are 
based on a stochastic process to search the optimum. They are supposed to be less 
efficient than deterministic algorithms in terms of time but are able to find surprises, 
i.e., an optimum that is hard to find [Collette et al., 2004].  
Besides, they are more robust with respect to numerical noise. However, in [Wetter and 
Wright, 2004] it was found that stochastic operators like in genetic algorithm and 
particle swarm optimization can cause a failure in the optimization especially if number 
of simulations is small. 
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5.2.3 Volume-based, path oriented and population based optimization 

 
Volume based 

Volume based optimization algorithms belong to the non-adaptive group of algorithms 
[Novak and Ritter, 1996]. Non-adaptive or non-iterative methods first determine all 
search points at which the function is to be evaluated. Then they evaluate the objective 
function at all these points and determine the approximation of the optimal solution 
based on the results. Design of experiments (DoE) and trial and error belong into this 
category.  
Design of experiments is also a useful technique to analyze the effect of parameters and 
combinations of parameters (interaction) on the objective function value. Volume 
based algorithms converge very slowly to the optimum but given some restrictions they 
can often provide global convergence guarantees [Novak and Ritter, 1996]. 
 
Path oriented  

Path oriented or adaptive (iterative) optimization [Novak and Ritter, 1996] such as 
Hooke-Jeeve [1961] and Nelder & Mead [1965] take the results of previous evaluations 
into account when determining a new search point. Search principles are, e.g., steepest 
descent, coordinate search, and conjugate directions. Path oriented methods have the 
advantage of a fast convergence to local optima. The local convergence is guaranteed, 
however they might not find the global optimum. 
 

Population based 

Population based optimization is strictly speaking adaptive techniques but as they 
maintain a whole set of intermediate solutions instead of a single point they can be 
viewed as a compromise between global, volume based and local, path oriented 
methods.  
Population based approaches such as particle swarm optimization, genetic algorithms, 
evolutionary programming are of high importance in building performance. They are 
robust meta-heuristics that can balance between global and local search. 
Search principles of population based methods are variation and selection of individual 
solutions from populations (solution sets). Advantages are moderate convergence speed 
for local optima and moderate to high chance to find the global optima.  
However, they always have convergence problems, i.e., global convergence guarantees 
can only be provided for infinite running time. 
Meta-models can be used to deal with time consuming simulations (Kriging) (see 
Section 5.5/ 5.8.3). They accelerate population based approaches. 
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Figure 50 Illustration of the difference between volume based (left hand 

side), path oriented (middle), and population based (right hand side) 

optimization algorithms. 

5.2.4 Gradient based and derivative free optimization 

The gradient is a vector pointing into the direction of steepest ascent whilst its length or 
magnitude is indicator for the steepness. 

The gradient of a scalar function )(xf with respect to variables nxx ,..,1  is denoted 

by  
T
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where f∇ is called Nabla operator.  

The search of the new coordinate newx
r

 can be described as dfxx oldnew *∇+=
rr

 

with d  being the step size and the steepness )(xf
r

∇ . 

An advantage of this method is a fast convergence to an optimum if a quadratic 
function of low condition number1 is given (see Figure 51 left side). Furthermore, they 
guarantee high precision.  
However, drawbacks are that gradient methods converge to a local optimum if there is 
a multimodal function or a saddle point. Besides, the optima on the interval borders are 
not found. Therefore, special adaptations are necessary, e.g., the projected gradient 
methods. Besides, numerical noise and discontinuity are harmful. 
Examples of gradient based methods are steepest decent or Newton’s method. 
 

                                                           
1 The condition number is the quotient of the highest and lowest eigenvalue of the form 

matrix A in the quadratic objective function xAxxbaxf T rrvr
++=)( . 
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.)( constxf ≡
r

 

Figure 51 Illustration of the gradient based optimization method. 

 
Derivative free optimization means that there are no derivatives of the objective 
function available. Typically these methods use interpolation, regression or other 
sample based methods. The model is nonlinear opposed to the derivative based (e.g., 
Taylor approximation) optimization that mostly provides methods for unconstrained 
optimization build on a linear or quadratic model. Examples are Hooke-Jeeve, Nelder-
Mead simplex, and genetic algorithm.  

5.3 Single-objective optimization  

The conventional single-objective optimization produces a single result. Figure 52 
shows a classification tree for single-objective optimization algorithms using the 
classification criteria from Section 5.2. It gives an insight in various commonly used 
optimization algorithms in design optimization.  
 
Some optimization algorithms often applied in building performance simulation will be 
briefly explained.  
The general description of the methods will start with some information about their 
processing, advantages and drawbacks of the algorithm, followed by examples from 
applications in building simulation. 
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5.3.1 Genetic algorithm 

Genetic algorithms (GA) belong to the group of stochastic population based 
algorithms. GA have their roots in classical population genetics and were first studied 
as simulation models for adaptive populations in that field by Holland [1975]. When 
the GA is implemented it usually follows the cycle as shown below:  
 

Initialization of population of individuals 

Evaluation of fitness of all individuals of population 

For i+ 1 to maxIt (increasing time counter determined by the time, 

fitness, etc.) 

Random selection 

Selection of sub-population for offspring production 

Combining parts of ‘parent chromosomes’/ crossover 

Mutation (perturbation of population stochastically) 

Evaluation its new fitness/ objective function computation 

Selection of the best from current fitness/ computation of 

efficiency 

End for 

 
Each optimization parameter is coded into a gene (real number or bit coded), the 
corresponding genes builds a chromosomes (e.g., binary string, array of real numbers) 
that actually describes the individual. Each individual represents a possible solution. 
 
 

 

Legend: 
 
1. Initialization population 
 (set of individuals) 
2. Efficiency computation 
3. Crossover 
4. Mutation 
5. Selection 
 

Figure 53 Schematic representation of the genetic 

algorithm [Collette et al., 2004]. 

 

 
An advantage of the GA is that it is very flexible, intuitive, and robust. They can handle 
continuous and discrete parameters. Both types of parameters are encoded as a binary 
string in the canonical GA. Recently, so called real coded GAs incorporate also floating 
point encodings. In that case GAs are very similar to evolution strategies discussed 
later in this section. 
 
The use of GA is time consuming. Unfortunately, the convergence cannot be 
guaranteed whenever a high precision for the optimum approximation is required. GA 
incorporate inequality constraints by using a penalty function that is added to the 
objective function in case of constraint violation.  
GA has been applied in building performance very successfully. For example, in 
HVAC design Wright and Zhang [2005] compare the energy performance with and 
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without an ageing operator by focusing on evaluation of the system performance, 
system operation and viability of system topology. Angelov et al. [2003] design a 
feasible and efficient system using GA. Dunn [1997] uses GA to optimize the 
performance of a variable air volume (VAV) system. 
In [Wetter and Wright, 2003] pattern search (Hooke-Jeeve algorithm) is compared to 
genetic algorithm by considering a cost function based on the annual energy use. 

5.3.2 Evolutionary programming 

Evolutionary programming (EP) for discrete automata was invented by Fogel [1962] in 
the 60ties. It is comparable to GA but it does not use crossover as operator. The typical 
procedure is initialization of a population, mutation, evaluation of the fitness, and 
stochastically selecting the survivors from actual fitness in a tournament. However, due 
to the self adaptation of the step size opposed to the constant mutation rate of the GA, it 
is claimed to have a higher precision.  
Fong et al. [2006] uses EP for an HVAC system, optimizing the set points of chilled 
water and supply air temperatures. 
 
Opposed to EP the evolutionary strategies (ES) developed by Rechenberg [1973] and 
Schwefel [1975], has the advantage of a continuous step size adaptation. EP for 
continuous vectors also feature step size adaptation, but was much later introduced. In 
the beginning, ES also applies mutation as an operator but it is often combined with a 
recombination operator. An extensive study on the dynamic behavior of ES on different 
function geometries is performed by Rudolph [1997] and Beyer [2001]. 
However, state of the art is the Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES), where recombination is used as supporting operator. 
 

5.3.3 Hooke-Jeeve 

The Hooke-Jeeve algorithm is a direct search method [Hooke-Jeeve, 1961]. This 
algorithm is a representative of a class of algorithms that today are classified under the 
framework of generalized pattern search (GPS). 
The search is characterized by two types of move (see Figure 54) [Schwefel, 1995].  
(i) Discrete steps in coordinate direction are taken by exploratory moves. Discrete steps 
in Figure 54 are, e.g., from the starting point to point 1, and from point 1 to point 2 and 
3.  
(ii) An exploration (pattern move) is made on the assumption that the move in diagonal 
direction (line joining) will lead to more favorable solution. In Figure 54 an exploration 
move is demonstrated in the move from point 3 to point 4.  
 
After the each move the success is checked. The step size is either kept fixed or 
adapted. If there is no success the step size is decreased.  
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Figure 54 Illustration of the Hooke-Jeeve algorithm. 
2
 

 
An advantage of Hooke and Jeeve’s algorithm is that it converges towards a stationary/ 
local optimum, slower than gradient based but faster than the GA algorithm. 
In Hooke-Jeeve algorithm the computational operations are very simple and cannot 
lead to invalid manipulations; therefore it needs only small computer storage 
requirement. 
 
However, it belongs to the path oriented group of algorithms that is typically less 
robust than population based algorithms. Another drawback is that it only looks in 
coordinate direction (arbitrary). The fixed coordinate system can cause problems. An 
improvement was suggested by Rosenbrock that is described in [Schwefel, 1995]. 
Hooke-Jeeve algorithm is only applicable in vector spaces, i.e., discrete variables are 
problematic. 
 
As mentioned earlier it was applied in [Wetter and Wright, 2003] to compare the 
optimization based on the cost function for annual energy use with genetic algorithm.  
In Wetter and Wright [2004] eight other algorithms are applied to evaluate stochastic 
and deterministic optimization for HVAC. In [Emmerich et al., 2008], Hooke-Jeeve 
algorithm is used to minimize the energy consumption considering different building 
scenarios and characteristics. 
Another example is the minimization of life cycle costs by finding optimized values  
for design variables in building construction and HVAC system [Hasan et al., 2008].  

                                                           
2 Simplified graphic of Schwefel [1995] 
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5.3.4 Nelder and Mead algorithm/ simplex 

The Nelder and Mead algorithm or simplex search algorithm was originally published 
by Nelder and Mead [1965]. It is a frequently used optimization algorithm for 
unconstrained derivative free optimization.  
It is suitable for non-smooth functions and widely used where function values are 
subject to noise. It requires only two function evaluations per iteration. However, it is 
also important how effectively the iteration improves the function value. The method is 
considered to be simple and has a moderate convergence speed. It starts with a big step 
size and gets more detailed in the end, but it might not converge to a global optimum. 
The method is only applicable for vector spaces. Moreover, it is difficult to find an 
optimum along the interval border. 
The original method proposed by Nelder and Mead might even not converge to a 
stationary point but end up in a cyclic behavior. However, improvements were 
proposed by Torczon [1989] that guarantee convergence to a stationary point.  
 

 

 

Figure 55 Illustration of the Nelder and Mead 

algorithm. 
3
 

 
The Nelder and Mead algorithm was applied by Al-Homoud [2005] for thermal design 
optimization of building envelopes for two objectives: minimization of the thermal 
discomfort and the energy budget. Both objectives were treated separately.  

                                                           
3 Simplified graphic of Schwefel [1995] 
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Furthermore it is one of the nine different algorithms implemented in [Wetter and 
Wright, 2004]. However, it does not perform well. Despite a high number of 
simulations (more than 2000 compared to less than 1000 needed by others) it failed to 
find the minimum of the cost function. 

5.3.5 Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based stochastic optimization 
algorithm, the design of which was inspired by the social behavior of animals. 
Individual particles represent potential solutions, which move through the search space 
looking for the optimal solution. 
The position of each particle is adjusted according to its velocity (e.g., the rate of 
change). In its iteration the swarm goes more to the areas having the high-quality 
solutions. 
The velocity of each particle is modified literately by its personal best position and the 
best position found by particles in the neighborhood. 
Three main attributes exist in PSO algorithm [Blum and Merkle, 2008]: 

1. Individual cells are updated in parallel. 
2. The value of each cell depends on the old value and its neighbors. 
3. All cells are updated using the same rules. 

The new velocity inewV ,

r
 is calculated by  

)()(, igiiiinew xpxpVV
rrrrrr

−+−+= βα  with 

iV
r

 being the current velocity, ix
r

 being the current position, ip
r

 being the best position 

visited by individual i so far, and gp
r

 being the best position visited by any individual 

so far. 
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Figure 56 Illustration of the particle swarm 

optimization algorithm [Blum and Merkle, 2008]. 

 
PSO algorithm belongs to the group of population-based algorithms. Therefore, as in 
other population-based algorithms, global convergence gets more probable. Compared 
to the much earlier proposed genetic algorithms its convergence is very fast. It is a very 
robust and efficient algorithm for solving optimization problems.  
The general problem of heuristic algorithms, that the convergence to local or global 
optimum is not guaranteed, applies also for PSO. Moreover, PSO is only applicable in 
vector spaces; categorical (discrete) variables are problematic.  
 
It is also applied in [Wetter and Wright, 2004] where it comes close to the minimum 
with a low number of simulations. However, it performs worse in comparison to the 
hybrid approach which consisted of combining PSO with generalized pattern search. 

