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Abstract. The quality of a 3-D geological model strongly

depends on the type of integrated geological data, their inter-

pretation and associated uncertainties. In order to improve an

existing geological model and effectively plan further site in-

vestigation, it is of paramount importance to identify existing

uncertainties within the model space. Information entropy, a

voxel-based measure, provides a method for assessing struc-

tural uncertainties, comparing multiple model interpretations

and tracking changes across consecutively built models. The

aim of this study is to evaluate the effect of data integration

(i.e., update of an existing model through successive addi-

tion of different types of geological data) on model uncer-

tainty, model geometry and overall structural understanding.

Several geological 3-D models of increasing complexity, in-

corporating different input data categories, were built for the

study site Staufen (Germany). We applied the concept of in-

formation entropy in order to visualize and quantify changes

in uncertainty between these models. Furthermore, we pro-

pose two measures, the Jaccard and the city-block distance,

to directly compare dissimilarities between the models. The

study shows that different types of geological data have dis-

parate effects on model uncertainty and model geometry. The

presented approach using both information entropy and dis-

tance measures can be a major help in the optimization of

3-D geological models.

1 Introduction

Three-dimensional (3-D) geological models have gained im-

portance in structural understanding of the subsurface and are

increasingly used as a basis for scientific investigation (e.g.,

Butscher and Huggenberger, 2007; Caumon et al., 2009; Bis-

tacchi et al., 2013; Liu et al., 2014), natural resource explo-

ration (e.g., Jeannin et al., 2013; Collon et al., 2015; Hassen

et al., 2016), decision making (e.g., Campbell et al., 2010;

Panteleit et al., 2013; Hou et al., 2016) and engineering appli-

cations (Hack et al., 2006; Kessler et al., 2008). Overall, 3-D

geological models are usually preferable over 2-D solutions

because our object of study is intrinsically three-dimensional

in space and, therefore, they offer a higher degree of data

consistency and superior data visualization. Moreover, they

enable the integration of many different types of geological

data such as geological maps, cross sections, outcrops, bore-

holes and data from geophysical (e.g., Boncio et al., 2004)

and remote-sensing methods (e.g., Schamper et al., 2014).

Nevertheless, input data are often sparse, heterogeneously

distributed or poorly constrained. In addition, uncertainties

from many sources such as measurement error, bias and im-

precisions, randomness, and lack of knowledge are inher-

ent to all types of geological data (Mann, 1993; Bárdossy

and Fodor, 2001; Culshaw, 2005). Furthermore, assumptions

and simplifications are made during data collection, and sub-

jective interpretation is part of the modeling process (Bond,

2015). Hence, model quality strongly depends on the type of

integrated geological data and its associated uncertainties.

In order to assess the quality and reliability of a 3-D

geological model as objectively as possible, it is essen-

tial to address underlying uncertainties. Numerous meth-

ods have recently been proposed that enable estimates,

quantification and visualization of uncertainty (Tacher

et al., 2006; Wellmann et al., 2010; Lindsay et al.,

2012, 2013, 2014; Lark et al., 2013; Park et al., 2013;

Kinkeldey et al., 2015). A promising approach is based

on the concept of information entropy (Shannon, 1948).

Wellmann and Regenauer-Lieb (2012) applied this concept
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to 3-D geological models. In their study, they evaluated un-

certainty as a property of each discrete point of the model

domain by quantifying the amount of missing information

with regard to the position of a geological unit (Wellmann

and Regenauer-Lieb, 2012). They consecutively added new

information to a 3-D model and compared uncertainties be-

tween the resulting models at discrete locations and as an

average value for the total model domain using information

entropy as a quantitative indicator. Through their approach,

they addressed two important questions: (1) how is model

quality related to the available geological information and its

associated uncertainties, and (2) how is model quality im-

proved through the incorporation of new information?

Wellmann and Regenauer-Lieb (2012) illustrated their ap-

proach using synthetic 3-D geological models, showing how

additional geological information affects model uncertainty.

The present study goes a step further. It applies the concept

of information entropy as well as model dissimilarity to a

real case, namely the city of Staufen, Germany, at the east-

ern margin of the Upper Rhine Graben. In contrast to the

previous study, the present study evaluates the effects of the

consecutive addition of data from different data categories to

an existing model on model uncertainty and overall model

geometry. We hypothesize that disparate effects of different

data types on model uncertainty exist and that the quantifica-

tion of these effects provides a trade-off between costs (i.e.,

data acquisition) and benefits (i.e., reduced uncertainty and

therefore higher model quality). Thus, several 3-D geolog-

ical models of the study site were consecutively built with

increasing complexity; each of them based on an increasing

amount of (real) categorized data. An approach was devel-

oped that uses information entropy and model dissimilarity

for the quantitative assessment of uncertainty in the consec-

utive models. Results indicate that the approach is applicable

for complex and real geological settings. The approach has

large potential as a tool to support both model improvement

through successive data integration and cost–benefit analyses

of geological site investigations.

