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Abstract

We present a framework for analyzing shape uncertainty and variability in point-sampled geometry. Our repre-

sentation is mainly targeted towards discrete surface data stemming from 3D acquisition devices, where a finite

number of possibly noisy samples provides only incomplete information about the underlying surface. We capture

this uncertainty by introducing a statistical representation that quantifies for each point in space the likelihood

that a surface fitting the data passes through that point. This likelihood map is constructed by aggregating local

linear extrapolators computed from weighted least squares fits. The quality of fit of these extrapolators is combined

into a corresponding confidence map that measures the quality of local tangent estimates. We present an analysis

of the effect of noise on these maps, show how to efficiently compute them, and extend the basic definition to a

scale-space formulation. Various applications of our framework are discussed, including an adaptive re-sampling

method, an algorithm for reconstructing surfaces in the presence of noise, and a technique for robustly merging a

set of scans into a single point-based representation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5. [Computer Graphics]: Computational Geometry

and Object Modeling

1. Introduction

Digital 3D geometry has become ubiquitous in science and

will soon be on par with traditional multi-media data types

such as sound, images, and video. Mechanical engineering,

architecture, entertainment, and bio-medicine are just a few

application fields that make extensive use of digital 3D shape

information. In these areas, 3D acquisition devices have be-

come a prime source for the creation of 3D geometric data.

3D scanners typically produce an unstructured cloud of sam-

ples points, where each point is a discrete sample of certain

shape attributes such as 3D position, surface normal, color,

or material properties. This raw data needs to be processed

in various forms, e.g., to extract high level information about

the scanned object, modify its shape or appearance, or create

renditions that are meaningful to the user. Most of these ge-

ometry processing algorithms are based on continuous sur-

face representations such as triangle meshes or collections

of spline-patches, which are typically computed from the
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given point cloud data using some surface reconstruction

algorithm. Having obtained such a distinct surface model,

all subsequent processing then directly operates on this rep-

resentation without any reference to the origin of the data.

This is suitable for applications where convincing renditions

of the 3D shapes are the primary goal, such as movies or

games. However, single reconstructed surfaces are by no

means unique or inherent in the acquired data, since any dis-

crete sampling provides only incomplete information about

the underlying object. This shape uncertainty is further in-

creased by measurement noise, which cannot be avoided in

any physical acquisition process.

Our goal is to capture this variability and uncertainty in

point-sampled surfaces. To this end we propose a new ap-

proach to surface modeling with real-world data. Instead of

reconstructing a single surface, we look at the distribution

of all surfaces that are plausible for a given sample set. We

present a statistical representation that takes the measure-

ment and sampling process into account, allowing a more

thorough analysis of point cloud surface data. Apart from

computer graphics and geometric modeling, this approach

can be also beneficial in applied sciences such as engineer-

ing or bio-medicine. Whenever certain information needs to
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be extracted from the acquired data, e.g., the volume of a

mechanical part, or the existence of a tumor in a CT-scan,

users rely on some confidence or accuracy estimate. Thus

current approaches based on a single extracted surface are

not suitable for such scenarios.

To capture shape uncertainty in a discrete sample set, we

locally estimate the likelihood of a surface passing through

a certain point in space. These estimates are computed by

propagating weighted shape extrapolators derived from least

squares fits of local point neighborhoods. Additional to this

likelihood map, we also compute a confidence map that

quantifies the confidence of the individual shape extrapola-

tors. Since confidence is linked to sampling density, we can

use this map to guide up- and down-sampling operations on

the point cloud data set.

We classify shape uncertainty into two different cate-

gories. First, the discrete sampling provides spatial informa-

tion only at a finite number of points. This introduces un-

certainty, since the course of the surface in between sample

points is unknown and needs to be inferred from the sample

set. Second, physical measurements are always corrupted by

noise. Thus the measured position of a sample point cannot

be treated as ground truth, but instead should be understood

as the result of some stochastic process. Noise typically de-

pends only on the physical properties of the scanner, the ac-

quired object and the measurement environment, while the

uncertainty due to discretization occurs even for noise-free

data and is closely related to the sampling density. We will

demonstrate how both forms of uncertainty can be integrated

naturally into the likelihood and confidence maps.