5.3.6 Hybrid algorithms- combination of algorithms 

Hybrid algorithms offer the possibility to combine favorable characteristics of different 
algorithms to achieve a certain objective. 
Yen et al. [1995] classify hybrids into four categories:  
1) Pipelining hybrids or staged hybrids: they allow sort of sequential solution. First 
they find possible regions, second they identify optimal points in these regions. 
2) Asynchronous hybrids: for finding multiple solutions in multiple solution spaces. It 
uses a shared population to allow algorithms to proceed asynchronously. A method 
with a slower convergence can be for instance combined with a faster one.  
3) Hierarchical hybrids: two different algorithms are used at two different levels of a 
problem. Example: GA and multivariate adaptive regression splines [Yen et al., 1995]. 
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4) Additional operators: combining a reproduction operator with GA to perform local 
search. For instance, the simplex method is very much suited for this sort of hybrid. 
 
In [Wetter and Wright, 2003] a hybrid pipelining optimization algorithm is proposed 
combining the global search of a genetic algorithm with coordinate search for local 
search. This minimizes the risk of finding a local minimum that is not global and the 
coordinate search enables clear convergence statements with a smooth cost function.  
In [Wetter and Wright, 2004] a hybrid particle swarm and Hooke-Jeeve algorithm is 
introduced, that does a PSO on a mesh for a first iteration and starts afterwards the 
Hooke-Jeeve algorithm using for the initial start the mesh point that attained the best 
solution (first global then local search).  
The same hybrid is used in [Hasan et al., 2008]. In both publications the algorithm 
achieves excellent results.  
Furthermore in [Wetter and Wright, 2004] a simplex algorithm is used with the 
extension of O’Neill and a modification of the stopping criteria [O’Neill, 1971].  

5.4 Multi-objective optimization  

Contrary to single-objective optimization, multiple contradictory objectives can be 
optimized simultaneously by producing a set of solutions. This set of solution is mostly 
referred to as Pareto front (line of non-dominated solutions). 
Two issues in multi-objective optimization are of higher relevance: to estimate the 
density in the population in the most appropriate way and to transform the partial order 
by Pareto dominance into a total order to achieve comparable solutions [Coello Coello, 
2006]. 
 
Multi-objective optimization can be divided into ‘a priori’, ‘a posteriori’, and 
progressive methods (for explanation see Chapter 4). 
Examples of ‘a priori‘ optimization are linear weighted sum, goal programming, 
Tchebycheff aggregation (see Figure 57). 
 
 

 

A priori (one point on Pareto Front)

lexicographic

Distance to a reference point method

Goal programmingε-constraint

Tchebycheff aggregation

Linear weighted sum

 

Figure 57 Illustration of the topology of ‘a priori‘ algorithms. 

 
Representatives of ‘a posteriori’ methods are, e.g., evolutionary multi-objective 
optimization algorithms. 
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A posteriori (Pareto Front)

iterative Population-based

Continuation method 

(gradient based) 
MO-SA MO-PSO Evolutionary multi-objective 

optimization (EMO)

SMS-EMOANSGA IIMOGAPAES SPEAII
 

 

Figure 58 Illustration of the topology of ‘a posteriori‘ algorithms. 

 
In the progressive approach user interventions are made during the optimization 
procedure to enable the reorientation of the search towards a direction of improving 
solutions. A drawback of the progressive way is that it requires lots of attention and 
time.  

5.4.1 Multiple objective genetic algorithm 

The multiple objective genetic algorithm (MOGA) proposed by Fonseca and Fleming 
[1995] belong to the first generation of multi-objective evolutionary algorithms 
(MOEAs) that “typically adopted Niching or fitness sharing” [Coello Coello, 2006]. 
There exist further non-Pareto based approaches such as vector evaluating genetic 
algorithm (VEGA) and Pareto-based approaches with non-dominated sorting to rank 
the search population.  
The difference with the genetic algorithm is a vector/ efficiency transformation. After 
ranking the individuals, efficiency is assigned to each individual. By using a function 
for the ranking, the individuals are ranked from best to worst. 
MOGA also uses restrictions for an individual to not arbitrarily recombine with any 
other individual (mating restrictions) [Coello Coello, 2006]. 
In multi-objective optimization many problems are constrained. MOGA includes an 
approach to handle constraint functions. Constraints are treated as criteria and “goal 
restraints” applied to force solution into desired feasible region (by penalizing Pareto 
rank of infeasible solutions) [Wright et al., 2002] 
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Legend: 
1 Initialization population                                      3 Crossover 
2a Efficiency computation                                     4 Mutation 
2b Vector/ efficiency transformation                     5 Selection 
 

Figure 59 Schematic representation of the multi-objective GA [Collette et al., 

2004]. 

 
In [Wright et al, 2002], the HVAC system for three different building types (low, 
medium and heavy case) is optimized using a simple MOGA. Two different objectives 
are considered: daily energy costs and the occupant thermal discomfort.  
Manzan et al. [2006] optimize the thermal comfort and the energy use for HVAC 
systems with night ventilation cooling of a three level office building.  
With the help of MOGA feasible solutions are found showing a fast progress towards 
the Pareto optimal solutions.  
MOGA initiated according to Coello Coello [2006] the “second” generation of MOEAs 
like the non-dominated sorting genetic algorithm (NSGA-II) and SMS-EMOA. 
 

5.4.2 Non-dominated sorting genetic algorithm 

The non-dominated sorting genetic algorithm (NSGA-II) was introduced by Deb et al. 
[2002]. Although the name reminds to the earlier developed forerunner NSGA, it is 
significantly different. It addresses for instance drawbacks of the earlier version due to 
lack of elitism, sharing function and density estimation [Deb et al., 2002]. 
 
NSGA-II uses fast non-dominated sorting and crowding distance for ranking 
individuals. Moreover, it works with an elitist selection scheme that selects the best 
individuals from the union of the parents and offspring population [Coello Coello, 
2006]. 
 
One essential difference to other multi-objective algorithms is the sharing function, 

shareσ , that works with crowding distance. In multi-objective optimization it has to be 

found out which solution is dominated by what set of solutions. With the help of 

shareσ  or the crowded comparison approach, the density of the surrounding of one 

solution is calculated to maintain sustainable diversity in a population. 
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The parameter shareσ  defines areas for the efficiency computation of an individual by 

comparing the distance of two points on one sight (see Figure 60). Therefore non-
dominated solutions are preferred over dominated, but the one in a less crowded region 
is also preferred compared to the one in a crowded.  

The value of the solutions ix  in Figure 60 depends on its neighbors. The crowding 

criterion is herewith used for ranking. For instance, 5x  (rank 3) outperforms 4x  (rank 

4). 
 

f2

f1

1

6

4

2

x6

x4

x2

x1

Cuboid

x3
5

x5

3

 

Figure 60: Illustration of the NSGA-II and its crowding distance 

calculation. 

 
The implementation of NSGA-II in building assessment is dedicated to the 
optimization of thermal comfort and energy consumption in the domain of HVAC 
systems [Nassif et al., 2004, 2005] and building scenarios/ design [Emmerich et al., 
2008]. 

5.4.3 SMS EMOA 

One of the recent MOEAS has a selection mechanism based on performance indicators 
for the Pareto fronts. It combines the non-dominated sorting with a selection operator 
based on the hypervolume measure [Emmerich et al., 2005; Beume et al., 2007]. It is 
very similar to NSGA-II which can be seen in Figure 60. The main two differences are 
the selection (steady-state of SMS EMOA and (μ+μ) selection in NSGA-II) and a 
different ranking of solutions on the Pareto front. 
As mentioned earlier, in NSGA-II solutions converge to a uniformly distributed set on 
the Pareto front with help of crowding distance. In SMS EMOA, the hypervolume 
distributes them in a way to maximize the covered hypervolume. The hypervolume is 
the “size of space covered or size of dominated space” [Emmerich et al., 2005]. 
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In the SMS EMOA, points are selected based on their contribution to the dominated 

hypervolume. The value of the solutions ix  in Figure 61 depends on the position of the 

point itself. For instance, 4x  (rank 3) outperforms 5x  (rank 4) [Emmerich et al., 

2005]. 
 
 

 

Figure 61: Illustration of the SMS EMOA- sorting by Δs [Emmerich 

et al., 2005]. 

 
An advantage of the SMS EMOA is that good compromise solutions can be found. 
Compared to the NSGA-II, solutions close to knee-points of the convex parts of Pareto 
frontier are ranked higher.  
An example of SMS EMOA applied in building performance is shown in [Emmerich et 
al., 2008]. In a case study the energy consumption and comfort are optimized by 
varying the building geometry and internal loads.  
 

5.5 Robust design optimization or optimization under uncertainty 

As stated in Chapter 3, multiple sources of uncertainties can be defined. It is of major 
importance to achieve solutions that are not only fulfilling the requirements with 
respect to performance (i.e., energy and comfort) but that also perform well under 
variations due to uncertainties (e.g., decision making with uncertainty in Chapter 4). 
Solutions embedding those variations caused by uncertainty are defined as robust 
optimum solutions leading to a robust design. 
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Maystre et al. [1994] define robustness analysis as a method that “tries to determine the 
variation domain of some parameters in which the sorting of solutions or the choice of 
a solution remains stable.” 
Early attempts in looking for robust design solutions trace back to Taguchi who was 
using design of experiments to evaluate different designs [1989]. However, as stated in 
Schueller and Jensen [2008] the method lacks of optimization efficiency.  
Sources of uncertainty in optimization can be divided into four main groups 
[Kruisselbrink, 2008]:  

1. Uncertainties in design variables. 
2. Uncertainties in environmental parameters. 
3. Uncertainties due to noise in the output. 
4. Uncertainties due to vagueness of constraints. 

Kruisselbrink furthermore splits the determination for stating/ predicting the robustness 
of a solution in three categories:  

1. Using sampling methods as Monte Carlo or Latin- hypercube sampling (see 
Chapter 3). 

2. Using gradients to achieve an approximation for the optimization function by, 
e.g., Taylor-series. 

3. Using previous evaluations by using meta-models and estimating the 
robustness.  

The meta-model or surrogate is a function of the design variables that approximates the 
objective function, thus, helping in fast assessing the robustness. Meta-models are built 
from the information gathered in previous evaluations of the objective functions. Meta-
models are beneficial, because whenever applied they are much faster to evaluate than 
the original function.  
Some examples of techniques are, e.g., Kriging models [Kleijnen and Beers, 2004], 
neural networks [Badiru and Sieger, 1998], and response surface methodology [Ng et 
al., 2008].  
 
Kriging models in this research are used in conjunction with a sampler to generate an 
initial response surface.  
One issue of building performance simulation is the simulation time that increases 
whilst the amount of parameters gets higher and the results become more detailed. A 
single simulation of a nine-storey office building easily takes 3-9 minutes on a Pentium 
IV quad-core processor. As a consequence the use of techniques like uncertainty/ 
sensitivity analysis, what- if analysis, and design optimization become infeasible as the 
conduction of minimum 100 up to 1000 simulation evaluation becomes too time 
consuming. 
The motivation of using Kriging meta-models is to allow optimization under 
uncertainty in a lower/ reduced time demand.  
Without meta-models the number of simulation runs in an optimization is the number 
of optimizer iterations, the number of evaluations per iteration multiplied with the 
number of Latin hypercube samplings. With the use of Kriging meta-models the 
number of runs is reduced to the seeding runs and extra runs for online adaptation of 
the meta-model. In total, the number is reduced to a fraction of 5% to 20% of runs 
needed of the original algorithm.  
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Figure 62 Illustration of a Kriging meta-model of a one-

dimensional objective function. 

 

5.6 Optimization tools  

Optimization techniques are not a standard feature in building performance software so 
far. However, there exist several optimization tools that can be easily integrated with 
standard BPS.  

5.6.1 Genopt 

Genopt is an optimization program for the one –objective function to be coupled to an 
external simulation program such as EnergyPlus, TRNSYS, etc. It is developed for a 
cost function where “the cost function is computationally expensive, and its derivatives 
are not available or may not exist “[GenOpt, 2009]. 
It can be coupled to any BPS. It reads the input from text files and writes the output to 
text files. The independent variables can be discrete and/ or continuous (box 
constraints). 
The cost function can cover almost everything, from minimization to maximization of 
any objectives (energy, indoor air quality, thermal comfort, etc.).  
GenOpt provides local and global multi-dimensional and one-dimensional optimization 
algorithms such as follows. 
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− Generalized pattern search algorithms (the Hooke-Jeeves algorithm and the 
coordinate search algorithms), which can be run using multiple starting points.  

− Particle swarm optimization algorithms (for continuous and/or discrete 
independent variables), with inertia weight or constriction coefficient and 
velocity clamping, and with a modification that constricts the continuous 
independent variables to a mesh to reduce computation time.  

− Nelder and Mead's simplex algorithm.  
Genopt has for instance been applied in optimization procedures in building assessment 
in [Wetter et al., 2002; Wetter et al., 2003]. 

5.6.2 Topgui 

Topgui is a toolbox for parameter optimization. It provides a number of optimization 
methods as Genopt but consists of a Java graphical user interface (Gui) and provides 
also algorithms for multi-objective optimization problems.  
In addition, batch commands (that can be controlled by the Gui) can be inserted to start 
the optimization passing the optimization algorithm, number of evaluations, design 
variables, etc. Additional, extra strategy parameters can be provided for some 
algorithms, e.g., for the evolution strategy by editing the population size parameters.  
There are multiple algorithms available and the list can be easily extended by inserting 
new algorithms. To mention some the following optimization strategies are 
implemented into Topgui [Emmerich et al., 2003]. 

− HOOKE-JEEVES: Hooke Jeeves algorithm 
− (µ,κ,λ)-Evolution Strategy 
− ES1P1: (1+1)-Evolution Strategy with 1/5th success rule 
− EXPERIMENT: DoE- Scheduler 
− NSGA-II 
− SMS- EMOA 

Topgui has also already been applied in [Emmerich et al., 2008] for the optimization in 
BPS. 