2 Study site

The city of Staufen suffers from dramatic ground heave that

resulted in serious damage to many houses (southwest Ger-

many, Fig. 1). Ground heave with uplift rates exceeding

10 mm month−1 started in 2007 after seven wells were drilled

to install borehole heat exchangers (BHEs) for heating the lo-

cal city hall (LGRB, 2010). After more and more houses in

the historic city center showed large cracks, an exploration

program was initiated by the state geological survey (LGRB

– Landesamt für Geologie, Rohstoffe und Bergbau) in order

to investigate the case. Results showed that the geothermal

wells hydraulically connected anhydrite-bearing clay rocks

with a deeper aquifer, and resulting water inflow into the an-

hydritic clay rock triggered the transformation of the min-

eral anhydrite into gypsum (Ruch and Wirsing, 2013). This

chemical reaction is accompanied by a volume increase that

leads to rock swelling, a phenomenon typically encountered

in tunneling in such rock (e.g., Einstein, 1996; Anagnostou

et al., 2010; Butscher et al., 2011b, 2015; Alonso, 2011),

but recently also observed after geothermal drilling (Butscher

et al., 2011a; Grimm et al., 2014). The abovementioned ex-

ploration program was aimed not only at finding the cause of

the ground heave but also at better constraining the complex

local geological setting. The hitherto existing geological data

were not sufficient to explain the observed ground heave, lo-

cate the geological units that are relevant for rock swelling,

and plan countermeasures.

Staufen is located west of the Black Forest at the east-

ern margin of the Upper Rhine Graben (URG). It is part

of the “Vorbergzone” (Genser, 1958), a transition zone be-

tween the eastern main border fault (EMBF) of the graben

and the graben itself. This zone is characterized by stag-

gered fault blocks that were trapped at the graben margin

during opening and subsidence of the graben. The strata of

this transition zone are often steeply inclined or even vertical

(Schöttle, 2005) and are typically displaced by west-dipping

faults with a large normal displacement. The fault system,

kinematically linked to the EMBF, has a releasing bend ge-

ometry and today experiences sinistral oblique movement

(Behrmann et al., 2003). The major geological units at the

site comprise Triassic and Jurassic sedimentary rocks, which

are covered by Quaternary sediments of an alluvial plain in

the south (Sawatzki and Eichhorn, 1999) (Fig. 1).

Three geological units play an important role for the

swelling problem at the site: the Triassic Gipskeuper

(“Gypsum Keuper”) formation, which contains the swelling

zone, and the underlying Lettenkeuper formation and Up-

per Muschelkalk formation, which are aquifers providing

groundwater that accesses the swelling zone via pathways

along the BHE. The Gipskeuper formation consists of marl-

stone and mudstone and contains the calcium-sulfate min-

erals anhydrite (CaSO4) and gypsum (CaSO4 + H2O). The

thickness of this formation varies between 50 and 165 m,

with an average thickness of 100–110 m (LGRB, 2010),

depending on the degree of leaching of the sulfate min-

erals close to the ground surface. It is underlain by the

Lettenkeuper formation (5–10 m thickness), consisting of

dolomitic limestone, standstone and mudstone, and the Up-

per Muschelkalk formation (≈ 60 m thickness) dominantly

consisting of limestone and dolomitic limestone.

3 Methods

3.1 Input data

Input data for the 3-D geological modeling include all avail-

able geological data that indicate (1) boundaries between

geological units, (2) the presence of geological units and
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Figure 1. Study site and location of the model area and area of interest (AOI).

faults at a certain positions, and (3) orientation (dip and az-

imuth) of the strata. These data were classified into four cat-

egories (Fig. 2): (1) non-site-specific, (2) site-specific, (3) di-

rect problem-specific data and (4) indirect problem-specific

data.

The non-site-specific data category comprises geologi-

cal data that are generally available from published maps

(Sawatzki and Eichhorn, 1999), the literature (Genser, 1958;

Groschopf et al., 1981; Schreiner, 1991) and the database

of the state geological survey, LGRB. Furthermore, a digi-

tal terrain model (DTM) of 1 m grid size is included in the

non-site-specific data. Outcrop and borehole data are mostly

scarce and irregularly distributed in space. The site-specific

data comprise drill logs of the geothermal drillings, which

provided a pathway for uprising groundwater that finally

triggered the swelling. Problem-specific data comprise all

data collected during the exploration program that was con-

ducted after heave at the ground surface caused damage to the

local infrastructure (LGRB, 2010, 2012). This exploration

program was initiated because geological knowledge of the

site was insufficient for an adequate understanding of the

swelling process in the subsurface and for planning and im-

plementing suitable countermeasures. The problem-specific

data were further divided into direct data from drill cores of

the three exploration boreholes (Fig. 2; EKB 1+2 and BB 3),

which add very accurate point information, and indirect data

from a seismic campaign (Fig. 2; Profile 1–5), which add

rather “fuzzy” 2-D information that has to be interpreted.

