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Summary. Composite indicators are increasingly used for bench-marking countries’ perfor-
mances. Yet doubts are often raised about the robustness of the resulting countries’ rankings
and about the significance of the associated policy message.We propose the use of uncertainty
analysis and sensitivity analysis to gain useful insights during the process of building composite
indicators, including a contribution to the indicators’ definition of quality and an assessment of
the reliability of countries’ rankings. We discuss to what extent the use of uncertainty and sensi-
tivity analysis may increase transparency or make policy inference more defensible by applying
the methodology to a known composite indicator: the United Nations’s technology achievement
index.
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1. Introduction

Composite indicators (often called indices) are increasingly used by statistical offices and
national or international organizations to convey information on the status of countries in fields
such as the environment, economy, society or technological development; a review is given in
Saisana and Tarantola (2002). Composite indicators are calculated by combining well-chosen
subindicators into a single index, on the basis of an underlying model of the policy domain that
one wishes to measure. This is most often achieved by a weighted combination of normalized
subindicators’ values.

The main pros and cons of using composite indicators have been debated within the services
of the European Commission. The discussion is summarized by Saisana and Tarantola (2002),
from which we quote:

‘Pros
—Composite indicators can be used to summarise complex or multi-dimensional issues, in view of sup-
porting decision-makers.
—Composite indicators provide the big picture. They can be easier to interpret than trying to find a
trend in many separate indicators. They facilitate the task of ranking countries on complex issues.
—Composite indicators can help attracting public interest by providing a summary figure with which
to compare the performance across countries and their progress over time.
—Composite indicators could help to reduce the size of a list of indicators or to include more information
within the existing size limit.
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‘Cons
—Composite indicators may send misleading, non-robust policy messages if they are poorly constructed
or misinterpreted. Sensitivity analysis can be used to test composite indicators for robustness.
—The simple “big picture” results which composite indicators show may invite politicians to draw sim-
plistic policy conclusions. Composite indicators should be used in combination with the sub-indicators
to draw sophisticated policy conclusions.
—The construction of composite indicators involves stages where judgement has to be made: the selec-
tion of sub-indicators, choice of model, weighting indicators and treatment of missing values etc. These
judgements should be transparent and based on sound statistical principles.
—There could be more scope for Member States about composite indicators than on individual indica-
tors. The selection of sub-indicators and weights could be the target of political challenge.
—The composite indicators increase the quantity of data needed because data are required for all the
sub-indicators and for a statistically significant analysis.’

We shall tackle in the present paper many of the points that are raised by these conclusions.
In practice, it is difficult to imagine that the debate on the use of composite indicators will ever
be settled. Just to give an example that is linked to our experience, official statisticians may tend
to resent composite indicators, whereby a large amount of work in data collection and editing is
‘wasted’ or ‘hidden’ behind a single number of dubious significance. However, the temptation
of stakeholders and practitioners to summarize complex and sometime elusive processes (e.g.
sustainability or a single-market policy) into a single figure to bench-mark country performance
for policy consumption seems likewise irresistible.

General procedures to assess uncertainty in building composite indicators are described in
this paper. In particular, we limit ourselves to three types of uncertainties:

(a) alternative normalization methods for the values of the subindicators,
(b) alternative weighting approaches and finally
(c) uncertainty in the weights of the subindicators.

Two combined tools are suggested: uncertainty analysis (UA) and sensitivity analysis (SA).
UA focuses on how uncertainty in the input factors propagates through the structure of the
composite indicator and affects the values of the composite indicator. SA studies how much
each individual source of uncertainty contributes to the output variance.

In the field of building composite indicators, UA is more often adopted than SA (Jamison
and Sandbu, 2001; Freudenberg, 2003) and the two types of analysis are almost always treated
separately. A synergistic use of UA and SA is proposed and presented in Section 2, consider-
ably extending earlier attempts in this direction (Tarantola et al., 2000). The test case, which is
described in Section 3, is the technology achievement index (TAI) that was developed by the
United Nations (2001) to help policy makers to define technology strategies. Two normalization
methods and two participatory approaches for assigning weights to the subindicators (budget
allocation (BA) and analytic hierarchy processes (AHPs)) have been applied in the present
work. Section 4 discusses the results and aims to answer two key questions on the quality of the
composite indicator.

(a) Does the use of one normalization method and one set of weights in the development of
the composite indicator (e.g. the original TAI) provide a biased picture of the countries’
performance?

(b) To what extent do the uncertain input factors (normalization methods, weighting schemes
and weights) affect the countries’ ranks with respect to the original TAI?