Given the definition of these maps, we will show how this

representation can be used to analyze discrete surface data

to answer questions related to sampling and discretization.

Our method allows us to quantitatively compare surfaces

with respect to their quality of fit and extract the most likely

surface according to certain boundary constraints. We also

show how multiple sample sets of the same object can be

combined into a single weighted point cloud exhibiting less

uncertainty than each individual scan.

Our framework is general in the sense that we do not

assume any additional information on the distribution of

shapes. Rather we impose this distribution by accumulating

local shape extrapolators. It should be noted that additional

context knowledge can greatly reduce the uncertainty and

variability in acquired data. For example, if a scanned me-

chanical part is known to be of a certain type, the search

space can typically be described with a few parameters. Our

method does not exploit such specific information explicitly.

It should be understood as a tool for analyzing shape vari-

ability when no prior on the distribution of shapes is given.

2. Related Work

Point-based surface representations have recently be-

come popular in computer graphics. Earlier work intro-

duced point primitives for rendering [LW85] and has in-

spired a significant amount of work in that direction,

e.g., [RL00, ZPvG01, KV01, BWK02].

Curve and surface reconstruction has been an ac-

tive research field in geometric modeling. Given a point

cloud as input these methods typically extract a triangle

mesh, e.g., [HDD∗94, ABK98], or an implicit representa-

tion, e.g., [CBC∗01, ZOF01]. More recently, various meth-

ods have been presented to directly approximate surfaces

from point cloud data [Lev03, ABCO∗01, AA03]. Point-

sampled surfaces have also been used for geometric process-

ing [PG01], surface re-sampling [WH94, PGK02], shape

and appearance modeling [ZPKG02, AD03, PKKG03], and

feature extraction [PKG03]. Our work is based on these prior

efforts and we use various tools and concepts from the above

papers to define our statistical shape modeling framework.

We will comment on these techniques in subsequent sec-

tions.

Kalaiah and Varshney [KV03] introduced a new rep-

resentation that uses statistical methods for compression

and stochastic rendering of point cloud data sets. They

use hierarchical PCA to compactly encode point attributes,

such as position, normal, and color. Grigoryan and Rhein-

gans [GR02] presented a point rendering method for visu-

alizing stochastic variations in medical data using uncer-

tainty data provided with the point samples. Schneider an-

alyzed shape uncertainty from a more abstract point of view

in [Sch01]. He identifies various sources for shape uncer-

tainty and stresses the importance of additional context in-

formation to reduce the uncertainty.

Our work is probably most closely related to tensor vot-

ing, a formalism introduced by Medioni and co-workers that

is based on tensor calculus (see [MLT00] for an overview).

This approach is similar to ours in that it tries to describe

shape information by combining local estimates using Gaus-

sian influence functions. The scope of their work is quite

different though, since they mainly concentrate on robustly

classifying and reconstructing features in discrete data sets.

3. Likelihood and Confidence

In this section we introduce our statistical framework for

modeling shape variability and uncertainty. Our goal is to

explore the space of all continuous surfaces that are compati-

ble with a given point set. We first consider the case of noise-

free data sets, where by compatible we mean interpolating.

The analysis in the presence of noise will then be given in

Section 4.

Assume that MP is the set of all continuous (d − 1)-
dimensional surfaces interpolating a given point cloud P =
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Figure 1: A given point cloud (left image) could be a sample

from any of an infinite number of surfaces. In the middle,

four such surfaces are shown, where the gray value indicates

the prior, i.e., likelihood that the point cloud is sampled from

this surface. The accumulated likelihood for all surfaces as

computed with our method is shown on the right.

{p1, . . . ,pN |pi ∈ IR
d}, i.e., pi ∈ S for all pi ∈ P and all

S ∈MP. To analyze the distribution of surfaces in MP, we de-

fine a function FP : IR
d → IR+ that quantifies for each point

x ∈ IR
d the likelihood that a surface S interpolating P passes

through x. Conceptually we can define a likelihood map FP

as

FP(x) =
∫

S∈MP

χS(x)p(S)dS, (1)

where χS(x) is the characteristic function of S, i.e.,

χS(x) =

{

1 x ∈ S

0 x /∈ S

and p(S) is a weight function that specifies a prior on the

distribution of surfaces S ∈ MP (see Figure 1). For certain

applications it might be possible to explicitly define such a

prior and describe the set MP with a finite number of param-

eters. In general, however, Equation 1 is intractable, since

MP is infinite-dimensional and the prior is not known. We

thus follow a constructive approach for defining the likeli-

hood map FP. This means that by defining FP, we implicitly

specify MP and p, i.e., impose a prior on the distribution of

surfaces interpolating P.