3.2 3-D geological modeling

The 3-D geological models were constructed using the geo-

modeling software SKUA/GoCAD® 15.5 by Paradigm. They

cover an area of about 0.44 km2 and have a vertical extent

of 665 m. A smaller area of interest (AOI, 300 m × 300 m,

250 m vertical extent) was defined within the model domain,

including the drilled wells and the area where heave at the

ground surface was observed and the problem-specific data

were collected.

The strata of the models cover 10 distinct geological

units including Quaternary sediments, Triassic and Jurassic

bedrock, and crystalline basement at the lower model bound-

ary (Fig. 3). The Triassic strata are further divided (from top

to bottom) into four formations of Keuper (Steinmergelke-

uper, Schilfsandstein, Gipskeuper and Lettenkeuper), two

formations of Muschelkalk (Upper Muschelkalk, Middle to

Lower Muschelkalk) and the Buntsandstein formation. Fig-

ure 3 provides an overview over the modeled geological units

and average thicknesses used in the initial models.

Four initial models were consecutively built, according to

the four previously described data categories. Model 1 was

constructed based only on non-site-specific data (maps, lit-

erature, etc.); Model 2 additionally considered site-specific

data (drill logs of the seven geothermal drillings); Model 3

also included “direct” problem-specific data (exploration

boreholes); and finally, Model 4 included “indirect” problem-

specific data (seismic campaign). Through this approach,
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data density and structural model complexity increase from

Models 1 to 4 and the models required successively higher

efforts in data acquisition in the field.

First, an explicit modeling approach (Caumon et al., 2009)

was used to create representative boundary surfaces for the

geological units and faults of the initial model because

the available input data were, in terms of spatial coverage,

not sufficient to directly use an implicit approach. Discrete

smooth interpolation (DSI) provided by GoCAD® was used

as the interpolation method (Mallet, 1992), which resulted in
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Delaunay-triangulated surfaces for both horizons and faults.

Subsequently, based on the explicitly constructed surfaces, a

volumetric 3-D model was built by implicit geological mod-

eling, implemented in the software SKUA®. The implicit

modeling approach uses a potential field interpolation con-

sidering the orientation of strata (Frank et al., 2007), and is

based on the U -V -t concept (Mallet, 2004), where horizons

represent geochronological surfaces.

3.3 Uncertainty assessment

3.3.1 General approach

Our approach for assessing uncertainties in the 3-D geologi-

cal models consists of four distinct steps (Fig. 4):

i. Building the initial 3-D geological models of increasing

data density and structural complexity (see above).

ii. The definition of fault and horizon uncertainties. Hori-

zon uncertainties were specified in SKUA® by a max-

imum displacement parameter or by alternative sur-

face interpretations, resulting in a symmetric envelope

of possible surface locations around the initial surface.

To constrain the shape of generated horizons, SKUA®

uses a variogram that spatially correlates perturbations

applied to the initial surfaces (Paradigm, 2015). Fault

uncertainties were defined by a maximum displace-

ment parameter and a Gaussian probability distribution

around the initial fault surface (Caumon et al., 2007;

Tertois and Mallet, 2007).

iii. The creation of 30 model realizations for each initial

model based on the surface variations defined above, ap-

plying the Structure Uncertainty workflow of SKUA®.

iv. The extraction of the geological information from all

model realizations for analysis, comparison and visual-

ization. For this purpose, the AOI was divided into a reg-

ular 3-D grid of 5 m cell size, resulting in 180 000 grid

cells. The membership of a grid cell to a geological unit

was defined as a discrete property of each grid cell and

extracted for all 30 model realizations. Based on these

data, we calculated the probability of each geological

unit being present in a grid cell in order to derive the

information entropy at the level of (1) a single grid cell,

(2) a subset representing the area of extent of a geologi-

cal unit and (3) the overall AOI. Furthermore, the fuzzy

set entropy was calculated to determine the ambiguous-

ness of the targeted geological units Gipskeuper (km1),

Lettenkeuper (ku) and Upper Muschelkalk (mo) within

the AOI. Calculations were conducted using the statis-

tics package R (R Core Team, 2016). The underlying

concepts and equations used to calculate probabilities

and entropies are described in the following section.

3.3.2 Information entropy

The concept of information entropy (or Shannon entropy)

was first introduced by Shannon (1948) and is well known

in probability theory (Klir, 2005). It quantifies the amount

of missing information and hence, the uncertainty at a dis-

crete location x, based on a probability function P of a finite

data set. When applied to geological modeling, information

entropy expresses the “degree of membership” of a grid cell

to a specific geological unit. In other words, information en-

tropy quantitatively describes how unambiguously the avail-

able information predicts that unit U is present at location

x. Information entropy was recently applied to 3-D geolog-

ical modeling by Wellmann et al. (2010) and Wellmann and

Regenauer-Lieb (2012) in order to quantify and visualize un-

certainties introduced by the imprecision and inaccuracy of

geological input data. A detailed description of the method

can be found in the cited references and is briefly summa-

rized here.

