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Abstract. The performance of building-integrated photovoltaics (BIPV) shows high variations due 

to several factors, including design model uncertainty, installation mode, dirt/soil effects, aging 

factors, and manufacturing issues. This paper explores the uncertainty of BIPV outputs from the 

perspectives of both model uncertainty and parameter uncertainty using the EnergyPlus program. 

The sampling-based Monte Carlo method is implemented to conduct the uncertainty analysis of 

BIPV outputs. The meta-model global sensitivity analysis (Bayesian adaptive spline surfaces) is 

used to obtain important factors affecting BIPV outputs due to its high computational efficiency. 

The results indicate that both model and parameter uncertainty has significant influences on PV 

outputs. The combined remaining effect, power rating, and model uncertainty are three important 

factors influencing PV electricity. Therefore, these factors should be carefully chosen or adjusted 

to provide a reliable estimation of PV outputs.  

1. Introduction

BIPV (building-integrated photovoltaics) has been widely considered a promising method to 

provide sustainable energy for buildings (Sun et al, 2021). There are different types of 

integration methods in buildings, including walls, roofs, windows, and skylights. Chen et al. 

(2021) investigate the energy performance of BIPV windows in street canyons. They found 

that energy savings due to BIPV window increase in north-south orientated open canyons. 

Pabasara et al. (2022) investigate the design options of building-integrated photovoltaics 

using multi-objective optimization in terms of life-cycle cost and energy performance. The 

method proposed includes four steps: data inputs, performance simulation, optimizer, and 

optimized results. The results show that there are seven optimum roof BIPV design solutions 

and fourteen skylight BIPV design options. Rounis et al. (2021) explore the design, 

development, and experiments of BIPV/T (building-integrated photovoltaics/thermal) in an 

indoor solar simulator. Their study provides a design standardization of air-based BIPV/T 

design and emphasizes the importance of convective heat transfer in this BIPV/T system. 

Most previous studies concentrate on the electricity and thermal performance of BIPV 

systems. There are studies to explore the uncertainty of PV systems. Liu et al. (2018) apply a 

two-stage procedure to predict both the point and interval estimation of short-term PV 

outputs. The first step is to create neural network models and the second step is to apply the 

kernel non-parameter density estimation to estimate the associated prediction intervals. 

Thenevard et al. (2013) discuss the long-term uncertainty of PV outputs. They found that the 

standard deviation of PV outputs is approximately 8.7% for the first year of operation and 

7.9% for the other years over the PV lifetime. However, a few studies focus on both 

uncertainty and sensitivity analysis of building-integrated photovoltaics. The variations of 

energy performance in BIPV due to uncertain inputs are not fully explored yet.  

Therefore, this research investigates the uncertain results of BIPV outputs and identifies the 

key factors affecting PV electricity. Both the model and parameter uncertainty in a BIPV 

system would be explored in this research. The meta-modeling sensitivity analysis is used to 
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obtain the sensitivity index influencing BIPV outputs. Moreover, the convergence of both 

uncertainty and sensitivity results for the BIPV system is evaluated to obtain robust results. 

2. Method

The procedures of uncertainty and sensitivity analysis of building-integrated photovoltaics 

can be divided into six steps as illustrated in Figure 1. The first step is to determine the 

distributions of input parameters from previous studies. The second step is to obtain the 

sampling results using the Latin hypercube method. The third step is to compute the PV 

models with the EnergyPlus program in the R environment. The fourth step is to collect the 

PV electricity from the EnergyPlus models. The fifth step is to display the uncertain results of 

PV systems. The sixth step is to conduct the sensitivity analysis based on the meta-model 

global sensitivity analysis. The BP Solar BP275 PV panels are used in this case study. The 

area of a PV panel is 0.63 m
2
 with 36 solar cells. The short-circuit current is 4.75 A and the

open-circuit voltage is 21.4 V. More detailed information on these PV panels is available in 

the EnergyPlus example file (DOE, 2021).  

Figure 1: Flow chart of uncertainty and sensitivity analysis of building-integrated photovoltaics. 