5.6.3 Others 

Besides Genopt and Topgui, there exist also some other approaches. For instance 
Wetter [2005] presents an automated multivariate optimization tool called BuildOpt 
which is an energy simulation program that is built on models that are defined by 
differential algebraic equations (DAE).  
 
Ellis et al. [2006] demonstrate an optimization tool that employs multiple modules, 
including a graphical user interface, a database, a preprocessor, the EnergyPlus 
simulation engine, an optimization engine, and a simulation run manager. 
Another application shows the use of Lingo [Lindo, 2009]. It is used in [Diakakia et al., 
2008] as optimization software that offers, e.g., linear/ non-linear programming and 
global optimization. It is meant to maximize the profit whilst minimizing the costs.  
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The state of the art in MOO in BPS is the application of the NSGA-II algorithm. SMS 
EMOA shows promising results in [Emmerich et al., 2008], however, besides this 
publication it is not applied in the context of building simulation so far. 
The comparison of both algorithms in the domain of BPS, the different Pareto frontiers 
achieved, the optimization results, the number of simulations, etc., is the intent of the 
following section. 
Furthermore, the use of Kriging meta-models for the integration of UA/SA in 
optimization has not been applied in BPS so far. It is aimed to show the impact of 
UA/SA in a typical optimization procedure and to compare the outcomes of a 
conventional Pareto frontier and the one covering uncertainty. 
 

5.7 Prototype description of applying MOO  

After reviewing algorithms in single- and multi-objective optimization, providing 
examples of applied optimization in BPS, the following section will present the 
implementation of two multi-objective algorithms NSGA-II and SMS EMOA. NSGA-
II algorithm was chosen as it is a state-of-the-art algorithm in MOO and has already 
been successfully applied in other applications in BPS [Nassif et al., 2004; Emmerich 
et al., 2008]. SMS EMOA is part of the recent MOEAs generation and belongs to the 
up-to-date trends in MOO [Coello Coello, 2006]. These two have been selected for the 
optimization of the energy use and thermal comfort of an office building. As a case 
study, design option 1 from the Appendix A, is chosen. Both optimization procedures 
are conducted with the help of the optimization platform Topgui.  
 
The aim is to simulate both algorithms, to compare the results, the time demand, and 
eventually the Pareto front achieved.  
In Figure 63 the flowchart of the optimization is shown. 
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Figure 63 Illustration of the workflow for conducting MOO in BPS. 
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After having defined the two objectives (reduction of energy consumption and the 
improvement of thermal comfort) the parameter settings are defined. The six selected 
parameters for the optimization with NSGA-II and SMS EMOA are chosen because of 
the results from Chapter 3. After the selection of the algorithm, the number of 
evaluation is set to 2000 and the population size is limited to 20. The high number of 
evaluations is chosen to avoid the early breakdown of the optimization. The population 
size of 20 seems to be sufficient as it was found in literature [Wetter, 2006]. The 
objective function is the sum of the energy demand (annual cooling and annual heating) 
and the comfort criterion (weighted over- and underheating hours). During the 
evaluation of the objective function, the BPS tool VA114 is started with new 
parameters achieved for the optimization. The iteration is increased until the optimum 
is found. 
 

5.8 Case study description of applying MOO  

The application of the two algorithms and the results obtained are discussed in the 
following sections. 

5.8.1 The application of NSGA-II algorithm 

The NSGA-II is a MOO algorithm that is implemented in Topgui. In order to start the 
optimization with NSGA-II only one file needs to be created that imports the 
parameters changed, generates the different input files for the BPS tool VA114, defines 
the objective function, and includes the command line to start VA114. After that, the 
optimization procedure is easily started in batch mode.  
 
In the command line the following parameters are passed for the optimization as shown 
in Appendix E.  
 

Table 17 Demonstration of the input parameters (maximum and minimum 

boundary conditions) for the optimization with NSGA-II algorithm. 

   Internal gains  

  

Glass area 
on two sides 
[m²] 

Size room 
[m²] 

People 
[W/m²] 

Lighting 
[W/m²] 

Equipment 
[W/m²] 

Infiltration 
rate 
[ACH] 

Min 10 160 6 6 6 0.2 
Max 20 260 25 35 30 1  
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After 1000 simulations the optimization stops having generated 1000 solutions shown 
in Figure 64. The dots in the graphic symbolize the 1000 different solutions resulting in 
a well distributed Pareto front.  
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Figure 64 Results of MOO using NSGA-II algorithm for the two objectives energy 

consumption and thermal comfort using the parameter settings from Table 17. 

 
The final values of the problem variables are summarized in Table 18, the final 
outcome of the two objectives energy consumption and thermal comfort in Table 19. 
 

Table 18 Results of MOO using NSGA-II algorithm after 1000 simulations for the 

input parameters using the parameter settings from Table 17. 

   Internal gains  

  
Side length 
window [m] 

Side 
length 
room [m] 

People 
[W/m²] 

Lighting 
[W/m²] 

Equipment 
[W/m²] 

Infiltration 
rate 
[ACH] 

Result 1.34 23 15 10.4 7.8 0.2  
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Table 19 Final outcome of MOO using NSGA-II algorithm for the 

two objectives energy consumption and thermal comfort. 

Energy consumption 14338 kWh 

Weighted over- and underheating hours 92 h  
 
 
All dots on the Pareto frontier are possible solutions. However, the solution, where the 
optimization program stops shows one good compromise between the two objectives 
energy consumption and thermal comfort. It is shown in the figure below. 
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Figure 65 Results of MOO using NSGA-II algorithm for the two objectives energy 

consumption and thermal comfort using the parameter settings from Table 17 

and showing the result of the optimization outcome. 
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Another possibility of using optimization techniques is to compare different design 
options. For that reason, the NSGA-II algorithm is used to contrast different designs 
such as in the decision making process of Chapter 4. Therefore design option 2 (see 
Appendix A and B) was simulated using the same input parameters as in the first case. 
Unfortunately, the results are not sufficient because of the circumstances that the 
second option consists of two models, one for the summer and one for the winter 
simulation. Therefore, not the entire year can be simulated as it has been done for 
design option 1. Two different simulations need to be run- for the summer and the 
winter separately resulting in two different parts of a Pareto front. Results are presented 
in Figure 66. 
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Figure 66 Results of MOO using NSGA-II algorithm for the two objectives energy 

consumption and thermal comfort using the parameter settings from Table 17 and 

showing the Pareto frontiers for design option 1 and design option 2. 

 
The well distributed Pareto front for the first option is already shown in the Figure 64. 
The triangles show the results after the optimization for the winter season. The dots in 
the left hand corner are the optimized results for the summer scenario. Due to the fact 
that two different simulations had to be conducted, the Pareto front consists of two 
parts for design option 2 that are not connected. 
 
A possibility to solve this problem and thus, to consider decision making with both 
options, would be to separate the objectives into a summer and winter case, i.e. an 
optimization of the annual cooling versus weighted overheating hours and the annual 
heating versus weighted underheating hours.  
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The summer case of Figure 66 is shown in more detail in Figure 68.  
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Figure 67 Results of MOO using NSGA-II algorithm for the two objectives energy 

consumption and thermal comfort using the parameter settings from Table 17 and 

showing the Pareto frontiers for summer case of design option 2. 

 
 



5. Multi-objective optimization 

 127 

5.8.2 The application of SMS-EMOA algorithm 

In this section the optimization is conducted with SMS EMOA. The case study and the 
input parameters are identical to the approach with the NSGA-II. The SMS EMOA is 
also easily started in batch mode.  
 
The optimization procedure with the SMS EMOA needs a higher number of 
simulations. Opposed to the 1000 simulations of the NSGA-II, the optimization with 
the SMS EMOA stops after 2140 simulations. It generates 2140 solutions shown in 
Figure 64. The dots in the graphic symbolize the 2140 different solutions performing a 
well distributed Pareto front comparable to the NSGA-II. 
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Figure 68 Results of MOO using SMS EMOA algorithm for the two objectives 

energy consumption and thermal comfort using the parameter settings from 

Table 17. 

 



 

 128 

The final values for the problem variables are summarized in Table 20, the 
corresponding result in Table 21. 
 

Table 20 Results of MOO using SMS EMOA algorithm for the two objectives 

energy consumption and thermal comfort. 

   Internal gains  

  
Side length 
window [m] 

Side 
length 
room [m] 

People 
[W/m²] 

Lighting 
[W/m²] 

Equipment 
[W/m²] 

Infiltration 
rate 
[ACH] 

Result 1.45 23 6 17 24 0.2  

One possible result provided by the algorithms is shown in Table 19 for the two 
objectives. For the energy consumption it is 10832kWh and for the sum of the 
weighted over- and underheating hours it is 128h.  
 

Table 21 Results of MOO using SMS EMOA algorithm for the two 

objectives energy consumption and thermal comfort. 

Energy consumption 10832 kWh 

Weighted over and under heating hours 128 h  
 
The solution of the optimization where the simulation stops is marked in the figure 
below.  
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Figure 69 Results of MOO using SMS EMOA algorithm for the two objectives 

energy consumption and thermal comfort using the parameter settings from 

Table 17 and showing the results of the optimization outcome. 
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For the second design option, the case study with heating/cooling storage, the summer 
case is further optimized with the SMS EMOA. It is shown in Figure 70.  
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Figure 70 Results of MOO using SMS EMOA algorithm for the two objectives 

energy consumption and thermal comfort using the parameter settings from 

Table 17 and showing the Pareto frontiers for summer case of design option 2. 
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5.8.3 The application of Kriging (plus uncertainty) 

To allow the optimization under uncertainty, Kriging meta-models are used. They have 
already been introduced in Section 5.5.  
Besides the parameters varied for the optimization, uncertain parameters have to be 
defined. In a first trial of the Kriging meta-modeling five variables for the optimization 
and 72 for uncertainty analysis have been considered. Unfortunately no feasible results 
have been achieved as the number of parameters being used for Kriging meta-modeling 
is limited to around 20 [Paredis, 2008]. 
 
The second trial focused on the optimization of 5 variables and the uncertainty analysis 
of 5 variables. In Table 22 the in total ten parameters for optimization and uncertainty 
are listed; the other parameters are kept constant.  
 
 

Uncertainty 
Thickness 

wall layer 3 

 
Conductivity 
floor layer 4 

 
Conductivity 
floor layer 2 

 Infiltration 
rate  

switch 
single/ 
double 

Optimization Size room 
Size 

windows 
 Internal 

gains: people

 Internal 
gains: 

equipment 

 Internal 
gains: 

lighting  

Table 22 Overview of Kriging meta-model input parameters for the optimization 

and uncertainty analysis. 

 
The parameters varied for the optimization are identical to the approach with NSGA-II 
and SMS EMOA algorithms in Table 17. The selection of the parameters considered 
for the uncertainty analysis is based on findings of the UA/SA in Chapter 3. The 
infiltration rate, the conductivity of two floor layers, the thickness of a wall layer, and 
the switch of double and single glazing are considered. Detailed information about the 
mean and standard deviation can be seen in Appendix B. 
 
For the calculation of the correlation parameters a maximum likelihood heuristics is 
used. For the maximization of this likelihood term in Kriging meta-models a 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is applied [Hansen et al., 
2003]. CMA-ES is a stochastic, population-based, iterative optimization method 
belonging to the class of evolutionary algorithms. 
 
In Figure 71 the results of the Kriging are summarized. The figure includes the worst, 
the mean, and the best case, each 200 rounds (simulation calls) in length. For each 
optimization the model is called 200x201 = 40200 times. The number of calls to the 
model that are required for the initialization of the parent set is ‘number of parents’ 
multiplied with 201.  
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Figure 71 Results of Kriging meta-modeling for the two objectives energy 

consumption and thermal comfort using the parameter settings from Table 17. 

 
In Figure 71 the Pareto front after 200 iterations of the algorithm is shown. Three 
different cases are distinguished: the worst case, the mean case and the best case. 
Compared to the optimization in Section 5.8.1 and 5.8.2 less results need to be 
evaluated to achieve a well distributed Pareto front. The three cases show the best, 
mean, and worst prediction of the conducted case study with regards to the 
optimization of thermal comfort and energy consumption including uncertainty. 
 
The model comes up with less quality predictions for the best case, although the best 
case Pareto front looks well distributed (see Figure 71). The quality prediction is a 
result of the y-y’ plots in Figure 72 and Figure 73. 
 
A reason for this could be that for the best case solutions are found on the boundaries 
of the parameter ranges. As a consequence of this, new points that lie on the boundary 
lack for quality neighborhood points to support the prediction. This problem does not 
hold for the mean and worst case because here the points lie further from the 
boundaries.  
 
It is obvious that the worst and the mean case are more interesting for the performance 
under uncertainty as they provide more insight in worse scenarios and therefore are 
better for making less risky predictions. However, the best case is used as a reference to 
check the functioning of the system regarding the quality of the output and to compare 
it with the NSGA-II later on.  
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Figure 72 and Figure 73 demonstrate for both objectives the y’-y diagrams which show 
the predicted points relatively to the real points. The preferred outcome is that all points 
lie on the separatrix between the y- and the y’-axis.  
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Figure 72 Results of Kriging meta-modeling showing the relation of predicted 

points relatively (y’) to the real points (y) for the objective weighted over- and 

underheating hours. 

 

 
The comparison of the predicted points relatively (y’) to the real points (y) for thermal 
comfort is shown in Figure 72. For the mean and the worst case the results form a 
straight line whilst for the best case the results are slightly spread. This consequences a 
worse quality prediction for the best case. 
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Figure 73 Results of Kriging meta-modeling showing the relation of predicted 

points relatively (y’) to the real points (y) for the objective energy consumption. 