By subdividing the model domain M into a regular grid, a

discrete property can be assigned to any cell at location x in

the model domain. In a geological context, the membership

of a grid cell to a geological unit U can be defined as such a

property by an indicator function:

IU (x) =

{

1 if x ∈ U

0 otherwise,
(1)

Applied to all n realizations k of the model space M , the

indicator function yields a set of n indicator fields I with each

of them defining the membership of a geological unit as a

property of a grid cell. Considering the combined informa-

tion of all indicator fields, it follows that membership is no

longer unequivocally defined at a location x and hence has to

be expressed by a probability function PU :

Px(U) =
∑

k∈n

IUk
(x)

n
. (2)

From the probabilities of occurrence Px(U) the uncer-

tainty (or amount of missing information) associated with a

discrete point (grid cell) can be obtained by calculating the

information entropy Hx (Shannon, 1948) for a set of all pos-

sible geological units U :

Hx = −
∑

U∈U

Px(U) × logPx(U). (3)

In a next step, information entropy HM can be calculated

as an average value of Hx over the entire model space:

HM =
1

|M|
×

∑

x∈M

Hx, (4)

where |M| is the number of elements within M , HM = 0

denotes that the location of all geological units is precisely

known (no uncertainty) and HM is maximal for equally dis-

tributed probabilities of the geological units (PU1 = PU2 =
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-
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Figure 4. Uncertainty assessment workflow with four distinct steps. This workflow is applied to four initial models that are based on the

different data sets illustrated in Fig. 2.

PU3 = . . .), which means that a clear distinction between ge-

ological units within the model space is not possible. Simi-

larly, average information entropy can also be applied to only

a subset of the model space (S ⊆ M):

HS =
1

|S|
×

∑

x∈S

Hx . (5)

HS can be used to evaluate the contribution of a specific

sub-domain to overall uncertainty. In the case of a drilling

campaign, for example, the sub-domain can comprise a tar-

geted depth or a geological formation of specific interest. In

this study, we used the probability function Px(U) with HS

conditioned by Px(U) > 0 to define subsets within the model

space. Thus, each subset represents the probability space of

a geological formation of interest, namely the Lettenkeuper

(Sku), Gipskeuper (Skm1) and Upper Muschelkalk (Smo) for-

mation.

Wellmann and Regenauer-Lieb (2012) also adapted fuzzy

set theory (Zadeh, 1965) in order to assess how well-defined

a single geological unit is within a model domain. A fuzzy

set of n model realizations introduces a certain degree of in-

definiteness to a discrete property (e.g., membership of a ge-
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ological unit), resulting in imprecise boundaries which can

be referred to as fuzziness. The fuzziness of a fuzzy set (De

Luca and Termini, 1972) in the context of a geological 3-D

model can be quantified by the fuzzy set entropy HU (Leung

et al., 1992; Yager, 1995):

HU = −
1

N
×

N
∑

x=1

[

Px(U) logPx(U) + (1 − Px(U))

log(1 − Px(U))
]

, (6)

where the probability function Px(U) with an interval [0,1]

represents the degree of membership of a grid cell to a fuzzy

set. HU equals 0 when Px(U) is either 0 or 1 everywhere

within the set; and HU equals 1 when all cells of the set have

an equal probability of Px(U) = 0.5.

3.4 Model dissimilarity

The stepwise addition of input data to the models (see

Sect. 3.1) not only affects uncertainties associated with a ge-

ological unit but also the geometry of the units and therefore

their position, size and orientation in space. New data may

significantly change the geometry of a geological unit but

only marginally change the overall uncertainty. Thus, both

model uncertainty and dissimilarity should be evaluated. In

order to quantify the dissimilarity d between consecutive

models in terms of the probability of a specific geological

unit occurring in a given voxel, two measures, the Jaccard

and the city-block distance (Fig. 5), are proposed to comple-

ment information entropy. However, dissimilarities between

models, and therefore, uncertainties, have recently also been

addressed very effectively using geo-diversity metrics such

as formation depth and volume, curvature and neighbor-

hood relationships together with principal component anal-

ysis (Lindsay et al., 2013) and through topological analysis,

which quantifies geological relationships in a model (Thiele

et al., 2016a, b).

