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imprecise knowledge. More precisely, some applications

deal with random information and events, others deal with

imprecise and fuzzy knowledge, and still others deal with

missing or distorted information—resulting in uncertainty.

For example, in applications involving sensor readings,

such measurements usually come with degrees of evidence;

in applications like multimedia processing, object recog-

nition might come with degrees of truth.

To deal with uncertainty in the Semantic Web and its

applications, many researchers have proposed extending

OWL and the Description Logic (DL) formalisms with spe-

cial mathematical frameworks. Researchers have proposed

probabilistic,1 possibilistic,2 and fuzzy extensions,3–5

among others. Researchers have studied fuzzy extensions

most extensively, providing impressive results on semantics,

reasoning algorithms, and implementations. Building on

these results, we’ve created a fuzzy extension to OWL called

Fuzzy OWL. Fuzzy OWL can capture imprecise and vague

knowledge—for example, we can say that Athens is hot to a

degree 0.8 rather than saying that Athens is either hot or not.

Moreover, our reasoning platform, Fuzzy Reasoning Engine

(FiRE), lets Fuzzy OWL capture and reason about such

knowledge (see www.image.ece.ntua.gr/~nsimou).

Uncertainty representation
Many research communities have exploited Semantic

Web technologies to build interoperable applications.

Consider multimedia databases—many multimedia docu-

ments (such as images, video, and sound records) reside in

huge databases of production companies, museums, and

TV channels. For these documents to be available in a

semantically rich manner, they must be (semi)automati-

cally processed and annotated with the aid of knowledge

representation languages. But processing and describing

multimedia documents involves a lot of uncertain infor-

mation. For example, one meaningful query could be,

“Get all pictures that illustrate mountains with tall trees

and a blue sky with few clouds.” Such a query involves

many vague concepts, including “tall,” “blue,” and “few.”

The problem with proposed uncertainty extensions to

Semantic Web languages is that uncertainty comes in many

flavors, so there couldn’t be just one global extension. For

uncertainty resulting from incomplete or distorted knowl-

edge, you might assign possibility degrees to the possible

alternatives. For uncertainty resulting from our inability to

precisely define concepts, you might assign degrees of

truth. (Although fuzziness isn’t a type of uncertainty, we

make that assumption here to simplify our presentation.)

And for uncertainty resulting from several conflicting

alternatives, you might assign degrees of probability. To

this extent, extensions to OWL and DLs feature different

mathematical and logical properties. For example, both

probabilistic and possibilistic logics aren’t truth functional,

but fuzzy logic is.

Fuzzy OWL
As with OWL, Fuzzy OWL’s building blocks are classes,

properties, and individuals. Although in crisp (not fuzzy)

OWL, these entities represent (crisp) sets of objects, in our

case they’re fuzzy classes and properties. More precisely, a

fuzzy class A is seen as a fuzzy set over a universe of dis-

course X. This is defined by a membership function A : X

� [0, 1], which given an object x � X returns the degree

that x belongs to A. On the other hand, a fuzzy property R

is interpreted as a fuzzy relation over the set X � X, defined

by the function R : X � X � [0, 1]. For example, the class

Tall is the fuzzy set of tall people and Tall(George) = 0.8 says

that George is tall to a degree 0.8. 

Like OWL, Fuzzy OWL lets you specify intentional

knowledge. For example, we could define the class TennisBall
as something that’s yellow and round with a white stripe.

We could also define the class Yellow as something that’s

Green and Red, and ¬Blue (that is, Not Blue) or the class White.
Such definitions involve several fuzzy classes. Consider a

segment (that is, any region of the image) whose red, green,

and blue components each have the value 255 in the RGB
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tion needs (such as multimedia-processing, geospatial, and

situation-awareness applications) and that face uncertain,
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color model—that is, a white segment. What

about a segment whose components have the

values 255, 240, and 236? It’s better to spec-

ify the degree to which the segment is White
rather than strictly classifying it as White or

not. We could make similar arguments for

other concepts such as Yellow and Round.