Section 5 summarizes our conclusions on the role that the combination of UA and SA can
play as a quality assurance tool during the development of a composite indicator for policy
making.
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2. Methodological aspects in building composite indicators

Several methods for calculating composite indicators from a set of subindicators were described
in Saisana and Tarantola (2002). The methods that are most frequently met in the literature are
based on the rescaled values (equation (1a)) or on the standardized values (equation (1b)). A
composite indicator Yc for a given country c is most often a simple linear weighted function of
a total of Q normalized subindicators Iq,c with weights wq,

Yc =
Q∑

q=1
Iq,cwq, where




Iq,c = xq,c −min.xq/

range.xq/
, (1a)

Iq,c = xq,c −mean.xq/

std.xq/
: (1b)

Here xq,c represents the raw value of the subindicator xq for country c.
The difference in the values of the composite indicator between two countries A and B will

be an output of interest studied in our UA–SA.

DAB =
Q∑

q=1
.Iq,A − Iq,B/wq: .2/

Additionally, the average shift in countries’ ranks will be explored. This statistic captures in a
single number the relative shift in the position of the entire system of countries. It can be quan-
tified as the average of the absolute differences in countries’ ranks with respect to a reference
ranking over the M countries:

R̄S = 1
M

M∑
c=1

|rankref .Yc/− rank.Yc/|: .3/

The investigation of the Yc, DAB and R̄S will be the scope of the UA and SA, targeting the
questions that were raised in Section 1 on the quality of the composite indicator.

2.1. Uncertainty analysis
In the first stage, the uncertain input factors in the estimation of the outputs Yc, DAB and R̄S
must be acknowledged. In general, the uncertainties in the development of a composite indicator
will arise from some or all of the steps in the construction line:

(a) selection of subindicators,
(b) data selection,
(c) data editing,
(d) data normalization,
(e) weighting scheme,
(f) weights’ values and
(g) composite indicator formula.

The most debated problem in building composite indicators is the difficulty in assessing
properly the plurality of perspectives about the relative importance of the subindicators. Expe-
rience shows that disputes over the appropriate method of establishing weights cannot be easily
resolved. Cox et al. (1992) summarized the difficulties that are commonly encountered when
proposing weights to combine indicators into a single measure, and they concluded that many
published weighting schemes are either based on too complex multivariate methods or have little
meaning to society. For these reasons, participatory approaches, such as BA or AHPs, are often
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preferred, as they allow for an expression of the relative importance of the subindicators from
the societal viewpoint. In BA experts are invited to distribute a budget of points over a number
of subindicators, paying more for those indicators whose importance they want to emphasize
(Moldan et al., 1997). The AHP is a widely used technique for multiattribute decision-making
(Saaty, 1980, 1987). The AHP is based on ordinal pairwise comparisons of subindicators. For
a given objective, the comparisons are made per pairs of subindicators, and the strength of
preference is expressed on a semantic scale of 1 (equality) to 9 (i.e. a subindicator can be voted
to be nine times more important than the subindicator with which it is being compared). The
relative weights of the subindicators are calculated by using an eigenvector technique, which
as described in Saaty (1980) serves to resolve inconsistencies (e.g. a better than b better than c
better than a loops). Note that the AHP approach would also allow the analyst to ‘grade’ the
expert by measuring his or her inconsistencies.

In this work, we focus on three points of the (a)–(g) chain of composite indicator building,
which can introduce uncertainty in the output variables Yc, DAB and R̄S: the type of normali-
zation (be it with rescaled (equation (1a)) or standardized values (equation (1b))), the weighting
scheme (be it BA or AHP) and the subindicators’ weights. We anticipate here that we shall
translate all these uncertainties into a set of scalar input factors, to be sampled from their distri-
butions. As a result, all outputs Yc, DAB and R̄S are non-linear functions of the uncertain input
factors, and the estimation of the probability distribution functions (PDFs) of Yc, DAB and R̄S
is the purpose of the UA. The UA procedure is essentially based on simulations that are carried
out on each of equations (1)–(3), termed henceforth the model. Various methods are available
for evaluating output uncertainty.

In the following, the Monte Carlo approach is presented, which is based on performing
multiple evaluations of the model with k randomly selected model input factors. The procedure
involves six steps.

(a) Assign a PDF to each input factor Xi. The first input factor, X1, is the trigger to select
the type of normalization method; the second input factor, X2, is the trigger to select
the weighting scheme. Factors X3–Xk are random numbers that are used to select the
Q .=k −2/ uncertain weights.

(b) Generate randomly N combinations of independent input factors Xl, with l = 1, . . . , N

(a set Xl = Xl
1, Xl

2, . . . , Xl
k of input factors is called a sample).

(c) For each sample l, select a normalization method and weighting scheme based on X1,
X2, . . ..