 
The comparison of the predicted points relatively (y’) to the real points (y) for energy 
consumption is shown in Figure 73. All outcomes presented follow a line. That means 
that the predicted points match the real points for the best, mean, and worst case. 
Therefore, the quality prediction for all cases is sufficient. 
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5.9 Discussion  

The trade off curve (Pareto front) is shown for the NSGA-II and SMS EMOA.  
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Figure 74 Results of MOO comparing NSGA-II and SMS EMOA algorithms for 

the two objectives energy consumption and thermal comfort using the parameter 

settings from Table 17.  

 
In Figure 74 the comparison of NSGA-II and SMS-EMOA algorithms for design 
option 1 is shown. It can be seen that the Pareto-front is well distributed and that both 
Pareto fronts match each other. 
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Figure 75 Results of MOO comparing NSGA-II and SMS EMOA algorithms for 

the two objectives energy consumption and thermal comfort and indicating the 

two good solutions from the algorithms.  

 
Figure 75 shows the results of both algorithms indicating the good solutions. It can be 
seen that both algorithms achieve a well-distributed Pareto front. This is a valid proof 
that the global optimum was found. The solutions provided by the algorithms are 
shown in the figure above. Both solutions surround the area of a fair- tradeoff. 
Solutions in between those two are all possible, well optimized solutions. 
 

Table 23 Comparison of the results (output and number of evaluations necessary) 

of NSGA-II and SMS EMOA algorithms for design option 1. 

    NSGA-II 
Number 
simulations SMS EMOA 

Number 
simulations 

Energy 
consumption [kWh] 14338 1000 10832 2140 
Weighted 
over- and 
underheating 
hours [h] 92 1000 128 2140  

 
The Pareto frontiers are comparable. However, the time difference is significantly 
higher for the SMS EMOA. To conduct 100 simulations it takes around 20 minutes. In 
total, the optimization with the NSGA-II takes slightly more than 3 hours whilst the 
optimization with the SMS EMOA needs more than 7 hours on the same machine. 
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In Figure 76 and Table 24 the results are compared for design option 2 of Appendix A 
(summer case). 
Figure 76 shows, that the results provided by SMS EMOA build a better Pareto front 
approximation compared to the NSGA-II. 
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Figure 76 Results of MOO comparing NSGA-II and SMS EMOA algorithms for 

the two objectives energy consumption and thermal comfort for design option 2. 

 
The comparison of the NSGA-II and the SMS EMOA algorithms are shown in Figure 
76 for design option 2 the summer case. The results of the NSGA-II are more spread 
and do not build a well distributed Pareto front whilst for the SMS EMOA better 
solutions are found. 
 

Table 24 Comparison of results (output and number of evaluations necessary) of 

NSGA-II and SMS EMOA algorithm for the summer case of design option 2. 

    NSGA-II 
Number 
simulations SMS EMOA 

Number 
simulations 

AC [kWh] 1662 120 2049 2137 

WOH+  [h] 1 120 0 2137  

Table 24 shows the comparison of the outcome for the summer case with NSGA-II and 
SMS EMOA algorithms. The results show the demand of annual cooling opposed the 
weighted overheating. The SMS EMOA finds the solution after 2137 simulations 
whilst the NSGA-II stops automatically after 120 simulations. 
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Figure 77 Results of MOO comparing NSGA-II algorithm and Kriging meta-

modeling for the two objectives energy consumption and thermal comfort.  

 
In Figure 77 the results of the Kriging are compared with the outcome of the NSGA-II. 
The best, the mean, and the worst case of the Kriging meta-modeling are compared to 
the NSGA-II. The Pareto front of the NSGA-II lies in between the best and mean case; 
however without considering any uncertainty in the parameters. 

5.10 Conclusion 

In this chapter multi-objective algorithms have been applied in the context of building 
performance. The results of two algorithms NSGA-II and SMS EMOA have been 
presented and compared to each other. Besides, the implementation of Kriging meta-
models shows the affect uncertainties have on the Pareto frontier.  
 
The NSGA-II algorithm provides sufficient results especially for design option 1. 
However, the results achieved with SMS EMOA for design option 2 are significantly 
better even though the number of simulations is much higher. This is due to focusing 
on knee-points without loosing extreme points in finding solutions (cf. Section 5.4.3). 
The reason why the optimization with the NSGA-II breaks up already after only 120 
simulations however is not clear. This requires further evaluations of the differences 
among both algorithms, the convergence and the influence of the different options 
applied.  
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At first sight, looking at design option 1 the use of NSGA-II seems more convenient. 
Considering the fact that the time for 1000 simulations averages three hours, i.e., the 
SMS EMOA runs for almost seven hours. However, as computational power increases, 
the limitation of the simulation with SMS EMOA will be elevated, and appears 
therefore more promising. In order proof the above, it is advised to run both algorithms 
with another case study.  
Nevertheless, both algorithms were successful in finding Pareto front for design option 
1. 
 
Kriging meta-modeling is an approach to reduce the number of objective function 
evaluations which becomes indispensable when the robustness of solutions needs to be 
tested in order to compare their performance. The results for the best, the mean, and the 
worst case give good insights to the behavior of the objective function under 
consideration of only five variables for uncertainty. 
A disadvantage of Kriging meta-modeling is that it is limited to objective functions 
with only a low number (ca. 1-20) of design variables. 
However, this problem was circumvented with the help of parameter reduction as a 
result of using uncertainty/sensitivity analysis in the first step to identify the five most 
sensitive parameters (results from Chapter 2). 
 
The results of the MOO presented would help the BPS designer in several ways such as 
follows.  
 

(i) Integrated optimization of parameters leading to an optimized result.  
(ii) Comprehension of how uncertainty can affect the Pareto frontier. 
(iii) Support in the decision process by providing a base to compare different 

design options. 
(iv) Enhancement of the use of BPS by providing additional support, and 

therefore, leading to a better guidance in the design process. 
 
For evaluating the added value of optimization for design support in BPS, the results of 
the first case will be presented to a number of professionals in an online survey. Due to 
the fact that both algorithms do not differ significantly for design option 1, only one 
algorithm (NSGA-II) is used for demonstrating the results of the optimization to 
practitioners.  
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66  
6. Usability Testing 

6.1 Introduction 

Preceding chapters presented three different approaches embedding UA/SA and/or 
optimization. The overall aim was to improve the use of building performance 
simulation in the final stage. Therefore, it is essential to test the usability of the three 
prototypes developed in practice with a number of design professionals. 
 

1. Prototype: the application of UA/SA (cf. Chapter 3). 
2. Prototype: the application of decision making with UA/SA (cf. Chapter 4). 
3. Prototype: the application of MOO (cf. Chapter 5). 

 
Usability testing involves one or more users to use a prototype whilst possibly an 
observer follows the work-through. Mills et al. [1986] for instance define the usability 
of a tool as the ease with which an application can be used.  
Nielsen [1995] separates four basic ways of evaluating user interfaces. 

1. Automatic approach by running a user interface through some program. 
2. Empirical testing of the interface with real users. 
3. Formal calculation of usability measure through formulas. 
4. Informal approach based on experience of evaluator and rules of thumb. 

The empirical testing seems advantageous because feedback from many users can be 
collected. By running through the program feedback from practise can be achieved by 
the intended user group. Drawback is that the rapidly developed prototypes do not 
provide an applicable user interface so far that would it make possible to let users test it 
self-contained.  
Therefore one emphasis of the usability testing focussed on observation (methods). 
D’Hertefelt [1999] describes observation methods and gives advices for usability 
testing. He divides observation methods into two variants: (i) unobtrusive observation 
and (ii) obtrusive observation. Unobtrusive observation lets the users do, and helps in 
finding out if the system is easy to use, i.e. understandable. On the other hand, 
obtrusive observation allows the interaction with questions from the observer. This 
type is better to learn about the usefulness and acceptance of prototype. 
For achieving an insight in the individual attitude of a user, the distinction between the 
linguistic, the motor-expressive and the physiological level is made [Horeni, 2007]. 
The two latter ones work with facial expression, gestures during observations, 
measurements of neurological changes, etc., and are inappropriate. The linguistic level 
on the contrary implies methods/ techniques such as interviews or questionnaires.  
Preston [2009] summarizes a range of methods for usability testing on the linguistic 
level. Three of them, appearing relevant for this research, are as follows.   
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− Interviews and observations. These are one-on one session with designers, 
asking questions like what they do, want, prefer in building assessment. This 
method was chosen to start the research project and assess the state of the art 
in the use of building performance (cf. Chapter 2).  

− Focus groups. Focus groups are meetings with multiple attendees from the 
specific target group. Even so it is a promising method especially for initiating 
discussions it was not possible to apply due to the difficulty of bringing 
professional together at the same time and location.  

− Questionnaires. A formal questionnaire is an instrument for gathering 
information from a group of people. Advantage is that it is not influenced by 
the interviewer. It is easy to conduct if online spread, and implies therefore 
less effort than interviews. Besides, a bigger number of respondents can be 
covered. The answers can be gathered standardized which makes the data 
analysis easy as well.  

 
The research started with a series of interviews with design professionals interrogating 
the satisfaction with present simulation tools, problems, and future wishes amongst 
others. 
Consequently and continuously feedback from practice was achieved, developing 
concepts in terms of ongoing research activities and in direction to expectations and 
requirements and claims of practitioners. Two series of interviews have been 
conducted, and two extensive mock-up studies with a selected group of designers have 
been carried out. The results are summarized in Section 6.2. Finally, after the 
development of three prototypes, a survey was published on internet to achieve a better 
coverage and objective feedback without interrogation. 

6.2 Usability testing with mock-up presentations 

Two mock-up presentations have been carried out during the development of the 
different prototypes to achieve feedback from practitioners before the finalization of 
the project. These mock-up studies consisted of a number of PowerPoint slides 
showing possible inputs and outputs for the three prototypes that have not been 
implemented at that point.  
The results of the two mock-up studies are summarized in the following section. 

6.2.1 Feedback to uncertainty/sensitivity analysis 

Uncertainty/ sensitivity analysis was a very much appreciated approach by the user 
group. However, some issues or add-ons for the current prototype and the output 
presentations have been recognized.  

− Demonstration of the techniques and provision of practical conclusions with 
analysis results surprise and give answers to questions such as, e.g., “What is 
the added value when increasing the Rc value from 2.5 as required by standard 
to 3.0 relative to varying the infiltration rate.”  

− It is an important question with what amount of money something can be 
achieved in order to see which parameters has the biggest impact on the 
performance. This consequences, that one can focus more on that specific 
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issue. It shows where the higher investment should be spent in order to 
achieve a certain goal (decision making under uncertainty). 

− Consideration of uncertainties in systems (part load performance, conflicting 
component operation, etc.) is interesting as long as the tool is able to model 
the system components detailed enough.  

− Infiltration in general becomes very important (this can also be noticed in the 
uncertainty analysis). The infiltration rate in practice can easily exceed 5 times 
the factor that is assumed. It was stated that one design concept is more 
sensitive to infiltration than another.  

 
Output visualization 

− Graphs of UA/SA appear very abstract and are consequently very hard to 
understand for simulation user. 

− Suggestion of a normal graph of energy consumption and comfort to see the 
influence and variation in between the different simulations (the effect of 
energy consumption/ percentage of change). 

− Explanation of results is important. Appreciation of the chosen form of 
presenting sensitivities, e.g., bar charts indicating regression coefficients as 
being intuitive (“the longer the beam the bigger the influence”) but at the same 
time it admits the need for basic knowledge in statistics to understand the 
presented data. It is nice to get answers to following questions: “What is 
changing?” “Why are parameters changing or have a different influence?” 
“What is the expectation?” ”What could happen?” 

6.2.2 Feedback to decision making under uncertainty 

Decision making with the help of UA/SA was perceived as a very good approach for 
having (i) the evaluation and analysis of performance of varieties, and (ii) the 
illustration of the costs including the risk of the underperformance of an option. The 
chosen decision protocol analytical hierarchy processing (AHP) is comprehensible. The 
outcome is easy to use and very nice to demonstrate in presentations. Certain 
comments are summarized about the issue of communication, the weighting of the 
criteria and the robustness analysis. 
 
Communication 

− Communication is of major interest in the entire design process- also in the 
detailed design stage. Communication and flexibility are important because “if 
people do not understand they do not make a decision. It is important to know 
what the consequences are of each option or decision are and why something 
is better!” [P. Stoelinga, 2008]. 

− The application of a decision support technique as AHP was encouraged as it 
supports the communication in the design process.  

 
Weights & aspects 

− Change of weights associated with performance metrics might change over the 
building process (e.g., costs are not important as long the budget is not 
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exceeded; fluctuation in daylight availability is accepted as long it is not dark). 
It is beneficial to be able to change the weighting factor from time to time.  

− It is difficult to define right performance aspects and to find the right 
weighting factor.  

− Fear of a predisposition of engineers that might influence the decision when 
using weights. Decisions will be taken on subjective rather than objective 
arguments.  

 
Robustness 

− The use of parameters contributes to robustness. In the beginning other 
performance aspects are important (such as energy consumption, comfort); but 
costs is something that everybody understands. Therefore costs become very 
important in the end. That includes comparison of different options to the cost 
factor. 

− The danger of “goal thinking” was noticed: “this is what I want the answer to 
be! The more complex the problem is - the bigger the danger of goal 
thinking.” [Wiedenhoff, 2008] It should be aimed to identify the weakness of 
design options rather than forcefully seeking for a solution to the design 
problem. 

− Exposure of decisions purely based on logical reasoning to the risk of garbage 
in and garbage out. 