2.1 Uncertainty analysis 

Two types of uncertainty will be considered in this study: model and parameter (Tian et al., 

2018), as listed in Table 1. Model uncertainty refers to various PV models to estimate the 

electricity of PV systems, whereas parameter uncertainty refers to the parameters influencing 

PV outputs. Three types of PV models are considered: simple, TRNSYS, and Sandia (DOE, 

2021). The simple PV model is used to compute the electricity output by the incident solar 

radiation multiplying the constant PV efficiency. The TRNSYS model is a four-parameter 

empirical equivalent circuit model to estimate the PV output (Duffie and Beckman, 2013). 

The Sandia model is developed by David King from the Sandia National Lab using empirical 

relationships (King et al., 2003). The uncertain parameters include installation modes, 

Albedo, power rating, dirt/soil, and other variables. Two types of installation modes are 
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considered: stand-alone (decoupled) and natural ventilation, which can be regarded as a 

uniform categorical variable. For standalone PV, the cell temperature of modules in the array 

is obtained from the energy balance relative to NOCT (Nominal operating cell temperature) 

conditions. The NOCT temperature is the operating temperature of the module with a wind 

speed of 1 m/s, no electrical load, and a certain specified insolation (800 W/m2) and 20oC 

ambient temperature (Beckman and Duffie, 2013). For the natural ventilation BIPV, the PV 

temperature is obtained from the exterior baffle temperature in the naturally ventilated 

exterior cavity model. The albedo is taken as a uniform distribution between 0.1 and 0.15. 

The change of PV power rating is regarded as a normal distribution of mean -3% and standard 

deviation of 3%. The influence of soil and dirt is represented as a normal distribution of mean 

-3% and a standard deviation of 2%. The remaining variables including spectral effects, aging 

effects, etc. (named as other variables) are considered as a normal distribution of a mean of -

5% and a standard deviation of 5% (Thevenard and Pelland, 2013).  

Table 1: Uncertainty parameters for uncertainty and sensitivity analysis of PV system. 

Uncertainty type Factor Short names Values/Distributions 

Model uncertainty PV computation method PM 
Simple (SP), TRNSYS 

(TS), Sandia (SN) 

Parameter uncertainty Installation mode IM 
Stand-alone (DE), 

natural ventilation (VN) 

 Albedo RE U(0.1, 0.15) 

 Power rating PR N(-3%, 3%) 

 Dirt soil DS N(-3%, 2%) 

 Remaining factors RF N(-5%, 5%) 

The PV panel is assumed to be installed in Tianjin, China, and the typical year data in Tianjin 

is used to obtain PV electricity. Figure 2 shows the variations of daily solar radiation in 

different months. There are more variations of daily solar radiation in summer than those in 

winter. The simulation is conducted using the EnergyPlus V9.6 program (DOE, 2021). There 

are three types of PV models and two types of installation modes. Hence, there are 6 cases in 

this study. The PV models are run 1000 times using the Sobol sampling method to obtain 

reliable results of PV outputs for every case. The Sobol sequence is a low discrepancy 

quasirandom sequence with a good convergence performance (Sun, 2021). The convergence 

test of uncertainty and sensitivity analysis would be discussed in section 3.1 and section 3.2, 

respectively.  
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Figure 2: Violin plots for daily horizontal solar radiation by month in Tianjin. 

2.2 Sensitivity analysis 

The meta-modeling Sobol sensitivity analysis is conducted to obtain the importance rankings 

of the factors above influencing PV output (Tian, 2013). The meta-model used in this method 

(Bayesian adaptive spline surfaces) is one of the polynomial spline models in which the 

integrals can be computed analytically without the Monte Carlo simulation (Francom and 

Sanso, 2020). Hence, the computational efficiency would increase significantly compared to 

the conventional meta-model variance-based global sensitivity analysis. The Bayesian 

adaptive spline surface models are firstly created using the 1000 samples from the uncertainty 

analysis. Then the sensitivity index is derived based on the definition of the main and total 

effects of global sensitivity analysis. The main effects and total effects can be obtained at the 

same time from this meta-model sensitivity analysis. The main effects refer to the influences 

of a single factor without considering the effects of other factors, whereas the total effects 

include the main effects of one specific factor and interaction effects with the other factors. 

The interaction effects can be two-way or higher-order effects for a complex engineering 

system. R Bass package is used for sensitivity analysis (Francom and Sanso, 2020).  