(d) For each sample l, use factors X3–Xk to select the weights.
(e) Evaluate the model, i.e. by computing the output value Yl, where Yl is either Yc, the

value of the composite indicator for each country, or DAB, the difference between two
countries, or R̄S, the averaged shift in countries’ ranks.

(f) Close the loop over l, and analyse the resulting output vector Yl, with l = 1, . . . , N.

The generation of samples can be performed by using various procedures, such as simple
random sampling, stratified sampling, quasi-random sampling or others (Saltelli, Chan and
Scott, 2000). The sequence of Yl allows the empirical PDF of the output Y to be built. The
characteristics of the PDF, such as the variance and higher order moments, can be estimated
with an arbitrary level of precision that is related to the size of the simulation N.

2.2. Sensitivity analysis using variance-based techniques
A necessary step when designing an SA is to identify a few summary variables that describe
concisely, yet exhaustively, the message that is provided by a model (Saltelli, Tarantola and



Quality Assessment of Composite Indicators 311

Campolongo, 2000). In the present application for instance, although an uncertainty analysis
of Yc is necessary, SA is only applied to the two summary model outputs, DAB and R̄S, as they
are relevant to the quality assessment of a composite indicator.

For non-linear models, such as our composite indicator happens to be when normalization
methods, weighting schemes and weights are all sampled, variance-based techniques for SA
are the most appropriate (Saltelli, Tarantola and Campolongo, 2000). The importance of a
given input factor Xi can be measured via the so-called sensitivity index, which is defined as
the fractional contribution to the model output variance due to the uncertainty in Xi. For
k independent input factors, the sensitivity indices can be computed by using the following
decomposition formula for the total output variance V.Y/ of the output Y :

V.Y/=∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+V12:::k .4/

where

Vi =VXi{EX−i .Y |Xi/}, .5/

Vij =VXiXj{EX−ij .Y |Xi, Xj/}−VXi{EX−i .Y |Xi/}−VXj{EX−j .Y |Xj/} .6/

and so on. In computing VXi{EX−i .Y |Xi/}, the expectation EX−i would call for an integral over
X−i, i.e. over all factors except Xi, including the marginal distributions for these factors, whereas
the variance VXi would imply a further integral over Xi and its marginal distribution. A first
measure of the fraction of the unconditional output variance V.Y/ that is accounted for by the
uncertainty in Xi is the first-order sensitivity index for the factor Xi defined as

Si =Vi=V : .7/

Terms above the first term in equation (4) are known as interactions. A model without inter-
actions among its input factors is said to be additive. In this case, Σk

i=1Si = 1 and the first-order
conditional variances of equation (5) are all that we need to know to decompose the model
output variance. For a non-additive model, higher order sensitivity indices, which are respon-
sible for interaction effects among sets of input factors, must be computed. However, higher
order sensitivity indices are usually not estimated, as in a model with k factors the total number
of indices (including the Sis) that should be estimated is as high as 2k −1. For this reason, a more
compact sensitivity measure is used. This is the total effect sensitivity index, which concentrates
in one single term all the interactions involving a given factor Xi. To exemplify, for a model of
k =3 independent factors, the three total sensitivity indices would be

ST 1 = V.Y/−VX2X3{EX1.Y |X2, X3/}
V.Y/

=S1 +S12 +S13 +S123: .8/

Analogously:
ST 2 =S2 +S12 +S23 +S123,

ST 3 =S3 +S13 +S23 +S123:
.9/

The conditional variance in equation (8) can be written generally as VX−i{EXi.Y |X−i/} (Homma
and Saltelli, 1996). It expresses the total contribution to the variance of Y due to non-Xi, i.e.
to the k − 1 remaining factors, so that V.Y/−VX−i{EXi.Y |X−i/} includes all terms, i.e. a first-
order term as well as interactions in equation (4), that involve factor Xi. In general Σk

i=1STi �1,
with equality if there are no interactions. For a given factor Xi a notable difference between
STi and Si flags an important role of interactions for that factor in Y. Highlighting interactions
between input factors helps us to improve our understanding of the model structure. Estima-
tors for both Si and STi are provided by a variety of methods reviewed in Chan et al. (2000).
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Here the method of Sobol’ (1993), in its improved version due to Saltelli (2002), is used. The
method of Sobol’ uses quasi-random sampling of the input factors. The pair (Si, STi) give a fairly
good description of the model sensitivities at a reasonable cost, which for the improved Sobol’
method is of 2n.k + 1/ model evaluations, where n represents the sample size that is required
to approximate the multidimensional integration implicit in equation (5) to a plain sum. n can
vary in the 100–1000 range.

The extended variance-based techniques that have been described so far display several attrac-
tive features, such as

(a) model independence (which is appropriate for non-linear and non-additive models),
(b) exploration of the whole range of variation in the input factors, instead of just sampling

factors over a limited number of values, as done for example in fractional factorial designs
(Box et al., 1978), and

(c) consideration of interaction effects.