3.1. Likelihood Map

To determine FP(x) for a certain x, we accumulate local fit-

ting estimates Fi(x) from each pi. Fi(x) measures the like-

lihood of a linear extrapolation from pi to x, given the spa-

tial distribution of the sample points in P. This likelihood

is derived from a weighted sum of squared distances from

the points in P. Let qi(x) = (x− pi)/‖x− pi‖ the normal-

ized direction vector from pi to x, φi a monotonically de-

creasing weight function, ci a normalization constant, and

pi j = pi −p j. Fi(x) can then be computed as

Fi(x) =
1

ci

N

∑
j=1

(pT
i jqi(x))2φi(‖pi j‖)

=
1

ci

N

∑
j=1

qi(x)T
pi jp

T
i jqi(x)φi(‖pi j‖)

=
1

ci
qi(x)T

(

N

∑
j=1

pi jp
T
i jφi(‖pi j‖)

)

qi(x)

=
1

ci
qi(x)T

Ciqi(x), (2)

where

Ci =
N

∑
j=1

pi jp
T
i jφi(‖pi j‖). (3)

The normalization constant ci can be computed efficiently as

ci =
∫

Sd
q

T
Ciqdq =

π
2

d

∑
j=1

λl
i =

π
2

tr(Ci), (4)

where Sd is the d-dimensional sphere of directions, q is

a unit direction vector, λl
i is the l-th eigenvalue of Ci,

and tr(Ci) denotes the trace of Ci. Since Ci is symmetric

and positive semi-definite, all eigenvalues are non-negative

and the corresponding eigenvectors vl
i span an orthonormal

frame. The quadratic form defined by Equation 2 defines an

ellispoid with principal axes λl
iv

l
i that describes the distribu-

tion of points in the neighborhood of pi. The likelihood Fi is

then simply the weighted least squares error of the (d − 1)-
dimensional sub-space that is orthogonal to the line defined

by qi(x) (see Figure 2).

Each Fi(x) measures the likelihood that a surfaces passes

through x from the point of view of pi. Combining these

local estimates then yields an expression for the likelihood

map FP:

FP(x) =
N

∑
i=1

Fi(x)φi(‖x−pi‖). (5)

Fitting estimates closer to x will be assigned a higher weight

than those that are far away from the point of interest. Effec-

tively, we make the assumption that the influence of a point

pi on the course of the surface diminishes with increasing

distance to pi. To capture this behavior we use a radial Gaus-

sian influence function φi with standard deviation σi both in

Equation 2 and Equation 5. Figure 3 shows an example of a

2D likelhihood map.

Note that a direct computation of the Fi needs order O(N)
operations. Thus a single evaluation of Equation 5 requires

order O(N2) computation. However, the matrix Ci is con-

stant as it only depends on P, not on x. Thus we can pre-

compute all the Ci’s and use the quadratic form of Equa-

tion 2 to evaluate Fi in constant time. Since the Gaussian

weight function drops rapidly with distance, the computa-
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Figure 2: Construction of the likelihood map. Left: Fit-

ting estimates are computed from weighted least squares

fits, right: Combining individual fitting estimates yields the

global likelihood map.

pi

Figure 3: Likelihood map in 2D, where red means high like-

lihood and blue indicates low likelihood for a surface pass-

ing through a specific point in space. The images on the

right show the linear fitting estimate of the point centered in

the black box. Top right, fitting estimate Fi(x), bottom right,

weighted fitting estimate Fi(x)φi(‖x−pi‖).

tional cost can be further reduced by only considering a local

neighborhood around the point of interest.