− Inclusion of the productivity into the cost function. An extra annual income 
due to enhanced indoor air quality equals annual depreciation of building and 
components. Temperature and fresh air rate have a direct relation to the 
productivity. Therefore, a quantitative assessment is possible. Control 
strategies and possible manual adjustments of environment have also a 
qualitative relationship to productivity.  

 

6.2.3 Feedback to optimization 

The implementation of optimization techniques is perceived as very complex but 
promising. Some feedback is outlined. 

− Optimization techniques might support the decision process in design. The 
black box approach requires confidence in a technique and the results can not 
be communicated traditionally using cause and impact. An analogy “client – 
designer” was used for explanation. A client requests a design trusting the 
designer that the design delivered will meet his expectations.  

− Statements were given as “not sure about it” but also like “feeling” best about 
optimization prototype. The integration into a design tool seems easy. 

− Questions that need to be answered in the future:  
o How does it fit into the design process? 
o How can it be integrated into the decision making? 
o Who will be the user group? 
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6.2.4 Summarized results of mock-up presentations 

− AHP seems to be process oriented because it assists the decision finding 
process. Optimization seems to be tool oriented because it enhances tool 
capabilities.  

− Both approaches are applicable for the final design stage. The idea of MCDM 
under uncertainty for instance is very helpful and not recognizable in standard 
simulation tools; “that is something that could make it worth doing a 
simulation even in the case of where it is not necessary” [E. Rooijakkers, 
2008]. 

− The role of the consultant is to analyze consequences of choices and to make 
design team members and the principle aware of those consequences. The 
project manager should steer and the principle should make the decisions 
accordingly. MCDM has potential in supporting this procedure and to explain 
consequences of decisions to design team members and the principal.  

− The user group for decision making and parameter optimization differs. 
− Communication is a very important factor. 
− If the user wants to have more insight in the calculation, the optimization is of 

higher interest. It is a very detailed approach and therefore especially 
beneficial in the final design stage. 

− People only use tools with confidence when the results meet their 
expectations. Ideally the data presentation should indicate relationships for 
easy conclusions.  

− There is a weakness in optimization as implicit knowledge is not being 
considered. For that reason the use of multi- criteria decision making on top of 
it might be beneficial. 

− A systematic-mathematical approach was suggested: “Use optimization 
techniques first to get an objective picture of the situation; nail it down to two 
choices, which are more closely related and expose their weakness 
(“weakness- analysis”) and eventually use AHP to steer the team towards the 
preferred design option” [Wiedenhoff, 2008]. 

− To sum up, the prototypes are perceived as a coherent story. The prototypes 
are expected to support the design process in a very effective manner.  

6.3 Online survey 

6.3.1 Introduction  

After the development of all three approaches, the aim is to receive a final feedback of 
the practitioners.  
Instead of conducting another mock-up study, the final part of the usability testing 
comprises an online survey that was filled in at the end of the research.  
The key questions during the two mock-up sessions were: ”how much interaction is too 
much?”; “how much influenced/ affected is the provided answer by the question?” 
However, intending to avoid the risk of interpreting behaviour and thus, influencing the 
interviewee, an online survey was developed. The online survey itself can be found in 
Appendix F. 
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The setup needs to be explained as the survey questionnaire comprises of several 
modules: an introduction page followed by three scenarios dedicated to the prototypes 
from Chapters 3-5. 
 
Structure online survey 

1. Introduction with general questions about state of the art in building 
performance, user satisfaction, etc. 

2. Representation of prototype 1: the application of UA/SA (cf. Chapter 3). 
3. Representation of prototype 2: the application of decision making with UA/SA 

(cf. Chapter 4). 
4. Representation of prototype 3: the application of MOO (cf. Chapter 5). 
5. Summary and conclusion part. 

 
Participants 

The online survey was conducted by seven world leading building services 
professionals: four mechanical engineers and three building physicists: all of them 
holding positions in industry, having high to very high experience in the use of building 
performance simulation. Further on, they frequently participate in design team 
meetings, are due to that experienced in the communication with other design team 
members. 

 
Directions to be addressed 
Different categories have been addressed in the survey: 

1. the requirements fulfilments for BPS in the final design stage. 
2. the appreciation and traceability (comprehension) of the results. 
3. the support of the design process in terms of communication and guidance. 
4. the usefulness of the integration in BPS. 

 
There are two different question types that have been included in this questionnaire. 

(i) Closed-ended questions where the respondent can easily select the 
preferred answer in selection of possibilities with radio buttons or check 
boxes. 

(ii) Open-ended question asked at the end of each prototype for further 
suggestions or comments.  

 
Typical response scales for closed-ended questions are as follows [Trochim, 2006]. 

(i) Thurstone or equal appearing scaling.  
(ii) Likert or summative scaling. 
(iii) Guttman or cumulative scaling.  

 
Thurstone scale provides statements. The user has to decide which complies best with 
his attitude. A mean score is computed out of the chosen statement that indicates ones 
attitude [Fishbein et al.,1975]. 
Likert scale is the mostly applied scale in questionnaires. Respondents, e.g., specify the 
level of agreement or importance to a statement. Very often five level scales are used, 
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but it also varies from 3 to 7 level answers. If the intention is to force the respondent to 
give an answer and to avoid “neither nor” replies, no middle number is provided (4,6,8, 
etc.) 
In Guttman or cumulative scaling items are arranged that a respondent who agrees with 
an answer also agrees with items falling into the same category, e.g., being of a lower 
rank-order. It can be described as sort of achievement test. 
The Likert terms selected in this questionnaire are mostly forced choice scales stating 
the importance (very important to unimportant), agreement (strongly agree to strongly 
disagree), standard (very high to very low), or quality (excellent to poor) of a question/ 
graphic. 

6.3.2 Results online survey 

The online survey itself is shown in Appendix F. In this chapter merely the results are 
summarized. 
 
Prototype 1: uncertainty/ sensitivity analysis 
Three different outputs for the analysis of uncertainties are shown to the use group. 
‘UA1 frequency’- this figure is used in Chapter 3. It shows the frequency plot of an 
outcome. ‘UA2 probability’- this figure is used in Chapter 3. The normality plot is 
shown and gives insight if the output follows a normal distribution. ‘UA3 range’-this 
figure is used in Chapter 4. The range shows simplified in what range the output will 
perform. 
 
The participants are asked to rate the added value of the three different outputs for 
uncertainty. 
 

0% 20% 40% 60% 80% 100%

added value

UA1

added value
UA2

added value
UA3

very important to important less important
 

Figure 78 Illustration of the percentage of the added value of 

three different graphics showing the uncertainty based on 

practitioners feedback. 

 
The added value of the figures for frequency information (UA1), probability 
distribution (UA2), and the range of the output (UA3) is shown in Figure 78. 
Especially the second graphic that shows the probability is appreciated. Less important 
is the output that shows the range. 
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Two possibilities to demonstrate sensitivity are presented. In ‘SA1 table’ the 10 most 
sensitive parameters for different aspects are ranked. ‘SA2 graphic’ shows graphically 
the impact of uncertain parameters. Both results are shown in Chapter 3.  
 
The participants are asked to rate the comprehension of the sensitivity results presented 
in a table (SA1) and a figure (SA2). 
 

0% 20% 40% 60% 80% 100%

SA1 table

SA2 graphic

st rongly agree somewhat  to strongly disagree

 

Figure 79 Illustration of the percentage of the comprehension of 

a table and figure showing the sensitivity based on practitioners 

feedback. 

 
The comprehension of the results for sensitivity is shown Figure 79. The graphic is 
perceived to show the sensitivity information in an intuitive manner. Besides the 
ranking that is indicated in SA1, the user gets more information, e.g., about the impact 
of sensitivity and if it is positively or negatively affecting the output. 
 
The participants are asked if they agree that the results of UA/SA can be taken as a 
basis for communication with others. 
 

0% 20% 40% 60% 80% 100%

UA1 frequency

UA2 probability

SA1 table

SA2 graphic

strongly agree somewhat to strongly disagree
 

Figure 80 Illustration of the percentage of the agreement of 

practitioners that the results for UA/SA can be taken as a basis 

for communication. 

The appreciation as a basis for communication with others is shown in Figure 80. In 
this question all outputs for UA/SA are presented. The bar chart for the sensitivity is 
the most appreciated graphic as base for communication. 
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Further the participants are asked if they agree that the results of UA/SA are intuitively 
understandable. 
 

0% 20% 40% 60% 80% 100%

UA1 frequency

UA2 probability

SA1 table

SA2 graphic

strongly agree somewhat to strongly disagree
 

Figure 81 Illustration of the percentage of the practitioners’ 

perception of being intuitively understandable for different 

UA/SA figures. 

 
The participants have on average more problems with the outcome of the uncertainty 
information.  However, the graphic showing the sensitivity of the parameters is 
perceived as very understandable. 
 
The participants are requested if the results of UA/SA have potential in supporting the 
design process. 
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0% 20% 40% 60% 80% 100%

UA1 frequency

UA2 probability

SA1 table

SA2 graphic

strongly agree somewhat to strongly disagree
 

Figure 82 Illustration of the percentage of the practitioners’ 

perception of supporting the design process for different 

UA/SA figures. 

The appreciation to support the design process is shown in Figure 82. No outcome of 
the UA/SA was perceived as not having an added value of supporting the design 
process. The ‘SA2 graphic’ has the highest potential - all the users strongly agreed that 
it gives support. 

 
The final question in the UA/SA approach was dedicated to the need of the integration 
of UA/SA in building performance simulation. 
 

0% 20% 40% 60% 80% 100%

UA1 frequency

UA2 probability

SA1 table

SA2 graphic

strongly agree somewhat to strongly disagree
 

Figure 83 Illustration of the percentage of the practitioners’ 

perception of the need to be integrated in BPS for different 

UA/SA figures. 

 
The wish for the integration in BPS is shown in Figure 83. None of the participants was 
contra the information achieved with UA/SA. However, having the simple results of 
UA1 and SA2 almost 90% of the users agreed on being very important to integrate in 
BPS. 
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Prototype 2: decision making under uncertainty 

The decision making protocol with the extension of BPS and UA/SA information is 
presented as it is demonstrated in Chapter 4. The participants are asked six questions.  
1. How important do you rate communication in the design process? 
 

0% 20% 40% 60% 80% 100%

very important

important

less important

unimportant

 

Figure 84 Illustration of the percentage of how important 

communication is rated in the design process based on 

practitioners’ perception. 

 
The perception of the importance of communication in the design process is shown in 
Figure 84. All participants agree that communication is a very important factor in the 
design process. 
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2. Do you think that BPS in general should provide the possibility to communicate 
results with other design team members? 
 

0% 20% 40% 60% 80% 100%

strongly agree

somewhat agree

somewhat

disagree

strongly

disagree

 

Figure 85 Illustration of the percentage of practitioners’ 

perception if BPS should provide the possibility to 

communicate results. 

 
The importance for BPS to provide the possibility to support communication with other 
design team members is shown in Figure 82. 70% of the participants strongly agree that 
BPS should provide the possibility to support communication. 30% somewhat agree to 
this. 
 
3. How important is it that the preferred option is the option with the minimum risk? 
 

0% 20% 40% 60% 80% 100%

very important

important

less important

unimportant

 

Figure 86 Illustration of the percentage of practitioners’ 

perception of how important it is that the preferred option is 

without risk. 
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The importance that the preferred option is without risk is shown in Figure 86. The 
answer to this question varies significantly. In total the amount of participants on 
perceiving, that the preferred option should be without risk, is higher. Nevertheless it 
can be noticed that the perception of ‘very important’ and ‘unimportant’ is the same. 
 
4. Do you see an added value in integrating uncertainty/ sensitivity analysis in BPS due 
to future climate scenarios? 
 
 

 
Figure 87 shows the perception of practitioners if UA/SA in climate scenarios should 
be integrated in decision making. Results on a study considering climate change in 
scenario conditions have been presented. 70% strongly agreed that is has an added 
value. 
 
5. Do you see a potential of UA/SA in supporting the decision process? 
 

0% 20% 40% 60% 80% 100%

potent ial in

supporting the

design proces

strongly agree somewhat to strongly disagree

 

Figure 88 Illustration of the percentage of the potential of 

UA/SA to support the design process based on practitioners’ 

perception. 

 
Figure 88 shows the support UA/SA can provide in the design process. Almost 90% 
agreed that adding UA/SA into a decision making protocol has a high potential. None 
of the users disagreed on this question 
 

0% 20% 40% 60% 80% 100%

added value of UA/

SA integrat ion in

climate scenarios

strongly agree somewhat to strongly disagree

 

Figure 87 Illustration of the percentage of the added value of 

UA/SA integrated in BPS for climate change based on 

practitioners’ perception. 
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6. Do you agree that the prototype decision making with uncertainty and sensitivity:  
 

0% 20% 40% 60% 80% 100%

...is a transparent procedure?

...can be taken as a basis for

communication with others?

...makes the results intuitively
understandable?

...has potential in supporting the
decision process?

strongly agree partly to strongly disagree
 

Figure 89 Illustration of the percentage of the summarized 

appreciation of the second prototype based on practitioners 

opinion. 

 
The second prototype addressing decision making with uncertainty and sensitivity is a 
transparent procedure, can be taken as basis for communication and has high potential 
in supporting the design process. However, more than half of the users had problems in 
intuitively understanding the results. 
 
Prototype 3: parameter optimization 

In the third approach, the outcome of the optimization with the NSGA-II is presented 
showing the Pareto front for the optimization of energy and thermal comfort.  
The participants are asked of they think that the provided results: 
 

0% 20% 40% 60% 80% 100%

can be taken as base for

communication?

are intuitively understandable?

have potential in supporting the

design process?

somewhat to strongly disagree partly to strongly agree
 

Figure 90 Illustration of the percentage of the summarized 

appreciation of the third prototype based on practitioners 

opinion. 
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The results of the third prototype addressing parameter optimization are perceived of 
being valid as basis for communication. They are intuitively understandable and they 
have potential in supporting the design process. 
 