3. Results and discussion 

3.1 Results from uncertainty analysis  

This section would firstly discuss the convergence of uncertainty analysis of PV electricity to 

make sure the results are stable. Then the total uncertainty results would be described to 

compare the results in three PV computation methods and two installation modes. Finally, the 

uncertainty results would be illustrated due to separate factors.  

Convergence of results from uncertainty analysis

 

Figure 3: Stability of percentiles of electricity generated by PV systems with the sample number for 

the ventilation mode using the TRNSYS model.  

It is necessary to check the convergence of uncertainty results using sampling-based methods. 

Figure 3 shows the change of various percentiles of PV electricity with the ventilation mode 

using the TRNSYS model. These percentiles tend to be stable after 400 simulation runs using 
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the Sobol sequence sampling method. The 95
th

 percentile of PV electricity has more 

variations in this case study as might be expected. This is because more extreme values 

require more sampling runs. The 50
th

 percentile (median) of PV electricity has slight 

variations after 200 simulation runs. The 1000 sample runs are chosen in this research for the 

stable results of both uncertainty and sensitivity analysis. The convergence of sensitivity 

results would be discussed in section 3.2.  

Results from total uncertainty analysisFigure 2 and Figure 3 show the cumulative density 

function and box plots of annual electricity in six cases, respectively. The model uncertainty 

has a marked influence on the results of PV electricity. The results from the simple model 

(SP) are almost the same for two installation modes (stand-alone and natural ventilation), 

whereas the results from the stand-alone are around 12% higher than those from the natural 

ventilation using the Sandia model and TRNSYS model. This is because the influences of 

change in PV temperature can be properly considered in the more detailed PV models, 

including Sandia and TRNSYS models. Hence, it is necessary to implement suitable PV 

models in estimating PV outputs when integrating with buildings. As also can be seen from 

Figure 3, the differences in mean values from the Sandia and TRNSYS models are less than 

2%. As a result, the PV electricity using both the Sandia and TRNSYS is reliable to provide 

an accurate estimation of PV outputs. 

 

Figure 4: Electricity generated by PV systems in two installation modes (DE, decoupled; VN, 

ventilation) and three PV models (SP, simple; TS, TRNSYS; SN: Sandia National Laboratories).  

The IQR (inter-quartile range) values of PV electricity are 132 kWh when using the simple 

PV model. These IQR values would be decreased to 124 kWh in the case of stand-alone PV 

installation mode using the TRNSYS and Sandia models. The IQR values would further 

slightly be reduced in the case of natural ventilation BIPV. Hence, the uncertainty of PV 

electricity would change with the variations of PV models and PV installation modes 

although the change of uncertainty is not significant. It is also found that the coefficients of 

variation for PV outputs in all six cases are around 6.44% in this research. This suggests that 

the relative variations of PV electricity normalized to the mean values for three PV 

computation methods and two installation modes are almost the same in this case study. As 

also can be seen from Figure 5, the ranges of PV outputs in every case study are larger than 

the difference between the three PV computation methods. Hence, the variations of PV 

electricity due to the parameter uncertainty are larger than those from the model uncertainty.  
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Figure 5: Box plots of electricity generated by PV systems in two installation modes (DE, decoupled; 

VN, ventilation) and three PV models (SP, simple; TS, TRNSYS; SN: Sandia National Laboratories).  

Results from uncertainty analysis from four separate factorsIt is also interesting to 

explore the density plots for separate factors in a specific PV computation method and a 

specific installation mode. The PV electricity with the ventilation mode and TRNSYS method 

would be investigated because this PV calculation method can present more reliable results as 

discussed in this section. Figure 6 illustrates the kernel density plots of PV electricity due to 

four factors: Albedo (RE), power rating (PR), dirt/soil (DS), and other variables (RF). The 

largest variation of PV electricity is due to the RF (other variables, including aging and 

spectral effects) in which the interquartile is 92 kWh. The next factor is PR (power rating) 

with the interquartile of 55 kWh. The third-largest variation of PV electricity is because of 

dirt on the PV surface and its variation only accounts for around one-third of variations due to 

RF factors. There are almost no variations of PV electricity due to RE (Albedo) in this case 

study.  