3.2. Confidence Map

Equation 5 defines the likelihood map by combining fitting

estimates from all points in the point cloud. To evaluate the

confidence of the fitting estimate at point pi we look at the

distribution of all linear fits passing through pi. From equa-

tion 2 we can derive a confidence estimate for Fi by looking

at the distribution of the eigenvalues of Ci. In particular, the

ratio λ̄i = λ1
i /∑l λl

i , where λ1
i is the smallest eigenvalue of

Ci, quantifies the quality of fit of a linear approximation at

pi. A perfect fit means λ̄i = 0 and thus a high confidence in

the estimate at pi. If λ̄i reaches its maximum value of 1/d, all

directions are equally likely, indicating a low confidence at

pi. We combine these individual confidence estimates into a

global confidence map CP using the same weighting scheme

as in Equation 5:

CP(x) =
N

∑
i=1

λ̄iφi(‖x−pi‖). (6)

Note that the confidence map is directly related to the sur-

face variation measure of [PGK02] and the sampling cri-

terion proposed by Adamson and Alexa [AA03]. Figure 4

shows the confidence maps for a point cloud in 2D. Observe

how the quality of the normal estimates is directly related to

the confidence values.

Figure 4: Normal estimates of a point set (left) and corre-

sponding confidence map (right). Red color indicates low

confidence, i.e., low preference for a specific normal direc-

tion.

Figure 5: Likelihood (middle) and confidence maps (right)

for a sparsely sampled 3D data set (left).

Note that the likelihood and confidence maps only depend

on relative distances between sample points and are thus in-

variant under similarity transforms. Since they are also de-

fined for arbitrary dimension, 3D data sets can be processed

in the same way as the above 2D examples. Figure 5 shows

slices through the 3D likelihood and uncertainty maps for a

point cloud in 3D.

4. Noise

Measurement noise is the second source of uncertainty that

we encounter in discrete data. To define the likelihood and

confidence maps in the presence of noise, we consider the

point cloud P as the result of a stochastic process. We as-

sume that each sample point pi is corrupted by zero-mean,

additive noise ξi ∈ IR
d , where gi(ξi) denotes the probabil-

ity density function of ξi and Ωi the corresponding covari-

ance matrix. Let p
ξ
i = pi + ξi, ξi j = ξi − ξ j, p

ξ
i j = pi j + ξi j,
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and Pξ = {p
ξ
1, . . . ,p

ξ
N}. For independently distributed ξi we

compute the expected value of a function XP that depends on

the position of the points in P as

E[XP] =
∫
R

XPξ g(ξ)dξ,

where R = IR
d × ·· · × IR

d , ξ = (ξ1, . . . ,ξN), and g(ξ) =

∏i gi(ξi). The likelihood map for noisy data is then given

as F
ξ
P (x) = E[FP(x)] and the confidence map as C

ξ
P(x) =

E[CP(x)]. To evaluate these expected values we make the

assumption that the noise is small, i.e., in the range of

the local sample spacing, so that the Gaussian distance

weights of Equation 2 can be approximated by constants

φξ
i j = φi

(

√

E[‖p
ξ
i j‖

2]

)

. Using the fact that the samples are

independent, we find that

E[‖p
ξ
i j‖

2] = E[(p
ξ
i j)

T
p

ξ
i j] = E[(pi j + ξi j)

T (pi j + ξi j)]

= E[pT
i jpi j]+E[ξT

i jξi j]

= p
T
i jpi j +E[ξT

i ξi]+E[ξT
j ξ j]

= p
T
i jpi j + tr(Ωi)+ tr(Ω j), (7)

and hence

φξ
i j = φi

(√

pT
i jpi j + tr(Ωi)+ tr(Ω j)

)

.

The mean matrix C
ξ
i for the fitting estimates of Equation 2

can thus be written as

C
ξ
i = E[

N

∑
j=1

(pi j + ξi j)(pi j + ξi j)
T φξ

i j]

=
N

∑
j=1

pi jp
T
i jφ

ξ
i j +

N

∑
j=1

E[ξi jξT
i j]φ

ξ
i j

= C̄i +
N

∑
j=1

E[ξiξT
i ]φξ

i j

N

∑
j=1

E[ξ jξT
j ]φξ

i j

= C̄i +Ωi

N

∑
j=1

φξ
i j +

N

∑
j=1

Ω jφ
ξ
i j, (8)

where C̄i is computed as in Equation 2 using φξ
i j instead of

φi(‖pi j‖) as distance weights. As before, the normalization

constant is given as c
ξ
i = π

2 tr(C
ξ
i ). We can then write

F
ξ
i (x) =

1

c
ξ
i

(p
ξ
i −x)C

ξ
i (p

ξ
i −x)

‖(p
ξ
i −x)‖2

. (9)

noise

distribution

Figure 6: The effect of noise on the likelihood map. Left:

Input point cloud, middle: Likelihood map without noise,

right: Likelihood map with identically distributed Gaussian

noise.