The set of locations for which the probability Px(U) of

belonging to a particular geological unit U is greater than a

threshold value t can be defined by

Qt
M = {x}Px (U)>t . (7)

A threshold value of t = 0 was applied in order to capture

and consider the same sample space as in HU . This defini-

tion is highly sensitive to outcomes of small probability and

might, in some cases, be more robust using a threshold value

greater than 0 (e.g., t > 0.05). The Jaccard similarity mea-

sure (Webb and Copsey, 2003) is then defined as the size

of the intersection divided by the size of the union (overlap)

of two sample sets (M1, M2), which in our case represent

the similarity in position of a geological unit U between two

models:

sJAC =
|Qt

M1 ∩ Qt
M2|

|Qt
M1 ∪ Qt

M2|
. (8)

NCB distance

M1 M2

P (U)x

1

0

(b)

Jaccard distance

M2M1

P (U) > 0x

(a)

dJAC

dNCB

P (U)x = 0

Figure 5. Distance measures used to calculate dissimilarities be-

tween models (M1, M2). (a) Jaccard distance (dJAC) using a

true/false binary function and (b) normalized city-block distance

based on a probability function.

Accordingly, the dissimilarity between models can be ex-

pressed by the Jaccard distance:

dJAC = 1 − sJAC, (9)

where dJAC = 1 indicates maximum dissimilarity (no match

in position of a geological unit U between two models) and

dJAC = 0 indicates complete overlap.

Even though the use of binary dissimilarities is straight-

forward and suitable to quantify absolute changes in posi-

tion of a geological unit between models, it does not ac-

count for fuzziness (see Sect. 3.3.2). Hence, the dissimilar-

ity may be overestimated by the Jaccard distance. In order

to include fuzziness, the normalized city-block distance was

employed, adopting the probability function Px(U) as a di-

mension to compare dissimilarities between the two sam-

ple sets (M1,M2) (Webb and Copsey, 2003; Paul and Maji,

2014):

dNCB =
1

N
×

N
∑

x=1

|P M1
x (U) − P M2

x (U)|, (10)

where N is the size of M1 ∪ M2 (i.e, number of grid cells

present within the union). The distance is greatest for dNCB =

1.

4 Results and discussion

4.1 Initial 3-D models

The four consecutively constructed initial models show a

stepwise increase in structural complexity (Fig. 6). Model 1

was based on non-site-specific geological data, and horizon

orientations were only constrained by regionally available,

isolated outcrop data, which made a general extrapolation of
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structures difficult, especially into depth (Jessell et al., 2010).

Dip and strike were assumed uniform (40 and 35◦) for all

horizons across the model domain (see Fig. 6). Information

from geological maps and outcrop data revealed a normal

fault within the AOI, which was assumed to be ENE–WSW

striking with a moderate displacement of about 50 m.

In Model 2, horizon positions of the Schilfsandsteinkeu-

per (km2), Gipskeuper (km1) and Lettenkeuper (ku) were

locally constrained by site-specific information provided by

drill logs of the geothermal wells, slightly impacting fault

displacement and thickness of the formations. However,

changes in model geometry were minor, as no further infor-

mation on horizon orientations was available and no addi-

tional faults could be located. By adding the direct problem-

specific data from the exploration wells to Model 3, a horst–

graben structure was identified that entailed a considerable

displacement at two normal faults between and to the north-

west of the wells with a displacement of 120 and 70 m, re-

spectively. Furthermore, the drill logs included orientation

measurements of the strata, resulting in a shift in position and

inclination of layers, compared to the previous models. Thus,

large parts of the model domain within the AOI changed from

Model 2 to Model 3, and, as a consequence, dissimilarities

between these models are particularly high (see Sect. 4.4).
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Figure 7. Cross section through Models 1 and 4. The multiple lines show 30 model realizations with shifted faults and horizons (for the

location of the cross sections, see Fig. 6). The horizontal lines indicate the land surface (purple) and the base of the Quaternary (blue).

Finally, Model 4, which included data from a seismic cam-

paign, has the highest degree of structural complexity. The

information provided by seismic sections revealed uncertain-

ties, which were present previously but not captured by the

simpler Models 1 to 3. Ultimately, seismic data force the in-

terpreter to add complexity down to a certain scale. However,

seismic surveys are inherently ambiguous and allow alterna-

tive interpretations, especially concerning the orientation and

number of faults as well as the type of fault contact to a fault

network (e.g., branching) (Røe et al., 2014; Cherpeau and

Caumon, 2015; Julio et al., 2015). In our case, seismic sec-

tions and interpretations were adopted from LGRB (2010).

The indirect problem-specific data from the seismic 2-D sur-

vey located several additional faults within the AOI, and in

some cases caused a shift in position of faults compared to

Model 3. The AOI was strongly fragmented by the added

faults, and the orientation of layers is no longer uniform but

varies strongly between fault blocks. In summary, the step-

wise integration of data according to the four data categories

improved our general knowledge of subsurface structures at

the study site (Fig. 2). In addition, the effect of data integra-

tion from different exploration stages on modeled subsurface

geometry could be evaluated and visualized.