When the uncertain input factors Xi are dependent, the output variance cannot be decom-
posed as in equation (4). The Si- and STi-indices are still valid sensitivity measures for Xi, though
their interpretation changes as, for example, Si carries over also the effects of other factors that
can be positively or negatively correlated to Xi (see Saltelli and Tarantola (2002)). Estimation
procedures are offered in Saltelli et al. (2004).

The extended variance-based methods, including the improved version of Sobol’, for both
dependent and independent input factors, are implemented in the freely distributed software
SIMLAB (Saltelli et al., 2004).

3. Case-study: technology achievement index

The TAI is a composite indicator that was developed by the United Nations and was described
in detail in United Nations (2001). The report argues that development strategies need to be
redefined in the network age and calls on policy makers to take a new look at the current techno-
logical achievements. The TAI composite indicator should help a country to assess its position
relative to others, possibly to bench-mark policies. Although acknowledging that many elements
make up a country’s technological achievement, the index suggests that an overall assessment is
more easily made on the basis of a single composite measure. Like other composite indices in the
Human Development Report series, such as the human development index, the TAI is suggested
for summary purposes, to be followed by individual analysis of the underlying indicators. The
design of the index reflects two particular concerns. The first is to compare policy effective-
ness across all countries, regardless of the level of technological development. The second is to
identify, and to send messages to, developing countries. To accomplish this, the index must be
able to discriminate between countries at the lower end of the range. The TAI focuses on four
dimensions of technological capacity.

(a) Creation of technology: two subindicators are used to capture the level of innovation in a
society, the number of patents granted per capita (to reflect the current level of invention
activities) and the receipts of royalty and licence fees from abroad per capita (to reflect
the stock of successful innovations of the past that are still useful and hence have market
value).

(b) Diffusion of recent innovations: all countries must adopt innovations to benefit from
the opportunities of the network age. This diffusion is measured by two subindicators:
diffusion of the Internet (which is indispensable to participation) and by exports of high
and medium technology products as a share of all exports.
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(c) Diffusion of old innovations: participation in the network age requires diffusion of many
old innovations, as technological advance is a cumulative process, and widespread diffu-
sion of older innovations is necessary for the adoption of later innovations. Two subindica-
tors are included here, telephones and electricity, which are especially important because
they are needed to use newer technologies and are also pervasive inputs to a multitude of
human activities. Both indicators are expressed as logarithms, as they are important at
the earlier stages of technological advance but not at the most advanced stages. Expressing
the measure in logarithms ensures that, as the level increases, it contributes less to the
index.

(d) Human skills: a critical mass of skills is indispensable to technological dynamism. The
foundations of such ability are basic education to develop cognitive skills and skills in
science and mathematics. Two subindicators are used to reflect the human skills that are
needed to create and absorb innovations: mean years of schooling and gross enrolment
ratio of tertiary students enrolled in science, mathematics and engineering.

The data that are used to construct the TAI are from international series that are most widely
used in analyses of trends in technology and so are considered the most reliable of the available
sets (United Nations (2001), page 46). For each of the eight subindicators (two subindicators
per dimension) the observed minimum and maximum values (among all available countries) are
chosen as ‘goalposts’ (Table 1) and performance in each subindicator is expressed as a value
between 0 and 1 by applying equation (1a). The original TAI is calculated for 72 countries, for
which data are available and of acceptable quality, as the simple average of the eight subindi-
cators, therefore considering that all subindicators are equally important in the development
of the composite indicator. The statistics for the raw data of the subindicators for the 72 coun-
tries are given in Table 1. The data for patents, royalties and Internet hosts exhibit the highest
coefficient of variation (the ratio of the standard deviation to the mean), underlining the high
variability in these three subindicators. The distributions of data for patents and electricity are
the most skewed (positively).

Table 1. Statistical properties of the eight subindicators that compose the TAI

Subindicator Goalposts for calculating the TAI Statistics across 72 countries

Observed Observed Mean Standard Skewness
minimum value maximum value deviation

Patents granted to residents (per 0 994 109 199 3.4
million people)

Royalties and licence fees received 0.0 272.6 29.3 46.1 1.8
(US $ per 1000 people)

Internet hosts (per 1000 people) 0.0 232.4 32.3 51.1 2.0
High and medium technology 0.0 80.8 30.1 23.0 0.4

exports (% of total goods exports)
Telephones, main line and cellular 1 901 443 402 0.6

(per 1000 people)
Electricity consumption 22 6969 3496 4274 2.5

(kW h per capita)
Mean years of schooling (age 0.8 12.0 7.2 2.5 −0.1

15 years and above)
Gross tertiary science enrolment 0.1 27.4 8.1 6.2 1.0

ratio (%)
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Correlation analysis reveals that the eight subindicators have an average bivariate correlation
of 0.55 and that six pairs of indicators have a correlation coefficient that is higher than 0.70.
The covariance of subindicators is further investigated via factor analysis. To account for at
least 90% of the variance in the data set of all the subindicators, five principal components
are needed. This result indicates that the phenomenon that is described by the set of the eight
subindicators is quite multidimensional. A higher correlation between the subindicators would
have resulted in fewer components.