Suppose that we apply an image process-

ing algorithm over an image and that, for a

particular segment o1, it returns the values

red 235, green 240, and blue 30. The algo-

rithm then looks at the fuzzy sets that define

the fuzzy concepts Red, Green, and Blue and

specifies the degree to which o1 belongs to

them. The domain expert defines these fuzzy

sets. For example, the fuzzy set for Red can

look like that in figure 1 (that is, o1 is red to a

degree 0.8). Similarly, the fuzzy sets of Green
and Blue could be defined by the same func-

tion as that of Red. So, o1 is green to a degree

0.85 and blue to a degree 0.05. Suppose also

that after some processing, the algorithm

estimates that o1 contains part of another

segment, o2, to a degree 0.75. We can repre-

sent this with the following RDF/XML syn-

tax in Fuzzy OWL’s DL language.

<rdf:Description rdf:about=“o1”>
<rdf:type rdf:resource=“Red” owlx:ineq
Type=“�” owlx:degree=“0.8”/>
<hasPart rdf:resource=“o2” owlx:ineq
Type=“�” owlx:degree=“0.75”/>

</rdf:Description>

Fuzzy OWL uses crisp OWL’s syntax for

class and property axioms and definitions. It

minimally extends the syntax of OWL facts

to fuzzy facts and extends crisp OWL’s se-

mantics. Fuzzy OWL semantics are based

on membership functions and fuzzy set the-

oretic operations, which provide meaning to

conjunction, disjunction, negation, and logi-

cal implication. For example, consider the

class Yellow that we defined earlier. Suppose

that we use the Gödel conjunction (intersec-

tion) given by t(a, b) = min (a, b) and the

Lukasiewicz negation given by c(a) = 1 – a.

From the fuzzy facts we gave earlier and the

definition of Yellow, we can deduce that o1 is

yellow to a degree Yellow (o1) = min(0.8, min(0.85,
1 – 0.05)) = min(0.8, 0.85) = 0.8.

Because of the mathematical properties

of the fuzzy set theoretic operations, if we

restrict our attention to the extreme limits of 0

and 1, the Fuzzy OWL DL semantics coin-

cide with those of the crisp OWL DL. So, we

usually refer to Fuzzy OWL as a sound exten-

sion of OWL.

FiRE: A fuzzy reasoning engine
FiRE is a prototype implementation of 

a reasoning algorithm for an expressive

fuzzy DL language, fKD-SHIN.6 This algo-

rithm builds on previous results about rea-

soning with fuzzy DLs by extending fKD-

ALC’s reasoning algorithm5 to handle most

of OWL’s features. Figure 2 illustrates the

FiRE platform’s GUI. FiRE consists of three

components: the editor panel, inference ser-

vices panel, and output tabs.

Editor panel
This panel lets us open and edit a knowl-

edge base or create a new one from scratch.

FiRE uses the same syntax as the RACER

DL reasoning engine (www.sts.tu-harburg.

de/~r.f.moeller/racer) to encode captured

knowledge. In FiRE, we had to slightly

extend RACER’s syntax to support fuzzy facts.

Using the keyword equivalent gives us defi-

nitions for the fuzzy concepts TennisBall, White,
and Yellow (see figure 2). Using the keywords

instance and related as well as an inequality type

and a membership degree, we can define

fuzzy facts. In addition to the fuzzy facts we

already introduced, we’ve specified that

segment o2 is red to a degree 0.6, green to a

degree 0.5, and blue to a degree 0.9 and that

its shape represents a stripe to a degree 0.8.

Furthermore, we’ve extended our knowl-

edge about segment o1, which is round to a

degree 0.6.

Inference services panel
The FiRE platform supports three types

of inferences. The first type involves check-

ing a fuzzy knowledge base’s consistency.

To provide reasoning support for Fuzzy

OWL, we’ve reduced a Fuzzy OWL ontol-

ogy to a fuzzy DL knowledge base.4

The latter two focus more on querying

given knowledge to derive new implied

knowledge. In the first case, Fuzzy OWL

supports the entailment of a fuzzy fact. For

example, one useful query to our fuzzy

knowledge would be to ask if segment o1 is

yellow to a degree greater or equal than

0.8. The user can input this query in the

inference services panel using RACER syn-

tax. For our fuzzy knowledge, the answer

is positive. Another fuzzy fact that our

knowledge entails is that o1 is a tennis ball

to a degree greater or equal than 0.5.

The second query-related inference service

is the subsumption between two fuzzy con-

cepts. For example, we can query whether the

concept Yellow is a subconcept of the conjunc-

tion of the fuzzy concepts Red, Green, and

¬Blue, which is obviously true. RACER syntax

specifies subsumption with the keyword

implies.