4.2 Multiple model realizations

The multiple (30) model realizations created by the Struc-

tural Uncertainty workflow of SKUA® are illustrated in

Fig. 7 using 2-D cross sections of Models 1 and 4 as exam-

ples. A total number of 30 realizations and a cell size of 5 m

was chosen as a compromise between model detail, lowest

practical limit for statistical viability and data handling. For

the same reason we did not base our number of realizations

on an estimate of convergence. Instead we used the estimate

of 30 realizations for a stable fluctuation in fuzzy entropy

in a model developed by Wellmann et al. (2010) as a guide-

line value to our model. Perturbations in horizon location are

based on (1) alternative surface interpretations, which reflect

a maximum deviation in dip and azimuth (±5◦) from the ini-

tial surface and (2) constant displacement values, which were

assigned in order to account for uncertainties in formation

thickness and boundary location. For a more detailed expla-

nation of our choice of parameters, assigned probability dis-

tributions and specific input modes of the Structural Uncer-

tainty workflow, please refer to the Supplement (Tables S1

and S2). In Model 1, the non-site-specific data set includes

minimal constraints, resulting in faults and horizons of the

realizations that are widely dispersed but parallel. In con-

trast, the faults and horizons of the Model 4 realizations are

more narrowly dispersed where problem-specific data were

available within the AOI. The workflow handles equal un-

certainties consistently across models by producing a similar

pattern of horizontal displacement in Models 1 and 4. This

can be seen in particular for structures located close to the

NW boundary, which were not further constrained by con-

secutively added geological data. However, it is also appar-

ent from the mostly uniform orientation of the surfaces in

the 30 realizations of each model that perturbation measures

implemented in the Structural Uncertainty workflow did not

allow for large variations in dip and azimuth of horizons or

faults. Therefore, uncertainty may be systematically under-

estimated especially at greater depths.

4.3 Uncertainty assessment

4.3.1 Distribution of information entropy

Information entropy, quantified at the level of individual grid

cells, can be visualized in 3-D to identify areas of uncertainty

and evaluate changes in geometry resulting from successive

data integration. Figure 8a shows the distribution of informa-

tion entropy for Models 1 and 4. It can also be seen that the

approach is suitable for locating areas with high degrees of

uncertainty, indicated by dark red colors (hot spots) in this

figure. Furthermore, Fig. 8b highlights where additional con-

straints from the data helped to optimize the model by reduc-

ing uncertainties (1Hx < O) and whether further constraints

are needed in locations of specific interest.

The overall distribution of uncertainty was clearly affected

by additional geological information from site- and problem-

specific input data (Model 4). This effect is highlighted by the

changes in entropy between the models (Fig. 8b). Additional

constraints on horizon and fault boundaries caused a shift

in position and orientation of geological units, followed by a
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Figure 8. 3-D view of the AOI with a discretization of 5 m for (a) average information entropy HM of Models 1 and 4 and (b) change in

entropy 1Hx between both models.

large redistribution of uncertainties, indicated by the changes

in entropy. It can be seen that new hot spots of uncertainty

were introduced in proximity to the faults identified by the

exploration boreholes and the seismic data incorporated into

Model 4 (see Fig. 6). However, these new areas of uncer-

tainty can be considered an optimization of the model be-

cause large parts of the preceding Model 1 did not reflect

the complex local geology. Model 1 (wrongly) predicted low

uncertainties for areas where information on unidentified but

existing structures (i.e., faults) was missing. This illustrates

that epistemic uncertainties at the study site are likely sub-

stantial. Even Model 4 will inevitably still underrepresent the

true structural complexity at this site, especially in areas of

low data density. In a risk-assessment and decision-making

process, this can be problematic because low uncertainty ar-

eas might be in fact no-information areas. In such a case,

the respective model area would actually be highly uncer-

tain. However, ambiguities in data interpretation (e.g., seis-

mic sections) can lead to incorrectly identified structures and

uncertainty in any case, even in areas of high data density.

Nevertheless, the approach allows one to assess and visual-

ize uncertainties related to structures that have been identi-

fied during site investigation. To lessen the limitations posed

by non-sampled locations, Yamamoto et al. (2014) proposed
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a post-processing method for uncertainty reduction, using

multiple indicator functions and interpolation variance in ad-

dition to information entropy. Based on information theory,

Wellmann (2013) further proposed joint entropy, conditional

entropy and mutual information as measures to evaluate cor-

relations and reductions of uncertainty in a spatial context.

However, uncertainty from a lack of evidence of a geological

structure (e.g., fault), known as imprecise knowledge (Mann,

1993), still depends on the density and completeness of avail-

able input data.