Depending on a school of thought, one may see a high correlation between subindicators
as something to correct for, e.g. by making the weight for a given subindicator inversely
proportional to the arithmetic mean of the coefficients of determination for each bivariate
correlation that includes the given subindicator (Saisana and Tarantola, 2002). An example
of this approach is the index of relative intensity of regional problems in the European Union
(Commission of the European Communities, 1984). Practitioners of multicriteria decision anal-
ysis would instead tend to consider the existence of correlations as a feature of the problem, not
to be corrected for, as correlated subindicators may indeed reflect non-compensational different
features of the problem.

In the present study, we deviate from the original deterministic formulation of the index,
in that we allow both the normalization and the weighting procedures to vary, and we sam-
ple the weights rather than keep them equal and fixed as in the original TAI. Henceforth, we
indicate the extended composite indicator as Monte Carlo TAI (MCTAI). The weights for the
eight subindicators have been derived from two pilot surveys that were carried out across 20
informed interviewees at the authors’ institute, using the two participatory approaches BA and
AHP that were described in Section 2. For the present exercise, the interviewees had no bearing
on the issue being measured. In reality, interviewees should be part of a community of stake-
holders with a legitimate stake. To give an example, in the internal market composite indicator,
the experts were members of a committee representing the European Union member countries
whose performance was being measured (Tarantola et al., 2002).

Fig. 1 presents the eight scatterplots of the weights for each subindicator provided by the
20 interviewees using the two alternative weighting schemes. In other words, each point in a
scatterplot represents the weight that was given to the subindicator by one interviewee when
requested in a BA or an AHP approach. The deviation of the weights from the 45◦-line of perfect
agreement between the two weighting schemes is an interesting feature of this analysis, revealing
the human tendency to reply differently to different formulations of the same question. Both
weighting approaches have advantages and limitations. The weights that are provided by BA
are less spread than for an AHP for each subindicator and the variance of the weights across
the eight indicators is smaller for BA than for AHP. However, the AHP is based on pairwise
comparisons, where perception is sufficiently high to make a distinction between subindicators.
In BA all the subindicators are compared at a glance, and this might lead to circular thinking
across subindicators, creating difficulties in assigning weights, particularly when the number of
subindicators is high.

The 10 uncertain input factors in our analysis are described in Table 2 with their associated
PDF. The input factors are sampled in a quasi-random sampling scheme (Sobol’, 1967) using
a base sample of size n = 512 (which is required for the computation of the integral; see the
discussion in Section 2.2) and the composite indicator values per country are calculated by
performing 2n.k + 1/ = 11264 simulations. The MCTAI for the 72 countries is calculated as
follows: the data for each subindicator are first normalized according to the trigger X1 that is
sampled from a uniform distribution [0, 1], where for 0 � X1 �0.5 equation 1(a) is used and for
0.5 < X1 � 1 equation 1(b) is used. The trigger X2, with the same type of PDF as X1, guides the
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(a)

(e) (f) (g) (h)

(b) (c) (d)

Fig. 1. Scatterplots of weights (range between 0.0 and 0.5) for the eight subindicators of MCTAI (the weights
have been derived from pilot surveys of 20 informed interviewees using BA (vertical axes) and AHPs (hori-
zontal axes); , best fit linear regression lines): (a) patents; (b) royalties; (c) Internet; (d) exports;
(e) telephones; (f) electricity; (g) schooling; (h) enrolment

Table 2. The 10 uncertain input factors for the analysis

Input factor Definition PDF Range

X1, rescaled or Normalization method Uniform [0, 1], where [0, 0.5] ≡ rescaled
standardized values and (0.5, 1] ≡ standardized
values values

X2, BA or AHP Weighting scheme Uniform [0, 1], where [0, 0.5] ≡ BA and
and (0.5, 1] ≡ AHP