Comparison of the three prototypes 

In the final part of the online questionnaire, the three approaches are compared to each 
other in the following categories.  

1. Reliability of results. 
2. Supporting the decision process. 
3. Guidance through the design process. 
4. Fulfilling the requirements of BPS in the final design. 
5. Usefulness/ importance of integration in BPS software. 

 
1. Reliability of results 
In the first part ‘reliability of the results’ it is checked how much trust the participants 
have in the results presented. 
 

0% 20% 40% 60% 80% 100%

A: Simple uncertainty/ sensitivity
analysis

B: Decision making with

uncertainty/ sensitivity analysis

C: Parameter optimization

partly to strongly agree partly to strongly disagree
 

Figure 91 Illustration of the percentage of the reliability of the 

three different prototypes based on practitioners’ feedback. 

 
It can be seen that prototype 1 UA/SA is comprehended by all of the participants. This 
is because of the results are perceived as easy to understand in an intuitive manner.  
The second prototype is not as accepted as the first prototype. The feedback was that 
the process was not entirely clear. Immediately, the perception decreased noticeable. 
The third prototype received very good feedback by around 70% of the participants. 
Part of the users appreciated optimization techniques as there is trust in mathematical 
techniques. However, it was also stated that the third prototype is a black box approach, 
and a lack of insight in the optimization procedure was stated.  
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2. Supporting the decision process 
 

0% 20% 40% 60% 80% 100%

A: Simple uncertainty/ sensitivity

analysis

B: Decision making with

uncertainty/ sensitivity analysis

C: Parameter optimization

partly to strongly agree partly to strongly disagree
 

Figure 92 Illustration of the percentage of the support of the 

decision process of the three different prototypes based on 

practitioners’ feedback. 

 

Having asked about the support of the design process, the appreciation is constantly 
high for all prototypes. All approaches have an added value by providing additional 
information, even though the results presented differ. 

 
3. Guidance through the design process 
 

0% 20% 40% 60% 80% 100%

A: Simple uncertainty/ sensitivity

analysis

B: Decision making with

uncertainty/ sensitivity analysis

C: Parameter optimization

partly to strongly agree partly to strongly disagree
 

Figure 93 Illustration of the percentage of the guidance through 

the design process of the three different prototypes based on 

practitioners’ feedback. 

 
 
All three approaches provide guidance through the design process. The UA/SA 
approach is highly appreciated by all users. 100% feel leaded by the extra information 
in bar charts/ scatter plots or distribution curves. 
But also the second and third approach help in guiding through the design process by 
the information provided.  
 



6. Usability Testing 

 155 

4. Fulfilling the requirements of BPS in the final design 
 

0% 20% 40% 60% 80% 100%

A: Simple uncertainty/ sensitivity

analysis

B: Decision making with

uncertainty/ sensitivity analysis

C: Parameter optimization

partly to strongly agree partly to strongly disagree
 

Figure 94 Illustration of the percentage for the requirements 

fulfillment of BPS in the final design of the three different 

prototypes based on practitioners’ feedback. 

 
The appreciation of all approaches as shown earlier in guidance through the final 
design and supporting the decision process is very high. Therefore it is self-explanatory 
that all three approaches fulfil the requirements for the final design. 
 
5. Usefulness/ importance of integration in BPS software 
 

0% 20% 40% 60% 80% 100%

A: Simple uncertainty/ sensitivity

analysis

B: Decision making with

uncertainty/ sensitivity analysis

C: Parameter optimization

partly to strongly agree partly to strongly disagree
 

Figure 95 Illustration of the percentage of the usefulness and 

importance of integration in BPS of the three different 

prototypes based on practitioners’ feedback. 

 
In Chapter 2 it was already indicated, what should be improved in BPS during final 
design. It was shown that there is a need of the three techniques. After the 
implementation and the results representation, the feedback was very positive. Asked 
about the usefulness and importance of the integration in BPS software, all three 
approaches are appreciated.  
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6.4 Conclusion 

In the mock-up presentations and the online survey, the feedback of practitioners was 
collected to the three different prototypes.  

(i) Prototype applying of UA/SA. 
(ii) Prototype applying decision making with UA/SA. 
(iii) Prototype applying MOO. 

 
The prototype applying UA/SA is very well comprehended by all the participants. The 
support of the decision process with the UA/SA output is perceived also very high with 
around 70%. In guiding through the design process -a very important factor in the use 
of BPS- the appreciation of UA/SA is 100%. 
Also the fulfilment of the requirements of BPS in the final design and the importance 
of the integration in BPS is around 80%. 
 
The prototype addressing decision making under uncertainty is very much appreciated 
in the context of guiding through the design process. But it can also be noticed that the 
feedback about the comprehension of the results is very low. Remarks given by the 
practitioners were due to difficulties in following the work-through with the online 
survey. It is hypothesized that with a better guidance through the AHP protocol under 
uncertainty, the appreciation would be much higher.   
 
The final prototype considering the optimization of two objectives in BPS received also 
very high appreciation of all practitioners. Especially the reliability of the results and 
the support of the decision process are very high.  
 
In general it can be concluded that all three prototypes fulfil the requirements of BPS in 
the final design and there are all perceived as useful and important to be integrated in 
BPS.  
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77  
7. Closure  

The final chapter of this thesis will give a brief summarize, provide some concluding 
remarks and directions for future research. 
 

7.1 Summary 

As summarized in Chapter 2, it was aimed to improve current available simulation tools 
such as follows:  

− to implement uncertainty and sensitivity analysis. 
− to allow a better judgement of different concepts.  
− to provide informed decision making. 
− to include optimization techniques. 

The research indicated problems and limitations due to BPS in the final design. These 
problems were tackled from three different sides, considering different user level and 
varying influence on the simulation tool (black box approach to actively taking 
impact). 
The work presented has summarized the state of the art and the application of three 
techniques: 

1. uncertainty/sensitivity analysis. 
2. decision making techniques. 
3. optimization methods. 

 
Approach 1: integration of uncertainty/ sensitivity analysis  

In Chapter 3 the integration of UA/SA in BPS is described. Results are shown for UA 
and SA separately and conclusions are drawn regarding the impact of different 
categories of uncertainties. For that reason, it was distinguished between three different 
kinds of uncertainties: uncertainties due to physical properties, design adaptations and 
scenario conditions.  
 
Approach 2: multi-criteria decision making with UA/SA 

Chapter 4 presents the second approach, the enhancement of a well-known decision 
making protocol with UA/SA information. 
This approach gives the opportunity to see, how the impact of performance aspects can 
vary if they have different priority. Further, with the help of UA/SA, it is shown how 
much this can influence the final result. Finally, it is demonstrated, how risk that comes 
with an option, can be diminished.  
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Approach 3: multi-objective optimization  

The third approach considers the application of MOO applying two different 
algorithms (NSGA-II and SMS EMOA). Further, the implementation of Kriging meta-
models also provides promising results with consideration of UA. 
 
Usability testing 

It was aimed to improve the use of BPS in the final design stage. Three approaches 
have been shown that were developed, validated and tested according to the feedback 
of professionals.  
The capabilities in current building performance simulation have been shown also in 
demonstration of the usability on the addressed target group. 
A number of design professionals were asked after the presentation of the three 
approaches about the following key issues. 

− Comprehension of results. 
− Fulfillment of requirements for the final design. 
− Guidance through the design process. 
− Importance to be integration in BPS. 
− Supporting the decision process. 

7.2 Concluding remarks 

Approach 1: integration of uncertainty/ sensitivity analysis  

The graphical output of the UA/SA is perceived as intuitively understandable and very 
valid for the integration in BPS. A disadvantage is, that it depends on the user to 
understand and use the information gained.  
The presented results are applicable only for the case study chosen. A different case 
study will imply a different sort of sensitivity ranking and also a different uncertainty. 
Therefore no general guidelines for UA/SA can be provided to explain users how to 
deal with the information gained. Another drawback is that the results achieved show 
the impact uncertainties have on current simulation output based on a distribution taken 
from literature. Nevertheless, the variations assumed are not proven and still burrow 
plenty of space for research. 
 
Approach 2: multi-criteria decision making with UA/SA 

The advantage is that it is a very easy approach. The decision process is multi-
disciplinary and made transparent for the participants. Even non-simulation experts can 
get an insight in the performance of different design options. The approach considers 
multiple aspects (such as energy use, comfort, architectural form) that can be calculable 
by a tool or simply depend on users’ judgement.  
A disadvantage is that there is no integration of parameter optimization. Besides, the 
weighting depends on the participants; therefore, the risk of a local (subjective) 
optimum arises.  
 
Approach 3: multi-objective optimization  

Advantages are that the approach is easy to conduct and in a very simple way already 
feasible results can be received.  
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A disadvantage is that it is a black box approach. From the definition of the parameters 
considered, the limitation of the boundary values to the achievement of the Pareto 
front, no insight in the simulation process is given. It might be possible that after a very 
long calculation time, results can be wrong, because not the right optimum was found. 
 
Usability testing 

All three approaches facilitate the comparison of different outputs, results and 
comprehension. This has been shown with a realistic case study. 
The feedback was very positive. According to the participants, the results are easy to 
comprehend, have potential in supporting the decision process, and therefore enhance 
the guidance through the design process. They fulfill the requirements for the final 
design and are perceived of being very important to be integrated in BPS. 
 

7.3 Future challenges 

Enhancing the use of BPS in the conceptual design stage 

As mentioned in the introduction this research project started in complementary work 
with another project dedicated to enable innovative application of building performance 
simulation for design support in the conceptual design stage [Struck, 2009]. However, 
in contrast to that study, the approach of this research focused more on addressing 
details and bringing the information gained into the decision process.  
Two steps for the integration of the two approaches can be carried out further such as 
follows.  

1. Analysis of potential synergy between the initial prototypes of both projects. 
2. Analysis of inter/intra phase of model generation, expansion or reduction. 

 

Coupling with other extensions 

In the use of BPS the building designers have to rely on several predictions taken by 
computer models. The reliability of these predictions is obviously of high importance. 
One issue, e.g., is the influence of the occupant behaviour that is still very simplified in 
current building simulation and was proven to be one of the most sensitive parameters 
in the uncertainty study. 
Attempts in this direction are provided by Tabak [2009] and Hoes [2007]. 
Tabak [2009] developed the USSU-model (User Simulation of Space Utilisation). 
USSU simulates the movement of occupants and the use of spaces by occupants in a 
building. 
Hoes [2007] couples the USSU model with the SHOCC-model (Sub-Hourly 
Occupancy Control) that combines and improves different behaviour models and 
integrates these models in the one building energy simulation program (ESP-r). 
With the combination of SHOCC and USSU it is for instance possible to give a 
prediction of the realizable energy savings of occupant-sensing lighting control. 
 
Consideration of climate change 

In the case studies considering scenario uncertainties the impact of future climate 
scenarios would be beneficial. Preliminary studies have been carried out showing the 
impact of future climate scenarios in decision-making techniques [Hopfe et al., 2009]. 
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However, this impact could also enhance and improve the information flow in the 
optimization procedure.  
 
Dealing with uncertainties 

The research only showed the need of including uncertainties in tools but didn’t put 
any research effort in generating concepts models for the verification of the amount of 
uncertainty necessary. More effort in the amount of deviations of parameters, also in 
new materials is a major challenge in future integration of uncertainty. 
Another issue noticed in the UA/SA is the skewness of the probability plot of the 
weighted overheating hours (see Section 3.4.3). This problem needs to be evaluated 
and reasons need to be found for further reliability of data analysis. 
 
Prototype based approach 

The research presented and the three prototypes developed are not an end product yet. 
They are only for testing feasibility of different design process enhancing techniques. 
However, the implementation is limited to very rough data input. There exists no user 
interface, no direct integration in a simulation tool yet. This development is challenge 
for future research. 
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Abbreviations and Acronyms 
AC   Annual cooling 
AEDOT   Advanced energy design and operation technologies 
AH   Annual heating 
AHP    Analytical hierarchy process 
ANP    Analytical network process 
 
BDEM   Building domain evaluation model 
BPS    Building performance simulation 
BREEAM  Building Research Establishment Environmental 
Assessment Method 
 
CASBEE Comprehensive Assessment System for Building 

Environmental Efficiency 
CFD   Computational fluid dynamics 
CMA-ES   Covariance Matrix Adaptation Evolution Strategy 
Combine  Computer models for the building industry in Europe 
 
 
DA    Decision analysis 
DAI    Design analysis integration 
DM   Decision making  
DSS    Decision support systems 
DOE    Department of energy (US) 
 
ELECTRE   Elimination and choice translating reality 
EP    Evolutionary programming 
ES    Evolutionary strategies 
 
GA   Genetic algorithm 
GPS    Generalized pattern search 
GTO    Gewogen temperatuur overschrijding 
 
HVAC    Heating, ventilation and air-conditioning  
 
LEED    Leadership in Energy and Environmental Design  
 
MADM   Multi-attribute decision making 
MAUT    Multiple attributes utility theory 
MCDM   Multi-criteria decision making 
MODM   Multi-objective decision making 
MOGA    Multiple objective genetic algorithm 
MOO   Multi- objective optimization 
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NSGA-II   Non-dominated sorting genetic algorithm 
 
Pebbu    Performance based building thematic network 
pdf    Probability density function 
PMV    Predicted mean vote 
PROMETHEE  Preference ranking organization method for enrichment 

evaluation 
PSO    Particle swarm optimization  
 
SA   Sensitivity analysis 
SMART   Simple multi-attribute rating technique 
SMS EMOA  S-metric selection multi-objective evolutionary algorithm 
SRCC   Standardized rank regression coefficients 
 
UA   Uncertainty analysis 
 
VEGA    Vector evaluating genetic algorithm 
 
WSM    Weighted sum method () 
WF   Weegfactor 
WHO+   Weighted overheating hours 
WHO-   Weighted underheating hours 
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Glossary 
Additivity 

The function f  is said to be additive for any two parameters a  and b  if 

)()()( bfafbaf +=+ . The function is additive, if the effect of applying a 

function to parameters individually and adding the results is identical, to summing the 
parameters up first and applying the function afterwards. 
 