4.3.2 Average information entropy

The calculated average information entropy HT of the con-

secutive models steadily decreases with higher data speci-

ficity (i.e., non-site to problem-specific, see Fig. 2) from

Models 1–4 (Fig. 9). Mean values of HM ranged from 0.56

(Model 1) to 0.39 (Model 4), where HM = 0 would denote

no structural uncertainty. The decrease from Models 1 to 4

is approximately linear, indicating that all four categories of

geological data had a similar impact on overall model uncer-

tainty, even though the added information resulted in quite

different model geometries and, as discussed above, in some

cases in a local increase in entropy (see Fig. 8b). A similar

but more pronounced trend was observed for the average en-

tropy HS of the subsets Skm1, Sku and Smo, which represent

the domain of the three geological units that are of particular

importance to the swelling problem. However, entropy, i.e.,

the amount of uncertainty, is considerably higher within the

domain of these geological units than for the overall model

space, especially for the subsets Sku and Smo, identifying

them as areas of a particularly high degree of uncertainty.

Note that these units are the aquifers that have been hy-

draulically connected to the swellable rocks via the geother-

mal drillings. Nevertheless, all entropy values are compara-

bly moderate, considering that a maximum of (only) five dif-

ferent geological units was found in any one grid cell across

all four models, yielding a possible maximum entropy of

HM = 2.32 for an equal probability distribution (P1 = P2 =

P3 = P4 = P5). For comparison: if all 10 geological units

would be equally probable, the maximum entropy would

be 3.32. Furthermore, median values and interquartile range

dropped from 0.51 (0–0.99) in Model 1 to 0 (0–0.84) in

Model 4. This helps to illustrate that the amount of grid cells

with Hx = 0 (indicating no inherent uncertainty), increased

notably by 34.8 % from 40.6 (Model 1) to 54.8 % (Model 4)

and that the remaining entropies in Model 4 are limited to a

considerably smaller number of cells within the model do-

main.

Overall, comparing the pre- to post-site-investigation sit-

uations (Models 1–4), site and problem-specific investiga-

tions were all equally successful in adding information to the

model and reducing uncertainties in the area of the targeted

horizons. While the benefits from the different data are equal,

the costs in data acquisition (i.e., work, money and time re-
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Figure 9. Average entropy HM calculated for the different mod-

els (mean and median) and for subsets of the model space of each

model (Skm1, Sku, Smo).

quired) may vary considerably, depending on the exploration

method (e.g., drillings and seismic survey). An economic

evaluation was not within the scope of this study. Neverthe-

less, the approach presented could improve cost and benefit

analyses by quantifying the gain in information through dif-

ferent exploration stages.

4.3.3 Fuzzy set entropy

The fuzzy set entropy was calculated to indicate how well-

defined a geological unit is within the model space. Applied

to the swelling problem of our case study, a high degree of

uncertainty remains with regard to the position of the rele-

vant geological units (km1, ku, mo) after full data integra-

tion. We obtained fuzzy set entropy values (HU ) ranging be-

tween 0.329–0.504 (Fig. 10). The fuzziness of these geologi-

cal units only slightly changed from Models 1 to 4, indicating

that higher data specificity did not translate into more clearly

defined geological units within the model domain. This can

be partially attributed to the complex geological setting of

the study site. In the process of data integration, additional

boundaries between geological units are created at newly in-

troduced faults, increasing the overall fuzziness of a unit.

In the case of the Lettenkeuper formation (unit ku), bound-

aries are even slightly less well-defined in Model 4 com-

pared to Model 1. This is likely related to the low thickness

of the formation (5–10 m, Fig. 3) relative to the mesh size

(5 m). A finer grid could reduce this effect; however, com-

putation time would increase significantly. Wellmann and

Regenauer-Lieb (2012) propose using unit fuzziness to de-

termine an optimal representative cell size and reduce the

impact of spatial discretization on information entropy. As

previously discussed in Sect. 4.2, our workflow does not ex-

plicitly consider uncertainties through dip and strike varia-

tions by a value indicated for this purpose but through pertur-

bations based on alternative surface interpretations, which in

our case likely underestimates the fuzziness of the targeted

geological units at greater depths. Thus, overall fuzziness,
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Figure 10. Fuzzy set entropy HU of the targeted geological units

km1, ku and mo of the different models.

particularly in Model 1, may be significantly higher than cal-

culated.

4.4 Models dissimilarity

A gain in structural information through newly acquired data

usually not only impacts model uncertainty but is also as-

sociated with a change in model geometry. The calculated

distances between models can identify the data category with

the strongest impact on model geometry and make it possible

to determine whether model geometry and uncertainty are re-

lated. Figure 11 shows the calculated Jaccard and city-block

distances between the models with respect to the targeted ge-

ological units km1, ku and mo.

Calculated distances between models are rather high, with

values of up to 0.78; indicating a pronounced shift in position

of the geological units after data were added. The addition of

both direct and indirect problem-specific data to Model 3 had

a strong impact on model geometry, which can be seen by

comparing the calculated distances between Models 2, 3 and

4 for both Jaccard and city block (Fig. 11). In contrast, site-

specific data had a much lower effect, with less than a 20 %

(0.2) change in unit position, except for ku of the Jaccard

distance (see distance between Models 1 and 2).