 

Figure 6: Density plots of PV electricity using the TRNSYS model in the ventilation mode due to four 

factors (DS, dirt soil; PR, power rating; RE: reflectivity; RF, remaining factors).  
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3.2 Results from sensitivity analysis 

This section firstly presents the convergence of the sensitivity index with the sample size. 

Then the main effects and interactions influencing PV electricity are illustrated. Finally, the 

total effects would be explored to obtain the final importance rankings affecting PV outputs in 

this case study.  

Convergence of results from sensitivity analysisFigure 6 shows the change of total effects 

as a function of sample size in this case study. The total effects obtained from sensitivity 

analysis would be very unstable before the 300 simulation runs. The ranking results for PM 

(PC computation method) and PR (power rating) would be even changed after 100 simulation 

runs. After the 500 simulation models, the total effects become stable although there exists a 

slight change after 900 model runs. The simulation runs for stables results between 

uncertainty and sensitivity analysis are different by comparing Figure 4 and Figure 6. In this 

case study, more simulation runs are required for sensitivity analysis than those for 

uncertainty analysis.  

 

Figure 6: Stability of total effects with the sample number for the PV systems.  

 

Main effects and two-way interactions  

Figure 7 shows the sensitivity results of input parameters using the meta-model global 

sensitivity analysis. The most important factor is the remaining variables, including spectral 

effects, aging effects, etc., which account for around 58% of variations of PV outputs. The 

next two important factors are the PV power rating and model uncertainty, which are 

responsible for 17% and 11% of output variations, respectively. The sum of these three 

important factors accounts for approximately 86% of total variations of PV outputs. The other 

factors have only slight influences on the variations of PV outputs. Hence, these three factors 

should be carefully considered in computing PV outputs to properly evaluate the uncertainty 

of electricity generated from the BIPV system. As also can be seen from Figure 4, the 

interactions of the PV model and installation modes also have influenced the variations of PV 

outputs. This can be explained from Figure 3 that the PV results would be changed in two 

installation modes using the Sandia or TRNSYS models, while the PV outputs would almost 

be the same in two different installation modes using the simple PV model.  
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Figure 7: Main and interaction effects of input parameters influencing PV electricity.  

Total effects  

Figure 8 shows the total effects of factors influencing PV electricity. A similar conclusion can 

be obtained as discussed in Figure 7. The total effects are almost the same as the main effects 

for three factors, including RF, PR, and DS, since there are almost no interactions between 

these three factors. The total effects for both IM and PM would be increased by around 

0.0234 due to the interactions of these two factors as shown in Figure 7. Therefore, the total 

sensitivity index for all the factors would be above one due to the interactions. It can be also 

observed that the variations of total effects are very small in this case. Therefore, the rankings 

results influencing PV electricity would be very robust since there are no overlapping total 

effects. The albedo effects have almost no influence on PV outputs in this case study, which 

are not shown in Figure 8. The RF (including aging, spectral, and other variables) has a large 

influence on the PV outputs. More detailed research is required to decompose this combined 

factor into specific variables, which could provide more guidance on how to reduce the 

uncertainty of PV estimation.  

 

Figure 8: Total effects of input parameters influencing PV electricity.  
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4. Conclusion 

This paper investigates the uncertainty and sensitivity analysis of building-integrated 

photovoltaics (BIPV) from the perspective of both model and parameter uncertainty. The 

following conclusions have been obtained from this research: 

(1) The convergence of uncertainty and sensitivity in exploring the BIPV performance should 

be properly evaluated. In this case study, more simulation runs for the sensitivity analysis are 

required compared to the uncertainty analysis.  

(2) The results from uncertainty analysis indicates that both model and parameter uncertainty 

have significant influences on PV outputs. The variations of PV electricity due to the 

parameter uncertainty are larger than those due to the model uncertainty. 

(3) The results from the meta-model sensitivity analysis show that the remaining effects 

(including aging and spectral effects), power rating, and model uncertainty are three important 

factors influencing PV electricity. Therefore, these factors should be carefully chosen or 

adjusted to provide a reliable estimation of PV outputs.  

Further research is be required to understand the effects of uncertain factors for different types 

of BIPV, such as PV windows, and PV/T systems.  
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