Using this expression we compute the expected likelihood

map as

F
ξ
P (x) =

∫
R

N

∑
i=1

1

c
ξ
i

q
ξ
i

T
C

ξ
i q

ξ
i g(ξ)dξ

=
N

∑
i=1

∫
IR

1

c
ξ
i

(pi + ξi −x)T C
ξ
i (pi + ξi −x)

‖(pi + ξi −x)‖2
gi(ξi)dξi

=
N

∑
i=1

∫
IR

(pi − (x− ξi))
T C

ξ
i (pi − (x− ξi))

c
ξ
i ‖(pi − (x− ξi))‖2

gi(ξi)dξi

=
N

∑
i=1

∫
IR

F
ξ
i (x− ξi)gi(ξi)dξi

=
N

∑
i=1

F
ξ
i (x)⊗gi(x), (10)

where ⊗ denotes the convolution operator. A similar deriva-

tion holds for the confidence map. To incorporate the noise

model described above into our framework, we thus only

need to adjust the matrix Ci for each fitting estimate accord-

ing to Equation 8, and apply a convolution operation to the

final maps as described in Equation 10. Figure 6 shows the

effect of noise on the likelihood map.

5. Filter Kernels and Scale-Space

In the most simple case, all φi have the same standard devi-

ation σi so that a range query with fixed radius can be used

to compute the local neighborhoods. It has been observed

previously, however, that globally invariant weight functions

are unsuitable for data sets with spatially varying sampling

density [PGK02]. We thus use an adaptive Gaussian weight

function

φi(x) = e
−‖x−pi‖

2/σ2
i , (11)

where the kernel radius σi is related to the local sampling

density as σi = σ ·ηi. The variable ηi denotes the local sam-

ple spacing estimated from a k-neighborhood as described

in [PKKG03], and σ is a global scale parameter. Similar to

linear scale-space formulations, where a convolution with a

gaussian of varying kernel width leads to a multi-scale rep-

resentation of a given function f , σ can be understood as a
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Figure 7: Likelihood and confidence at different scales. The

circles in the left images show the iso-value 0.1 of the Gaus-

sian weight functions.

scale-parameter for FP. The effect of different choices for

this scale parameter can be observed in Figure 7. This exam-

ple shows that likelihood and confidence strongly depend on

scale. While the narrowing part of the curve can be robustly

resolved on a small scale, increasing the scale leads to in-

creased uncertainty in that area. On the other hand, the larger

kernels better handle the noisy sections of the point cloud.

Thus the scale-space representation can be useful for esti-

mating the optimal neighborhood size for point-based sur-

face modeling (see, e.g., [MN03]). A similar approach has

also been used for multi-scale feature extraction in [PKG03].

6. Results and Applications

This sections shows various applications for the shape un-

certainty framework defined above. For ease of illustration,

all examples are given on 2D data sets. As mentioned before,

the extension to 3D is straightforward (see also Figure 5).

Visualizations of the likelihood and uncertainty maps can

be of immediate use in interactive scanning applications,

where the user controls a scanning process by interactively

adjusting the position of the scanned object. Apart from in-

dicating holes as in [RHHL02], this method also directs the

user to regions of high uncertainty, which indicate insuffi-

cient sampling. We can also compare two given surfaces in

terms of their quality of fit with respect to a given point cloud

by evaluating the integral L(S) = 1
|S|

∫
S FP(x)dx. This value

can be understood as the likelihood that a point cloud P has

been sampled from a surface S.