Aleatory uncertainties 

Aleatory or stochastic uncertainty arises through the random behavior/ variation 
associated with a physical system. It is unpredictable and as a matter of fact irreducible. 
In literature it is mentioned that aleatory uncertainty reflects expert’s direct experience 
because knowledge might be a useful method to quantify it. [Daneshkhah, 2004]. 
Examples are for instance variation due to technological life of an HVAC system or 
variations due to non-considered change in climate conditions.  
 

Alternative 

Alternative is a word regularly used to specify one of two options. In the context of 
decision making however, it is used more freely to specify a higher number of options. 
The number of alternatives can be finite or infinite, from single to multiple alternatives 
that can be either discrete or continuous. 
 

A posteriori 

It is an inductive reasoning based on observation or observed facts. It means first to 
search and then to decide (search →decide). 
 
A priori 

It is a deductive method and implies that a decision regarding the preferred solution has 
to be made before the search of the solution space (decide → search). 
 
Changeability 

Changeability describes the ability to adapt to the changing needs of buildings.  
 
Confidence interval 

It is a statistical term that shows the mean for a particular variable and its upper and 
lower confidence boundaries. 
 
Criteria 

Criteria are described as a composition of feature, target and an assigned weighting. In 
decision making they are also often referred to as goals, decision criteria, attributes, or 
performance indicators. 
 



 

 180 

Epistemic uncertainties 

Epistemic uncertainty is due to a lack of knowledge, i.e., it is related to incomplete or 
inadequate information. It is also referred to as subjective or reducible uncertainty or 
even conceptually resolvable uncertainty. Examples are lack of experimental data, 
incomplete knowledge about new materials used, poor understanding of cause and 
effect.  
 

Expert 

As an expert in the context of BPS a person is considered with extensive knowledge 
due to expertise and intuition in building design. 
 

Feature 

A feature in the context of decision making is a performance metric such as weighted 
over- and underheating hours.  
 
Flexibility 

Flexibility refers to low costs and rapid change. 
 

Global methods 

In global methods the uncertainty in a specific input parameter is used to determine the 
uncertainty in the output. All variables are sampled simultaneously.  
 
Histogram 

The histogram compares the frequency of the results with the outcome itself. It gives an 
insight in the range that the output varies. 
 

Individual sensitivities 

The individual sensitivity describes the sensitivity in each individual input parameter 
that is due to the influence on predictions of variations. In order to study the individual 
sensitivity, the remaining parameters are not changed. 

 

Latin hypercube sampling (LHS) 

The LHS is a particular case of stratified sampling which is meant to achieve a better 
coverage of the sample space of the selected input parameters [Saltelli et al., 2005]. 

 
Least squares 

Least squares are often applied in regression analysis. It can be described as method of 
fitting data where the best fitting is the parameter for that the squared residuals are the 
smallest.  
 

Lilliefors method  

The Lilliefors method tests the null hypothesis that the sample comes from a normal 
distribution [Matlab, 2009]. If the test returns the value x=1 it rejects the hypothesis, 
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i.e., it does not come from a normal distribution. However, the value x=0 indicates that 
the deviation from a normal distribution of the sample is not significant. 

 

Linearity of parameters 

Parameters behave linear if there is a linear relation between the variations of the input 
parameter in comparison to the output considered.  

 

Local methods 

Local methods give an insight in the individual uncertainty, i.e., the influence on 
predictions of variations in each individual input parameter. They can be only applied 
if the correlation between inputs and outputs is linear. 

 

Mean deviation μ 

In statistics, the mean deviation is the expected value of a random variable. The mean 
deviations that are used in the demonstration refer to the values of the variables 
considered.  

 

Meta-modeling 

A meta-model is an approximation of the input/output (I/O) function that is implied by 
the underlying simulation model [Kleijnen, 2007]. Its final aim can be described as 
validation and verification (V&V) of the simulation model, a what-if analysis or a 
sensitivity analysis. 
 

Normal distribution 

A normal distribution or Gaussian distribution is a statistic distribution with probability 
density function defined by the two parameters, the mean deviation, μ and the standard 
deviation squared, σ 2.  
 
Normality plots 

The purpose of a normality plot is to graphically assess whether the data follows a 
normal distribution. If the data is normal distributed, the plot appears linear. 

 

One factor at a time (OAT) method 

OAT is the description of the sampling procedure that varies only one factor at a time.  
 

Parameter screening/ reduction 

Parameter screening describes the use of UA/SA to reduce the parameter set in order to 
enable the simplification of a model.  
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Pareto dominance 

Pareto dominance defines a partial order on the set of objective function vectors of a set 
of decision alternatives.  
 

Pareto frontier 

The projection of the set of non-dominated solutions is called Pareto frontier. 
 

Pareto optimality 

The maximum number of elements of this partial order of Pareto dominance are said to 
be Pareto optimal. 
 
Pareto optimization 

Pareto optimization identifies the set of non-dominated solutions and visualizes the 
projection of this set in the objective space. 
 

Problem space 

Insight the problem space the type and number of objectives, the alternatives and the 
impact of uncertainties play a role. 
 
Progressive 

The progressive method stands for a decision making where deciding and searching is 
merged into each other (decide ↔ search). 
 
Prototype 

A prototype is an Initial version of a module developed to test the effectiveness of the 
implementation to solve a particular problem. 
 

Regression analysis  

The regression analysis is important for the analysis of the SA. Regression analysis 
shows more quantitative measures of sensitivity. A multivariate sample of the input is 
generated by some sampling strategy and the corresponding sequence of a number of 
output values is computed using the model under analysis [SIMLAB, 2009]. 

 

Risk attitude 

The attitude the designer is willing to deal and accept risk that a preferred solution 
might have compared to alternatives. 
 

Robust regression 

Robust regression belongs to regression analyses and offers an alternative to least 
squares estimated that are non-robust to outliers.  

 

Robustness analysis 

Robustness analysis makes aware of unexpected sensitivities that may lead to errors/ 
wrong specifications (e.g., quality assurance). 
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Sampling based methods 

In sampling based methods the model is conducted repeatedly with input values that 
are sampled with a known distribution (typically a normal distribution). Very often in 
sampling based methods, UA/SA are conducted simultaneously. 

 

Sensitivity analysis 

The sensitivity analysis (SA) determines the contribution of individual input variable to 
the uncertainty in the model prediction. SA determines factors that are responsible for 
the variation in the outcome. 

 
Solution space 

The solution space covers the range of the results that can be either discrete or 
continuous. 
 
Stepwise regression 

Stepwise regression includes regression models in which the choice of predictive 
variables is carried out by an automatic procedure. Usually, this takes the form of a 
adjusted R-square. 
 

Standard deviation σ 

In statistics, the standard deviation is a measure of the variability of a data set. If the 
standard deviation is rather small, it indicates that the data set behave closely to the 
mean deviation. If the standard deviation is high, the range of the data set is more 
spread.  
 
Symbolism 

Symbolism as it is used in the context of decision making refers to the image or status 
that is represented by the design concept. 
 
Target  

The target specifies how alternatives relative to criterions will be evaluated. 
 

Total sensitivities 

The total sensitivity describes the sensitivity that is due to uncertainties in the entire 
input file. In order to study the total sensitivity, all input parameters need to be changed 
simultaneously. 

 

Uncertainty analysis 

Uncertainty analysis (UA) specifies the uncertainty in model prediction due to the 
imprecise knowledge of input variables. I.e., it intends the range of the output the 
model output will obtain. 
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Appendix 

Appendix A: Case study description 

 

“Het bouwhuis” is a building located in Zoetermeer, the Netherlands between The 
Hague and Gouda, shown in Figure 96. It is the headquarters of Bouwend Nederland, 
the Dutch organisation of construction companies. The building is an ideal case study 
because it combines flexibility and function. In addition the project’s early stage 
confronted the design team with a choice between two options both of which were 
developed in great detail. 
The building has characteristics as follows. 

− Office building with 11 floors in a T-shaped plan. 
− Two levels/ stories underground parking (7000m²). 
− Flexible office concepts/ dispositions dividable from separate rooms up to 

open floor plan office solutions. 
− Conference facilities including meeting rooms on the two top floors, which 

protrude over the office floors below. 
− Conference room equipped with individual air- conditioning, presentation 

screen and discussion systems. 
− Restaurant with roof garden. 
− Auditorium equipped with sound and projection screen 
 

 

Figure 96 Illustration of ”Het Bouwhuis” 

 
The building process (from conceptual stage through realisation of the building) took 
from 2002 -2006.  
Two options were designed in great detail, i.e., both of them ready-to-build. The first 
option represents a mainstream standard solution: a conventional heating/ cooling 
system. The second design option represents a novel, “risky” design, incorporating 
heating/cooling storage in combination with a double façade. Both systems are 
described briefly below. 
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Design option 1: Conventional heating/ cooling system 

Design option 1 uses conventional central heating and mechanical cooling; the building 
is conditioned by an all air conditioning system with constant air volume (CAV) 
consisting of an air handling unit, supply and return fans, ducts and control units.   
Heating is provided by electricity driven radiators inside the room and an electric 
heater in the air-handling unit (AHU). The system is regulated on the air temperature; 
during the office hours (8-20, 5 days per week) and on standby the rest of the time (0-
24h, 7 days per week). The AHU keeps the supply air temperature at 20°C when the 
incoming outside air temperature is 16°C up to 28°C when the outside air temperature 
goes up to 40°C. 
The ventilation system provides fresh air with a supply fan (1000m³/h) and exhausts the 
air by an exhaust fan (1000m³/h). Air change rate is 0.5 per hour. There is no night 
cooling. 
 

Design option 2: Heating/ cooling storage 

The second option is based to design a building with a high percentage of glazing in the 
transparent facades: from the second floor up to the eleventh floor the building is on its 
“crosscut” sides provided with a double façade (see Figure 96 and Figure 98). 
The double skin is built one meter distance from the façade of the building; hence a 
magnifying cavity is created. 
 

 
 
 

Figure 97 Illustration of the footprint for design option 1 of ”Het 

Bouwhuis”. 
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Figure 98 Illustration of the footprint for design option 2 of ”Het 

Bouwhuis”. 

 

 
 

Figure 99 Illustration of the summer and winter case for design option 2 of 

”Het Bouwhuis” [Nelissen, 2008]. 

 
In winter the ventilation air is drawn via the double skin façade where it is naturally 
pre-heated, then supplied as external air to the air handling unit. This method can be 
regarded as a heat-recovery system. 
In summer the double façade forms an extra barrier for solar radiation to enter the 
spaces as heat is removed from the façade air cavity through natural buoyancy driven 
ventilation to the outside. Another advantage is the increased noise barrier performance 
of the façade. The building is provided with a heat pump in combination with a 
heating-cooling storage. Both systems (summer and winter) are demonstrated in figure 
2. 
The double glass façade is designed to have a positive influence on energy savings and 
to provide superior comfort. 
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Material properties are identical for both options and are summarized in the Appendix 
B.  
 
 
For the assessment of both alternatives, the following characteristics are constituted:  

− Internal heat gains: equipments (20W/m²); people (10 W/m²) and lighting (15 
W/m²).  

− Zoning: the assessment is conducted for the standard floor level comprising 
two zones for design option 1 and 5 zones for design option 2 (see Figure 97 
and Figure 98). 

− The assessment is based on the simulation of one room. All presented results 
relate to the smaller office room. The cavity space is located at the south- 
facing surface of the building (see Figure 97 and Figure 98). 

− Set Points: The indoor set point in the office is 27°C for cooling and 21°C for 
heating. 
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Appendix B: Case study material properties 

 

Table 25 Description of the material properties and deviations for the 

outside wall of “Het Bouwhuis”.  

 

  t λ ρ c 

Outside wall  (m) (W/mK) (kg/m³) (J/kgK) 

steel μ 0.005 50 7800 480 

 σ 0.0005 0.75 25.74 19.2 

glass fibre quilt μ 0.127 0.04 12 840 

 σ 0.0127 0.0032 1.08 56.28 

concrete block μ 0.2 1.41 1900 1000 

 σ 0.02 0.1269 28.5 106  
 

Table 26 Description of the material properties and deviations for the floor 

construction of “Het Bouwhuis”.  

  t λ ρ c 

Floor construction  (m) (W/mK) (kg/m³) (J/kgK) 

london clay μ 0.8 1.41 1900 1000 

 σ 0.08 0.4653 332.5 107.5 

brickwork μ 0.28 0.84 1700 800 

 σ 0.028 0.2772 297.5 86 

cast concrete μ 0.1 1.13 2000 1000 

 σ 0.01 0.1017 30 106 

dense eps slab ins μ 0.0635 0.025 30 1400 

 σ 0.00635 0.00875 21 378 

chipboard μ 0.025 0.15 800 2093 

 σ 0.0025 0.025 25 134 

sythetic carpet μ 0.015 0.06 160 2500 

 σ 0.0015 0.0078 18.4 945  
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Table 27 Description of the material properties and deviations for the roof 

construction of “Het Bouwhuis”. 