X3, W -patents Weights list for patents Discrete, uniform [1, 2, . . . , 20]
X4, W -royalties Weights list for royalties Discrete, uniform [1, 2, . . . , 20]
X5, W -internet Weights list for Internet Discrete, uniform [1, 2, . . . , 20]
X6, W -exports Weights list for exports Discrete, uniform [1, 2, . . . , 20]
X7, W -telephone Weights list for telephone Discrete, uniform [1, 2, . . . , 20]
X8, W -electricity Weights list for electricity Discrete, uniform [1, 2, . . . , 20]
X9, W -schooling Weights list for schooling Discrete, uniform [1, 2, . . . , 20]
X10, W -enrolment Weights list for enrolment Discrete, uniform [1, 2, . . . , 20]

selection of the weighting scheme. Then the weights are sampled independently of one another
as follows. Each factor X3–X10 is sampled from a discrete distribution [1–20], representing the
number of the interviewee, whose assigned weight is taken for the simulation. After all the
weights have been assigned, they are scaled to a unit sum. The MCTAI is then calculated as
the weighted average of the normalized subindicators. Linear scaling is finally applied to the
composite indicator values per type of normalization method, to convert them in the range
[0, 100].

Note that this assessment of uncertainties covers only points (d)–(f) in the uncertainty propa-
gation chain (a)–(g) that was described in Section 2.1. To give an example, given the lack of
information on the uncertainty in the values of the subindicators, the data are considered to
be error free for this test case, and are not, therefore, among the input factors in the Monte-
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Carlo-based UA. In Tarantola et al. (2000) the reader can find an analysis where data, weights
and model uncertainties are compounded. One might likewise investigate the inclusion or exclu-
sion of individual subindicators. This was not done explicitly here, though zero weights were
occasionally assigned by the experts in the BA approach (Fig. 1).

4. Results

4.1. Uncertainty analysis on the composite indicator values
The MCTAI values for the 72 countries have been calculated for each of the 11264 combina-
tions of normalization method, weighting scheme and set of weights. Fig. 2 displays the median
(black bar) and the corresponding fifth and 95th percentiles (bounds) of the distribution of the
MCTAI per country. The crosses indicate the original value of the 2001 TAI.

From this analysis we can conclude the following.

(a) For most countries, the original TAI value is very close to the MCTAI median value of
the distribution that acknowledges all three types of uncertainty. This implies that the
original TAI, despite being developed by using one normalization method and one set of
weights (equal weights), provides a picture of the countries’ technological achievements
that is not generally biased.

(b) There is, however, one country, the Netherlands, that is strongly favoured in the original
TAI. Originally, the performance of the Netherlands follows those of the five best coun-
tries, including Finland, the USA, Sweden, Japan and Korea. However, when accounting
for changes in the normalization method, the weighting scheme and the set of weights,
its performance falls at the ninth position, behind Singapore, the UK and Australia.
Singapore, in contrast, is ranked sixth in the MCTAI, instead of 10th in the original TAI.

(c) The United Nations’s TAI is not intended to be a measure of which country is leading in
global technology development, but to focus on how well the country as a whole is par-
ticipating in creating and using technology. Take for example Finland (TAIoriginal =74:4)
and the USA (TAIoriginal = 73:3). The USA, a global technology powerhouse, has far
more inventions and Internet hosts in total than Finland does, although in Finland
more is being done to develop a technological skill base throughout the population.
When accounting for the uncertainties in the input factors, the message is reinforced,
as the distance between the two countries is more evident (MCTAImedian,Finland = 83:1;
MCTAImedian,USA =78:1).

4.2. Sensitivity analysis on selected outputs using Sobol’ sensitivity measures
The previous analysis motivates a quantitative estimation of the effect of the variation in the
input factors on two output variables of interest:

(a) the difference DAB (equation (2)) in the composite indicator values between two countries
(the Netherlands and Singapore are selected owing to the discussion above);

(b) the average shift in countries’ ranks, R̄S (equation (3)), taking the original TAI as the
reference.

The sensitivity measures Si and STi, described previously in Section 2.2, have been computed
using the same set of 11264 simulations for the two output variables of interest.

4.2.1. Output 1: DNL,SG, difference in performance between the Netherlands and Singapore
The histogram that is displayed in Fig. 3 represents the outcome of the UA on the differences in
the composite indicator values between the Netherlands and Singapore (ranks sixth and 10th
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Fig. 2. Results of UA showing the original TAI for 2001 (�), and the median (�) and the corresponding 5th and 95th percentiles (bounds) of the distribution
of the MCTAI for 72 countries (uncertain input factors: normalization method, weighting scheme and weights for the subindicators; the countries are ordered
according to their median values)
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Fig. 3. Results of UA for the output variable DNL,SG: difference in the composite indicator values between
the Netherlands and Singapore (uncertain input factors:normalization method, weighting scheme and weights
for the subindicators)

Table 3. Sobol’ sensitivity measures of the
first-order and total effect for the output DNL,SG:
difference in the composite indicator values
between the Netherlands and Singapore†