6.1. Surface Re-Sampling

One of the most fundamental geometric processing meth-

ods is surface re-sampling. The confidence map defined in

Equation 4 can be used to guide re-sampling operations both

Figure 8: Adaptive surface sampling. A given continu-

ous surface has been successively up-sampled by inserting

points in regions of low confidence. The bottom row shows

the confidence map of the corresponding point clouds shown

in the top row.

for up- and down-sampling. It is particularly suited for it-

erative point removal or insertion algorithms, where it can

be used to determine the importance of a point for the ap-

proximation of a particular surface. Points should be re-

moved in regions of high confidence, while points should

be inserted where the confidence is low. Similar to pre-

vious methods [PGK02, ABCO∗01, Lin01], the error func-

tion, i.e., the confidence map, can be updated efficiently after

such incremental operations. One advantage of our approach

is that the resulting sampling distribution is not only curva-

ture adaptive, but also concentrates more samples in regions

where two distinct sheets of the surface come together. This

means that subsequent point-based surface processing based

on k-nearest neighbors can be robustly performed on the re-

sampled data sets. Figure 8 shows an example of adaptive

surface re-sampling.

6.2. Combining Surface Scans

Complex geometry is typically acquired using multiple over-

lapping scans, each covering a part of the model surface.

Various algorithms have been proposed to merge a set of

scans into a consistent representation, e.g., [CL96]. Typi-

cally, these methods apply some blending operator to com-

bine sample points in regions of overlap. We propose a dif-

ferent method that creates a new point cloud by simply merg-

ing a set of given point clouds. However, the samples in the

combined data set are enhanced by fidelity weights that are

directly related to the confidence estimates obtained from

each individual point cloud. This method is illustrated in

Figure 9. As shown in the bottom row on the left, the recon-

struction without fidelity weights exhibits severe artifacts.

These are due to false normal estimates caused by the noise

in the data. Increasing the radius of the reconstruction ker-

nel can avoid these artifacts, but leads to substantial blurring

c© The Eurographics Association 2004.
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Figure 9: Combining point clouds. In the top row on the left

two input data sets are shown that are corrupted by noise in

different regions of the surface. The combined point cloud is

shown in the third column and the weighted combined point

cloud on the right (gray level indicates fidelity weight). The

second and third rows show the corresponding likelihood

and confidence maps, respectively. The bottom row shows

three reconstructions using weighted least squares approxi-

mation as proposed in [AA03]. Left and middle: Reconstruc-

tion without fidelity weights using different reconstruction

kernel widths. Right: Reconstruction with fidelity weights,

using the same reconstruction kernel as in the left image.

of surface features (middle). In contrast, the reconstruction

using the fidelity weights gives a stable reconstruction even

for small kernel sizes that preserves salient features (right).

6.3. Surface Reconstruction

The likelihood map can also be used for surface reconstruc-

tion. We have implemented a scheme based on geodesic ac-

tive contours [CKS97] that evolves an implictly defined sur-

face under geodesic flow defined on the likelihood map. This

method tries to approximate the "most likely" surface, while

at the same time ensuring certain smoothness properties of

the resulting surfaces. Figure 10 shows the result of this al-

gorithm on a noisy 2D data set. More details on geodesic

active contours can be found in [CKS97].

Figure 10: Curve reconstruction on noisy data using

geodesic active contours. Left: Input point cloud, middle:

Corresponding likelihood map, right: Evolving curve, start-

ing from the circle shown in the center.

7. Conclusion and Future Work

We have introduced a statistical framework for analyzing

discrete surface data represented by clouds of point sam-

ples. We show that uncertainty due to both discretization and

noise can be incorporated efficiently into a single represen-

tation. This representation allows us to visualize uncertainty

and variability in acquired data sets, perform re-sampling

and surface reconstruction operations, and merge multiple

sample sets into a single point cloud.

It is important to note that the construction of the likeli-

hood and confidence maps using weighted least squares fits

defines the prior on the distribution of surfaces compatible

with a given point cloud, taking only the spatial information

provided by the point samples into account. This generality,

while advantageous when analyzing data sets from different

acquisition sources, also limits the applicability for specific

applications scenarios. A significantly more accurate anal-

ysis of shape variability should be possible when consider-

ing context specific prior information about the underlying

shape space. In the future we plan to extend our scheme to

integrate context information into the definition of the likeli-

hood and confidence maps. Another interesting direction for

future research is the extension of our framework to analyze

the variability within a family of shapes. We are also inves-

tigating a statistical classification of surface topology from

point cloud data.
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