Output tabs
FiRE uses several output tabs to provide

information about the fuzzy knowledge

base. Figure 2 shows the model output tab,

which returns the model (fuzzy interpreta-

tion) that satisfies the concept, role, and

instance axioms the fuzzy knowledge base

specified. It also shows a model of the fuzzy

knowledge base after we’ve checked its con-
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Figure 1. Definition of the fuzzy set Red.



sistency. We can see that Red is a fuzzy con-

cept with object o1 belonging to a degree 0.8

and object o2 belonging to a degree 0.6. Like

other fuzzy concepts, the hasPart fuzzy prop-

erty means that the pair (o1, o2) belongs to a

degree 0.75. Also important is the tableaux

expansion tab, where we can see a trace of

the reasoning algorithm’s application. In the

tableaux tab, we can see the reasoning algo-

rithm’s created structure; the output tab,

which shows the initial fuzzy knowledge;

and the performance tab, which provides

view information about PC resource usage.

Uncertainty representations 
with rules

The rules layer is directly above OWL

and the ontology layer in the Semantic

Web stack. The W3C working group for

rules (www.w3.org/2005/rules) focuses

mainly on providing a Rule Interchange

Format rather than a single Semantic Web

language. Another effort is the Rule Markup

Language initiative (www.ruleml.org).

RuleML provides a set of markups suitable

for representing and interchanging different

types of rules.

Many individuals and groups have pro-

posed extending rule systems with mathe-

matical frameworks capable of representing

uncertain information. More precisely, ap-

proaches exist for probabilistic, possibilis-

tic, and fuzzy rule languages, which aim to

capture and handle different types of uncer-

tainties.7 The fuzzy RuleML Technical Group

was established in August 2005 to extend

RuleML’s functionality and provide ways to

interchange uncertainty rule languages

(www.image.ece.ntua.gr/FuzzyRuleML).

The group’s aim is to provide syntactic

extensions to RuleML to represent uncer-

tainty logic programming ap-proaches. Simi-

lar to ontologies and OWL, these extensions

must be as minimal as possible.

The technical group’s first extension was

motivated by fuzzy logic programming

approaches. So, fuzzy RuleML proposed a

way to specify a membership degree when

creating RuleML facts. For example, you

could provide a markup for the fuzzy fact

Green Eyes(Dora) � 0.8—that is,

<Atom>
<degree><Data>0.8</Data></degree>
<_opr><Rel>Green_Eyes</Rel></_opr>
<Ind>Dora</Ind>

</Atom>
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Figure 2. The FiRE user interface consists of an editor panel (upper left), inference services panel (upper right), and output tabs

(the bottom).



We don’t need to specify the inequality �

because traditionally, uncertainty logic

programming approaches only consider this

inequality. The only additional element that

this syntax provides is the element <degree>.

Interestingly, the RuleML 0.9 schema speci-

fication (www.ruleml.org/0.9) already sup-

ports this element. The technical group is

investigating ways to further uncertainty

logic programming languages, such as prob-

abilistic, possibilistic, and fuzzy approaches.

For example, this could help you capture the

rule “the probability of getting stuck in traf-

fic before reaching 4th Ave. from the south is

at least 0.9” or “if a painting has specific

features, the possibility of it being Raphael’s

is at least 0.8.”

In future work, we could extend FiRE in

several ways:

• Extend to other uncertainty formalisms.

Studying and integrating other types of

uncertainties is one of our future goals.

• Extend the DL component’s expressive-

ness. FiRE supports a fuzzy version of the

DL language SHIN. SHIN is expressive,

but algorithms for even more expressive

DL languages, such as SHOIQ, exist.

• Extend the fuzzy component’s expres-

siveness. FiRE supports the Zadeh fuzzy

version of SHIN, fKD-SHIN. Apart from

the Zadeh fuzzy operators, several others

result in different logical properties.

• Support data types. FiRE doesn’t yet

support data types. Proposals exist for

fuzzy data type expressions, such as

“about 15,” a data type defined as a

fuzzy set around the value 15.

• Support rules. Previous efforts have

mainly focused on providing a rule

interchange format rather than a single

rule language, but several proposals for

a Semantic Web rule language exist.

Integrating fuzzy rules with fuzzy DLs

is another interesting extension.
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