Input First-order Total effect STi −Si
factor effect (Si) (STi)

X1 0.00 0.03 0.03
X2 0.14 0.56 0.42
X3 0.00 0.00 0.00
X4 0.01 0.04 0.03
X5 0.02 0.05 0.03
X6 0.02 0.17 0.15
X7 0.02 0.07 0.06
X8 0.17 0.37 0.20
X9 0.02 0.10 0.08
X10 0.12 0.29 0.16

Sum 0.52 1.69 1.17

†Values in italics (greater than 0.10) indicate
important input factors based on Si or STi − Si.

in the original TAI and ninth and sixth in the MCTAI respectively). The left-hand region of
Fig. 3, where Singapore performs better than the Netherlands, covers about 65% of the total
area and this shows that Singapore participates in creating and using technology more than the
Netherlands does, in contradiction with the original TAI.

The sensitivity measures Si and STi for DNL,SG are shown in Table 3. When we use Si for
SA, we are looking for important input factors that—if fixed singly—would reduce the variance
the most in the output variable. Importance in SA, though, is a relative notion and there is no
established threshold: one usually looks at the Si-values and the distances between them and
considers the first few factors as important. In this work, an input factor will be considered to
be important if Si > 0:10 (i.e. if the input factor explains more than 1=k of the output variance).
Thus, we see that the weights for electricity and enrolment are important variables, as well as
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the type of weighting approach (BA or AHP). In contrast, the selection of the normalization
method does not affect the variance of DNL,SG. All the input factors, taken singly, explain
52% of the output variance. The remaining 48% is the fraction of the output variance that is
not explained by the input factors taken singly, but by interactions between the factors them-
selves. The larger the difference STi −Si, the more that factor is involved in interactions with the
other factors. We can see that the trigger for the weighting scheme (BA or AHP) has a strong
interaction with other factors, mainly with the weights for electricity, enrolment and exports.
When we use STi for SA, we customarily look for factors with very small STi , which can thus
confidently be declared non-influential, and hence for example fixed in a subsequent iteration
of the analysis (Saltelli and Tarantola, 2002). The high value of STi for the weight of export tells
us that it cannot be fixed in spite of its low Si.

The information that is provided by SA, e.g. the importance of the trigger for the weight-
ing scheme, of the weights of electricity and enrolment, can be used to investigate further
the difference in the ranking of the Netherlands (sixth in the original TAI; ninth in the
MCTAI).

Let us start by investigating the relative performance between the Netherlands and Singapore
in the two-dimensional space of the ‘trigger for weighting scheme’ and the ‘weight of electricity’.
Fig. 4(a) shows the box plots of the values for the weight of electricity for the two weighting
schemes (i.e. BA or AHP) for the cases where the performance of the Netherlands is better
than, worse than or equal to that of Singapore. The total of 11264 samples has been used. The
same plot has been repeated for the ‘trigger for weighting scheme’ and the ‘weight of enrolment’
and is shown in Fig. 4(b). With respect to the original TAI, MCTAI favours Singapore when
high weights are assigned to the enrolment subindicator, for which Singapore is much better
than the Netherlands (in 3684+3699=7383 samples), and/or to the electricity subindicator, for
which Singapore is marginally better than the Netherlands. The relative performance between
the Netherlands and Singapore on the ‘weight of enrolment–weight of electricity’ plane, which
is not shown here, confirms that Singapore is better than the Netherlands mostly when the
weight for enrolment is high, whereas the weight for electricity can only make a difference when
extremely high values for it are assigned in the AHP.

4.2.2. Output 2: R̄S, average shift in countries’ ranks with respect to the original technology
achievement index
The Sobol’ measures of first-order (Si) and total effect (STi) for the second output are shown in
Table 4. The trigger for the weighting scheme and the weight of exports are the most important
factors, explaining 35% of the output variance, whereas all the input factors taken singly explain
44% of the output variance. The high influence of the weight of exports on the variance of R̄S
is due to Australia, Singapore, Norway, New Zealand, Greece, Mexico, Chile and Malaysia,
for which the subindicator’s values for exports are lower than the 20th or higher than the 92nd
percentiles. The remaining 56% of the output variance that is not explained by the input factors
taken singly is due to the interactions between the factors themselves. We can see that the trigger
for the weighting scheme has a strong interaction with the weight of exports as for DNL,SG.
Note that the weight of exports contributes to the output variance more through interactions
than singly. Interestingly, the normalization method has no influence on the variation of the
output.