Overall, the city-block distance, which considers the fuzzi-

ness of geological boundaries, shows a similar trend to

the Jaccard distance; however, changes are much less pro-

nounced, especially for unit ku. According to the low city-

block distance, absolute changes in probability Px(U) for

each grid cell are small, whereas high Jaccard distances in-

dicate a large number of grid cells being affected through

newly added data. Thus, the Jaccard distance likely over-

estimated the actual dissimilarity between models. Compar-

ing unit ku of both distances; the disparity between values

hints at a large number of low-degree changes in member-

ship of the grid cells (1Px(U) ≪ 1). These predominately

low-degree changes are likely related to the abovementioned

high degree of unit boundary fuzziness and the resulting, ill-

defined, geological unit ku being shifted within the model
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Figure 11. Dissimilarities between the different models expressed

by (a) Jaccard distance and (b) city-block distance.

domain. However, a direct comparison of fuzzy set entropy

to the corresponding city-block distance yields no quantifi-

able relationship between model geometry and structural un-

certainty.

Nonetheless, both distance measures allow the quantifica-

tion and assessment of different aspects of dissimilarities and

therefore, changes in geometry across models. Nevertheless,

the city-block distance is preferable when sets of multiple

realizations are compared because it factors in the probabil-

ity of the occurrence of a geological unit at a discrete loca-

tion. In recent years, various distance measures have already

been applied in other contexts to create dissimilarity distance

matrices and compare model realizations in history match-

ing and uncertainty analysis, particularly in reservoir model-

ing (Suzuki et al., 2008; Scheidt and Caers, 2009a, b; Park

et al., 2013). These include the Hausdorff distance which,

similar to our approach, directly compares the geometry of

different structural model realizations but also more sophis-

ticated measures that calculate distances in realizations based

on flow model responses from a transfer function.

5 Summary and conclusions

Prior work has demonstrated the effectiveness of informa-

tion entropy in assessing model uncertainties and providing

valuable insight into the geological information used to con-

strain a 3-D model. Wellmann and Regenauer-Lieb (2012),

for example, evaluated how additional information reduces

uncertainty and helps to constrain and optimize a geological

model using the measure of information entropy. Their ap-

proach focused on a hypothetical scenario of newly added

borehole data and cross-section information to a synthetic

model. In the present study, information entropy and, in ad-

dition, model dissimilarity was used to assess the impact of

newly acquired data on model uncertainties using actual site-

investigation data in the complex geological setting of a real

case.

We presented a new workflow and methods to describe the

effect of data integration on model quality, overall structural

understanding of the subsurface and model geometry. Our
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results provide a better understanding of how model quality

can be assessed in terms of uncertainties in a data acquisition

process of an exploration campaign, showing that informa-

tion entropy and model dissimilarity are powerful tools to

visualize and quantify uncertainties, even in complex geo-

logical settings. The main conclusions of this study are as

follows:

1. Average and fuzzy set entropy can be used to evaluate

uncertainties in 3-D geological modeling and, therefore,

support model improvement during a consecutive data

integration process. We suggest that the approach could

be used to also perform a cost–benefit analysis of explo-

ration campaigns.

2. The study confirms that 3-D visualization of informa-

tion entropy can reveal hot spots and changes in the

distribution of uncertainty through newly added data in

real cases. The method provides insight into how addi-

tional data reduce uncertainties in some areas and how

newly identified geological structures may create hot

spots of uncertainty in others. Furthermore, the method

stresses that parsimonious models can locally underesti-

mate uncertainty, which is only revealed after new data

are available and being considered.

3. Dissimilarities in model geometry across different sets

of model realizations can effectively be quantified and

evaluated by a single value using the city-block dis-

tance. A combination of the concepts of information en-

tropy and model dissimilarity improves uncertainty as-

sessment in 3-D geological modeling.

However, some limitations of the presented approach are

noteworthy. Although it was designed to assess uncertainties

in the position and thickness of horizons, uncertainty in ori-

entation could only be included indirectly through perturba-

tions based on alternative surface interpretations but not by

explicit dip and azimuth parameter values indicated for this

purpose. This may result in a systematic underestimation of

uncertainties at greater depths of the model domain. Further-

more, our study site (Vorbergzone) is a highly fragmented

geological entity, and epistemic uncertainties due to missing

information about unidentified but existing geological struc-

tures are likely substantial.

Future work should therefore aim to include “fault block

uncertainties” more effectively into the workflow, for ex-

ample by including multiple fault network interpretations

(Holden et al., 2003; Cherpeau et al., 2010; Cherpeau and

Caumon, 2015) or by considering fault zones that produce a

given displacement by a variable number of faults. Finally, all

data of the investigated site were collected prior to our anal-

ysis; therefore, additional data were not explicitly collected

in order to reduce detected uncertainties within the consecu-

tive models. Applying this approach during an ongoing site

investigation could improve the targeted exploration and al-

low a well-founded cost–benefit analysis through uncertainty

hot-spot detection.
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