 

  t λ ρ c 

Roof construction  (m) (W/mK) (kg/m³) (J/kgK) 

stone chippings μ 0.01 0.96 1800 1000 

 σ 0.001 0.288 228.6 195 

felt/bitumen layer μ 0.005 0.5 1700 1000 

 σ 0.0005 0.25 493 330 

cast concrete μ 0.15 1.13 2000 1000 

 σ 0.015 0.1017 30 106 

glass-fibre quilt μ 0.1345 0.04 12 840 

 σ 0.01345 0.0032 1.08 56.28 

ceiling tiles μ 0.019 0.056 380 1000 

 σ 0.0019 0.02436 102.6 108 
 

 
 

Table 28 Description of the properties and deviations for the 

glass properties of “Het Bouwhuis”. 

 

  t λ U 

Double glazing  (m) (W/mK) (W/m2K)

pilkington 6MM μ 0.01 1.7 1.21

  σ 0.001 0.85 0.0605

clear float 6MM μ 0.01 1.7   

  σ 0.001 0.85   
 

  t λ U 

Single glazing  (m) (W/mK) (W/m2K)

clear float 12MM μ 0.02 1.06 5.1034

  σ 0.002 0.53 0.25517
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Table 29 Description of the properties and deviations for the solar absorptivity, 

the inside and outside emissivity of “Het Bouwhuis”. 

 

SPECIFICATION   μ σ % 

Solar Absorptivity ROOF 0.6 0.006 1 

  FLOOR 0.6 0.006 1 

  WALL 0.6 0.006 1 

  GLASS 0.6 0.006 1 

Inside Emissivity ROOF 0.9 0.0198 2.2 

  FLOOR 0.9 0.0198 2.2 

  WALL 0.9 0.0198 2.2 

  GLASS 0.9 0.0198 2.2 

Outside Emissivity ROOF 0.9 0.0198 2.2 

  FLOOR 0.9 0.0198 2.2 

  WALL 0.9 0.0198 2.2 

  GLASS 0.9 0.0198 2.2  
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Appendix C: Workflows for multi-criteria decision making (MCDM) 

 
 

Figure 100 Illustration of the workflow showing decision making approaches in 

BPS 

 

Describe design 

problem

Define design 

objectives

Generate design 

alternatives

Characterization of 

design alternatives 

DM with Expert 

knowledge?

1. Use expert 

opinion 

Use expert opinions 

Describe scope of design 

problem

Express design expectations in 

terms of design objectives

Generate design alternatives 

with help of expertise/ 

creativity

Characterization of design 

alternatives with a set of 

discrete/ continuous attributes

What decision procedure 

should be used?

Use aggregate expert opinion 

to select best design alternative

DM with 

deterministic?

DM with 

Pareto?

2. Use deterministic 

approach 

Use multi- objective 

deterministic decision-

making approach to select 

one best design alternative 

3. Use Pareto 

approach

Determine Pareto optimal design 

alternatives according to multiple 

outcomes; 

Result

Add Expert 

knowledge?

Use aggregated expert 

opinions to estimate 

multiple outcomes for 

each design alternative
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Figure 101 Illustration of the workflow showing the deterministic approach in 

MCDM decision making (e.g., AHP). 
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Define issue
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Figure 102 Illustration of the workflow showing decision making with Pareto 

optimality. 
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Figure 103 Illustration of the workflow showing decision making with the help of 

experts knowledge. 

Choose experts

State knowledge 

Choosing relevant experts
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Appendix D: Tables for the AHP protocol  

 

Table 30 Illustration of the weighting in AHP.  

1 equally important two elements have equal importance 

3 moderately more important 
experience or judgment slightly favors one 
element 

5 strongly more important 
experience or judgment strongly favors one 
element 

7 very strongly more important dominance of one element proved in practice 

9 extremely more important 
the highest order dominance of one element over 
another 
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Appendix E: Command lines for the optimization  

 

Figure 104 Illustration of the command lines for the algorithms NSGA-

II and SMS EMOA.  

Command line to start the optimization with NSGA-II: 
 

 

CRNSGA2.exe -t c:\MSphere.exe -d 6 -e 2000 –b 0.9 1.5 

23.0 30.0 6.0 25.0 6.0 35.0 6.0 30.0 0.2 1.0 -nf 2 

 

CRNSGA2.exe -t c:\MSphere.exe // name of *.exe where files for 
simulation are generated and objective function is defined 
-d 6 // number of design variables being changed in the   optimization 
-e 2000 // number of objective function evaluations 
–b 0.9 1.5 23.0 30.0 6.0 25.0 6.0 35.0 6.0 30.0     0.2 

1.0  

// boundary values for the six different design variables 
// b1: size window  
// b2: size room  
// b3: internal gains: people 
// b4: internal gains: light 
// b5: internal gains: equipment 
// b6: infiltration rate 
 
 
 
Command line to start the optimization with SMS EMOA:  
 
SMS.exe c:\MSphere.exe p.in p.res 2000 20 1 2 2 0 0 41 0 

 
 
 
 



 

 

 

 



Appendix 

 203 

Appendix F: Summary of the online survey for the usability testing 

 
1. Introduction: 

Dear participant!

This questionnaire is the final step of my thesis. It is intended to help me in finding out the 

feasibility and applicability of three different developed prototypes. Building performance 

simulation (BPS) is a powerful tool which emulates the dynamic interaction of heat, light, 

mass (air and moisture) and sound within the building to predict its energy and environmental 

performance as it is exposed to climate, occupants, conditioning systems, and noise sources. 

(source: Dru Crawley presentation, ASHRAE Meeting, Chicago, 2003).Despite nearly forty 

years of development, building performance assessment is still not routinely applied to 

mainstream building design practice [Preiser W and Vischer J. (eds), Assessing Building 

Performance Practical advice on assessing and monitoring building performance, 

Butterworth-Heinemann, 2004]. 

The aim of my PhD project is to encourage the use of BPS in the final design stage where 

building simulation is still mainly used for code compliance checking.In the following 

questionnaire 3 prototypes will be presented and their plausibility, feasibility and 

applicability in the final design stage has to be assessed. The questionnaire comprises in 

total 5 pages (introduction, 3 different scenarios, and conclusion) and won’t take longer 

than 15 minutes.

Thank you very much in advance for the time and effort spent!

Christina Hopfe

Please note: answers marked with a * are required!

Figure:  Design process
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2. Background/ opinion page Please enter your name (last name, initials) *

Please scale your level of experience in *

Usage of Building Performance Simulation (BPS)

Very high     high       medium          low         very low

Participating in design team meetings/ 

communication with other design team members

Have you been personally involved in design/ project consultancy in the last years?

Do you see a need of the integration of the following techniques in standard BPS software: *

Uncertainty and sensitivity analysis

Informed decision making (decision making 

with uncertainty/ sensitivity analysis)

Parameter optimization

What is your satisfaction level of current BPS tools in terms of: *

Understandability of results/ background 

information

Ability to support communication with others (e.g. 

client, architects etc.)

Integration of informed decision making

Support of choices between different design 

options/ Guidance through the design process

Integrated uncertainty and sensitivity analysis of 

parameters; awareness of uncertainties in building 

design

Integrated optimization of parameters

always frequently occasionally  rarely never

very important  important     less important     unimportant

excellent        above average      below average        poor
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Please rate the added value of the three following demonstrations of uncertainty analysis in BPS:

Please rate the added value of UA1 (frequency) *

Please rate the added value of UA2 (probability) *

Please rate the added value of UA3 (range) *

very important  important     less important     unimportant

Following graphics are provided:

Figure:  UA1 (frequency) Figure:  UA2 (probability) Figure:  UA3 (range)

The following graphic shows the 10 most sensitive parameters out of 80 for different energy and comfort 

parameters:

A case study is given with a conventional heating/ cooling system. For the result analyses one 

room on the ground level will be considered:

Figure:  SA1 (table) Figure:  SA2 (graphic)
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Rate the plausibility of the results * strongly agree   somewhat agree  somewhat disagree  strongly disagree

SA1 table

SA2 graphic

Do you agree that the results of UA/ SA can be taken as a basis for communication with others? *

UA1 frequency

UA2 probability

UA3 range

SA1 table

SA2 graphic

Do you agree that the results of UA/ SA are intuitively understandable? *

Do you agree that the results of UA/ SA have potential in supporting the design process? *

Do you agree that the results of UA/ SA should be integrated in building performance simulation? *

UA1 frequency

UA2 probability

UA3 range

SA1 table

SA2 graphic

UA1 frequency

UA2 probability

UA3 range

SA1 table

SA2 graphic

UA1 frequency

UA2 probability

UA3 range

SA1 table

SA2 graphic

strongly agree   somewhat agree  somewhat disagree  strongly disagree

strongly agree   somewhat agree  somewhat disagree  strongly disagree

strongly agree   somewhat agree  somewhat disagree  strongly disagree

strongly agree   somewhat agree  somewhat disagree  strongly disagree

Do you have further suggestions to the integration of optimization? Comments etc.
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4. Second scenario: 

Decision making with the help of uncertainty/ sensitivity analysis Imagine the following procedure: For an office 

building, two different options are given:

Option 1: conventional heating/ cooling system

Option 2: heating/ cooling storage

A design team (owner, structural engineer, architect, environmental engineer, etc.) has to decide which option is 

the better one in relation to performance aspects such as costs (investment and running costs), thermal comfort, 

architectural form, symbolism, and flexibility, among others.

First step:

Every design team member assigns a weighting to each performance aspect, from most important to least 

important.

Second step:

Performance aspects that cannot be simulated/ calculated by a tool (like symbolism, aesthetics) depend on the 

user. These aspects have to be evaluated by each design team member compared to each option (e.g. how much 

better is the architectural form of option 1 compared to option 2). The result will be a number (assumed the total 

performance is 1) for example architectural form option 1 is 0.8 and option 2 0.2.

Third step:

Aspects like comfort and energy consumption can be simulated with a BPS tool. The results are brought into 

relation for both options; i.e. in the end the outcome will be comparable to the second step: e.g. option 1 is 0.6; 

option 2 is 0.4.

Final step:

The outcome of the second and third step for each option to every aspect is multiplied by the weighting from step 

1. In the end there will be one number for each option showing in relation which one is better (due to performance, 

weighting, and user). A consensus of all design team members is built by combining all separate results.

Following graphic shows the normalized performance (sum of aspects such as comfort, aesthetic) of both options 

compared to a normalized cost factor (energy costs, investment costs) for all design team members.

The graphic shows that the higher the performance, the better the option. The higher the cost factor the worse 

(more expensive) the option. The graphic shows that option 2 (right) is better performing but also more expensive 

than option 1.

The uncertainty analysis shows that for the most preferable option 2 the weighted underheating hours are 

exceeding. The sensitivity analysis (as shown earlier) identifies the infiltration rate as most sensitive parameter. 

Looking deeper into the correlation of the infiltration rate to the weighted underheating hours, it can be seen that it 

is almost linear. Limiting the risk, e.g., setting limitations to the infiltration rate, minimizes the risk of exceeding 

the underheating hours. This turns option 2 indeed into the better option by eliminating the risk.  
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Do you think that BPS in general should provide the possibility to communicate results with 

other design team members? *

Do you agree that the prototype “decision making with uncertainty and sensitivity”... *

How important is it that the preferred option is the option with the minimum risk? *

How important do you rate communication in the design process? *

strongly agree   somewhat agree  somewhat disagree  strongly disagree

...is a transparent procedure?

...can be taken as a basis for 

communication with others?

...makes the results intuitively 

understandable?

...has potential in supporting the decision 

process?

strongly agree   somewhat agree  somewhat disagree  strongly disagree

very important  important     less important     unimportant

very important  important     less important     unimportant

Do you have further suggestions to the integration of optimization? Comments etc.
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5. Third scenario:

Optimization in building performance simulation An office building is given. The objective is to 

optimize parameters such as geometry, window size, and loads. This will result in a better comfort 

and energy demand. In the graphic below the outcome ("Pareto front") is shown for one floor with 

two objectives to be optimized: thermal comfort (the sum of weighted over and underheating hours) 

and energy consumption (annual cooling plus annual heating).

Do you think that the provided results... *

can be taken as base for communication?

are intuitively understandable?

have potential in supporting the design process?

Do you have further suggestions to the integration of optimization? Comments etc.

strongly agree   somewhat agree  somewhat disagree  strongly disagree
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6. Summary 

Please rank your impression about the three presented scenarios (see above A, B, and C) in terms of...

...reliability of results *

A: Simple uncertainty/ sensitivity analysis

B: Decision making with uncertainty/ 

sensitivity analysis

C: Parameter optimization

...supporting the decision process *

...guidance through the design process *

...fulfilling the requirements of BPS in the final 

design *

...usefulness/ importance of integration in BPS 

software * strongly agree   somewhat agree  somewhat disagree  strongly disagree

excellent        above average      below average        poor

A: Simple uncertainty/ sensitivity analysis

B: Decision making with uncertainty/ 

sensitivity analysis

C: Parameter optimization

A: Simple uncertainty/ sensitivity analysis

B: Decision making with uncertainty/ 

sensitivity analysis

C: Parameter optimization

A: Simple uncertainty/ sensitivity analysis

B: Decision making with uncertainty/ 

sensitivity analysis

C: Parameter optimization

A: Simple uncertainty/ sensitivity analysis

B: Decision making with uncertainty/ 

sensitivity analysis

C: Parameter optimization

excellent        above average      below average        poor

excellent        above average      below average        poor

excellent        above average      below average        poor
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