This type of analysis has quantified the influence of the input factors on the average shift in
countries’ ranks with respect to the original TAI and has indicated that it is the weighting scheme
interacting mainly with the weight of exports that can influence the ranking of the countries in
the MCTAI with respect to the original TAI.
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Fig. 4. Box plots of 11264 values for (a) the weight for electricity and (b) the weight for enrolment with
respect to the two weighting schemes (BA and the AHP) and the relative performance between the Nether-
lands (NL) and Singapore (SG) (the numbers of samples, Ns, in each group are given on top of each plot):
+, outlier
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Table 4. Sobol’ sensitivity measures of the
first-order and total effect for the output ‘aver-
age shift in countries’ ranks with respect to the
original TAI’†

Input First-order Total effect STi −Si
factor index (Si) index (STi)

X1 0.00 0.06 0.06
X2 0.21 0.56 0.36
X3 0.00 0.00 0.00
X4 0.02 0.02 0.01
X5 0.01 0.03 0.02
X6 0.14 0.44 0.30
X7 0.03 0.05 0.02
X8 0.04 0.13 0.10
X9 0.00 0.09 0.09
X10 0.00 0.14 0.14

Sum 0.44 1.53 1.09

†Values in italics (greater than 0.10) indicate
important input factors based on Si or STi −Si.

4.3. Worthiness of the composite indicator
Now that—having propagated uncertainties—the value of the composite indicator is no longer
a simple number, but a distribution of values, the composite indicator might be seen to lose
relevance if a high fraction of countries were to overlap with one another. A first remark is that
some of the overlap in Fig. 2 is only exaggerated; once the correlation between the MCTAI for
pairs of countries is explicitly acknowledged, the overlap becomes much smaller than is implied
by the bars in Fig. 2. On a more general level, there is a trade-off between the level of uncer-
tainty that is included in the composite indicator and its worthiness, which is herein considered
as the capacity of the same index to discriminate effectively between countries. If the purpose
of an index in a given policy context were to be to embarrass, e.g. to spur lazy countries into
action, then again including layers of uncertainty may be seen as counter-productive. However,
a careful analysis of uncertainties seems to us to make the comparison more robust. The index
is no longer a magic number corresponding to a crisp normalization, weighting scheme and
weight assignment, but reflects uncertainty and ambiguity in a more transparent and defensible
fashion.

5. Conclusions and future work

This work has shown how to use global uncertainty and SA and other statistical techniques for
the quality assessment of composite indicators, in general, and demonstrated their use on the
United Nations’s TAI. Three types of uncertainties have been acknowledged:

(a) alternative normalization methods for the values of the subindicators,
(b) alternative weighting approaches (such as BA and the AHP) and finally
(c) uncertainty in the weights of the subindicators.

The analysis was useful in showing that

(i) the original version of the composite indicator provided a picture of the countries’
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relative performances that is similar to the indicator where the three types of uncertainties
are accounted for,

(ii) there are cases where countries’ rankings change significantly between the original and
extended TAI, i.e. the Netherlands and Singapore in the present exercise, and in identi-
fying the reason and the regions in the space of the weights that favour one country with
respect to another,

(iii) the message of what the index aims at measuring (i.e. a country’s participation in creating
and using technology and not which country is leading in global technology development)
can be better communicated to the public when the uncertainties in the input factors are
taken into consideration and

(iv) the weighting approach (through interaction with a few weights for the subindicators)
affects the countries’ ranks (which is useful to focus efforts on reducing the uncertainty
bounds for the MCTAI), whereas the normalization method has no influence on the
rankings.

The iterative use of UA and SA during the preparation of composite indicators could there-
fore contribute to the well structuring of composite indicators, could provide information on
whether the countries’ rankings measure anything meaningful and could reduce the possibility
that composite indicators may send misleading or non-robust policy messages.

The verification that is offered in the present work is nevertheless partial. We have not
considered as uncertain the values for the subindicators, because no estimates of the measure-
ment errors are available for the raw data. Furthermore we have implicitly assumed that all
the plurality of the debate (i.e. the sources of uncertainty) is captured by the variability in the
weights, be it with the BA or AHP alternatives and the normalization method. Although the
latter assumption is not far fetched, and one sees in practice examples where this happens,
e.g. the European Union internal market score-board and European Union Internet business
readiness index (for a review, see Saisana and Tarantola (2002)), we might also have situations
where the very concept of a composite indicator is rejected by some of the stakeholders, or
where the model underlying the weighting is called into question. To give an example, some
investigators (Munda and Nardo, 2003) have argued that, even if weights are customarily
assigned as a measure of relative importance when using linear aggregation, they have in fact a
meaning of a substitution rate, whereby for example an equal weight for two indicators would
mean that we are willing to trade one unit down in one indicator for one unit up in another.
Even if we have not propagated these other categories of uncertainty (data uncertainty and
underlying model uncertainty) in our example, it should be clear to the reader that this can be
done in principle without difficulty, following a similar approach to that presented herein.
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